
A r t i f i c i a l In te l l i gence
A Universal Modular ACTOR Formalism

for A r t i f i c i a l Intelligence
Carl Hewitt

Peter Bishop
Richard Steiger

Abstract
This paper proposes a modular ACTOR architecture and definit ional method for a r t i f i c i a l

intelligence that is conceptually based on a single kind of object: actors [or, if you w i l l ,
v i r tual processors, activation frames, or streams]. The formalism makes no presuppositions
about the representation of primitive data structures and control structures. Such structures
can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is
impossible to determine whether a given object is "really" represented as a l i s t , a vector, a
hash table, a function, or a process. The architecture w i l l e f f ic ient ly run the coming
generation of PLANNER-like a r t i f i c i a l intelligence languages including those requiring a high
degree of parallelism. The efficiency is gained without loss of programming generality because
it only makes certain actors more e f f ic ient ; it does not change their behavioral
characteristics. The architecture is general with respect to control structure and
does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that
the disallowed constructs are intended to achieve by other more structured methods.

PLANNER Progress

"Programs should not only work,
but they should appear to work as wel l . "

PDP-1X Dogma

The PLANNER project is continuing research in natural and effective means for embedding
knowledge in procedures. In the course of this work we have succeeded in unifying the
formalism around one fundamental concept: the ACTOR. Intu i t ive ly , an ACTOR is an active agent
which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the
inseparability of control and data flow in our model. Data structures, functions, semaphores,
monitors, ports, descriptions, Quillian nets, logical formulae, numbers, ident i f iers, demons,
processes, contexts, and data bases can a l l be shown to be special cases of actors. Al l of the
above are objects with certain useful modes of behavior. Our formalism shows how al l of the
modes of behavior can be defined in terms of one kind of behavior: sending messages to actors.
An actor is always invoked uniformly in exactly the same way regardless of whether 1t behaves
as a recursive function, data structure, or process.

" I t is vain to multiply Entities beyond need."
William of Occam

"Monotheism is the Answer."
The unif ication and simplif ication of the formalisms for the procedural embedding of

knowledge has a great many benefits for us:
FOUNDATIONS: The concept puts procedural semantics [the theory of how things

operate] on a firmer basis. It w i l l now be possible to do cleaner theoretical studies of the
relation between procedural semantics and set-theoretic semantics such as model theories of
the quantificational calculus and the lambda calculus.

LOGICAL CALCULAE: A procedural semantics is developed for the quantificational
calculus. The logical constants FOR-ALL, THERE-EXISTS, AND, OR, NOT, and IMPLIES
are defined as actors.

KNOWLEDGE BASED PROGRAMMING is programming in an environment which has a
substantial knowledge base in the application area for which the programs are intended.
The actor formalism aids knowledge based programming in the following ways-. PROCEDURAL
EMBEDDING of KNOWLEDGE, TRACING BEHAVIORAL DEPENDENCIES, and SUBSTANTIATING that ACTORS
SATISFY their INTENTIONS.

INTENTIONS: Furthermore the confirmation of properties of procedures is made
easier and more uniform. Every actor has an INTENTION which checks that the prerequisites
and the context of the actor being sent the message are sat isf ied. The intention is the
CONTRACT that the actor has with the outside world. How an actor f u l l f l l l s i ts contract is
i ts own business. By a SIMPLE BUG we mean an actor which does not satisfy i ts intention.
We would l ike to eliminate simpTedebugging of actors by the META-EVALUATION of actors to show
that they satisfy their Intentions. Suppose that there is an external audience of actors E
which satisfy the intentions of the actors to which they send messages. In tu i t ive ly , the
principle of ACTOR INDUCTION states that the intentions of a l l actions caused by E are
in turn satisf ied provided that the following condition holds:

If for each actor A
the intention of A is satisf ied =>
that the intentions of a l l actors sent messages by A are sat isf ied.

Computational induction [Manna], structural induction [Bursta l l] , and Peano induction
are a l l special cases of ACTOR induction. Actor based intentions have the following
advantages: The intention is decoupled from the actors it describes. Intentions of
concurrent actions are more easily disentangled. We can more elegantly write intentions
for dialogues between actors. The intentions are written 1n the same formalism as the
procedures they describe. Thus for example intentions can have intentions. Because
protection is an intr insic property of actors, we hope to be able to deal with protection
issues in the same straight forward manner as more conventional intentions. Intentions
of data structures are handled by the same machinery as for a l l other actors.

COMPARATIVE SCHEHATOLOGY: The theory of comparative power of control structures is

235

extended and unif ied. The following hierarchy of control structures can be explicated by
incrementally Increasing the power of the message sending pr imit ive:

iterative---recursive---backtrack---+determinate- --universal
EDUCATION: The model is suf f ic ient ly natural and simple that it can be made the

conceptual basis of the model of computation for students. In particular it can be used as
the conceptual model for a generalization of Seymour Papert's " l i t t l e man" model of LOGO.
The model becomes a cooperating society of " l i t t l e men" each of whom can address others
with whom it is acquainted and pol i te ly request that some task be performed.

LEARNING and MODULARITY: Actors also enable us to teach computers more easily
because they make it possible to incrementally add knowledge to procedures without having
to rewrite a l l the knowledge which the computer already possesses. Incremental extensions
can be incorporated and interfaced in a natural f lexib le manner. Protocol abstraction
[Hewitt 1969; Hart, Nilsson, and Fixes 1972] can be generalized to actors so that
procedures with an arbitrary control structure can be abstracted.

EXTENDABILITY: The model provides for only one extension mechanism: creating
new actors. However, this mechanism is suff ic ient to obtain any semantic extension that might
be desired.

PRIVACF and PROTECTION: Actors enable us to define effective and ef f ic ient
protection schemes. Ordinary protection fa l l s out as an ef f ic ient in t r ins ic property of
actors. The protection is based on the concept of "use". Actors can be freely passed
out since they w i l l work only for actors which have the authority to use them. Mutually
suspicious "memoryless" subsystems are easily and e f f ic ient ly implemented. ACTORS are at
least as powerful a protection mechanism as domains [Schroeder, Needham, e t c .] , access
control l i s t s [MULTICS], objects [Wulf 1972], and capabil it ies [Dennis, Plummer, Lampson].
Because actors are locally computationally universal and cannot be coerced there is reason
to believe that they are a universal protection mechanism in the sense that a l l other
protection mechanisms can be ef f ic ient ly defined using actors. The most important issues
in privacy and protection that remain unsolved are those involving intent and t rust . We
are currently considering ways in which our model can be further developed to address these
problems.

SYNCHRONIZATION: It provides at least as powerful a synchronization mechanism as
the multiple semaphore P operation with no busy waiting and guaranteed f i r s t in f i r s t out
discipl ine on each resource. Synchronization actors are easier to use and substantiate
than semaphores since they are direct ly t ied to the control-data flow.

SIMULTANEOUS GOALS: The synchronization problem is actually a special case of the
simultaneous goal problem. Each resource which is seized is the achievement and
maintenance of one of a number of simultaneous goals. Recently Sussman has extended the
previous theory of goal protection by making the protection guardians into a l i s t of
predicates which must be re-evaluated every time anything changes. We have generalized
protection in our model by endowing each actor with a scheduler. We thus retain the
advantages of local intentional semantics. A scheduler actor allows us to
program EXCUSES for violat ion in case of need and to allow NEGOTIATION and re-negotiation
between the actor which seeks to seize another and i ts scheduler. Richard Waldinger has
pointed out that the task of sorting three numbers is a very elegant simple example
i l lus t ra t ing the u t i l i t y of incorporating these kinds of excuses for violating protection.

RESOURCE ALLOCATION: Each actor has a banker who can keep track of the resources
used by the actors that are financed by the banker.

STRUCTURING: The actor point of view raises some interesting questions concerning
the structure of programming.

STRUCTURED PROGRAMS: We maintain that actor communication is well-structured.
Having no goto, interrupt, semphore, etc. constructs, they do not violate "the le t ter
of the law." Some readers w i l l probably feel that some actors exhibit "undisciplined"
control flow. These distinctions can be formalized through the mathematical discipl ine
of comparative schematology [Patterson and Hewitt].

STRUCTURED PROGRAMMING: Some authors have advocated top down programming. We
f ind that our own programming style can be more accurately described as "middle out".
We typical ly start with specifications for a large task which we would l ike to program.
We refine these specifications attempting to create a program as rapidly as possible.
This i n i t i a l attempt to meet the specifications has the effect of causing us to change
the specifications in two ways:

1: More specifications [features which we or ig inal ly did not realize are
important] are added to the definit ion of the task.

2: The specifications are generalized and combined to produce a task that
is easier to implement and more suited to our real needs.
IMPLEMENTATION: Actors provide a very f lexib le implementation language. In fact

we are carrying out the implementation entirely in the formalism i t s e l f . By so doing we
obtain an implementation that is ef f ic ient and has an effective model of i t se l f . The
efficiency is gained by not having to incur the interpretive overhead of embedding the
implementation in some other formalism. The model enables the formalism to answer
questions about i t se l f and to draw conclusions as to the impact of proposed changes in the
Implementation.

ARCHITECTURE: Actors can be made the basis of the architecture of a computer which
means that a l l the benefits l is ted above can be enforced and made e f f ic ient . Programs
written for the machine are guaranteed to be syntactically properly nested. The basic unit
of execution on an actor machine is sending a message in much the same way that the basic

2 3 6

unit of execution on present day machines is an Instruction. On a current generation
machine in order to do an addition an add Instruction must be executed; so on an actor
machine a hardware actor must be sent the operands to be added. There are no goto,
semaphore, interrupt, etc. instructions on an ACTOR machine. An ACTOR machine can be bui l t
using the current hardware technology that is competitive with current generation machines.

"Now! Now!" cried the Queen. "Faster! Faster!"
Lewis Carroll

Current developments in hardware technology are making it economically attractive
to run many physical processors in paral le l . This leads to a "swarm of bees" style of
programming. The actor formalism provides a coherent method for organizing and
controll ing a l l these processors. One way to build an ACTOR machine is to put each actor
on a chip and build a decoding network so that each actor chip can address a l l the others.
In certain applications parallel processing can greatly speed up the processing. For
example with suff ic ient parallelism, garbage collection can be done 1n a time which is
proportional to the logarithm of the storage collected instead of a time proportional to
the amount of storage collected which is the best that a serial processor can do. Also the
architecture looks very promising for parallel processing In the lower levels of computer
audio and visual processing.

"Al l the world's a stage,
And a l l the men and women merely actors.
They have their exits and their entrances;
And one man in his time plays many parts."

" I f it waddles l ike a duck, quacks l i ke a duck, and otherwise behaves l ike a duck; then
you can't t e l l that it i sn ' t a duck."

Adding and Reorganizing Knowledge
Our aim is to build a firm procedural foundation for problem solving. The foundation

attempts to be a matrix in which real world problem solving knowledge can be e f f ic ient ly and
naturally embedded. We envisage knowledge being embedded in a set of knowledge boxes with
interfaces between the boxes. In constructing models we need the ab i l i t y to embed more
knowledge in the model without having to to ta l ly rewrite i t . Certain kinds of additions can be
easily encompassed by declarative formalisms such as the quantificational calculus by simply
adding more axioms. Imperative formalisms such as actors do not automatically extend so
easily. However, we are implementing mechanisms that allow a great deal of f l e x i b i l i t y in
adding new procedural knowledge. The mechanisms attempt to provide the following ab i l i t i es ;

PROCEDURAL EMBEDDING:. They provide the means by which knowledge can easily and
naturally be embedded in processes so that it w i l l be used as intended.

CONSERVATIVE EXTENSION: They enable new knowledge boxes to be added and
interfaced between knowledge "Foxes.

MODULAR CONNECTIVITY: They make it possible to reorganize the interfaces
between knowledge boxes.

MODULAR EQUIVALENCE: They guarantee that any box can be replaced by one which
satisf ies the previous interfaces.
Actors must provide interfaces so that the binding of interfaces between boxes can be

controlled by knowledge of the domain of the problem. The r ight kind of interface promotes
modularity because the procedures on the other side of the interface are not affected so long
as the conventions of the interface are not changed. These interfaces aid in debugging since
traps and checkpoints are conveniently placed there. More generally, formal conditions can be
stated for the interfaces and confirmed once and for a l l .

Unification
We claim that there is a common Intellectual core to the following (now somewhat

isolated) f ie lds that can be characterized and investigated: d ig i ta l c i rcu i t designers, data
base designers, computer architecture designers, programming language designers, computer
system architects.

"Our primary thesis is that there can and must exist a single language for
software engineering which is usable at a l l stages of design from the i n i t i a l
conception through to the f inal stage in which the last b i t 1s sol idly 1n place on
some hardware computing system."

Doug Ross
The time has come for the unif ication and integration of the f ac i l i t i e s provided by the

above designers into an inte l lectual ly coherent manageable whole. Current systems which
separate the following intel lectual capabil i t ies with arbitrary boundaries are now obsolete.

"Know thyself".
We intend that our actors should have a useful working knowledge of themselves. That i s , they
should be able to answer reasonable questions about themselves and be able to trace the
implications of proposed changes in their intentions. It might seem that having the
implementation understand i t se l f is a rather incestuous a r t i f i c i a l intelligence domain but we
believe that it is a good one for several reasons. The implementation of actors on a
conventional computer Is a re lat ively large complex useful program which is not a toy. The
implementation must adapt i t se l f to a re lat ively unfavorable environment. Creating a model of
i tse l f should aid in showing how to create useful models of other large knowledge based programs
since the implementation addresses a large number of d i f f i cu l t semantic issues. We have a
number of experts on the domain that are very interested 1n formalizing and extending their
knowledge. These experts are good programmers and have the time, motivations, and ab i l i t y to

237

embed their knowledge and intentions in the formalism.
"The road to hell is paved with good intentions."

Once the experts put in some of their intentions they f ind that they have to put in a great
deal more to convince the auditor of the consistency of their intentions and procedures. In
this way we hope to make expl ic i t a l l the behavioral assumptions that our implementation 1s
relying upon. The domain is closed 1n the "sense""that the questions that can reasonably be
asked do not lead to a vast body of other knowledge which would have to be formalized as wel l .
The domain is l imited in that 1t is possible to start with a small superficial model of actors
and build up Incrementally. Any advance is immediately useful in aiding and motivating future
advances. There 1s no hidden knowledge as the formalism is being ent irely implemented in
i t se l f . The task is not complicated by unnecessary bad software engineering practices such as
the use of gotos, interrupts, or semaphores.

Intr insic Computation
We are approaching the problem from a behavioral [procedural] as opposed to an

axiomatic approach. Our view is that objects are defined by their actors rather than by
axiomatizing the properties of the operations that can be performed on them.

"Ask not what you can do to some actor;
but what the actor can [w i l l ?] do for you."

Alan Kay has called this the INTRINSIC as opposed to the EXTRINSIC approach to defining
objects. Our model follows the following two fundamental principles of organizing behavior:

Control flow and data flow are inseparable.
Computation should be done in t r ins ica l ly instead of extr insical ly i .e. "Every

actor should act for himself or delegate the responsibi l i ty [pass the buck] to an actor
who w i l l . "

Although the fundamental principles are very general they have defini te concrete consequences.
For example they rule out the goto construct on the grounds that it does not allow a message to
be passed to the place where control is going. Thus it violates the inseparability of control
and data flow. Also the goto defines a semantic object [the code following the tag] which is
not properly syntactically delimited thus possibly leading to programs which are not properly
syntactically nested. Similarly the classical interrupt mechanism of present day machines
violates the principle of in t r ins ic computation since it wrenches control away from whatever
instruction is running when the interrupt str ikes.

Hierarchies
The model provides for the following orthogonal hierarchies:

SCHEDULING: Every actor has a scheduler which determines when the actor
actually acts after it 1s sent a message. The scheduler handles problems of
synchronization. Another job of the scheduler [Rulifson] is to t ry to cause actors to
act in an order such that their intentions w i l l be sat is f ied.

INTENTIONS: Every actor has an intention which makes certain that the
prerequisites and context of the actor being sent the message are sat isf ied.
Intentions provide a certain amount of redundancy in the specifications of what is
supposed to happen.

MONITORING: Every actor can have monitors which look over each message sent to
the actor.

BINDING: Every actor can have a procedure for looking up the values of names
that occur within 1t.

RESOURCE MANAGEMENT: Every actor has a banker which monitors the use of space
and time.

Note that every actor had all of the above ab i l i t i es and that each is done via an
actor!

"A slow sort of country!" said the Queen. "Now here, you see, it
takes a l l the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that!"

Lewis Carroll
The previous sentence may worry the reader a b i t as she [he] might envisage an in f i n i t e

chain of actions [such as banking] to be necessary in order to get anything done. We short
c i rcu i t this by only requiring that it appear that each of the above act iv i t ies 1s done each
time an actor is sent a message.

"There's no use t ry ing, " she said: "one can't believe impossible
things."

"I daresay you haven't had much practice," said the Queen. "When I
was your age, I always did it for half-an-hour a day. Why, sometimes I've
believed as many as six impossible things before breakfast."

Lewis Carroll
Each of the act iv i t ies is locally defined and executed at the point of invocation.

This allows the maximum possible degree of parallelism. Our model contrasts strongly with
extr insic quantlficatlonal calculus models which are forced into global noneffective statements
1n order to characterize the semantics.

"Global state considered harmful."
We consider language def in i t ion techniques [such as those used with the Vienna

Definition Language] that require the semantics be defined in terms of the global computational
state to be harmful. Formal penalties [such as the frame problem and the def ini t ion of
simultaneity] must be paid even if the def in i t ion only effect ively modifies local parts of the
state. Local in t r ins ic models are better suited for our purposes.

238

Hardware
Procedural embedding should be carried to I ts ultimate level : the architecture of the machine.

Conceptually, the only objects in the machine are actors. In practice the machine recognizes certain
actors as special cases to save speed and storage. We can easily reserve a portion of the name space
for actors implemented in hardware.

Syntactic Sugar
"What's the good of Mercator's North Poles and Equators,
Tropics, Zones and Meridian Lines?"
So the Bellman would cry: and the crew would reply
"They are merely conventional signs!"

Lewis Carroll
Thus far 1n our discussion we have discussed the semantic issues in tu i t ive ly but vaguely.

We would now l ike to proceed with more precision. Unfortunately in order to do this it seems
necessary to introduce a formal language. The precise nature of this language 1s completely
unimportant so long as it 1s capable of expressing the semantic meanings we wish to convey. For some
years we have been constructing a series of languages to express our evolving understanding of the
above semantic issues. The latest of these is called PLANNER-73.

Meta-syntactic variables w i l l be underlined. We shall assume that the reader 1s familiar with
advanced pattern matching languages such as SN0B0L4, CONVERT, QA4, and PLANNER-71.

We shall use (%A M%) to indicate sending the message M to the actor A. We shall use
[s1 s2 . . . sn] to denote the f i n i t e sequence s1, s2_, . . . sn. ft sequence s is an actor where (%s_ i%)
is element i of the sequence s. For example (%[a c b] 2%) is c. We w i l l use () to delimit the
simultaneous synchronous transmission of more than one message so that (Al A2...An) w i l l be
defined to be (%A1 [A2 . . . An]%). The expression [%a1 a2 . . . an%] (read as ""a] then a2 . . . f i na l l y
send back an") willI be evaluated by evaluating a l , a2, and an in sequence and then sending back
["returning"] the value of an as the message.

Identi f iers can be created by the prefix operator =. For example if the pattern = x 1s matched
with y, then a new ident i f ier is created and bound to v.

"But 'glory' doesn't mean 'a nice knock-down argument," Alice
objected.

"When I use a word," Humpty Dumpty said, in rather a scornful tone,
" i t means just what I choose 1t to mean—neither more nor less."

"The question i s , " said Al ice, "whether you can make words mean so
many dif ferent things."

"The question i s , " said Humpty Dumpty, "which is to be master--
that's a l l . "

Lewis Carroll
Humpty Dumpty propounds two cr i ter ia on the rules for names:

Each actor has complete control over the names he uses.
Al l other actors must respect the meaning that an actor has chosen for a name.

We are encouraged to note that in addition to satisfying the cr i ter ia of Humpty Dumpty, our names also
satisfy those subsequently proposed by B i l l Wulf and Mary Shaw: The default is not necessarily to
extend the scope of a name to any other actor. The r ight to access a name is by mutual agreement
between the creating actor and each accessing actor. An access r ight to an actor and one of i t s acquan-
tances is decoupled. It is possible to distinguish dif ferent types of access. The def ini t ion of a
name, access to a name, and allocation of storage are decoupled. The use of the prefix = does not imply
the allocation of any storage.

One of the simplest kinds of ACTORS is a c e l l . A cell with i n i t i a l contents V can be created
by evaluating (cel l V_). Given a cell x, we can ask it to send back its contents by evaluating
(contents xj which is an abbreviation for (x #contents). For example (contents(cell 3)) evaluates to 3.
We can ask it to change its contents to v by evaluating (x-y_). For example if we le t x be (cel l 3) and
evaluate (x--4), we w i l l subsequently find" that (contents x) w i l l evaluate to 4.

The pattern (by-reference P) matches object E_ 1f the pattern Pmatches (cel l E) i .e. a " ce l l "
[see below] which contains E. Thus matching the pattern (by-reference =x) against E 1s the same as
binding x to (cel l E) i .e . a new cell which contains the value of the expression E.We shall use =>
[read as "RECEIVE MESSAGE"] to mean an actor which is reminiscent of the actor LAMBDA in the lambda
calculus. For example (=> x body) 1s l ike (LAMBDA x body) where x 1s an ident i f ie r . An expression
(=> pattern body) is an abbreviation for (receive {[#message pattern]} body) where receive 1s a more
general actor that is capable of binding elements of the action in addition to the message.
Evaluating

(%(=> pattern body) the-messaqe%), i .e . sending
(=> pattern body) the-message, w i l l attempt to match the-message against pattern. If the-message

is not of the form specified by pattern, then the actor is NOT APPLICABLE to the-message. If the-message
matches pattern, then body 1s evaluated.

Evaluating (%(cases [f1 f2 ••• fn]) arg%) w i l l send fl_ the message arg and if it is not applicable
then it w i l l send f2 the message a r g , . . . , and send fn the message aro

The following abbreviations w i l l be used to improve readabil i ty:
(rules object clauses) for

((cases clauses)object)
(l e t object pattern-for-message body) for

(%(=> pattern-for-message body) objects)

239

message mechanisms of the current SMALL TALK machine of Alan Kay and the port mechanism of
Krutat and Balzer. Being free of side effects allows us a maximum of parallelism and allows an
actor to be engaged in several conversations at the same time without becoming confused.

4: Sending a message to an actor makes no presupposition that the actor sent the
message w i l l ever send back a message to the continuation. The unidirectional nature of
sending messages enables us to define i te ra t ion, monitors, coroutines, etc.straight forwardly,

5: The ACTOR model is nojt an [environment-pointer, instruction-pointer] model such as
the CONTOUR model. A'continuation is a f u l l blown actor [with a l l the rights and pr iv i leges];
it is not a program counter. There are no instructions [in the sense of present day machines]
in our model. Instead of instructions, an actor machine has certain primitive actors bu i l t in
hardware.

Logic
" I t is behavior, not meaning, that counts."

We would l ike to show how actors represent formulas in the quantificational calculus
and how the rules of natural deduction follow as special cases from the mechanism of extension
worlds. We assume the existence of a function ANONYMOUS which generates a new name which has
never before been encountered. Consider a formula of the form (every phi) which means that for
every x we have that (phi x) is the case. The formula has two important uses: it can be
asserted and it can be proved. We shall use an actor >=> [read as "ACCEPT REQUEST"] with the
syntax

(>=> pattern-for-request body) for procedures to be invoked by pattern directed
invocation by a command which matches pattern-for-request.

Our behavioral definit ions are reminiscent of classical natural deduction except that
we have four introduction and elimination rules [PROVE, DISPROVE, ASSERT, and DENY] to give us
more f l e x i b i l i t y in dealing with negation.

"Then Logic would take you by the throat, and force you to do i t ! "
Lewis Carroll

Data Bases
Data bases are actors which organize a set of actors for ef f ic ient ret r ieval . There

are two primitive operations on data bases: PUT and GET. A new virgin data base can be
created by evaluating (v i rg in) . If we evaluate (w +■ (virgin)) then (contents w) w i l l be a
virgin world. We can put an actor (at John airport) in the world (contents w) by evaluating
(put(at John airport) {[#world{contents w)]>). We could add further knowledge by evaluating

(put (at airport Boston) {[#world (contents w)]]) to record that the airport is at
Boston.
(put {c i ty Boston) {[#world (contents w)])) to record that Boston is a c i t y .

If the constructor EXTENSION is passed a message then it w i l l create a world which is an
extension of i t s message. Eor example
(put

[(on John (f l i gh t 34))
(extension-world ■*- (contents w))])

w i l l set extension-world to a new world in which we have supposed that John is on f l i gh t #34.
The world (contents w) is unaffected by this operation. On the other hand the extension world
is affected if we do (put [(hungry John) (contents w)]). Extension worlds are very good for
modeling the following:

WORLD DIRECTED INVOCATION
The extension world machinery provides a very powerful invocation and parameter

passing mechanism for procedures. The idea is that to invoke a procedure, f i r s t grow an
extension world; then do a world directed invocation on the extension world. This
mechanism generalizes the previous pattern directed invocation of PLANNER-67 several ways.
Pattern directed invocation is a special case in which there is just one assertion in the
wish world. World Directed Invocation represents a formalization of the useful problem
solving technique known as "wishful thinking" which is invocation on the basis of a
fragment of a micro-world. Terry Winograd uses restr ict ion l i s t s for the same purpose in
his thesis version of the blocks world. Suppose that we want to find a bridge with a red
top which is supported by i ts le f t - leg and i ts r ight-leg both of which are of the same
color. In order to accomplish this we can call upon a genie with our wish as i t s message.
The genie uses whatever domain dependent knowledge it has to t ry to realize the wish.
(realize

(utopia
(top le f t - leg r ight- leg color-of-legs}

;"the variables in the uptopia are l isted above"
{

(color top red)
(supported-by top le f t - leg)
'supported-by top r ight- leg)
; ie f t -o f le f t - leg r ight- leg)
[color le f t - leg color-of-legs)
kcolor le f t - leg color-of- legs)}))

LOGICAL HYPOTHETICALS are logical ly possible alternatives to a world.
By the Normalization Theorem for in tu i t ion is t ic logic our actor def ini t ion of the

logical constant IMPLIES is suff ic ient to mechanize logical implication. The rules of
natural deduction are a special case of our rules for extension worlds and our procedural
def in i t ion of the logical connectives.

ALTERNATIVE WORLDS are physically possible alternatives to a world.
PERCEPTUAL VIEWPOINTS can be mechanized as extension worlds. For example suppose

241

ra t t le- t rap is the name of a world which describes my car. Then (front rat t le- t rap) could
be a world which describes my car from the front and (le f t rat t le- t rap) can be the
description from the l e f t side. We can also consider a future historian's view of the
present by (vlew-from-1984 world-of-1972). Mlnsky [1973] considers these possibi l i t ies from
a somewhat different point of view.

The following general principles hold for the use of extension worlds:
Each independent fact should be a separate assertion. For example to record that

"the banana banl is under the table tab l " we would assert:
(banana banl)
table tabl)
under banl tabl)

instead of conglomerating [McDermott 1973] them Into one assertion:
(at

(the banl (1s banl banana))
(place

(the tabl (is tabl table))
under))

A person knowing a statement can be analyzed into the person believing the statement and
the statement being true. So we might make the following def in i t ion of knowing:

[know <=
(=> [= person = statement]

(and
(believes person statement)
(true statement)))]

Thus the statement [Moore 1973] "John knows B i l l ' s phone number" can be represented by the
assertion:

(knows John (phone-number B i l l pn0005))
where pn0005 is a new name and (phone-number B i l l pn0005) is Intended to mean that the
phone number of B i l l 1s pn0005. The assertion can be expanded as follows:

(believes John (phone-number B i l l pn0005))
(true (phone-number B i l l pn0005))

However the expansion is optional since the two assertions are not independent of the
original assertion.

"Whatever Logic is good enough to te l l me Is worth writ ing down," said
the Tortoise. "So enter it in your book, please."

Lewis Carroll
Each assertion should have just i f icat ions[derivat ions] which are also assertions

and which therefore . . .
Extraneous factors such as time and causality should not_ be conglomerated

[McDermott 1973] into the extension world mechanism. Facts about time and causality should
also be separate assertions. In this way we can deal more naturally and uniformly with
questions involving more than one time. For example we can answer the question "How many
times were there at most two cannibals in the boat while the missionaries and cannibals
were crossing the r iver?" Also we can check the consistency of two dif ferent narratives of
overlapping events such as might be generated by two people who attended the same party.
Retreival of actors from data bases takes facts about time and causality into account 1n
the re t re iva l . Thus we s t i l l effectively avoid most of the frame problem of McCarthy. The
ab i l i t y to do this is enhanced by the way we define data bases as actors.

A CONTEXT mechanism was invented for QA4 to generalize the property l i s t structure of
LISP. Rulifson explained 1t by means of examples of I ts use to mechanize ident i f ie rs . By use
of the functions PUSH-CONTEXT and POPJONTEXT and an EPAM discrimination net [Feigenbaum and
Simon] the context mechanism can be used to mechanize a version of tree-structured worlds, The
tree-structured worlds of PLANNER-71 were Invented to get around the problem of having only one
global data base not realizing that a context mechanism could be used to implement something
l ike that. The tree-structured worlds were defined direct ly in terms of the hash-coding
mechanism of PLANNER which had the advantage of decoupling them from the ident i f ier structure
of PLANNER. In addition by not conceiving an extension world analogue of P0P_C0NTEXT large
gains in efficiency over the context mechanism are possible.

Worlds can ask the actors put In them to index themselves for rapid retreival.We also
need to be able to retrieve actors from worlds. Simple retrieval can be done using patterns.
For example
(locations +■ (get (at (?) (?)){[#world (contents w)]}))
w i l l set locations to an actor which w i l l retrieve a l l the actors stored in (contents w) which
match the pattern (at (?) {?)) . Now (next locations) w i l l thus retrieve either (at airport
Boston) or (at John a i rpor t) . Actually* the above 1s an over simpl i f icat ion. We shall le t
$real1ty stand for the current world at any given point and $utopia stand for the world as we
would l ike to see 1t. We do not want to have to expl ic i ty store every piece of knowledge
which we have but would l ike to beable to derive conclusions from what is already known: We
can distinguish several different classes of procedures for deriving conclusions.

"McCarthy 1s at the a i rpor t . " (put (at McCarthy airport)) If a person 1s at the
a i rpor t , then the person might take a plane from the airport ,

[put-at <»
(>«> (put (at = person airport))

(put (might (take-plane-from person a i rpor t))))]
"McCarthy 1s not at the a i rpor t . " (deny (at McCarthy a i rport)) If a person Is not at

th airport then he can't take a plane from the ai rport .

242

243

"McCarthy is not at the airport . " (deny (at McCarthy airport)) If a person is not at
the airport then he can't take a plane from the airport .

[deny-at<=
(>=> (deny (at =person airport))

(put (can't (take—plane—from person airport))))]

" I t is not known whether McCarthy is at the airport , " (erase (at McCarthy airport)) If
it is not known whether a person is at the airport then erase whatever depends on previous
knowledge that the person is at the airport,

[erase-at <=
(>=> (erase (at -person airport))

(f ind (depends—on =s (at person airport))
(erase s)))]

"Get McCarthy to the airport ." (achieve {(at McCarthy airport)}) To achieve a person at
a place:

Find the present location of the person.
Show that it is walkable from the present location to the car.
Show that 1t is drivable from the car to the place,

[achieve-at <=
(>=> (achieve [(at =person =place)])

(achieve
(f ind [(at person -present-location)]

(show {(walkable present-location car)}
(show {(drivable car p lace)})))))]

"Show that McCarthy is at the a i rpor t . " (show {(at McCarthy airport)}) To show that a
thing is at a place show that the thing is at some intermediate and the intermediate is at the
place.

[show-at <=
(>=> (show {(at =th1ng =place)})

(show {(at thing 'intermediate)}
(show {(at intermediate place)})))]

The actor show-at is simply t rans i t i v i t y of at.
l ! Anything Really Better

Than Anything Else?
CONNIVER can easily be defined TrTTerms of P L A W R - 7 3 . We do this not because we

believe that the procedures of CONNIVER are part icularly well designed. Indeed we have given
reasons above why these procedures are deficient. Rather we formally define these procedures
to show how our model applies even to rather baroque control structures.

CONNIVER is essentially the conglomeration of the following ideas: Landin's non-
hierarchical goto-71, the pattern directed construction, matching, re t r ieva l , and invocation of
PLANNER, Landin's streams, the context mechanism of QAA, and Balzer's and Krutar's ports.

In most cases, two procedures in CONNIVER do not talk direct ly to each other but
instead are required to communicate through an intermediary which is called a possibi l i t ies l i s t .
The concept of a POSSIBILITIES LIST is the major original contribution of CONNIVER.

"What are these
So wild and withered in their a t t i r e ,
That look not l i ke the inhabitants

0' the earth,
and yet are on't?"

Macbeth: Act 1, Scene 111
Substitution, Reduction, and Meta-evaluation

"One program's constant is another program's variable."
Alan Perils

"Programming [or problem solving in general] is the judicious postponement of
decisions and commitments!"

Edsger W. Dijkstra [1969]
"Programming languages should be designed to suppress what is constant and
emphasize what is variable."

Alan Perlis
"Each constant wi l l eventually be a variable!"

Corollary to Murphy's Law
We never do unsubstitution [or if you wish decompilation, unsimpllfication, or

unevaluation]. We always save the higher level language and resubstltute. The metaphor of
substitution followed by reduction gives us a macroscopic view of a large number of
computational ac t i v i t i es . We hope to show more precisely how a l l the following act iv i t ies f i t
within the general scheme of substitution followed by reduction:

EVALUATION [Church, McCarthy, Lnadin] can be done by substituting the message
into the code and reducing [execution].

DEDUCTION [Herbrand, Godel, Heyting. Prawltz, Robinson, Hewitt, Weyhrauch and
Milner] can be done by procedural embedding. In this paper we have extended our
previous work by defining the logical constants to be certain actors thus providing a
procedural semantics for the quantlficational calculus along the lines indicated by
natural deduction.

CONFIRMING the CONSISTENCY of ACTORS and their INTENTIONS [Naur, Floyd, Hewitt

1971, Waldlnger, Deutsch] can be done by substituting the code for the actors Into
their intentions and then meta-evaluating the code.

AUTOMATIC ACTOR GENERATION. An important corollary of the Thesis of Procedural
Embedding is that the Fundamental Technique of A r t i f i c i a l Intelligence is automatic
programming and procedural knowledge base construction. It can be done by the
following' "methods:

PARAMETERIZATION [Church, McCarthy, Landin, Mcintosh, Manna and
Waldinger, Hewitt] of canned procedure templates.

COMPILATION [Lombardi, Elcock, Fikes, Daniels, Wulff, Reynolds, and
Wegbreit] can be done by substituting the values of the free variables in the
code and then reducing [optimizing]. For examples we can enhance the behavior
of the l i s t s which were behaviorally defined above to vectors which w i l l run
more e f f ic ient ly on current generation machines.

ABSTRACT IMPOSSIBILITIES REMOVAL can be done by binding the
alternatives with the code and deleting those which can never succeed, What we
have in mind are situations such as having simultaneous subgoals (on a b) and
(on b c) where we can show by meta-evaluation that the order given above can
never succeed. Gerry Sussman has designed a program which attempts to abstract
this fact from running on concrete examples. We believe that in this case and
many others it can be abstractly derived by meta-evaluation.

EXAMPLE EXPANSION [Hart, Nilsson, and Fikes 1971; Sussman 1972; Hewitt
1971] can be done by binding the high level goal oriented language to an
example problem and then reducing [executing and expanding to the paths executed]
using world directed invocation [or some generalization] to create linkages
between the variablized special cases.

PROTOCOL ABSTRACTION [Hewitt 1969, 1971] can be done by binding
together the protocols, reducing the resulting protocol tree by identifying
indistinguishable nodes.

ABSTRACT CASE GENERATION to distinguish the methods to achieve a goal
can be done by determining the necessary pre-conditions for each method by
reducing to a decision tree which distinguishes each method.

Acknowledgements
"Everything of importance has been said before by somebody who did not
discover i t . "

Alfred North Whitehead

This research was sponsored by the MIT A r t i f i c i a l Intelligence Laboratory and Project
MAC under a contract from the Office of Naval Research. We would be very appreciative of any
comments, cr i t ic isms, or suggestions that the reader might care to offer. Please address them
to:

Carl Hewitt
Room 813
545 Technology Square
M.I.T. A r t i f i c i a l Intelligence Laboratory
Cambridge, Massachusetts 02139

The topics discussed in this paper have been under intense investigation by a large
number of researchers for a decade. In this paper we have merely attempted to construct a
coherent manageable formalism that embraces the ideas that are currently "in the a i r " .

We would l ike to acknowledge the help of the following colleagues: B i l l Gosper who
knew the truth a l l along: "A data structure is nothing but a stupid programming language."
Alan Kay whose FLEX and SMALL TALK machines have influenced our work. Alan emphasized the
crucial importance of using intentional definit ions of data structures and of passing messages
to them. This paper explores the consequences of generalizing the message mechanism of SMALL
TALK and SIMULA-67; the port mechanism of Krutar, Balzer, and Mitchel l ; and the previous CALL
statement of PLANNER-71 to a universal communications mechanism. Alan has been extremely
helpful in discussions both of overall philosophy and technical detai ls. Nick Pippenger for
his very beautiful ITERATE statememt and for helping us to f ind a fast economical decoding net
for our ACTOR machine. John McCarthy for making the f i r s t circular def ini t ion of an effective
problem solving formalism and for emphasizing the importance of the epistemological problem for
a r t i f i c i a l intel l igence. Seymour Papert for his " l i t t l e man" metaphor for computation. Allen
Newell whose kernel approach to building software systems has here perhaps been carried to near
i t s ultimate extreme along one dimension. David Marr whose penetrating questions led us to
further discoveries. Rudy Krutar, Bob Balzer, and Jim Mitchell who introduced the notion of a
PORT which we have generalized into an ACTOR. Robin Milner is tackling the problems of L-
values and processes from the point of view of the lambda calculus. He has enphasized the
practical as well as the theoretical implications of fixed point operators. Robin's puzzlement
over the meaning of "equality" for processes led to our def ini t ion of behavior. Edsger Dijkstra
for a pleasant afternoon discussion. Jim Mitchell has patiently explained the systems
implementation language MPS. Jeff Rulifson, Bruce Anderson, Gregg Pf ister, and Julian Davies
showed us how to clean up and generalize certain aspects of PLANNER-71. Peter Landin and John
Reynolds for emphasizing the importance of continuations for defining control structures.
Warren Teitleman who cleaned up and generalized the means of integrating editors and debuggers
in higher level languages. Peter Landin, Arthur Evans, and John Reynolds for emphasizing the
importance of "functional" data structures. Danny Bobrow and Ben Wegbreit who originated an
implementation method that cuts down on some of the overhead. We have simplif ied their scheme

244

by eliminating the reference counts and a l l of their primitives, c. A. R. Hoare 1s Independently
Investigating "monitors" for data structures. Jack Dennis for sharing many of our same goals in his
COMMON BASE LANGUAGE and for his emphasis on logical c la r i t y of language def ini t ion and the importance of
parallelism. B i l l Wulff for our " . " notation on the conventions of the values of cells and for being a
strong advocate of exceptional cleanliness in language. Pi t ts Jarvis and Richard Greenblatt have given us
valuable help and advice on systems aspects. Todd Matson, Brian Smith, Irene Grief, and Henry Baker are
aiding us 1n the implementation. Chris Reeve» Bruce Daniels, Terry Winograd, Jerry Sussman, Gene Charniak,
Gordon Benedict, Gary Peskin, and Drew McDermott for implementing previous generations of these ideas in
addition to their own. J.C.R. Licklider for emphasizing the importance of mediating procedure cal ls . Butler
Lampson for the notion of a banker and for the question which led to our c r i te r ia for separating an actor
from i ts base. Richard Weyhrauch for pointing out that logicians are also considering the possibi l i ty of
procedural semantics for logic. He is doing some very interesting research in the much abused f ie ld of
"computational logic." Terry Winograd, Donald Eastlake, Bob Frankston, Jerry Sussman, Ira Goldstein, and
others who made valuable suggestions at a seminar which we gave at M.l.T. John Shockley for helping us to
eradicate an Infestation of bugs from this document. Greg Pf is ter , Bruce Daniels, Seymour Papert, Bruce
Anderson, Andee Rubin, Allen Brown, Terry Winograd, Dave Waltz, Nick Horn, Ken Harrenstien, David Marr,
El l is Cohen, Ira Goldstein, Steve Z i l les , Roger Hale, and Richard Howell made valuable comments and suggestions
on previous versions of this paper.

Bibliography
Balzer, R.M., "Ports—A Method for Dynamic Interprogram Communication and Job Control"The Rand Corp., 1971.
Bishop, Peter, "Data Types for Programming Generality"M.S. June 1972. M.l.T.
Bobrow D., and Wegbreit Ben. "A Model and Stack Implementation of Multiple Environments." March 1973.
Davies, D.J.M. "POPLER: A P0P-2PLANNER" MIP-89. School of A . I . University of Edinburgh.
Deutsch L.P. "An Interactive Program Verif ier" Phd. University of California at Berkeley. June, 1973

Forthcoming.
Earley, Jay. "Toward an Understanding of Data Structures" Computer Science Department, University

of Cali fornia, Berkeley.
Elcock, E.W.; Foster, J.M.; Gray, P.M.D.; McGregor, H.H.; and Murray A.M. Abset, a Programming

Language Based on Sets: Motivation and Examples. Machine Intelligence 6. Edinburgh, University Press.
Fisher. D.A. "Control Structures for Programming Languages" Phd. Carnegie. 1970
Gentzen G. "Collected Papers of Gerhard Gentzen".North Holland. 1969.
Greif l.G. "Induction in Proofs about Programs" Project MAC Technical Report 93. Feb. 1972.
Hewitt, C. and Patterson M. "Comparative Schematology" Record of Project MAC Conference on Concurrent

Systems and Parallel Computation. June 2-5, 1970. Available from ACM.
Hewitt, C., Bishop P., and Steiger R. "The Democratic Ethos or 'How a Society of Noncoercable ACTORS

can be Incorporated into a Structured System'" SIGPLAN-SIGOPS Interface Meeting, Savannah, Georgia. Ap r i l , 1973.
Hewitt, C, and Gre i f , I . "Actor Induction and Meta-Evaluation"ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages. Boston, Mass- Oct, 1973. Forthcoming.
Hoare, C.A.R. "An Axiomatic Definition of the Programming Language PASCAL" Feb. 1972.
Kay, Alan C. Private Communication.
Krutar, R. "Conversational Systems Programming (or Program Plagiarism made Easy)" First USA-Japan

Computer Conference. October 1972,
Lampson, B. "An Overview of CAL-TSS". Computer Center, University of Cali fornia, Berkeley.
Liskov, B.H. "A Design Methodology for Reliable Software Systems" The Last FJCC. Dec.1972. Pt. 1, 191-199.
McDermott D.V. "Assimilation of New Information by a Natural Language-Understanding System" M.S. MIT.

Forthcoming 1973.
McDermott, D.V. and Sussman G.J. "The Conniver Reference Manual" A . I . Memo no. 259. 1972.
Milner, R. Private Communication.
Minsky, Marvin. "Frame-Systems: A Theory for Representation of Knowledge" Forthcoming 1973.
Mitchel l , J.G. "A Unified Sequential Control Structure Model" NIC 16816. Forthcoming.
Newell, A. "Some Problems of Basic Organization in Problem-Solving Programs." Self-Organizing Systems. 1962.
Papert S. and Solomon C. "NIM: A Game-Playing Program" A . I . Memo no. 254.
Reynolds, J.C. "Definitional Interpreters for Higher-Order Programming Languages" Proceedings of ACM

National Convention 1972.
Rulifson Johns F., Derksen J.A., and Waldinger R.J. "QA4: A Procedural Calculus for Intu i t ive Reasoning"

Phd. Stanford. November 1972.
Scott, D. "Data Types as Lattices" Notes. Amsterdam, June 1972.
Steiger, R. "Actors". M.S. 1973. Forthcoming.
Sussman, G.J. "Teaching of Procedures-Progress Report" Oct. 1972. A . I . Memo no. 270.
Waldinger R. Private Communication.
Wang A. and Dahl 0. "Coroutine Sequencing in a Block Structured Environment" BIT 11 425-449.
Weyhrauch, R. and Milner R. "Programming Semantics and Correctness in a Mechanized Logic." First USA-Japan

Computer Conference. October 1972.
Winograd, T. "Procedures as a Representation for Data 1n a Computer Program for Understanding Natural

Language" MAC TR-B4. February 1971.
W1rth, N. "How to Live without Interrupts" or some such. Vol. 1? No. 9, pp. 489-498.
Wulf W. and Shaw M. "Global Variable Considered Harmful" Carnegie-Mellon University. Pittsburgh, Pa.

SIGPLAN Bul let in. 1973.

245

