Incremental Mature Garbage Collection
Using the Train Algorithm

Jacob Seligmann Steffen Grarup

Computer Science Department, Aarhus University
Ny Munkegade 116, DK-8000 Arhus C, Denmark
E-mail: {jacobse,grarup}@daimi.aau.dk

Abstract

We present an implementation of the Train Algorithm, an incremental
collection scheme for reclamation of mature garbage in generation-based
memory management systems. To the best of our knowledge, this is the
first Train Algorithm implementation ever. Using the algorithm, the tra-
ditional mark-sweep garbage collector employed by the Mjglner run-time
system for the object-oriented BETA programming language was replaced
by a non-disruptive one, with only negligible time and storage overheads.

1 Introduction

Many programming languages provide automatic garbage collection to reduce
the need for memory management related programming. However, traditional
garbage collection techniques lead to long and unpredictable delays and are
therefore unsatisfactory in a number of settings, such as interactive systems,
where non-disruptive behavior is of paramount importance. Generation-based
collection techniques alleviate the problem somewhat by concentrating collection
efforts on small but hopefully gainful areas of memory, the so-called young gen-
erations. This reduces the need for collecting the remaining large memory area,
the old, or mature, generation, but in no way obviates it. Traditionally, conven-
tional techniques have been employed for old generation collection, leading to
pauses which, although less frequent, are still highly disruptive.

Recently, Hudson & Moss have introduced an exciting new algorithm, the
Train Algorithm, for performing efficient incremental collection of old generation
space [HM92]. Using the algorithm, generational collectors can be extended to
provide non-disruptive collection of all generational areas.

In the following, we present the results from a practical implementation of
the Train Algorithm [GS93]. Section 2 describes the basic ideas behind the
algorithm. Section 3 concerns the practical implementation issues. Section 4
presents the measurement results. Section 5 points out future research directions.

2 The Algorithm

This section deals with the theoretical aspects of the Train Algorithm. For a
more detailed presentation of the algorithm including a couple of enlightening
examples, see [HM92, GS93].

Section 2.1 outlines the main ideas behind the algorithm and introduces the
terminology needed in later sections. (Readers familiar with the algorithm may
wish to skip this part.) Section 2.2 identifies and corrects a subtle error in
the original algorithm. Section 2.3 addresses the treatment of highly referenced
objects.

2.1 The Train Algorithm
2.1.1 The Train Metaphor

The Train Algorithm is an incremental garbage collection scheme for achieving
non-disruptive reclamation of the oldest generational area, the mature object
space. The algorithm achieves its incrementality by dividing mature object space
into a number of fixed-sized blocks and collecting one block at each invocation.
The key contribution of the algorithm lies in showing how all garbage (even
cyclic structures larger than the size of an individual block) can be recognized
and reclaimed while only processing a single block at a time.

To achieve this, the algorithm arranges the blocks into disjoint sets. With
a striking metaphor, Hudson & Moss refer to the blocks as cars, and to the
set of blocks to which a car belongs as its train. Mature object space can then
be thought of as a giant railway station with trains lined up on its tracks, as
illustrated in Figure 1.

Just as in real life, cars belong to exactly one train and are ordered within
that train. The trains, in turn, are ordered by giving them sequence numbers as
they are created. This imposes a global lexicographical ordering on the blocks
in mature object space: One block precedes another if it resides in a lower
numbered (i.e. older) train; or if both blocks belong to the same train, then if
that block has a lower car number (i.e. was added to the train earlier on) than
the other. In the example structure shown in Figure 1, Car 1.1 precedes Car 1.2,
Car 1.2 precedes Car 1.3, Car 1.3 precedes Car 2.1, and so on.

Intuitively, the Train Algorithm works by constantly clustering sets of related
objects. In this way, it eventually collapses any interlinked garbage structure into
the same train, no matter how complex. In the following, we shall see how this
1s achieved.

2.1.2 Car Collection Strategy

Each invocation of the Train Algorithm processes the lowest numbered car of
the lowest numbered train in the system. Its space is reclaimed as follows.
First, a check is made to see whether there are any references into the train
to which the car being collected belongs. If this is not the case, then the entire
train contains only garbage and all its cars are reclaimed immediately. (This

Train 3

Figure 1: Mature object space structure

is the part of the algorithm which enables large cyclic garbage structures to
be recognized and reclaimed, even if they are too big to fit into a single car.
Section 2.2 explains why such structures always end up in the same train.)

Otherwise, all objects residing in the car being collected referenced from
outside the train are evacuated as follows. Objects referenced from other trains
are moved to those trains; objects referenced from outside mature object space
are moved to any train except the one being collected. If a receiving train runs
full, a new car is simply created and hooked onto its end. Then, in typical copy
collector style, evacuated objects are scanned for pointers into the car being
collected, moving the objects thus found into the train from which they are now
referenced, and so on.

With the transitive closure of all externally referenced objects having been
evacuated, the only live objects in the car being processed are those referenced
(exclusively) from cars further down the train being collected. Such objects are
evacuated to the last car of the train, as are the objects they reference, etc.

At this point, none of the objects remaining in the car being collected are
referenced from the outside and are therefore garbage. Thus, the space occupied
by the car is reclaimed and the collection is finished.

2.1.3 Tenuring Strategy

The tenuring strategy imposed by the Train Algorithm is simple: Objects pro-
moted from younger generations may be stored in any train except the one
currently being collected, or one or more new trains may be created to hold
them.

2.1.4 Technical Issues

To facilitate collection of individual cars, each car has an associated remembered
set containing information about all references residing outside the car pointing
into it. Old generation cars will only be processed when all younger generations
are collected, so the remembered sets need only contain references from other old
generation cars. Since cars are processed in lexicographical order, one can further
optimize the remembered set handling by only recording references from higher
numbered to lower numbered cars. By the time a car comes up for collection, it
will have the lowest number in the system, and thus its remembered set will be
complete. This gives the advantage of not having to purge out stale remembered
set entries in other parts of the system when a car is reclaimed.

The remembered sets are maintained by extending the generational pointer
assignment run-time check (the write barrier). In addition to the traditional
recording of references from older to younger generations, all pointer assignments
between mature objects must now also be examined and possibly recorded in an
old car remembered set. By letting the size of the old generation cars be of the
form 2™ bytes, allocated on a 2™ byte boundary, one can maintain a train table
over the train and car number associated with each mature object space block.
Given a pointer address, the train table information can be quickly accessed by
right-shifting the address n bits and using the result as an index [HMDW91].

2.2 Correctness

Given a garbage structure contained in mature object space, denote the trains
holding it the set of garbage trains. The structure of this set will not be changed
by the mutator because garbage objects are per definition unreachable and there-
fore immutable. The collector, on the other hand, will cause the set of garbage
trains to shrink over time. As each garbage train is processed, the objects resid-
ing there are either recognized as garbage and reclaimed or evacuated to higher
numbered garbage trains holding references to them. When processing reaches
the highest numbered garbage train, the garbage structure will therefore have
been collapsed and will be reclaimed.

,,,,,,,,,,,,,,,,,,,,,

Figure 2: Error situation

This argument, of course, requires that all trains are eventually processed.
Unfortunately, the Train Algorithm as presented so far provides no such guar-
antee. Consider the situation shown in Figure 2. A-B is a live structure, with

object B referenced from some root. For the sake of simplicity, objects A and
B are assumed to be too big to fit into the same car (more realistically, they
could be large interlinked structures). When the car containing A is collected,
A is simply moved into a new car at the end of the train. We call such col-
lections futile because they neither evacuate, nor reclaim, objects. Now, before
the next invocation of the algorithm (in which we would have hoped to evacuate
object B), the mutator may change the root reference to point to A instead of B.
Thus, at the beginning of the next collection, the overall object structure may
be entirely unchanged. If the mutator continues to swap references behind the
collector’s back, it will force the collector to keep processing the A-B structure,
thus never getting around to any of the other trains in the system.

This situation may be prevented as follows. Whenever a futile collection
occurs, one of the external references to objects further down the train are
recorded. (Such a reference must exist, otherwise the entire train would have
been reclaimed.) A reference thus recorded is then used as an additional root for
subsequent collections and is not discarded until a non-futile collection occurs.
In the example above, this would cause the root reference to be recorded after
the first collection, causing object B to be evacuated from the train at the next
invocation of the algorithm even though it is no longer directly referenced.

Using this extension, it can be shown that each pass over a train will either
reclaim or evacuate at least one object, and the entire Train Algorithm may be
proven formally correct [GS93].

2.3 Popular Objects

Since the Train Algorithm processes only a single fixed-size car at a time, there
is an upper limit on the number of bytes that are copied at each invocation.
However, moving popular objects (objects with many pointers to them) could
still make the algorithm disruptive. Whenever a popular object is moved, a large
remembered set needs to be traversed and all the pointers to the object must be
updated. Thus, it is impossible to bound the potential amount of work needed to
move even a single object. The classic solution to this problem is to require that
all objects be addressed indirectly so that whenever an object is moved, only a
single cell needs to be updated. This technique is known to induce significant
run-time overheads [Ung86].

As an alternative approach, Hudson & Moss tentatively suggest that cars
containing popular objects should not be collected at all. Instead, such cars
should be retained, logically (but not physically) moving them to the end of the
newest train [HM92, Section 6]. Unfortunately, a closer analysis shows that this
approach may leave garbage undetected, so a number of refinements are needed.

First, one cannot simply retain popular cars, but must evacuate all non-
popular objects from them. Otherwise, garbage contained in or referenced from
popular cars will not be detected and reclaimed.

Second, one should not move popular cars to the end of the newest train.
This would cause large garbage structures scattered across several trains each
containing a popular member to survive forever because such structures would

never be collapsed. Instead, popular cars should only be moved to the end of
the highest numbered train from which they are referenced.

Third, cars containing several unrelated popular objects pose a problem.
Such cars will have to be split in some way so that each popular object can be
moved to the end of the highest numbered train from which it is referenced.

With the popular object treatment outlined above, the Train Algorithm can
be shown to correctly identify and reclaim all garbage [GS93]. However, such
schemes may be quite costly to implement in practice. Since the remembered
sets associated with popular cars may be arbitrarily large, one cannot afford to
run through them to find references to non-popular objects, or to find the highest
numbered train from which a popular object is referenced. Also, logically split
cars are not easily handled in a train table setting. A naive way to overcome
these problems would be to associate a remembered set with each object, to
always maintain the highest numbered train from which an object is referenced,
and to extend the train table with balanced binary search trees for split areas.
In practice, more sophisticated solutions are undoubtedly needed to make the
popular car approach a viable alternative to pointer indirection.

3 The Implementation

In order to test the Train Algorithm in a realistic setting, we incorporated it into
the Mjglner run-time system for the object-oriented BETA programming lan-
guage [MMN93]. To the best of our knowledge, this is the only implementation
of the Train Algorithm to this date.

This section describes the implementation process. Section 3.1 presents the
memory layout used in the two systems. Section 3.2 concerns the practical
issues that had to be addressed. Section 3.3 discusses the overall implementation
efforts.

3.1 Memory Layout
3.1.1 Original Mjglner BETA System

The Mjglner BETA System uses a modern generation-based collector with two
generations [KLMM93]. The young generation (the infant object area, or I0A)
consists of two fixed-sized semi-spaces reclaimed using copying collection. The
old generation (the adult object area, or AOA) consists of a series of linked fixed-
sized blocks reclaimed using a sophisticated three-phase mark-sweep collection
scheme [Bar88]. In addition, large arrays of pointer-less objects are kept in
a separate area (the large value-repetition area, or LVRA) consisting of linked
fixed-sized blocks managed using free-lists and periodic compaction.

The advancement age between the two generations is determined adaptively
using demographic feedback-mediated tenuring [UJ92]. To record references
from old to young objects, a hash table-based remembered set is maintained, us-
ing a traditional but quite efficient write barrier to examine pointer assignments
at run-time.

3.1.2 New Mjglner BETA System

The Train Algorithm implementation adhered to the general memory layout
sketched in Section 2.1, including a train table. We used a car size of 64K bytes.

The global remembered set (recording references from the entire old genera-
tion to the young one) was replaced by a remembered set for each car (recording
references from that car to the young generation). This approach enabled us to
immediately discard the relevant entries when a car was reclaimed, rather than
run through a global table to purge out expired references.

3.2 Practical Considerations

There are a number of issues which are left open by the general Train Algorithm
description, but which must nevertheless be addressed when implementing it.
For instance, one must decide when to create new trains, how often to invoke
the algorithm, and whether to treat popular objects specially.

3.2.1 [Evacuation Strategy

During a car collection, where should objects referenced from several trains be
moved? We chose to evacuate objects to the last car of the train from which
they were first seen during the scavenge (or to the last car of the newest train,
if referenced from outside mature object space). Moving an object immediately
to the highest numbered train referencing it might have given less superfluous
copying, but seemed hard to implement efficiently.

Where should objects be moved when they are promoted? As objects were
tenured into mature object space, we moved them into the last car of the newest
train until the total size of the objects residing there exceeded a certain threshold
(the fill limit) in which case we chose to create a new train. In this way, we tried
to achieve a balance between initially having only a few objects in each train (to
avoid accidental object structure infiltration which would require extra passes
to disentangle) and putting many objects into each train (to avoid the storage
overhead of having many sparsely filled cars in the system). We chose a default
fill limit of 90%. The implications of this choice are presented in Section 4.5.

3.2.2 Invocation Frequency

While traditional batch collection algorithms are invoked only when memory
runs full, their incremental counterparts must be called often enough to ensure
that storage resources are never exhausted. Otherwise, they mutator must be
suspended, and the collection becomes disruptive. Similarly, one must choose
a collection frequency for the Train Algorithm which on one hand ensures that
mature object space does not grow unacceptably full with garbage, but on the
other hand does not waste too much time moving live objects around from car
to car.

Our approach to finding the right balance was to select a fixed acceptable
garbage percentage specifying the desired trade-off between speed and storage.

Whenever the amount of garbage detected in mature object space was larger
than expected, the collection frequency was automatically increased in order
to keep memory consumption down; and whenever the garbage ratio was lower
than expected, the collection frequency was decreased to improve the overall
performance. In addition, we introduced an upper limit on the number of young
generation collections between each old generation collection step. Without such
a limit, the algorithm would be called much to seldomly if little or no garbage
was detected for a while.

Technically, there were a few obstacles to calculating the garbage ratio.
Whereas batch algorithms can compare the size of mature object space be-
fore and after a collection, this is not possible in the Train Algorithm setting,
where only a small area is collected at each invocation, where some objects may
be scanned more frequently than others, and where there are always parts of
memory that have not yet been processed. By associating with each train a
counter holding the amount of objects tenured directly into it, one can, how-
ever, calculate the desired figure. The result is somewhat delayed because it
is first obtained when the newest train in the system at counter initialization
time is reclaimed, that is, after an entire sweep over mature object space. By
initializing a new counter each time the collection of a new train commences,
estimates nevertheless become available quite often. This approach turned out
to work well in practice [GS93].

3.2.3 Popular Object Treatment

Because of the complications outlined in Section 2.3, we did not implement a full
popular object scheme. However, all Mjglner BETA programs contain a special
object, the basic environment object, which is referenced from a large number
of other objects. The basic environment object is always alive by virtue of
being one of the garbage collection roots. We therefore isolated it in a specially-
marked car for which no remembered set was maintained. Whenever that car
came up for collection, we logically moved it to form a new train, rather than
physically moving the basic environment object and updating the large number
of references to it. The benefits of this approach are demonstrated in Section 4.6.

3.3 Implementation Efforts

Incorporating the Train Algorithm into the Mjglner BETA run-time system
meant having to discard practically all the original mature object space recla-
mation code. However, the rest of the system was left virtually untouched. This
was an invaluable asset in debugging and fine-tuning the new system. All in
all, the implementation was therefore surprisingly straightforward. The code for
the new collector constituted about 2,000 lines of C (including extensive debug
consistency checks), or about the same as the original mark-sweep collector.

4 The Results

In this section, we present the main results obtained from our Train Algorithm
implementation. For a more detailed account, see [GS93].

Section 4.1 describes the benchmark system. Section 4.2 presents the most
important result of our implementation, namely that disruptive old generation
collection pauses can be completely removed using the Train Algorithm. Sec-
tions 4.3, 4.4, and 4.5 show the reverse side of the coin, namely the time, storage,
and copying overheads induced. Section 4.6 concerns the special treatment of
popular objects. Section 4.7 looks at the virtual memory behavior of the algo-
rithm.

4.1 Benchmarks
4.1.1 Benchmark Programs

As our main reference point we chose the compilation of the entire Mjglner
BETA compiler version 4.4.1 using itself. This program run enjoyed a number
of desirable properties. First, it was easily reproducible, thereby ensuring that
figures obtained across several runs remained comparable. Second, it ran for a
relatively long period of time, so that many objects were promoted during the
program execution, and so that quite a few of them died before the compilation
was finished. Third, even though the application was not an interactive one,
it was still instructive to examine the pause times incurred by the various area
collections.

To ensure a wider exposure, we also measured the performance of an in-
teractive run with the Sif hyper-structure editor [MIA90] and a discrete event
simulation system modeling a series of orders pipelining through a set of machine
queues.

4.1.2 Benchmark System

The tests were carried out using release 2.5.1 of the Sun SPARC variant of the
Mjglner BETA System under SunOS 4.1.1. Default system parameters were used
for both the original and new implementations, with block sizes of 512K bytes
for IOA, AOA, and LVRA (except for the 64K bytes cars in the new imple-
mentation) and a 10% tenuring threshold. For the new system a 10% acceptable
mature garbage ratio was adaptively aimed for, with an upper limit of ten young
generation collections between each Train Algorithm invocation.

Except for the benchmark described in Section 4.7, all measurements were
carried out on a 40 MHz Sun SPARC IPX 4/50 workstation equipped with
32M bytes of primary memory. Apart from a few page faults at the beginning of
each run, there was practically no virtual memory activity. The times reported
in the following are therefore the sum of the user and system CPU times. In
practice, this turned out to correspond quite closely to elapsed wall-clock time.

4.2 Collection Pauses

This section presents the old generation collection pauses obtained. Table 1
shows the minimum, median, 90% percentile, maximum, and average amounts
of time spent in each Train Algorithm invocation for each of the three bench-
mark programs. Figure 3 gives a more detailed impression of the pause time
distribution for the longest-running benchmark, the compiler compilation.

Application Compiler Editor Simulation
Method batch | train || batch | train || batch | train
Pause (min.) 0.27s | 0.00s || 0.31s | 0.00s || 0.11s | 0.00s
Pause (med.) || 1.39s | 0.04s || 0.49s | 0.03s || 0.16s | 0.01s
Pause (90%) 3.06s | 0.06s || 0.49s | 0.05s || 0.17s | 0.03s
(
(

Pause max.) 3.21s | 0.12s || 0.57s | 0.08s || 0.18s | 0.05s
Pause (avg.) 1.71s | 0.04s || 0.46s | 0.03s || 0.15s | 0.01s

Table 1: Old generation collection pause distribution

AOA GC time distribution (seconds)

160
1401
120
1001
80-|
60-|
404

200 T ¥\

0 0.02 0.04 0.06 0.08 01 0.12

Figure 3: Pause distribution, compiler run

As can be seen, the new collector turned out to be extremely effective. For
all three benchmark programs, it replaced a number of highly disruptive old
generation collections with a series of non-disruptive ones, each just a few dozen
milliseconds long. Thus, the Train Algorithm lived up to its promises of deliv-
ering pause times suitable for use in interactive systems.

4.3 Time Overhead

We now take a look at the time overhead incurred by using the Train Algorithm.
In addition to the overhead caused in the old generation collector as a direct
result of replacing the collection algorithm, we also examine the indirect time

overhead caused in the remaining parts of the system (the young generation
collector and the mutator) by changing the number of remembered sets, by
requiring a more complex write barrier, and so on.

Application Compiler Editor Simulation
Method batch | train batch | train batch | train
Old collector 17.11s 20.55s 1.37s 1.15s 1.05s 1.86s
Young collector || 140.26s | 150.14s || 8.25s | 8.95s 44.26s | 32.88s
Mutator 816.09s | 808.88s || 93.51s | 94.02s || 183.40s | 176.06s

Table 2: Total time distribution

Table 2 shows the total time spent in the various system components. In
addition, approximately one second was spent on large object area free-list com-
paction in the compiler and editor runs. Since the Train Algorithm did not
influence large object area management in any significant way, we shall not go
further into that issue here.

4.3.1 Old Generation Collector

As could be expected, the price for achieving non-disruptive behavior was a
general increase in the total old generation collection time. For the compiler
compilation the increase was just above 20%. For the simulation run the increase
was more dramatic, nearly 80%. This was mainly because many tenured objects
died during the execution, causing the new collector to perform frequent steps
(on average once every six young generation collections), thereby scanning nearly
twice the amount of mature object space as its batch counterpart. Thus, the time
overhead could probably have been replaced by a storage overhead by increasing
the acceptable garbage percentage. For the editor session the old generation
collection time fell. However, the last batch collection occurred just before the
end of the run, so estimates obtained over a longer period of time would probably
have revealed that the new collector was still somewhat slower.

In any case, the differences in old generation collection times were practically
negligible in the overall picture. The extra time spent in the compiler and
simulation runs corresponded to merely 0.4% of the total execution time of the
programs, and the time (seemingly) saved in the editor session amounted to only

0.2%.

4.3.2 Young Generation Collector

The Train Algorithm approach had its implications on the young generation
collector, too. First, the roots for each young object scavenge now had to be
found in a number of distinct remembered sets associated with each car, rather
than in a single remembered set associated with the entire mature object space.

Second, extra inter-car remembered set insertions had to be performed when
objects were promoted.

For the compiler and editor runs, this amounted to an increase of about
0.0025 seconds for each young generation scavenge, or between 7% and 8%. For
the simulation run, the result was a decrease in young generation collection time
of about 25%. In all three cases, we believe that the main reason for the difference
was the time spent scanning the remembered sets for roots. In the compiler and
editor runs, the accumulated size of the remembered sets associated with the
old generation cars far exceeded that of the single remembered set originally
employed; in the simulation run, the accumulated size was significantly smaller.

Overall, the differences in young generation collection times corresponded to
an increase in execution time of about 1% for the compiler and editor runs, and
a decrease of almost 5% for the simulation session.

4.3.3 Mutator

The Train Algorithm approach also affected the mutator performance. On one
hand, the run-time pointer assignment checks were slightly costlier, and the new
inter-car remembered sets had to be maintained. On the other hand, the large
old-to-young generation remembered set was now replaced with one for each
car, which typically gave faster insertion times. Also, the train table approach
enabled us to handle old and large objects without having to traverse long linked
block lists.

For the compiler run, the net result was a 0.9% decrease in mutator time.
For the editor session, a 0.5% increase was observed, while the total simulation
mutator time decreased by 4%. In the overall picture the differences were, of
course, slightly less.

4.3.4 Overall Result

Using the Train Algorithm, the total execution time for the compiler compilation
increased by 0.6%, the total execution time for the editor session increased by
1.0%, and the total execution time for the simulation run decreased by 8%.

4.4 Storage Overhead

In addition to the performance overhead, Train Algorithm-based systems affect
storage requirements in several ways. First, the inter-car remembered sets take
up extra memory. Second, cars are not filled to capacity, but only hold related
object structures; also, there is a trade-off between the car collection frequency
and the storage required to hold garbage contained in yet unprocessed cars.
Third, a train table, if employed, also takes up space.

4.4.1 Inter-Car Remembered Set Overhead

There were an average of 350 entries in each inter-car remembered set for the
editor and simulation sessions, and 700 for the compiler run. With the hash

table implementation used, this resulted in storage overheads of 6K to 8K bytes
per car.

Even though BETA objects are generally highly interlinked because they
all contain an environment reference (the origin) to their statically enclosing
object, this was a surprisingly large figure. However, by fine-tuning the hash
function and rehash strategies, we believe that the overhead could be significantly
reduced.

4.4.2 Garbage Overhead

To measure the extra storage required to hold unprocessed garbage in the two
systems, we performed a series of exhaustive mature object space traversals to
determine how many of the objects residing there were actually alive. The result
from the compiler run is shown in Figures 4 and 5.

Object Demographics
7000) 9rap

Allocated —
Alive

6000+
5000+

4000+

Size (Kb)

3000+

2000+

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (IOA scavenges)

Figure 4: Mark-sweep garbage overhead

In the original system, new mature object space blocks were only allocated if
the total old generation capacity was very close to being exhausted after a mark-
sweep collection. Therefore, the difference between the two graphs was always
less than the size of an old generation block, 512K bytes, as seen in Figure 4.
In the Train Algorithm-based system, we chose to aim for a 10% garbage ratio
and were quite successful, as seen in Figure 5.

Thus, the storage overhead caused by unprocessed garbage was about 10%
for the compiler run. The same behavior was achieved for the editor session,
while the old generation storage requirements fell a bit for the simulation run,
simply because the program needed less old generation space than the size of
the single block allocated in the mark-sweep implementation, and because the
Train Algorithm collector managed to keep up with the high mortality rate.

Object Demographics
7000) arap

Allocated —
Alive

6000+
5000+

4000+

Size (Kb)

3000+

2000+

1000

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (IOA scavenges)

Figure 5: Train Algorithm garbage overhead

4.4.3 Train Table Overhead

Since the car size was 64K bytes and the address space had 232 addresses, a train

table with 64K entries was needed. As each entry consisted of two words (one
for the train number and one for the car number), this gave a total train table
size of 256K bytes.

Had we had more control over which parts of memory were used for heap
allocation, we could have allocated a smaller train table. For instance, had it
been known that only the lowest 256M bytes of memory would ever be used,
a 16K bytes table with 4K entries would have sufficed. However, this may not
have been worth the effort since any unused parts of the train table would be
swapped out by the virtual memory system as needed.

4.4.4 Overall Result

In total, the old generation storage overhead for the Train Algorithm implemen-
tation was between 10% and 20%. In the overall picture, this corresponded to
increases in application storage requirements of between 4% and 8%.

4.5 Copying Overhead

Theoretically, the Train Algorithm may require O(Mn?) invocations to collect
a train consisting of n cars, where M is the number of objects containing at
least one reference that may fit into a single car [GS93]. In practice this behav-
ior should not be expected because it would require extremely poor locality of
reference.

In order to get an impression of the Train Algorithm’s practical behavior
in this area, we recorded information about the number of cars in each train
and the number of collections it took to reclaim one using various fill limits (see

Section 3.2.1). As it turned out, the compiler benchmark gave rise to the most
complex object structures. The results of this run are shown in Table 3.

[Fill Limit [10% | 25% | 50% | 75% | 90% | 95% | 99% | none |
Cars (avg.) 99.8 [64.2 [57.0 [52.7 [51.7 [51.5 [514 [51.6
Cars (max.) 154 | 103 | 94 89 86 86 85 85
Trains (avg) [59.2 [238 [13.9] 97 [83 | 63 | 31 [2.9
Trains (max.) 94 36 19 15 13 10 5 3

Length (avg.) 1.7 2.7 4.1 5.4 6.5 8.2 | 16.8 | 17.6
Length (max.) 17 22 23 27 32 42 81 79
Passes (avg.) 1.04 | 1.13 | 1.10 | 1.14 | 1.13 | 1.15 | 1.17 | 1.19
Passes (max.) 2.50 | 2.00 | 2.33 | 2.00 | 2.00 | 1.80 | 1.75 | 1.65

Table 3: Train structure statistics

The first six rows show the average and maximum number of cars and trains
in the system, as well as the train length. The last two rows show the number of
passes needed to reclaim each train, expressed as the ratio between the number
of invocations performed and the initial length of the train. Thus, a lower ratio
signifies less superfluous copying.

As should be expected, lowering the fill limit resulted in more, shorter trains
which required fewer passes to be reclaimed. The cost for this behavior was
an increase in the number of cars, and thus in the overall storage consumption.
However, even in the most storage preserving setting in which new trains were
only created when the collection process reached the newest train and needed
somewhere else to evacuate objects to, the average amount of redundant copy-
ing was less than 20%. Thus, we did not see any signs of worst-case behavior
occurring in practice.

4.6 Popular Objects

As described in Section 3.2.3, we chose to create a special car to hold the basic
BETA environment object in order to avoid moving it and having to update the
multitude of references to it. To investigate the consequences of this approach,
we temporarily disabled the special treatment for the compiler run (which had
by far the most objects referencing to the basic environment object). The result
is shown in Table 4 and Figure 6 (cf. the second column of Table 1, and Figure 3).

As can be seen, the maximum collection time doubled. This was because
there were more than 50,000 references to the basic environment object, causing
over 200K bytes of pointers scattered throughout mature object space to be
updated whenever the car containing it was collected. In addition, the total time
spent on old generation collection rose to 26.56 seconds, or nearly 30%. This
was because hundreds of inter-car remembered set insertions were now typically
required at each collection step as objects referencing the basic environment

Application Compiler
Method train

Pause (min.) 0.00s
Pause (med.) 0.04s
Pause (90%) 0.06s
(
(

Pause (max.) 0.23s
Pause (avg.) 0.05s

Table 4: No popular treatment, pause table

160 AOA GC time distribution (seconds)

0.05 01 0.15 02 0.25

Figure 6: No popular treatment, pause plot

object were evacuated past it.
As can be seen from the figures above, our simple popular object scheme
therefore turned out to be highly effective in practice.

4.7 Virtual Memory Behavior

To investigate the virtual memory behavior of the Train Algorithm, we ran the
compiler benchmark on a 33 MHz Sun SPARC ELC 4/25 workstation equipped
with only 12M bytes of primary memory. Since we only measured user and
system time, not elapsed wall-clock time, we were unable to determine the exact
amount of time spent on disk swapping. Instead, we monitored the page fault
distribution.

The mark-sweep and Train Algorithm collectors scanned roughly the same
amount of mature object space during the execution, about 30M bytes. This
gave rise to 3,800 page faults in the mark-sweep implementation, and 4,500 in
the Train Algorithm implementation. In both cases, this corresponded to around
95% of the total number of page faults. While there were nearly 20% more page
faults in the Train Algorithm implementation, they were far better temporally
distributed. For instance, the last mark-sweep collection caused over 1,000 pages

to be swapped into primary memory, spending 6.4 seconds in the system kernel
alone (not counting the disk access). In contrast, the Train Algorithm collector
caused an average of less than 10 page faults per collection step. Still, a few
collections of cars with large remembered sets caused nearly 100 page faults
each, with up to 0.25 seconds spent in the system kernel.

To gain a better impression of the virtual memory behavior of the Train
Algorithm, more detailed measurements are required. Nevertheless, our simple
experiment seems to indicate that the algorithm is certainly a step in the right
direction.

5 Future Work

To understand the full potential of the Train Algorithm, more experiments are
needed. For instance, the remembered set implementation seems to play a cru-
cial role. It would be highly instructive to examine the effects of using alternative
strategies, such as dirty pages, cards, etc. [HMS92]. Also, further experiments
with different car sizes and evacuation strategies would be interesting, as would
more work concerning the treatment of popular objects. Finally, the Train Al-
gorithm approach may be applicable in other areas, such as distributed garbage
collection or collection of persistent stores.

6 Conclusion

Garbage collection simplifies programming, but has often been considered un-
feasible in interactive systems. The most common argument has been that it is
impossible to guarantee sufficiently short delays without introducing large over-
heads. With current hardware and sophisticated reclamation techniques, this
is no longer true. Our Train Algorithm implementation shows that collection
delays can be brought down to a few milliseconds, with very low maximum delay
and a modest increase in storage requirements. Thus, for a large class of inter-
active applications, there is no need to exclude automatic memory management.

7 Acknowledgments

We wish to thank Ole Lehrmann Madsen and Eric Jul for encouraging us to
write this paper. We are also grateful to Sgren Brandt, Richard Hudson, Eric
Jul, Ole Lehrmann Madsen, Eliot Moss, and Mario Wolczko for reading earlier
drafts and providing us with many helpful suggestions.

References

[Bar88]

[GS93]

[HM92]

[HMDWO1]

[HMS92]

[KLMM93]

[MIA90]

[MMNO93]

[Ung86]

[UJ92]

Knut Barra: Mark/sweep compaction for substantially nested Beta
objects, NCC-Note DTEK/03/88, Norwegian Computing Center,
March 1988.

Steffen Grarup and Jacob Seligmann: Incremental Mature Gar-
bage Collection, M.Sc. thesis, Computer Science Department,
Aarhus University, Denmark, August 1993. Also published as
Technical Report DAIMI IR-122, Computer Science Department,
Aarhus University, Denmark, September 1994. Electronic ver-
sion available via anonymous ftp from ftp.daimi.aau.dk as
pub/thesis/gcthesis.ps.{Z,gz}.

Richard L. Hudson and J. Eliot B. Moss: Incremental Collection
of Mature Objects, Proceedings of the International Workshop on
Memory Management, September 1992, pp. 388—403.

Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christo-
pher F. Weight: A Language-Independent Garbage Collector Tool-
kit, COINS Technical Report 91-47, University of Massachusetts,
Ambherst, September 1991.

Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi¢:
A Comparative Performance Evaluation of Write Barrier Imple-
mentations, OOPSLA 92 Proceedings, ACM SIGPLAN Notices,
Vol. 27, No. 10, October 1992, pp. 92-109.

Jorgen L. Knudsen, Mats Lofgren, Ole L. Madsen, and Boris Mag-
nusson (eds.): Object-Oriented Environments: The Mjslner Ap-
proach, Prentice Hall, 1993.

Mjglner Informatics Report MIA 90-11: Sif: A Hyper Structure
Editor — Tutorial and Reference Manual, Mjglner Informatics ApS,
Science Park Aarhus, 1990.

Ole L. Madsen, Birger Mgller-Pedersen, and Kristen Nygaard:
Object-Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993.

David Ungar: The Design and Evaluation of a High Performance
Smalltalk System, Ph.D. thesis, University of California, Berkeley,
May 1986.

David Ungar and Frank Jackson: An Adaptive Tenuring Policy
for Generation Scavengers, ACM Transactions on Programming
Languages and Systems, Vol. 14, No. 1, January 1992, pp. 1-27.

