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1. INTRODUCTION

1.1 Client-Server Database System Architectures

Advances in distributed computing and object-orientation have combined to
bring about the development of a new class of database systems. These
systems employ a client-server computing model to provide both respon-
siveness to users and support for complex, shared data in a distributed
environment. Current relational DBMS products are based on a query-
shipping approach in which most query processing is performed at servers;
clients are primarily used to manage the user interface. In contrast,
object-oriented database systems (OODBMS), which were initially devel-
oped to support computationally intensive applications such as computer
aided design (CAD), typically support data-shipping, which allows data
request processing (in addition to application processing) to be performed
at the clients. With data-shipping, DBMS software running on the client
machines determines which data items are needed to satisfy a given
application request and obtains those items from the server if they can not
be found locally.

The advantages of data-shipping for object-based DBMSs are two-fold:
First, data-shipping moves the data closer to the applications, thus acceler-
ating navigation through persistent data structures via the programmatic
interfaces of object-based DBMSs. Second, data-shipping offloads much of
the DBMS function from the server to the client workstations, providing
both performance and scalability improvements. The performance advan-
tages of data-shipping for navigation-oriented workloads are highlighted by
benchmarks such as the 001 (or “Sun”) engineering database benchmark
[Cattell and Skeen 1992] and the more recent 007 benchmark [Carey et al.
1993]. As a result of these advantages, data-shipping is used in research
prototypes such as ORION [Kim et al. 1990], Client-Server EXODUS
[Franklin et al. 1992; Exodus Project Group 1993], SHORE [Carey et al.
1994], and THOR [Liskov et al. 1992], as well as in commercial products
such as GemStone [Butterworth et al. 1991], O2 [O. Deux et al. 1991],
ObjectStore [Lamb et al. 1991], Ontos [Ontos Inc. 1992], Objectivity [Objec-
tivity Inc. 1991], and Versant [Versant Object Technology 1991].

While data-shipping can be beneficial in client-server object database
systems, there is also a potential downside; data-shipping implementations
are susceptible to network and/or server bottlenecks that can arise if a high
volume of data is requested by clients. The key to avoiding these bottle-
necks is to use local client storage resources for data caching. Client data
caching enables clients to retain copies of data items that they have
received from servers. In the presence of locality (i.e., the affinity of
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applications at certain workstations for certain subsets of the data items),
such caching can significantly reduce the volume of data that clients must
request from servers.

1.2 Transactional Cache Consistency

Client data caching is a dynamic form of data replication. As with any form
of data replication, care must be taken to ensure that the presence of
multiple copies in the distributed system does not jeopardize the correct-
ness of programs. In a database system, correctness in the presence of
concurrency, distribution, replication, and failures is tied to the concept of
transactions. It is important, therefore, to distinguish between two types of
caching: (1) intratransaction caching, which refers to the caching of data
within transaction boundaries; and (2) intertransaction caching, which
allows clients to retain locally cached data even across transaction bound-
aries. Intratransaction caching can be implemented by purging any cached
items that are not protected by an active transaction and relying on the
normal concurrency control mechanism (e.g., two-phase locking, etc.) to
ensure the validity of the remaining cached data. In contrast, intertransac-
tion data caching allows data items to remain in client caches even outside
of transaction boundaries. Such cached items are not protected by the
regular (transaction-oriented) concurrency control mechanism, so an addi-
tional cache consistency protocol is required to ensure correctness.

Cache consistency protocols for client-server database systems have been
the subject of much study in recent years and at least a dozen different
algorithms have been proposed and studied in the literature [Wilkinson
and Neimat 1990; Carey et al. 1991; Wang and Rowe 1991; Franklin and
Carey 1992; Adya et al. 1995]. In terms of semantics, all of these proposed
algorithms support the traditional notion of ACID transaction isolation;
that is, they all ensure that transactions always see a serializable, or
“degree three” [Gray and Reuter 1993] view of the database.1 The proposed
algorithms, however, differ greatly in the details of their implementation;
the developers of these algorithms have made widely varying choices along
numerous design dimensions. Thus, despite the fact that all of these
algorithms provide an identical level of protection, the performance of the
various algorithms can be expected to differ significantly.

While the papers mentioned previously have all included performance
comparisons of several of the proposed algorithms, none of these studies
have attempted to unify and explain the large design space for transac-
tional client-server cache consistency algorithms. As a result, it has been
difficult to compare and contrast the set of proposed algorithms and to
choose among them. In this article we address this problem by proposing a
taxonomy of transactional cache consistency maintenance algorithms that
encompasses all of the algorithms that have been examined in the previ-

1Because all of these algorithms are intended to support navigation-oriented data access, they
do not explicitly address the “phantom” problem [Gray and Reuter 1993] that arises in
associative, predicate-based access.
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ously mentioned studies. The taxonomy outlines the numerous dimensions
of the design space for transactional cache consistency algorithms and
shows how proposed algorithms relate to one another. After describing this
taxonomy, we then use it to drive an analysis of performance results for
three families of algorithms across a range of workloads.

1.3 Relationship to Other Caching Systems

Caching has been used to reduce latency and improve scalability in many
different computing environments, including multiprocessors [Archibald
and Baer 1986; Stenstrom 1990; Lilja 1993; Adve and Gharachorloo 1995],
distributed shared memory (DSM) systems [Li and Hudak 1989; Nitzberg
and Lo 1991; Keleher et al. 1992], and distributed file systems [Howard et
al. 1988; Nelson et al. 1988; Levy and Silberschatz 1990]. The maintenance
of cache consistency has been addressed to varying degrees in all of these
environments. While many of the underlying techniques used to enforce
cache consistency are common across all of these environments, there are
two aspects of modern object-oriented database systems that distinguish
solutions in this environment from the others: (1) transactions, and (2) the
client-server architecture.

The transactional nature of caching in client-server database systems
both imposes constraints and provides additional implementation opportu-
nities for cache consistency maintenance protocols. The constraints include
the requirement to provide the ACID semantics, which combine correctness
criteria for concurrent execution of arbitrary programs by multiple users
with guarantees for fault tolerance. Opportunities arise from the well-
defined points of synchronization provided by the transaction model and
the ability to piggyback cache consistency information on the protocols used
to support concurrency control and recovery. The client-server OODBMS
architecture impacts the design of cache consistency maintenance protocols
by enforcing a specific partitioning of responsibilities between clients and
servers. The relationship between transactional caching in client-server
object database systems and data caching in other environments is ad-
dressed in further detail in Section 3.

1.4 Scope of the Article

This article makes several contributions. One main contribution is the
presentation of a taxonomy that provides a unified treatment of proposed
cache-consistency algorithms for client-server object database systems. A
key insight that arises from the taxonomy is the usefulness of classifying
algorithms based on whether they detect or avoid access to stale cached
data. This distinction is in contrast to the possibly more intuitive one
between optimistic and pessimistic approaches, which does not accurately
characterize the complex algorithms that have been proposed. While the
taxonomy is complete in the sense that it encompasses the major algo-
rithms that have been studied in the literature, it does not, of course, cover
all conceivable algorithms. The body of work covered by this taxonomy
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consists of proposed algorithms that provide serializable transaction execu-
tion; the taxonomy does not address the many possible relaxations of these
semantics. Instead, because all of the algorithms provide exactly the same
semantics to client-based transactions, the emphasis of the taxonomy is on
issues that impact performance.

After describing the taxonomy and placing the proposed algorithms in it,
we then use the taxonomy to guide the analysis of the performance results
that we have obtained in detailed simulation studies of a subset of the
algorithms. This study includes the description of a suite of synthetic
workloads that have been used to explore the performance of caching
algorithms in a number of scenarios. Finally, the insight gained by analyz-
ing the performance results in the context of the taxonomy is used to reflect
upon the characteristics of the other proposed algorithms that have ap-
peared in the literature. In this way, the taxonomy is used to shed light
both on the nature of the design space for transactional cache consistency
algorithms and on the performance tradeoffs implied by many of the
choices that exist in the design space.

The remainder of the article is organized as follows: Section 2 outlines a
reference architecture for a data-shipping database system and describes
the constraints on the algorithm design space that are implied by the
architecture. Section 3 discusses cache consistency issues that have been
addressed in the other computing environments. Section 4 presents our
taxonomy of transactional cache consistency maintenance algorithms. Sec-
tion 5 describes three families of transactional cache consistency mainte-
nance algorithms in greater detail and examines their performance using
a detailed simulation model. Section 6 comments on the tradeoffs made
by the remaining algorithms in the taxonomy. Section 7 presents our
conclusions.

2. CACHING IN CLIENT-SERVER DATABASE SYSTEMS

2.1 Reference Architecture

Figure 1 shows a reference architecture for a data-shipping client-server
DBMS. The underlying hardware is typical of that found in today’s computer-
assisted work environments (e.g., CAD, CAM, CASE, etc.). As shown in the
figure, applications in a data-shipping DBMS execute at the client worksta-
tions. The DBMS consists of two types of processes that are distributed
throughout the network. First, each client workstation runs a Client DBMS
process, which is responsible for providing access to the database for the
applications running at the local workstation. For protection reasons, the
applications run in a separate address space from their local Client DBMS
process, though some shared-memory may be used for efficiency.2 Applica-
tions send database access requests to their local Client DBMS process,
which executes the request, in turn sending requests for transaction

2The process boundaries described here are typical, but not universal. For example, in
EXODUS, applications are linked into a single process with the client DBMS code.
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support and for specific data items to the Server DBMS processes. Server
DBMS processes are the actual owners of data, and are ultimately respon-
sible for preserving the integrity of the data and enforcing transaction
semantics. The Server DBMS processes manage the stable storage on
which the permanent version of the database and the log reside. They also
provide concurrency control and copy management functions for the data
that they own. For simplicity, we assume that the database is statically
partitioned across the servers. In general, data can be replicated among the
servers in order to improve availability and/or performance; such replica-
tion, however, is beyond the scope of this article.

In a data-shipping architecture, each Client DBMS process is responsible
for translating local application requests into requests for specific database
items and for brining those items into memory at the client. As a result, all
of the data items referenced by an application are ultimately brought from
the server(s) to the client. Some or all of these items may be cached at the
clients in order to reduce transaction path length and server load. A Server
DBMS process is responsible for providing the most recent committed
values for the data items that it owns in response to client requests; of
course, due to concurrency control conflicts, it may not be possible for the
server to provide each requested item immediately.

Data-shipping systems can be structured either as page servers, in which
clients and servers interact using fixed-length, physical units of data such
as pages (typically on the order of four or eight Kbytes) or object servers,
which interact using logical, possibly variable-length, units of data such as
tuples or objects. Aspects of the tradeoffs between page servers and object
servers have been studied for the single-user case in DeWitt et al. [1990]
and Kemper and Kossmann [1994], and for the multiuser case in Carey et
al. [1994], Chu and Winslett [1994] and Adya et al. [1995]. For concrete-
ness, this article focuses on page-server architectures in which data trans-

Fig. 1. Reference architecture for a data-shipping DBMS.
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fer, concurrency control, and cache consistency are all performed at the
granularity of a single page. The algorithms discussed here, however, are
equally applicable to both page servers and object servers in that they
assume that the same granularity (i.e., page or object) is used for concur-
rency control and cache consistency. The issues that arise when mixing
levels of granularity for any of these functions are addressed in Carey et al.
[1994] and Chu and Winslett [1994].

2.2 Architectural Implications for Caching

An important aspect of any data-shipping system is that all of the DBMS
processes (both Client and Server) have storage resources (memory and/or
disk) that they use for buffering data. The database system as a whole is
responsible for managing buffers across the entire collection of machines.
Similarly, the other distributed resources of the system, such as CPUs and
disks, can also be exploited by the DBMS. In fact, in a typical environment
with fairly high-powered client machines (e.g., “fat” clients such as state-of-
the-art PCs or workstations) the majority of the aggregate processing and
storage resources available to the DBMS are likely to reside at the clients.
As in other computing environments, client caching is a key technique for
exploiting these resources.

The design of a client caching mechanism for a data-shipping database
system must respect the correctness and availability constraints of that
environment. Workstation-server database systems must be capable of
providing the same level of transaction support as more traditional data-
base architectures, including serializability. Because client caching is es-
sentially a form of data replication, correctness criteria for managing
replicated data are applicable in this environment. The extension of serial-
izability to replicated data is called one-copy serializability [Bernstein et al.
1987]. A one-copy serializable execution of transactions on a replicated
database is equivalent to some serial execution of those transactions on a
nonreplicated database. In terms of availability, a client caching mecha-
nism must be designed in a way that the crash or disconnection of an
individual client workstation does not impact the availability of data for
applications running at other clients. Reducing the impact of client failures
is crucial for several reasons. First, if individual client failures are allowed
to inhibit availability, then the scalability of the system may be limited.
Second, it is more cost-effective to fortify the (fewer) server machines (e.g.,
by adding duplexed log disk storage or nonvolatile memory) than to
bullet-proof all of the client machines. Finally, since client machines are
typically located on users’ desktops or in their homes or briefcases, they are
typically less closely supported by an operations staff than servers. The
combination of these correctness and availability concerns leads to the
identification of two key properties of client data caching in a database
environment: dynamic replication and second-class ownership.

Dynamic replication means that page copies are created and destroyed
based on the runtime demands of clients. When a client needs to access a
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page, a copy of that page is placed in the client’s cache if one does not
already exist. Page copies are removed from a client’s cache in order to
make room for more recently requested ones or, under some caching
algorithms, because they become invalid. This is in contrast to static
replication, in which replication is determined as part of physical database
design (e.g., Stonebraker [1979]).

Second-class ownership refers to the fact that the cached copies of pages
at clients are not considered to be the equals of the actual data pages,
which are kept at the server. One problem with replication is that it can
reduce data availability for updates in the presence of failures (e.g.,
network partition) in a distributed environment [Davidson et al. 1985].
Second-class ownership allows consistency to be preserved without sacrific-
ing availability.3 Specifically, the server always retains locally any and all
data that is necessary for ensuring transaction durability (e.g., data pages,
logs, dirty page information, etc.), so that client-cached pages can be
destroyed at any time without causing the loss of committed updates. This
notion is crucial to data availability, as it allows the server to consider a
client to be “crashed” at any time, and thus, to unilaterally abort any
transactions active at that client. As a result, the system as a whole is
never held hostage by an uncooperative or crashed client.

Client caching as defined above provides the ability to exploit client
resources for performance and scalability improvements. The protocol used
to maintain cache consistency, however, imposes its own costs on the
database system. Depending on the protocol used, these costs can include
communication with the server, additional transaction aborts, and reduced
efficiency for client cache usage. Given that a requirement for any such
protocol is that it supports ACID transactions and respects the architec-
tural constraints described above, the challenge is to design a protocol that
incurs minimal overhead across a range of workloads. The remainder of
this article investigates the design space of the transactional cache consis-
tency maintenance algorithms for client-server database systems that have
been proposed in the literature, and analyzes the performance of a number
of these algorithms.

3. RELATED WORK

As discussed in Section 1.3, cache consistency issues arise in many types of
distributed and/or parallel systems including multiprocessors, distributed
shared memory systems, and distributed file systems, as well as other
database architectures, such as shared-disk database systems. While there
are many similarities between the basic consistency maintenance tech-

3The term “secondary-class ownership” is derived from a similar concept called “second-class
replication” used in the CODA distributed file system [Kistler and Satyanarayanan 1991]. The
two notions are similar in that a distinction is made between the “worth” of different types of
copies. They differ, however, in that the second-class replicas of CODA are used to increase
availability by allowing access to inconsistent data, whereas our notion of second-class copies
is used to enhance the availability of consistent data.
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niques available in client-server database systems and in these other
environments, there are significant differences in the systems that impact
the design alternatives and their inherent tradeoffs. In the following
sections we first describe how transactional cache consistency differs from
cache consistency in nondatabase environments, and then describe how
client-server database systems differ from shared-disk database systems.
Important areas of difference for each of the systems include some or all of
the following: (1) correctness criteria, (2) granularity of caching, (3) inher-
ent cost trade-offs, and (4) workload characteristics.

3.1 Nondatabase Environments

Much of the early work in cache consistency maintenance was done in the
context of shared-memory multiprocessors. A number of early protocols for
such systems were studied in Archibald and Baer [1986]; more recent
surveys appear in Stenstrom [1990] and Lilja [1993]. The traditional notion
of correctness in multiprocessor systems is sequential consistency [Lamport
1979], which aims to ensure that program execution on a multiprocessor
machine with distributed memory (i.e., processor caches) provides the same
results as an interleaved multithreaded execution on a uniprocessor ma-
chine with a single memory. Sequential consistency, therefore, deals with
the ordering of individual memory accesses rather than compound units
such as transactions.

More recent work in the multiprocessor area has focused on developing
alternative models that provide improved performance at the expense of
requiring programmers (or compilers) to correctly place explicit synchroni-
zation primitives in their code [Adve and Gharachorloo 1995]. Many of
these models, such as release consistency [Gharachorloo et al. 1990], allow
programmers to combine multiple memory accesses into units that are
protected by synchronization. For correctness, however, the composition of
these units must be known and agreed upon a priori by all concurrent
processes that may possibly access affected memory locations. Such a priori
knowledge is a reasonable assumption in this environment, as the goal is
typically to provide concurrent execution of a single, multithreaded pro-
gram. Sharing of data across separate programs is not directly supported
by these protocols. Also, all of these models have as their goal the provision
of semantics that approach those of (volatile) memory in a uniprocessor, so
they do not include support for fault tolerance.

Database systems have a different set of requirements than those of the
multiprocessor memory algorithms. ACID semantics provide correctness for
concurrent execution of transactions containing arbitrary groups of opera-
tions and ensure correct execution, even in the presence of failures. This is
important because database systems must support correct access to a
shared database in the presence of a constantly changing workload. Data-
base workloads are typically imposed by many different users who concur-
rently present a mix of ad hoc queries and updates to the system. As a
result of these differences in focus, the basic techniques that have been
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developed for database systems, such as two-phase locking or optimistic
concurrency control, do not exist in the multiprocessor domain. As will be
seen in Sections 4 and 5, the cache consistency algorithms that have been
proposed for client-server database systems are based closely on these
fundamental techniques.

Nevertheless, despite the differences in emphasis, there are basic com-
mon issues that must be addressed by all cache consistency maintenance
algorithms. For example, stale cached copies can be dealt with in two ways:
by invalidating them or by propagating new values to the affected caches
(i.e., write-invalidate and write-broadcast [Archibald and Baer 1986]). Also,
consistency actions can be distributed through the use of a broadcast
medium (e.g., snooping caches [Goodman 1983]) or can be maintained in
directories (e.g., Agarawal et al. [1988]). Even at this level, however, the
substantial architectural differences (e.g., message cost, cache consistency
granularity, data access granularity, peer-to-peer versus client-server)
between data-shipping database systems and shared-memory multiproces-
sors limit the extent to which results from one area can be applied in the
other.

Distributed Shared Memory (DSM) systems [Li and Hudak 1989;
Nitzberg and Lo 1991] have cost tradeoffs that are closer to those in a
data-shipping database environment. DSM systems provide the abstraction
of a shared virtual memory address space that spans the nodes of a
distributed system. Unlike multiprocessor caching, which can rely heavily
on hardware support, DSMs are typically implemented in software with
only minimal hardware assists. Because pages (or at least relatively large
cache lines) are the unit of consistency, DSMs are similar to client-server
databases with respect to granularity. In terms of cost trade-offs, DSMs are
again closer to page servers than are shared-memory multiprocessors,
because messages are required for consistency (although if the DSM is built
on a multiprocessor, messages may be less expensive). The main differ-
ences, therefore, lie in the area of correctness criteria for DSM systems,
which are typically the same as those for multiprocessors.

Because of the high cost of messages in a distributed environment, recent
improvements to DSM cache consistency protocols such as Lazy Release
Consistency [Keleher et al. 1992] exploit communication patterns among
processors to reduce the message overhead. Many of the protocols for
data-shipping database systems also try to exploit existing communication
patterns. In the database environment, however, these patterns are deter-
mined to a large extent by the protocols used between clients and servers to
support ACID transactions (e.g., two-phase locking, write-ahead-logging,
and optimistic concurrency control).

Client caching has been used in distributed file systems since some of the
earliest work in the area (e.g., DFS [Sturgis et al. 1980]). Many distributed
file systems that support some form of client caching have been proposed
and built. A survey of distributed file systems can be found in Levy and
Silberschatz [1990]. As with data-shipping DBMSs, these systems use
client caching to improve performance and scalability. However, they
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support much less stringent notions of correctness in terms of both concur-
rency and failure semantics. Furthermore, distributed file systems are
typically designed for workloads in which read-write sharing is rare (e.g.,
Baker et al. [1991]) and caching is often done at a fairly coarse granularity,
such as entire files or large portions of files. Even so, the algorithms used
in distributed file systems (e.g., Andrew [Howard et al. 1988] and Sprite
[Nelson et al. 1988]) have served as the inspiration for at least one
important class of cache consistency algorithms for client-server database
systems (i.e., callback locking).

3.2 Shared-Disk Database Systems

In addition to work outside of the database area, cache-consistency issues
have also been addressed in multiprocessor database architectures other
than client-server systems. Transactional cache consistency is required in
any database system that supports dynamic caching. One such class of
systems is shared-disk (or data sharing) parallel database systems, which
consist of multiple nodes with private processors and memory that share a
common disk pool [Bhide and Stonebraker 1988]. While similar in some
respects to the client-server database systems addressed in this study, they
differ in three significant ways. First, since nodes are not assigned to
individual users, there is likely to be less locality of access at the individual
nodes. Secondly, the cost of communication among nodes in a shared-disk
environment is substantially lower than would be expected in the local area
network of a page server DBMS. Thirdly, the structure of a shared disk
system is peer-to-peer, as opposed to the client-server structure of a page
server system, so many of the environmental considerations raised in
Section 2 do not apply.

A number of papers on shared-disk caching performance have been
written by a group at IBM Yorktown. One of their earlier papers examined
cache consistency protocols that were integrated with the global lock
manager of a shared-disk system [Dias et al. 1987]. Later work has
addressed the impact of data skew and contention for a range of possible
algorithms [Dan et al. 1990; Dan and Yu 1991], the interaction between
private and shared buffering [Dan et al. 1991] (similar to the interactions
between client buffers and the server buffer), and extensions to callback-
style algorithms [Dan and Yu 1992]. Other related work in this area
includes the work of Mohan and Narang [1991], Rahm [1993], and Lomet
[1994]. An algorithm that dynamically adjusts the granularity at which
locking and coherency are managed for a shared-disk DBMS was intro-
duced in Joshi [1991]. This approach was later extended for use in hybrid
page server environments in Carey et al. [1994].

4. A TAXONOMY OF ALGORITHMS

In this section we provide a taxonomy of transactional cache consistency
algorithms that encompasses the major algorithms that have appeared in
the literature, including Wilkinson and Neimat [1990], Carey et al. [1991],
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Wang and Rowe [1991], Franklin and Carey [1992] and Adya et al. [1995].
Recall that all of these algorithms provide strict one-copy serializability
and are applicable to page server DBMSs (although some were originally
proposed for object servers). The taxonomy is shown in Figures 2 and 3.
Branches of the taxonomy for which to the best of our knowledge no
algorithms have been published are shown using dashed boxes in the
figures. A key aspect of this taxonomy is the choice of Invalid Access
Prevention as the main criterion for differentiating algorithms. As ex-
plained in the following, algorithms that use avoidance for invalid access
prevention ensure that all cached data is valid, while those that use
detection allow stale data to remain in client caches and ensure that
transactions are allowed to commit only if it can be verified that they have
not accessed such stale data.

There are many possible ways to organize the design space for cache
consistency algorithms, and at first, it might seem odd to use the avoid-
ance/detection distinction as the most fundamental decision point in the
taxonomy. A different, and possibly more intuitive approach is to divide the

Fig. 2. Taxonomy of detection-based algorithms.
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taxonomy along the lines of concurrency control and replicated data man-
agement, as has been done for algorithms in the shared disks environment
[Rahm 1991]. Because the two concepts are so closely interrelated, how-
ever, dividing a taxonomy at the highest level along these lines can result
in substantial duplication of mechanism within the taxonomy, hurting its
descriptive effectiveness. Another possible approach would be to classify
algorithms at the coarsest level as either “pessimistic” or “optimistic”. As
will be seen in the following sections, such a binary classification is not
meaningful for many algorithms; in fact, many of the algorithms that have
been proposed use combinations of both pessimism and optimism that
interact in complex ways. By using the invalid access prevention policy as
the coarsest level of differentiation in the taxonomy, such hybrid algo-
rithms can be easily accommodated.

The next section describes the avoidance-based and detection-based
approaches for invalid access prevention. Because this choice is a major
distinction among algorithms, the properties upon which the lower levels of
the taxonomy are based differ depending on which invalid access preven-
tion policy is used. The lower levels of the taxonomy for each option are
then elaborated in the sections that follow.

Fig. 3. Taxonomy of avoidance-based algorithms.
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4.1 Invalid Access Prevention

Transactional cache consistency maintenance algorithms must ensure that
no transactions that access stale (i.e., out-of-date) data are allowed to
commit. A data item is considered to be stale if its value is older than the
item’s latest committed value.4 In this taxonomy we partition consistency
maintenance algorithms into two classes according to whether their ap-
proach to preventing stale data access is detection-based or avoidance-
based. Qualitatively, the difference between these two classes is that
detection-based schemes are lazy, requiring transactions to check the
validity of accessed data, while avoidance-based schemes are eager, they
ensure that invalid data is quickly (and atomically) removed from client
caches. Some avoidance-based schemes also retain certain access permis-
sions across transaction boundaries in order to protect cached data that is
not accessed by an active transaction.

Detection-based schemes allow stale data copies to reside in a client’s
cache for some period of time. Transactions must therefore check the
validity of any cached page that they access before they can be allowed to
commit. The server is responsible for maintaining information that will
enable clients to perform this validity checking. Detection-based schemes
are so named because access to stale data is explicitly checked for and
detected. In contrast, under avoidance-based algorithms, transactions
never have the opportunity to access stale data. Avoidance-based algo-
rithms use a read-one/write-all (ROWA) approach to replica management.
A ROWA protocol ensures that all existing copies of an updated item have
the same value when an updating transaction commits. Avoidance-based
algorithms can thus be said to avoid access to stale data by making such
access impossible. In a ROWA scheme, a transaction is allowed to read any
copy of a data item (which will typically be the one in its local client cache,
if such a copy exists). Updates, however, must be reflected at all of the
copies that are allowed to exist in the system beyond the updating transac-
tion’s commit point.5

Before proceeding, it should be noted that detection-based algorithms can
be augmented with techniques similar to those employed to enforce consis-
tency in avoidance-based algorithms. In fact, three of the detection-based
algorithms cited in Figure 2 use asynchronous update notifications (i.e.,
they asynchronously install new values or remove stale values at remote
clients) in order to reduce the probability of having stale data in the client

4Some concurrency control techniques based on multiple versions allow read-only transactions
to access stale data provided that they see a consistent snapshot of the database [Bernstein et
al. 1987]. While such algorithms are beyond the scope of this article, several of the consistency
algorithms do allow multiple active transactions to simultaneously access different values of
the same page, provided that strict (i.e., commit order) serializability is not violated.
5As described in Section 2.2, the use of second-class replication allows the server to unilater-
ally eliminate any unreachable copies from the protocol so that transaction processing can
continue.
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caches. A key point, however, is that these three algorithms lie strictly in
the detection-based camp, as the notifications are sent only as “hints”. That
is, despite the use of hints, these algorithms still allow stale cache contents
to be present and potentially accessed by transactions and thus, must
ultimately depend on detection to ensure that committing transactions
have not accessed any stale data. In contrast, the use of avoidance obviates
any possible need for detection, so there is no augmentation in the opposite
direction within the taxonomy.

4.2 Detection-based Algorithms

A number of detection-based algorithms (shown in Figure 2) have been
proposed and studied in the literature. An advantage of the detection-based
approach is simplicity. Because their consistency actions involve only a
single client and the server, the detection-based approaches allow the cache
management software on the clients to be greatly simplified compared to
the ROWA approach. For example, using detection, the system software
can be structured such that clients do not ever have to receive asynchro-
nous messages from the server. The EXODUS storage manager [Exodus
Project Group 1993] chose a detection-based approach largely for this
reason. The disadvantage of detection-based approaches, however, is a
greater dependency on the server, which can result in additional overhead.
There are three levels of differentiation in the detection-based side of the
taxonomy: validity check initiation, change notification hints, and remote
update action.

4.2.1 Validity Check Initiation. The coarsest level of differentiation for
the detection-based half of the taxonomy is based on the point (or points)
during transaction execution at which the validity of accessed data is
checked. The validity of any accessed data must be determined before a
transaction can be allowed to commit; consistency checks for all data
touched by a transaction must therefore begin and complete during the
execution of the transaction. In the taxonomy, three classes of validity
checking strategies are differentiated:

—Synchronous, on each initial access to a page (cached or otherwise) by a
transaction.

—Asynchronous, with checking initiated on the initial access.
—Deferred, until a transaction enters its commit processing phase.

All three classes have the property that once the validity of a client’s copy
of a data item is established, that copy is guaranteed to remain valid for
the duration of the transaction. To implement this guarantee, the server
must not allow other transactions to commit updates to such items until a
transaction that has received a validity guarantee finishes (commits or
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aborts). As a result, transactions must obtain permission from the server
before they are allowed to commit an update to a data item.6

Synchronous validity checking is the simplest of the three classes. On the
first access that a transaction makes to a cached data item, the client must
check with the server to ensure that its copy of the item is valid. This is
done in a synchronous manner—the transaction is not allowed to access the
item until its validity has been verified. Once the validity of the client’s
copy of the item has been established (which may involve the sending of a
new, valid copy to the client), the copy is guaranteed to remain valid at
least until the transaction completes. Asynchronous validity checking is
similar, but the transaction does not wait for the result of the check.
Rather, it proceeds to access (or write) the local copy under the assumption
that the check will succeed. If this optimism turns out to be unfounded,
then the transaction must abort. Finally, deferred validity checking is even
more optimistic than asynchronous checking. No consistency actions per-
taining to cached data are sent to the server until the transaction has
completed its execution phase and has entered its commit phase. At this
point, information on all the data items read and written by the transaction
is sent to the server, and the server determines whether or not the
transaction should be allowed to commit.

These three classes provide a range from pessimistic (synchronous) to
optimistic (deferred) techniques. Therefore, they represent different
tradeoffs between checking overhead and possible transaction aborts. De-
ferring consistency actions can have two advantages. First, and most
significantly, consistency actions can be bundled together in order to reduce
and/or amortize consistency maintenance overhead. Secondly, the consis-
tency maintenance work performed for a transaction that ultimately aborts
is wasted; deferred consistency actions can avoid some of this work. There
are also potential disadvantages to deferring consistency actions, however.
The main disadvantage is that deferral can result in the late detection of
data conflicts, which will cause the abort of one or more transactions. The
asynchronous approach is a compromise; it aims to mitigate the cost of
interaction with the server by removing it from the critical path of
transaction execution, while at the same time lowering the abort rate
and/or cost through the earlier discovery of conflicts.

4.2.2 Change Notification Hints. The emphasis on optimistic (i.e.,
asynchronous and deferred) techniques found in the literature on detection-
based algorithms is an artifact of the cost tradeoffs of the page server
environment. Communication with the server is an inherently expensive
operation, so designers of detection-based algorithms often use optimism to
reduce this cost. Optimistic techniques are oriented towards environments
in which conflicts are rare and the cost of detecting conflicts is high. While

6Although it is not strictly necessary, all of the algorithms shown in Figure 2 use the same
initiation method for update permission requests as they do for validity checks. If this were
not the case, validation and update would require separate dimensions in the taxonomy.
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there is currently no definitive understanding of page server DBMS work-
loads, it is generally assumed that such workloads have lower levels of
conflict than more traditional DBMS workloads, such as transaction pro-
cessing [Cattell 1991]. In a transactional caching environment, however,
the notion of conflict must take into account not only concurrent data
sharing, but also sequential sharing. Sequential sharing arises when trans-
actions that do not run concurrently access the same data. Because caching
strives to retain data at a site even after a transaction has completed, the
cache consistency maintenance algorithm must also deal effectively with
this type of sharing. Recent studies of file system workloads [Ramakrish-
nan et al. 1992; Sandhu and Zhou 1992] indicate that sequential sharing
may, in fact, be quite common in the types of situations in which page
servers are intended to be used.

Two approaches to reducing the potential for aborts in optimistic tech-
niques have been proposed. One is to treat “hot spot” data differently, e.g.,
by switching to a more pessimistic protocol for such data (e.g., Adya et al.
[1995]). The other is to use techniques from the avoidance-based (ROWA)
algorithms to reduce the amount of stale data that resides in client caches.
We call such techniques change notification hints. As can be seen in Figure
2, three of the algorithms found in the literature use some form of change
notification hints (or simply, “notifications”). A notification is an action that
is sent to a remote client as the result of an update (or an impending
update) that may impact the validity of an item cached at that client.
Purging or updating a stale copy removes the risk that a subsequent
transaction will be forced to abort as a result of accessing it.

Notifications can be sent asynchronously at any time during the execu-
tion of an updating transaction, or even after such a transaction commits.
In fact, sending notifications before commit can be dangerous if the
notifications actually update the remote copies rather than simply remov-
ing them; if the transaction on whose behalf the notification was sent
eventually aborts, then the remote updates will have to be undone, adding
significant complexity (e.g., cascading aborts) and expense to the algorithm.
Early notifications that simply purge copies from remote caches are less
problematic; still, they too can cause unnecessary aborts at remote sites if
active transactions have already accessed the invalidated copies there.
Because of these complexities, all three of the algorithms shown in Figure 2
that use change notification hints send them only after the updating
transaction has committed.

4.2.3 Remote Update Action. The final level of differentiation in the
detection-based half of the taxonomy is concerned with the action taken
when a notification arrives at a remote site. There are three options here:
propagation, invalidation, and choosing dynamically between the two.
Propagation results in the newly updated value being installed at the
remote site in place of the stale copy. Invalidation, on the other hand,
simply removes the stale copy from the remote cache so that it will not be
accessed by any subsequent transactions. After a page copy is invalidated
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at a site, any subsequent transaction that wishes to access the page at that
site must obtain a new copy from the server. A dynamic algorithm can
chose between invalidation and propagation heuristically in order to opti-
mize performance for varying workloads.

4.3 Avoidance-Based Algorithms

Avoidance-based algorithms form the other half of our taxonomy. The
avoidance-based side of the taxonomy is shown in Figure 3. As stated
previously, avoidance-based algorithms enforce consistency by making it
impossible for transactions to ever access stale data in their local cache.
They accomplish this by directly manipulating the contents of remote client
caches as the result of (or prior to) client updates. Because consistency
actions manipulate page copies in remote client caches, the client software
must include additional mechanisms to support these actions (e.g., some
schemes require that clients have a full function lock manager).

In addition to their need for additional client support, avoidance-based
algorithms also require extra information to be maintained at the server.
Specifically, all of the avoidance-based algorithms described here require
that the server keep track of the location of all page copies. In order to
satisfy the “write all” requirement of the ROWA paradigm, it must be
possible to locate all copies of a given page. One way to accomplish this is
through the use of broadcast, as in the snooping protocols used in caching
algorithms for small-scale multiprocessors [Goodman 1983]. Reliance on
broadcast is not a viable option in a page server DBMS environment,
however, due to cost and scalability issues. As a result, a “directory-based”
approach [Agarawal et al. 1988] must be used. As discussed in Section 2,
the server is the focal point for all transaction management functions and
is responsible for providing clients with requested data; as a result, the
avoidance-based algorithms covered here all maintain a directory of client
page copies at the server.

There are four levels in the avoidance-based half of the taxonomy, as
shown in Figure 3: write intention declaration, write permission duration,
remote conflict priority, and remote update action. Two of these dimen-
sions, write intention declaration and remote update action, are analogous
to dimensions that appeared in the detection-based side of the taxonomy.

4.3.1 Write Intention Declaration. As with the detection-based algo-
rithms, the avoidance-based algorithms can be categorized according to the
time at which transactions initiate consistency actions. The nature of their
consistency actions, however, is somewhat different than in the detection-
based schemes. Because of the ROWA protocol, transactions executing
under an avoidance-based scheme can always read any page copy that is
cached at their local client. Thus, interaction with the server is required
only for access to pages that are not cached locally and for updates to
cached pages. Interactions with the server to obtain copies of noncached
pages must, of course, be done synchronously. On a cache miss, the client
requests the desired page from the server. When the server responds with a
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copy of the page, it also implicitly gives the client a guarantee that the
client will be informed if another client performs an operation that would
cause the copy to become invalid.

While all of the avoidance-based algorithms use the same policy for
handling page reads, they differ in the manner in which consistency actions
for updates are initiated. When a transaction wishes to update a cached
page copy, the server must be informed of this write intention sometime
prior to transaction commit so that it can implement the ROWA protocol.
When the server grants write permission on a page to a client, it guaran-
tees that, for the duration of the permission, the client can update that
page without again having to ask the server.7 The duration of write
permissions is addressed in Section 4.3.2.

A write permission fault is said to occur when a transaction attempts to
update a page copy for which it does not possess write permission. The
taxonomy contains three options for when clients must declare their
intention to write a page to the server:

—Synchronous, on a write permission fault.
—Asynchronous, initiated on a write permission fault.
—Deferred, until the updating transaction enters its commit processing

phase.

In the first two options, clients contact the server at the time that they
first decide to update a page for which they do not currently possess write
permission. As in the detection-based case, such requests can be performed
synchronously or asynchronously. In the third option, declarations of write
intentions are deferred until the transaction finishes its execution phase (if
the updated data can be held in the cache until then).

The tradeoffs among synchrony, asynchrony and deferral for write inten-
tions are similar in spirit to those previously discussed for the detection-
based algorithms: synchronous algorithms are pessimistic, deferred ones
are optimistic, and asynchronous ones are a compromise between the two.
The magnitude of these trade-offs, however, are quite different for avoid-
ance-based algorithms. The global (ROWA) nature of these algorithms
implies that consistency actions may be required at one or more remote
clients before the server can register a write permission for a given client
(or transaction). Therefore, consistency actions can involve substantial
work. Furthermore, in avoidance-based algorithms the remote consistency
operations are in the critical path of transaction commit; an update
transaction cannot commit until all of the necessary consistency operations
have been successfully completed at remote clients. These considerations
tend to strengthen the case for deferral of consistency actions for avoid-

7A “permission”, while similar to a “write lock”, differs in two significant ways. First,
permissions are granted to client sites rather than to individual client transactions. Second,
permissions are not subject to a two-phase constraint (i.e., they can be released and
reacquired).
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ance-based algorithms. Of course, the cost of such deferral is a potential
increase in the number of aborted transactions.

4.3.2 Write Permission Duration. In addition to when write intentions
are declared, avoidance-based algorithms can also be differentiated accord-
ing to how long write permission is retained for. There are two choices at
this level of the taxonomy: write permissions can be retained only for the
duration of a particular transaction, or they can span multiple transactions
at a given client. In the first case, transactions start with no write
permissions, so they must eventually declare write intentions for all pages
that they wish to update; at the end of the transaction, all write permis-
sions are automatically revoked by the server. In the second case, a write
permission can be retained at a client site until the client chooses to drop
the permission or until the server asks a client to drop its write permission
(in conjunction with the performance of a consistency action).

4.3.3 Remote Conflict Priority. The third level of differentiation for
avoidance-based algorithms is the priority given to consistency actions
when they are received at remote clients. There are two options here: wait
and preempt. A wait policy states that consistency actions that conflict
with the operation of an ongoing transaction at a client must wait for that
transaction to complete. In contrast, under a preempt policy, ongoing
transactions can be aborted as the result of an incoming consistency action.
Under the wait policy, the guarantees that are made to clients regarding
the ability to read cached page copies are somewhat stronger than under
the preempt policy. This is because the wait policy forces a remote writer to
serialize behind a local reader if a conflict arises, whereas writers always
have priority over readers under the preempt policy, so conflicting readers
are aborted.

4.3.4 Remote Update Action. The final level on the avoidance-based
side of the taxonomy is based on how remote updates are implemented. The
options here are the same as in the detection-based case, namely: invalida-
tion, propagation, and choosing dynamically between the two. As stated
previously, the propagation of updates to remotely cached copies can be
problematic if consistency actions are sent to remote sites during a trans-
action’s execution phase. As a result, all of the published algorithms in the
taxonomy that send remote consistency actions during the execution phase
rely on invalidation as the mechanism for handling updates remotely.

An important difference between remote update actions under the avoid-
ance-based algorithms and under the detection-based ones (discussed ear-
lier) is that in the avoidance-based case, the remote operations are initiated
and must be completed on behalf of a transaction before the transaction is
allowed to commit. This is necessary to maintain the ROWA semantic
guarantees that provide the basis for the correctness of avoidance-based
algorithms. Therefore, if update propagation is used, all remote sites that
receive the propagated update must participate in a two-phase commit with
the server and the client at which the transaction is executing. In contrast,
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invalidation does not require two-phase commit, as data is simply removed
from the remote client caches in this case.

5. A PERFORMANCE COMPARISON OF THREE ALGORITHM FAMILIES

The taxonomy presented in the previous section illuminates the wide range
of options that have been explored by designers of transactional cache
consistency maintenance algorithms. Recall that because the algorithms
that have been proposed all provide the same functionality (i.e., they
support one-copy serializability in the presence of dynamic caching), perfor-
mance issues are a primary consideration in choosing among them. In this
section we examine the performance implications of a number of the choices
identified in the taxonomy.

Our own work has focused primarily on algorithms from the avoidance-
based half of the taxonomy [Carey et al. 1991; Franklin and Carey 1992]. In
this section, we consolidate the results of those studies and reexamine their
conclusions in the context of the design choices identified in the taxonomy.
We first describe six candidate algorithms from three different algorithm
families. We then provide an overview of a detailed simulation model and a
set of four workloads used to examine the relative performance of those
algorithms. Finally, performance results from a series of simulations are
analyzed to shed light on the relevant design decisions from the taxonomy.
The insights gained through this process are then used in Section 6 to
reflect on the performance characteristics of the remaining design choices
and algorithms in the taxonomy.

5.1 Algorithms

The algorithms that we have focused on come from three families: Server-
based two-phase locking (S2PL), Callback Locking (CBL), and Optimistic
2PL (O2PL). The study of these three families was initially undertaken to
develop alternatives for the SHORE object manager. We focused on these
three families for the following reasons: S2PL algorithms have been used in
a number of early systems including ORION and EXODUS. CBL is a logical
extension of two-phase locking and has been used in the ObjectStore
OODBMS; a variant of CBL was shown to have good performance in Wang
and Rowe [1991]. Finally, the O2PL family is based on an algorithm that
performed well in an earlier study of distributed database systems [Carey
and Livny 1991]. While the algorithms in these three families differ in
many ways, they all stem from the fundamental observation that because
cached data is dynamically replicated data, techniques originally devised
for managing replicated data can be adapted to manage cached copies. In
the following, we briefly describe each of these three algorithm families (see
Franklin [1993] for a more detailed description) and then identify pairs of
algorithms that can be used to isolate the impact of a number of the design
choices described in Section 4.

5.1.1 Server-Based Two-Phase Locking (S2PL). Server-based two-
phase locking algorithms are detection-based algorithms that validate
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cached pages synchronously on a transaction’s initial access to the page.
Server-based 2PL schemes are derived from the primary copy approach to
replicated data management [Alsberg and Day 1976; Stonebraker 1979].
Before a transaction is allowed to commit, it must first access a specially
designated copy (i.e., the primary copy) of each data item that it reads or
writes. In a page server DBMS (with no server replication), the primary
copy of any page is the one that resides at the server. For reads, the client’s
copy of the page must be verified to have the same value as the server’s
copy. For writes, the new value created by the transaction must be
installed as the new value of the primary copy.

The performance results examined here include an algorithm called
Caching 2PL (C2PL). In C2PL, cache consistency is maintained using a
“check-on-access” policy. All page copies are tagged with a version number
that uniquely identifies the state of the page.8 When a transaction at-
tempts a page access for which it has not obtained the proper lock (i.e., read
or write), it sends a lock request to the server and waits for the server’s
response. If the page is cache-resident at the client, then the cached copy’s
version number is included in the lock request message. If any transactions
hold conflicting locks, then the lock request blocks at the server until those
locks are released. When the server grants a read lock to a client, it also
determines whether or not the client has an up-to-date cached copy of the
requested page. If not, then the server piggybacks a valid copy of the page
on the lock response message returned to the client. C2PL uses strict
two-phase locking—all locks are held until transaction commit or abort.
Deadlocks are detected through a centralized scheme at the server, and are
resolved by aborting the youngest transaction involved in the deadlock.
C2PL is one of the simplest algorithms that supports intertransaction
caching, and therefore, algorithms similar to C2PL have been implemented
in several systems, including the ORION-1SX prototype [Kim et al. 1990]
and the EXODUS storage manager [Exodus Project Group 1993]. An
algorithm similar to C2PL has also been studied in Wang and Rowe [1991].

For comparison purposes, the performance study also includes results for
an algorithm called Basic 2PL (B2PL) that allows only intratransaction
caching. B2PL works similarly to C2PL, except that under B2PL, the
client’s buffer pool is purged upon transaction termination. Since every
transaction starts with an empty buffer pool, no page copies ever need to be
validated with the server. Comparing the performance of B2PL to that of
C2PL (and the other algorithms) isolates the degree of performance im-
provement that is due to intertransaction caching.

5.1.2 Callback Locking (CBL). Callback Locking algorithms are simi-
lar to C2PL, in that they are extensions of two-phase locking that support
intertransaction page caching. In contrast to the detection-based C2PL
algorithm, however, Callback Locking algorithms are avoidance-based.

8Data pages are typically tagged with such numbers, called Log Sequence Numbers (LSNs), in
systems that use the Write-Ahead-Logging protocol for crash recovery [Gray and Reuter 1993].
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Therefore, locally cached page copies are always guaranteed to be valid, so
transactions can read them without contacting the server (i.e., only a local
read lock is required). On a cache miss, the client sends a page request
message to the server. The server returns a valid copy of the requested
page when it determines that no other active clients believe they have
write permission for the page. In Callback Locking, write intentions are
declared synchronously—a client must have write permission on a page
before it can grant a local write lock to a transaction. Because write
permissions are obtained during transaction execution, transactions can
commit after completing their operations without performing any addi-
tional consistency maintenance actions. We have studied two Callback
Locking variants: Callback-Read (CB-R), where write permissions are
granted only for the duration of a single transaction (i.e., they are treated
like traditional write locks), and Callback-All (CB-A), where write permis-
sions are retained at clients until being called back or until the correspond-
ing page is dropped from the cache. Both variants use invalidation for
handling remote updates.

With Callback Locking (as with all avoidance-based algorithms), the
server keeps track of the locations of cached copies throughout the system.
Clients inform the server when they drop a page from their buffer pool by
piggybacking that information on the next message that they send to the
server. The server’s copy information is thus conservative—there may be
some delay before the server learns that a page is no longer cached at a
client. Transactions obtain locks from the local lock manager at the client
site on which they execute. Read lock requests, as well as requests for write
locks on pages for which the client has obtained write permission, can be
granted immediately without contacting the server. Write lock requests on
pages for which write permission has not yet been obtained cause a “write
permission fault”. On a write permission fault, the client must register its
write intention with the server and then wait until the server responds
that the permission has been granted before continuing.

When a write intention declaration arrives at the server, the server
issues callback requests to all sites (except the requester) that hold a
cached copy of the requested page. At a client, such a callback request is
treated as a request for a write lock on the specified page. If the request
cannot be granted immediately, due to a lock conflict with an active
transaction, the client responds to the server by saying that the page is
currently in use. When the callback request is eventually granted at the
client, the page is removed from the client’s buffer and an acknowledgment
message is sent to the server. When all callbacks have been acknowledged
to the server, the server registers the write permission on the page for the
requesting client and informs the client that it has done so. Any subsequent
read or write requests for the page by transactions from other clients will
then be blocked at the server until the write permission is released by the
holding client or else revoked by the server.

If a read request for a page arrives at the server and a write permission
for the page is currently registered for some other client, then the server
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action is algorithm-dependent. Under Callback-Read (CB-R), where Write
Permission Duration is only until the end of a transaction, the read request
is simply blocked at the server until the termination of the current
transaction at the client holding the permission. In contrast, under Call-
back-All (CB-A), the server sends a downgrade request to that client. A
downgrade request is similar to a callback request, but rather than
responding by removing the page from its buffer, the client simply acknowl-
edges to the server that it no longer has write permission on the page. At a
remote client, a downgrade request for a page copy must first obtain a read
lock on the page in order to ensure that no transactions active at the client
are currently holding write locks on the page. The downgrade request
blocks at the client if a conflict is detected, in which case a message is sent
to the server informing it of the conflict. Global deadlocks can arise due to
callback and downgrade requests. These deadlocks can always be detected
at the server, however, because clients inform the server when they block
such requests. As in the S2PL algorithms, deadlocks are resolved by
aborting the youngest involved transaction.

At the end of a transaction, the client sends copies of any cached updated
pages to the server. This is done only to simplify recovery, as no other sites
can access a page while it is cached with write permission at a site. Thus, it
is technically possible to avoid sending a copy of a dirty page back to the
server until the write permission on the page is downgraded or the page is
dropped [Franklin et al. 1993].

Callback-style algorithms originated in the operating systems community
for maintaining cache consistency in distributed file systems such as
Andrew [Howard et al. 1988] and Sprite [Nelson et al. 1988], both of which
provide weaker forms of consistency than that required by database sys-
tems. More recently, a Callback Locking algorithm that provides transac-
tion serializability has been employed in the ObjectStore OODBMS [Lamb
et al. 1991]. An algorithm similar to CB-R was also studied in Wang and
Rowe [1991].

5.1.3 Optimistic Two-Phase Locking (O2PL). The third family of cach-
ing algorithms that we have studied is Optimistic Two-phase Locking
(O2PL). The O2PL algorithms are derived from a concurrency control
protocol that was originally developed for replicated distributed databases
[Carey and Livny 1991]. The O2PL algorithms are avoidance-based, but
they are more “optimistic” than Callback Locking because they defer write
intention declaration until the end of a transaction’s execution phase. We
have developed and analyzed several O2PL variants that differ in their
implementation of remote update actions. In this article we focus on two
such variants: O2PL-Invalidate (O2PL-I), which always invalidates remote
copies, and O2PL-Propagate (O2PL-P), which always propagates updated
page copies to remote clients that are caching the updated pages.

Under O2PL, each client has a local lock manager from which the proper
lock must be obtained before a transaction can access a data item at that
client. No locks are obtained at the server during the execution phase of a
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transaction.9 Transactions update pages in their local cache, and these
updated pages are retained at the client (unless they are aged out) until the
transaction enters its commit phase. When an updating transaction is
ready to enter its commit phase, it sends a message to the server contain-
ing the new copies of such pages. The server then acquires exclusive locks
on these pages on behalf of the finishing transaction. The locks obtained at
the server are held until the transaction completes, as they will allow the
server to safely install the new page values.

Once the required locks have been obtained at the server, the server
sends a message to each client that has cached copies of any of the updated
pages. These remote clients obtain exclusive locks on their local copies (if
present) of the updated pages on behalf of the committing transaction. If
any of their transactions currently holds a read lock on a local copy, then
the update transaction will have to wait for the reader transaction(s) to
complete before it can continue commit processing. Once all of the required
locks have been obtained at a remote site, that site performs consistency
actions on its copies of the updated pages: Under O2PL-I, the client simply
purges its copies of the updated pages, releases its local locks on those
pages, and then sends an acknowledgment message to the server—a
two-phase commit protocol is not necessary in this case. In contrast, under
O2PL-P, remote clients must enter a two-phase commit protocol with the
server in order to sure that the updates to all remote copies happen
atomically. First, each client sends a message to the server indicating that
it has obtained the necessary local locks. This message acts as the “pre-
pared” message of the commit protocol. When the server has heard from all
involved clients, it sends copies of the updated pages to those sites. These
messages initiate the second phase of the commit protocol. Upon receipt of
the new page copies, the clients install them in their buffer pools and then
release the locks on those pages.10

Because O2PL is distributed and locking-based, distributed deadlocks
can arise in O2PL-I and O2PL-P. Each client therefore maintains a local
waits-for graph which is used to detect deadlocks that are local to that
client. Global deadlocks are detected using a centralized algorithm in which
the server periodically requests local waits-for graphs from the clients and
combines them to build a global waits-for graph.11 As in the previously
described algorithms, deadlocks are resolved by aborting the youngest
transaction involved.

5.1.4 Evaluating the Tradeoffs. The three families of cache consistency
maintenance algorithms described in the preceding sections cover a num-

9Actually, a non-two-phase read lock (i.e., latch) is obtained briefly at the server when a data
item is in the process of being prepared for shipment to a client to ensure that the client is a
given a transaction-consistent copy of the item.
10It should be noted that the receipt of a propagated page copy at a client does not affect the
page’s LRU status at that site.
11Note that deadlocks involving consistency actions can be resolved early, rather than waiting
for periodic detection, as any conflict detected between two consistency actions or between a
consistency action and an update will ultimately result in a deadlock [Carey and Livny 1991].
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ber of the design alternatives identified in the taxonomy presented in
Section 4. As stated previously, the focus of our work has been on avoid-
ance-based algorithms, so the majority of the tradeoffs investigated come
from that side of the taxonomy. However, because several of the avoidance-
based dimensions have analogs on the detection-based side of the taxon-
omy, the comparisons presented here can shed light on a number of the
detection-based tradeoffs as well. The algorithms that are not directly
addressed in this section will be discussed in Section 6. Table I summarizes
the portion of the design space covered in this study and shows which
algorithms can be compared in order to examine the performance tradeoffs
implied by a given decision point in the taxonomy.

Invalid Access Prevention (C2PL vs. CB-A). As described in Section 4,
the top-level design choice in the taxonomy is the policy used for preventing
access to invalid data. Detection requires the validity of all accessed data to
be explicitly confirmed prior to transaction commit, while Avoidance en-
sures that transactions never have the opportunity to access stale data.
The S2PL algorithms are detection-based, whereas the CBL and O2PL
algorithms are all avoidance-based. Among these algorithms, comparing
the performance of C2PL and the CBL algorithms can provide the clearest
insights into this trade-off. These algorithms all allow intertransaction
caching, do not propagate updated pages, and initiate their consistency
actions synchronously. Of the two CBL algorithms, CB-A provides the
strongest contrast with C2PL because it retains both read and write
permissions. Comparing C2PL with CB-R is also useful because CB-R is
avoidance-based but requires obtaining write permissions from the server
in the same manner as C2PL.

Write Intention Declaration (CB-R vs. O2PL-I). For avoidance-based
algorithms, the next level of differentiation is concerned with the timing of
Write Intention Declarations. As described in Section 4.3.1, avoidance-
based algorithms can be pessimistic and require update transactions to
declare their write intentions synchronously when a permission fault
occurs, or they can be more optimistic and allow the deferral of these
declarations until the update transaction enters its commit phase. The CBL
algorithms belong to the pessimistic or synchronous camp, while the O2PL

Table I. Design Choices and Relevant Comparisons

Design Choice Algorithms to Compare

Invalid Access Prevention C2PL (Detection) vs. CB-A
(Avoidance)

Write Intention Declaration CB-R (Synchronous) vs. O2PL-I
(Deferred)

Write Permission Duration CB-R (Single Transaction) vs. CB-A
(Until Revoked or Dropped)

Remote Update Action O2PL-I (Invalidation) vs. O2PL-P
(Propagation)
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algorithms are more optimistic. Comparing the performance of CB-R and
O2PL-I provides insight into this tradeoff, as both algorithms retain write
permissions only until the end of transaction and both use invalidation for
remote update actions.

Write Permission Duration (CB-R vs. CB-A). The next level of choice for
avoidance-based algorithms is that of Write Permission Duration. As
discussed in Section 4.3.1, write permissions can be associated with a
single transaction, or they can be retained by a client site across multiple
transactions. The tradeoffs between these two approaches can be directly
observed by comparing the performance of CB-R and CB-A, which differ
only in this aspect.

Remote Update Actions (O2PL-I vs. O2PL-P). The final choice to be
examined here is that of the action performed on remote copies of updated
pages. As stated in Section 4.3.4, two options are invalidation, which
purges such copies from remote caches, and propagation, which sends new
valid copies of such pages to the remote sites that contain cached copies of
them. Comparing the performance of O2PL-I and O2PL-P, which differ only
in this respect, will help to isolate the tradeoffs between these two options.

5.2 A Client-Server Performance Model

5.2.1 The System Model. Figure 4 shows the structure of our simula-
tion model, which was constructed using the DeNet discrete event simula-
tion language [Livny 1990]. It consists of components that model diskless
client workstations and a server machine (with disks) that are connected
over a simple network. Each client site consists of a Buffer Manager that
uses an LRU page replacement policy, a Concurrency Control Manager that
is used either as a simple lock cache or as a full-function lock manager
(depending on the cache consistency algorithm in use), a Resource Manager
that provides CPU service and access to the network, and a Client Manager
that coordinates the execution of transactions at the client. Each client also
has a Transaction Source which initiates transactions one-at-a-time at the
client site according to the workload model described in the next subsec-
tion. Upon completion of one transaction, the source waits for a specified
think time and then submits the next transaction. If a transaction aborts,

Fig. 4. Performance model of a client-server DBMS.
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it is resubmitted with the same page reference string. The number of client
machines is a parameter to the model.

The server machine is modeled similarly to the clients, but with the
following differences: First, the server’s Resource Manager manages disks
as well as a CPU. Second, its Concurrency Control Manager has the ability
to store information about the location of page copies in the system and also
manages locks. Third, there is a Server Manager component that coordi-
nates the server’s operation; this is analogous to the client’s Client Man-
ager. Finally, there is no Transaction Source module at the server since all
transactions originate at client workstations.

Table II describes the parameters that are used to specify the system
resources and overheads and shows the settings used in this study. We
used a relatively small database in order to make simulations involving
fractionally large buffer pools feasible in terms of simulation time. The
most important factor here is the ratio of the transaction and client-server
buffer pool sizes to the database size, not the absolute database size
itself.12 The simulated CPUs of the system are managed using a two-level
priority scheme. System CPU requests, such as those for message and disk
handling, are given priority over user (client transaction) requests. System
CPU requests are handled using a FIFO queuing discipline, while a
processor-sharing discipline is employed for user requests. Each disk has a
FIFO queue of requests; the disk used to service a particular request is
chosen uniformly from among all the disks at the server. The disk access

12Results demonstrating the scalability of the simulator when the database size and buffers
sizes are increased by an order of magnitude and the transaction length is increased
accordingly are described in Carey et al. [1994].

Table II. System and Overhead Parameter Settings

Parameter Meaning Setting

PageSize Size of a page 4,096 bytes
DatabaseSize Size of database in pages 1250
NumClients Number of client workstations 1 to 25
ClientCPU Instruction rate of client CPU 15 MIPS
ServerCPU Instruction rate of server CPU 30 MIPS
ClientBufSize Per-client buffer size 5% or 25% of DB
ServerBufSize Server buffer size 50% of DB size
ServerDisks Number of disks at server 2 disks
MinDiskTime Minimum disk access time 10 millisecond
MaxDiskTime Maximum disk access time 30 milliseconds
NetBandwidth Network bandwidth 8 or 80 Mbits/sec
FixedMsgInst Fixed no. of inst. per message 20,000 instructions
PerByteMsgInst No. of addl. inst. per msg. byte 10,000 inst. per 4Kb
ControlMsgSize Size in bytes of a control message 256 bytes
LockInst Instructions per lock/unlock pair 300 instructions
RegisterCopyInst Inst. to register/unregister a copy 300 instructions
DiskOverheadInst CPU Overhead to perform I/O 5000 instructions
DeadlockInterval Global deadlock detection

frequency
1 second (for O2PL)
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time is drawn from a uniform distribution between a specified minimum
and maximum. A very simple network model is used in the simulator’s
Network Manager component; the network is modeled as a FIFO server
with a specified bandwidth. We did not model the details of the operation of
a specific type of network (e.g., Ethernet, token ring, etc.). Rather, the
approach we took was to separate the CPU costs of messages from their
on-the-wire costs, and to allow the on-the-wire message costs to be adjusted
using the network bandwidth parameter. The CPU cost for managing the
protocol to send or receive a message is modeled as a fixed number of
instructions per message plus an additional charge per message byte.

5.2.2 Client Workloads. Our simulation model provides a simple but
flexible mechanism for describing client workloads. The access pattern for
each client can be specified separately using the parameters shown in the
first column of Table III. Transactions are represented as a string of page
access requests in which some accesses are for reads and others are for
writes. Two ranges of database pages can be specified: hot and cold. The
probability of a page access being to a hot range page is specified; the
remainder of the accesses are directed to cold range pages. For both ranges,
the probability that an access to a page in the range will involve a write (in
addition to a read) is specified. The parameters also allow the specification
of the average number of instructions to be performed at the client for each
page read or write, once the proper lock has been obtained.

Table III summarizes the workloads that are examined here. The PRI-
VATE workload has a per-client private hot region that is read and written
by each client and a shared cold region that is accessed in a read-only
manner by all clients. This workload is intended to model an environment
such as a large CAD system, where each user has a portion of the design on
which they work while accessing additional design parts from a shared
library of components. The HOTCOLD workload has a high degree of
locality per client and a moderate amount of sharing and data contention
among clients. UNIFORM is a low-locality, moderate-write probability
workload used to examine the consistency algorithms in a case where
caching is not expected to pay off significantly. This workload has a higher

Table III. Workload Parameter Settings for Client n

Parameter PRIVATE HOTCOLD UNIFORM FEED

TransSize 16 pages 20 pages 20 pages 5 pages
HotBounds p to p 1 24

p 5 25 (n 2 1) 1 1
p to p 1 49,

p 5 50 (n 2 1) 1 1
— 1 to 50

ColdBounds 626 to 1,250 rest of DB all of DB rest of DB
HotAccProb 0.8 0.8 — 0.8
ColdAccProb 0.2 0.2 1.0 0.2
HotWrtProb 0.2 0.2 — 1.0/0.0
ColdWrtProb 0.0 0.2 0.2 0.0/0.0
PerPageInst 30,000 30,000 30,000 30,000
ThinkTime 0 0 0 0
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level of data contention than HOTCOLD. Finally, the FEED workload
represents an application involving a highly directional information flow,
such as one might expect in a stock quotation system; one site produces
data while all the other sites consume it.

5.3 Experiments and Results

In this section we present results from performance experiments involving
the algorithms described in Section 5.1. The main performance metric
presented is system throughput (measured in transactions per second).13

The throughput results are, of course, dependent on the particular settings
chosen for the various physical system resource parameters. For example,
the relative performance of the algorithms in a disk-bound system may
differ greatly from that in a CPU-bound system. Thus, while the through-
put results show performance characteristics in what we consider to be a
reasonable environment, we also present various auxiliary performance
measures, such as message and disk I/O counts, to provide additional
insights into the fundamental trade-offs among the algorithms.

Auxiliary metrics that are presented as “per commit” values are com-
puted by taking the total count for the given metric (e.g., the total number
of messages routed through the network) over the duration of the simula-
tion run and then dividing by the number of transactions that committed
during that run. As a result, these averages also take into account work
that was done on behalf of aborted transactions. To ensure the statistical
validity of the results presented here, we verified that the 90% confidence
intervals for transaction response times (computed using batch means)
were sufficiently tight. The size of the confidence intervals was within a
few percent of the mean in all cases, which is more than sufficient for our
purposes.

In the sections that follow, we focus on a system configuration in which
each client has a large cache (25% of the active database size) and the
network bandwidth is set to the lower value in Table II (8 Mbits/sec). The
network speed was chosen to approximate the speed of an Ethernet,
reduced slightly to account for bandwidth lost to collisions, etc. The large
client cache size tends to reduce the performance impact of server I/O.
Therefore, the combination of these settings tends to emphasize the perfor-
mance impact of message behavior, which plays a role in all four of the
tradeoffs listed in Table I. However, I/O and transaction aborts also factor
into the comparisons and will be discussed where appropriate. Finally,
although this section focuses on results from a limited set of experiments, it
should be emphasized that we have run numerous experiments with a
variety of different parameter settings and workloads. Many of these
experiments are described in Carey et al. [1991], Franklin and Carey
[1992], and Franklin [1993].

13Because the simulation uses a closed queuing model, throughout and response time are
equivalently informative metrics.
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5.3.1 The PRIVATE Workload. We first examine performance results
for the PRIVATE workload. As described in Section 5.2.2, PRIVATE has a
high degree of locality per client, and it has no read-write or write-write
data sharing. Figure 5 shows the total system throughput for the PRIVATE
workload as the number of clients in the system is increased from 1 to 25.
In this experiment, the invalidation-based O2PL algorithms and Callback
locking algorithms provide the best performance. The detection-based
C2PL algorithm has lower throughput, and B2PL, which does not allow
intertransaction caching, has the poorest performance by a significant
margin. In this experiment (and in most of the others), B2PL suffers due to
high message volumes and server disk I/O because it is unable to exploit
client memory for storing data pages across transaction boundaries.

In order to see what insight these results can provide into the perfor-
mance trade-offs for this workload, it is helpful to examine pairs of
algorithms as discussed in Section 5.1.4. The first trade-off we examine
here is based on the choice of Invalid Access Prevention. In this experi-
ment, the avoidance-based algorithms all significantly outperform the
detection-based C2PL algorithm throughout the range of client popula-
tions. This behavior is due to the server CPU overhead and the path-length
resulting from the number of messages sent per transaction. Focusing on
C2PL and CB-A, as can be seen in Figure 6, C2PL requires nearly 40
messages per transaction (on average) in this experiment, while CB-A
requires only 12. This difference is because the pessimistic, detection-based

Fig. 5. Throughput (Private, 25% client cache, slow net).

Cache Consistency • 345

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



C2PL algorithm sends a message to the server on every initial page
access—even for pages that it has cached locally. In fact, C2PL sends the
same number of messages as the noncaching B2PL algorithm, though it
sends many fewer bytes because fewer of the replies from the server
contain page copies than for B2PL. This difference in message require-
ments in the absence of data contention is one reason why most of the
detection-based algorithms that have been proposed (see Figure 2) include
some amount of optimism.

The next design decision to be examined is the choice of Write Intention
Declaration timing. Because of the lack of read-write and write-write
sharing in this workload, however, this choice has only a minor impact on
performance here. As can be seen in Figure 5, CB-R performs only slightly
below O2PL-I under this workload. With no data conflicts, write intention
declarations only require a round trip message to the server as no remote
clients ever need to be contacted, so O2PL-I gains only a small savings in
messages by deferring its write intention declarations until commit time.
Returning to the message counts shown in Figure 6, it can be seen that
while the message requirements for CB-R remain constant as clients are
added, there is a slight rise in the message requirements for O2PL-I. This
rise is due to the cost of distributed deadlock detection, which is not
required by CB-R. Finally, it should be noted that the absence of data
conflicts means that the differences in abort rates between pessimism
(CB-R) and optimism (O2PL-I) are simply not an issue for this workload.

Fig. 6. Messages sent/commit (Private, 25% client cache, slow net).
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The trade-offs for the choice of Write Permission Duration can be seen by
comparing the performance and message sending behavior of CB-A, which
retains permissions across transaction boundaries, and CB-R, which gives
up a write permission when the transaction that obtained it completes.
Under the PRIVATE workload, CB-A declares a write intention on a page
copy at most once for the duration of the page copy’s residence in the cache,
as permissions are never called back by remote clients under this workload.
Thus, CB-A consistently sends fewer messages than CB-R. This results in a
message savings and a slight throughput advantage for CB-A in this case
(in fact, CB-A performs as well as O2PL-I does here).

Finally, it should be noted that the choice of Remote Update Action does
not impact performance under the PRIVATE workload. This is again due to
the absence of read-write and write-write sharing. No remote updates ever
occur, so O2PL-I and O2PL-P provide similar throughput here.

5.3.2 The HOTCOLD Workload. Figure 7 shows the throughput re-
sults for the HOTCOLD workload with the large client caches and slow
network. As described in Section 5.2.2, HOTCOLD has high locality per
client, but unlike the PRIVATE workload, it also has read-write and
write-write sharing among the clients. Despite this sharing, however, the
relative throughput for each of the algorithms (except for O2PL-P, which is
discussed below) is similar to what was observed in the PRIVATE case.
That is, the avoidance-based algorithms perform better than C2PL, and the
noncaching B2PL algorithm has the worst performance.

Fig. 7. Throughput (HOTCOLD, 25% client cache, slow net).
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The introduction of read-write and write-write sharing raises several
additional tradeoffs for cache consistency maintenance. Many of the trade-
offs can be seen in Figure 8, which shows the number of messages sent per
committed transaction. The first trade-off that we discuss is that between
detection-based and avoidance-based Invalid Access Prevention. As can be
seen in the figure, the message counts for the detection-based C2PL
algorithm are independent of the number of clients in this case, while the
avoidance-based algorithms all send more messages per transaction as
clients are added (unlike under the PRIVATE workload results of Figure 6).
The additional messages used by the avoidance-based algorithms are for
implementing remote update actions (callbacks, invalidations, propaga-
tions, etc.) at clients that possess cached copies of affected pages. As more
clients are added, the number of cached copies for any given page increases,
so more messages for remote update actions are required. However, it
should be noted that the number of messages sent by the avoidance-based
CB-A algorithm remains substantially lower than for the detection-based
C2PL algorithm throughout the range of client populations explored in this
experiment.

The next tradeoff of interest involves Write Intention Declaration. The
tradeoffs between declaring Write Intentions synchronously, during trans-
action execution (as in CB-R), or deferring such declarations until transac-
tion commit (as in O2PL-I) are slightly different under HOTCOLD than
they were under the PRIVATE workload. Comparing the number of mes-

Fig. 8. Messages sent/commit (HOTCOLD, 25% client cache, slow net).
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sages sent under HOTCOLD (Figure 8) and under PRIVATE (Figure 6), the
difference between CB-R and O2PL-I is greater here than under PRIVATE
for two reasons: first, each transaction updates more pages under HOT-
COLD than under PRIVATE, and second, some intention declarations
result in Remote Update Actions here. Since CB-R declares intentions
one-at-a-time, multiple declaration messages are sent, and it is possible
that multiple callback requests will be sent to some remote clients during a
transaction. In contrast, by deferring Write Intention Declarations, O2PL-I
sends only a single declaration message to the server, which in turns sends
at most one request for Remote Update Actions to each remote client. This
difference has only a small impact on throughput here, and that impact
disappears as more clients are added and the server disks become the
dominant resource. Finally, while the Write Intention Declaration decision
also impacts the transaction abort rate (as discussed in Section 5.1.4), the
abort rate does not play a significant factor in this experiment due to a
fairly low level of data contention.

The trade-offs involving Write Permission Duration are affected in an
interesting way by the introduction of read-write and write-write sharing,
as can be seen by comparing the message behavior of CB-R and CB-A in
Figure 8. With fewer clients, CB-R, which gives up write permissions at the
end of a transaction, sends more messages than CB-A, which retains
permissions across transaction boundaries. However, as clients are added,
the amount of sharing increases; more write permission callbacks occur, so
the number of messages sent by CB-A increases at a faster rate than for
CB-R. CB-A has higher message requirements than CB-R at 15 clients and
beyond. Due to the fact that the disk becomes the dominant resource in this
region, however, the two Callback algorithms deliver similar performance.

Finally, the choice of Remote Update Action has a very significant impact
in this experiment, due to presence of read-write and write-write sharing.
In contrast to the invalidation-based O2PL-I algorithm, O2PL-P suffers a
substantial degradation in performance beyond five clients; it eventually
performs even below the level of C2PL. The reason for O2PL-P’s poor
performance in this case is a dramatic increase in message volume as
clients are added. At 25 clients, O2PL-P sends almost three times more
data through the network (about 120 Kbytes per commit) than O2PL-I
(which sends about 43 Kbytes per commit). This increase is due to the
messages needed by O2PL-P to propagate updated pages to remote clients.
At 25 clients, it sends propagations to an average of 13 remote clients per
transaction. Furthermore, the vast majority of these propagations are
“wasted”—that is, the remote copies are either propagated to again, or else
dropped from the cache, before the previous propagated value is ever
actually used. It should be noted that the large number of involved sites is
due to the large client caches; when O2PL-P is used with smaller client
caches, wasted propagations are reduced, as unimportant pages tend to be
quickly pushed out of the caches before another propagation occurs. This
experiment demonstrates that using propagation to implement Remote
Update Actions is a rather dangerous policy. Its performance is very

Cache Consistency • 349

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



sensitive to the size of the client caches, and it can more than nullify the
performance benefits of caching in some cases.

5.3.3 The UNIFORM Workload. The third workload that we examine
is the UNIFORM workload, which has no per-client locality and as a result
has a higher level of data contention and benefits less from caching than
the HOTCOLD workload. The throughput results and message counts are
shown in Figures 9 and 10, respectively. In terms of throughput, UNI-
FORM’s combination of no locality and high data contention reduces the
magnitude of the performance differences among the caching algorithms.
In terms of message counts, Figure 10 shows that the tradeoffs for Invalid
Access Prevention are somewhat different here than in the previous cases.
As in the HOTCOLD workload, the number of messages required by the
avoidance-based algorithms increases with the number of clients, whereas
the requirements of C2PL remain nearly constant (increasing slightly due
to aborted transactions). Unlike the HOTCOLD case, however, all of the
avoidance-based algorithms require more messages than the detection-
based C2PL algorithm beyond 5–10 clients.

To understand why detection leads to fewer messages than avoidance in
this low-locality situation, it is useful to examine the message tradeoffs
made by the avoidance-based algorithms. Under CB-A (as well as the other
avoidance-based algorithms), the permission to read a page is effectively

Fig. 9. Throughput (UNIFORM, 25% client cache, slow net).
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cached along with the page. Thus, when a client wishes to read a page that
it has in its cache, it can do so without contacting the server. Compared to
C2PL, this saves two messages per initial read. However, if some remote
client wishes to write a page that a client has cached, then a callback
message will arrive and a reply must be sent. This is a net cost of two
messages per write compared to C2PL. Furthermore, CB-A has analogous
tradeoffs for pages on which write permissions are retained: it enjoys a
savings of two messages if the page is written locally, and pays a price of
two messages if the page is read remotely. CB-A’s avoidance approach
therefore yields a net loss if a page is less likely to be read locally than
written remotely, and the retention of write permissions is a net loss if the
page is less likely to be written locally than read remotely. The absence of
locality in the UNIFORM workload means that both of the tradeoffs are
made by CB-A become net losses as more clients are added. Similar
tradeoffs are made by the other avoidance-based algorithms.

In addition to messages, the choice of an Invalid Access Prevention
technique also has an impact on I/O requirements. Figure 11 shows the
average hit rate across all client caches for the UNIFORM workload.14 As
can be seen in the figure, the avoidance-based algorithms all have higher
client cache hit rates than C2PL. In this experiment, the O2PL algorithms
have inflated client buffer hit rates due to the reexecution of aborted

14A cache request results in a hit only if a valid copy of the page id found in the local cache.

Fig. 10. Messages sent/commit (UNIFORM, 25% client cache, slow net).
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transactions (as indicated in Figure 12). However, while CB-A has a nearly
identical abort rate to C2PL, it has a noticeably better client hit rate. The
reason for this difference is that size of the client caches under C2PL is
effectively smaller than under the avoidance-based algorithms because of
the presence of invalid pages. These invalid pages consume cache space
that could otherwise be used for holding valid pages. In contrast, since the
avoidance-based algorithms remove pages from client caches as they be-
come invalid, they allow the entire cache to be used for valid pages. This
effect is greatest in the range of 10–15 clients here. Beyond this point,
CB-A incurs an increasing rate of page invalidations due to the large
number of clients. These invalidations reduce the extent to which CB-A is
able to utilize the client caches; beyond a client population of 15, significant
numbers of client cache slots simply remain empty under CB-A.

The increased data contention of the UNIFORM workload also brings out
the downside of the optimistic approach of deferring Write Intention
Declarations. As can be seen in Figure 12, the semioptimistic O2PL-I
algorithm aborts as many as 0.4 transactions for every transaction that it
commits in this experiment. In comparison, the pessimistic CB-R algorithm
aborts about one third as many transactions. Interestingly, despite this
difference, O2PL-I obtains roughly 10% higher throughput than CB-A (see
Figure 9). This is because the cost of aborts in this experiment is rather low
due to cache hits that occur when aborted transactions run again. However,
as shown in Franklin and Carey [1992] and Franklin [1993], the high abort

Fig. 11. Client hit rate (UNIFORM, 25% client cache, slow net).
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rate of O2PL-I can cause it to have significantly worse performance than
CB-R if data contention is further increased.

In terms of the Write Permission Duration, the high degree of sharing
and lack of locality of the UNIFORM workload results in CB-R sending
fewer messages than CB-A across the range of client populations (Figure
10) and thereby having a slight performance advantage across most of the
range (Figure 9). As discussed previously, retaining Write Permissions is a
net loss for CB-A if a page is less likely to be written locally than it is to be
read remotely. The lack of locality and the update probability in the
UNIFORM workload thus work to the disadvantage of CB-A.

The effects of using propagation for Remote Update Actions are similar
here to those seen in the HOTCOLD workload. In this case, however,
O2PL-P ultimately performs worse than even B2PL, which does no inter-
transaction caching. Although propagation does give O2PL-P a slight
advantage in terms of the client hit rate (Figure 11), the cost of sending
propagations that go unused is much higher here than the benefit gained
from those propagations that are indeed eventually used.

5.3.4 The FEED Workload. The last workload to be examined here is
the FEED workload. As discussed in Section 5.2.2, FEED is intended to
model an information service environment, such as a stock quotation
system, where many clients read data from an information source. In this
workload, one client acts as the source, reading and updating pages, while
the remainder of the clients act as consumers, only reading the data. We

Fig. 12. Aborts/commit (UNIFORM, 25% client cache, slow net).
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include this workload primarily to demonstrate a case where using propa-
gation as the Remote Update Action can be beneficial; thus, we focus only
on the performance of O2PL-I and O2PL-P here. Figure 13 shows the
throughput results for O2PL-I and O2PL-P under this workload. The
dashed lines show the throughput of the source (Client #1) while the solid
lines show the aggregate throughput of the remaining clients. In this
workload, O2PL-P significantly outperforms O2PL-I. The reason for this is
that propagation gives the consumers a much higher client cache hit rate,
as is shown in Figure 14. This improvement in hit rate reduces the path
length of the reader transactions. Furthermore, due to the high degree of
client access locality in this workload, many fewer propagations are wasted
than in the UNIFORM workload.

5.4 Summarizing The Results

In the preceding sections, we compared the performance of six different
cache consistency maintenance algorithms. Here, we briefly review the
results in terms of the insight that they offer regarding the design tradeoffs
for transactional cache consistency maintenance algorithms.

The tradeoffs between using avoidance and detection for Invalid Access
Prevention were examined by comparing C2PL and CB-A. Both of these
algorithms are pessimistic, so the avoidance/detection choice was seen to
have a large impact on the number of messages sent. C2PL validates its
cached pages prior to accessing them, and thus sends a round-trip message
to the server on every initial access regardless of whether any read-write or
write-write sharing is occurring. In contrast, CB-A, being avoidance-based,

Fig. 13. Throughput (FEED, 25% client cache, slow net).
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is able to read its cached data without contacting the server. CB-A,
however, was seen to be sensitive to the type and degree of sharing in the
system, as increased data sharing results in additional callback and
downgrade messages. These results show that if detection is to be used, it
must be done in an optimistic manner. Optimistic detection-based algo-
rithms are discussed in Section 6.1. In addition to message count differ-
ences, the results for the UNIFORM workload demonstrated that the
choice of an Invalid Access Prevention method can have an impact on I/O
requirements and on the volume of data transferred. This is because
detection-based approaches allow out-of-date pages to remain in client
caches, reducing the effective size of those caches. Detection-based ap-
proaches can be extended with notification “hints” to help reduce those
costs.

The trade-off between synchronous and deferred Write Intention Decla-
ration (examined by comparing CB-R and O2PL-I) is a tradeoff between
pessimism and optimism, affecting both the number of messages required
to complete transactions and the transaction abort rate. With no read–
write or write-write sharing (e.g., under the PRIVATE workload), the
approaches were seen to be roughly equal in performance. If sharing is
present, then deferring declarations can save messages. If, however, shar-
ing increases to the point where data contention arises, deferring declara-
tions can lead to significantly higher abort rates; transaction aborts can
result in higher resource utilization due to lost work [Franklin and Carey
1992; Franklin 1993], though this effect did not significantly hurt through-
put in the workloads examined here. Furthermore, a high abort rate may
be intolerable for users in some highly-interactive applications.

Fig. 14. Client cache hit %—readers only (FEED, 25% client cache, slow net).
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The choice of Write Permission Duration was examined by comparing the
performance of CB-R, which retains write permissions only for the duration
of a single transaction, and CB-A, which retains write permissions across
transaction boundaries. The impact of this tradeoff is on the number of
messages sent. In general, retaining write permissions is a net win if a
page is more likely to be updated at the client that holds the permissions
than to be read at another client. Thus, CB-A was seen to have a slight
advantage over CB-R in the PRIVATE workload, while it had a slight
disadvantage in the other workloads examined.

The fourth design choice analyzed was the choice of Remote Update
Action, as demonstrated by O2PL-I versus O2PL-P. In the PRIVATE
workload, this choice has no effect because there is never a need for a
remote update action. The other workloads, however, demonstrated that
this choice can have a dramatic impact on performance. In the majority of
the cases, invalidation was seen to be the right choice. Propagation was
shown to be dangerously sensitive to the level of sharing present in the
workload, and hence to the client cache size—with larger caches, the
potential for sequential sharing across clients increases. In contrast, inval-
idation was seen to be much more stable in its performance characteristics.
The FEED workload, however, demonstrated that there are indeed cases
where propagation can be useful. Based on these results, we have devel-
oped and investigated dynamic algorithms that can adaptively choose
between invalidation and propagation on a page-by-page basis at each
client. These algorithms are discussed briefly in Section 6.4.

6. OTHER PROPOSED ALGORITHMS

As explained earlier, the performance experiments described in this article
have covered only a portion of the large design space available for cache
consistency maintenance. In particular, our work has focused on algorithms
that lie on the avoidance-based side of the taxonomy in Section 4. The
design decisions for detection-based algorithms, however, each have avoid-
ance-based analogs. In the following, we apply the insight gained from our
experiments to the other published algorithms that appear in the taxon-
omy.

6.1 Optimistic Detection-Based Algorithms

The first published paper to analyze transactional cache consistency algo-
rithms for client-server OODBMSs was Wilkinson and Neimat [1990]. In
that paper, two algorithms were proposed and studied. One algorithm,
called Cache Locks, is a detection-based algorithm that defers validation of
transactions until commit time. Special lock modes and long-running
“envelope transactions” are used to determine when transactions have
accessed stale data. Cache Locks is an optimistic algorithm in the sense
that lock requests are not sent to the server during transaction execution.
At commit time, a transaction sends its read and write sets to the server,
and the server attempts to obtain the necessary shared and exclusive locks.
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Special lock modes for locks held on cached copies by envelope transactions
indicate whether or not the copies accessed by the transaction were valid. If
it is determined that the transaction accessed stale cached data, then it is
aborted. In order to reduce the likelihood of aborts due to stale data, the
server piggybacks notifications about modified pages on its replies to client
requests. These notifications inform the client that it should mark its
copies of the affected data as invalid (hence, it is an invalidation-based
algorithm) and abort any ongoing transactions that have accessed those
data items.

More recently, an optimistic algorithm with notifications has been pro-
posed for the Thor system at MIT [Adya et al. 1995]. This algorithm, called
Adaptive Optimistic Concurrency Control (AOCC), is similar to the Cache
Locks algorithm; it also includes support for transactions that access data
from multiple servers (which is beyond the scope of both [Wilkinson and
Neimat 1990] and this article). Rather than using lock modes to represent
invalid cached copies, AOCC maintains an invalid set for each client in
order to keep track of which copies of the data items cached at a client have
been made invalid. As described in Adya et al. [1995], AOCC uses a
combination of invalidation and propagation for Remote Update Actions. As
in Cache Locks, notifications are piggybacked on messages sent to clients,
and such notifications invalidate cached copies. However, when a transac-
tion is aborted due to a detected inconsistency, AOCC immediately piggy-
backs new copies (i.e., propagations) of the invalid items on the abort
acknowledgment that it sends to the client.

As discussed in the previous section, a potential problem with detection-
based policies is an increase in communication due to the need to check
page validity with the server. The comparisons of C2PL and CB-A showed
that this cost can be significant if a pessimistic (i.e., synchronous on each
initial access) approach to validity checking is used. For this reason, both
Cache Locks and AOCC use the more optimistic approach of deferring such
checks until transaction commit time. As shown in Adya et al. [1995], such
optimism, combined with piggybacking of notifications, can significantly
reduce the number of messages required for consistency checking; of
course, this comes at the expense of a possible rise in transaction aborts.
Whether such a trade-off is beneficial depends on several factors including
the level of contention in the workload, the cost of wasted work due to
aborts, and the tolerance of the application to a higher abort rate.

One major difference between Cache Locks and AOCC is that Cache
Locks uses invalidation for remote update actions while AOCC uses a
combination of invalidation (in the absence of concurrent conflicts) and
propagation (when a conflict has caused an abort). These propagations can
be very useful in reducing the costs of transaction aborts as long as the
aborted transactions are restarted immediately and tend to access the
same items as they did in their previous incarnation(s); otherwise, ineffi-
ciencies that were identified for propagation in Section 5.3 may be incurred
by this approach as well.
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6.2 Notify Locks

The second algorithm proposed in Wilkinson and Neimat [1990], Notify
Locks, is an avoidance-based algorithm. It is similar to the O2PL-P algo-
rithm described previously in that it defers Write Intention Declaration
until the end of transaction execution and uses propagation for remote
update actions. When a transaction wishes to commit, it sends copies of the
updated data items back to the server. The server then sends notification
messages to any clients that hold copies of the updated items; these
messages contain the new values of those items. A major difference
between Notify Locks and O2PL-P is that with Notify Locks, the arrival of
a notification preempts any ongoing transactions that have accessed the
changed items. In contrast, O2PL-P blocks notification requests that con-
flict with read locks held by ongoing transactions. Because of the preemp-
tion approach used by Notify Locks, committing a transaction requires
(sometimes multiple) handshakes between the client and the server to
avoid race conditions at commit time. The performance tradeoffs between
the wait and preempt policies, however, have not been addressed in this
study. Of course, because Notify Locks uses propagation, it is clearly
subject to the performance problems that we saw for O2PL-P. This effect
was not detected in Wilkinson and Neimat [1990] because that study used a
probabilistic cache model that assumed that cache hit probabilities were
independent of cache size.

6.3 No-Wait Locking

No-wait locking algorithms were studied in Wang and Rowe [1991]. No-
wait algorithms are detection-based algorithms that try to hide the latency
of validations at the server by performing validity checking asynchro-
nously. As with all detection-based algorithms, transactions must abort if
they are found to have accessed stale data. By initiating the validity checks
before commit time, however, the window during which data can become
invalid is shortened compared to Cache Locks and AOCC. As stated in
Section 5.1.4, asynchrony does not reduce the total work required, and
thus, will not improve performance in a highly utilized system (e.g., if the
server is a bottleneck). The performance results of Wang and Rowe [1991]
showed that an algorithm similar to CB-R typically performed as well as or
better than No-Wait Locking.

To reduce the possibility of stale data access, the No-Wait algorithm was
extended in Wang and Rowe [1991] with a propagation-based notification
hint scheme. The performance of this algorithm, called No-Wait Locking
with Notifications, was then examined. The results of that study showed
(as we did in Carey et al. [1991]) that the cost of propagations typically
outweighs their potential benefits. An invalidation-based notification
scheme could avoid this problem, but such a scheme was not studied in
Wang and Rowe [1991].
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6.4 Dynamic Optimistic Two-Phase Locking

The two remaining algorithms shown in the taxonomy of Figures 2 and 3
are variants of O2PL that choose dynamically between invalidation and
propagation on a page-by-page basis. The original dynamic algorithm
(O2PL-Dynamic) was introduced in Carey et al. [1991]. This algorithm used
a simple heuristic that would initially propagate an update to a remotely
cached page copy, switching to invalidation the next time if the propagation
went unused. An improved heuristic (called O2PL-NewDynamic), which
initially favors invalidation over propagation, was described and studied in
Franklin and Carey [1992] and Franklin [1993]. Those studies showed that
by favoring invalidation, O2PL-NewDynamic was able to match the perfor-
mance of O2PL-I in those workloads where it had the best performance
(i.e., most workloads tested), and to approach the superior performance of
O2PL-P in the FEED workload (which is the one case where that algorithm
provided the best performance).

7. CONCLUSIONS

In this article we began by describing the potential benefits of caching in
client-server database systems based on the data-shipping approach. The
introduction of caching raises the need for mechanisms to ensure that
transaction semantics are not violated as a result of dynamic replication.
We refer to such mechanisms as transactional cache consistency mainte-
nance algorithms. We presented a taxonomy that describes the design
space for such algorithms and showed how it encompasses the algorithms
that have been proposed in the literature. Six algorithms, taken from three
different families, were then described in more detail and analyzed. These
algorithms were used to explore many of the tradeoffs inherent in the
design choices of the taxonomy. The insight gained was then used to reflect
upon the characteristics of other algorithms that appear in the taxonomy.

The choice of avoidance versus detection for preventing invalid access
was seen to have a significant impact on the number of messages sent for
maintaining consistency. Under pessimistic-style approaches, avoidance
typically sends far fewer messages than detection. As a result, most
detection-based schemes that have been proposed employ optimistic tech-
niques that defer consistency actions or perform them asynchronously.
Such techniques reduce the number of messages sent at the expense of
increasing the probability of transaction aborts. A secondary effect of the
choice of invalid access prevention is that avoidance-based techniques are
able to more efficiently use client caches, as they allow only valid data to
reside in the caches. Efficient cache usage can reduce the number of pages
that must be obtained from the server, saving messages, message volume,
and possibly even server I/O. Several of the detection-based algorithms
have been extended with notification hints that help remove invalid pages
from client caches. These hints reduce the potential for aborts due to
accessing invalid pages and help to ensure more efficient use of the caches.

Cache Consistency • 359

ACM Transactions on Database Systems, Vol. 22, No. 3, September 1997.



The choice between synchronous and deferred declaration of write inten-
tions was seen to be a trade-off between the number of messages sent and
the transaction abort rate. Deferring declarations introduces another form
of optimism, which can reduce messages but may also increase aborts. A
third design decision, the duration of write permissions, was examined
using two variants of Callback Locking. The tradeoff lies in the number of
messages sent, and is workload-dependent. In situations with high-locality
and low data conflict rates, retaining write permissions across transaction
boundaries was seen to save messages, while with low-locality and high
data conflict rates retaining write permissions was shown to result in a net
increase in messages sent. These observations indicate that a dynamic
algorithm that can choose between these two strategies is likely to perform
well. Finally, the choice between invalidating remote copies and propagat-
ing changes to them was investigated by comparing two variants of the
Optimistic Two-Phase Locking approach. Invalidation was seen to be quite
robust in the face of changes to a number of workload and configuration
parameters. In contrast, propagation was shown to be dangerously sensi-
tive to the level of sequential sharing and to the client cache sizes; however,
it was also demonstrated to be beneficial in a workload meant to model an
information dissemination environment. In the absence of a dynamic
approach or detailed information about client access patterns, invalidation
is clearly the safest choice for most situations.

The work reported here has been extended in several ways. The exten-
sion of these performance results to client disk caching was investigated in
Franklin et al. [1993]. Client disk caching raises additional problems, such
as the relatively large size of disk-based caches (compared to memory
caches) and the tradeoffs of accessing data from the local disk versus
obtaining it from a server. Issues that arise when clients are allowed to
obtain data from each other (in addition to servers) were studied in
Franklin et al. [1992]. More recently, callback-style approaches have been
extended to support multiple granularities of concurrency control and cache
consistency [Carey et al. 1994; Chu and Winslett 1994]. Current trends in
client-server database systems raise additional challenges that must be
addressed as well. In particular, the merging of Relational and Object
technologies requires systems that can efficiently support both the naviga-
tional style of data access assumed in this study and the query-oriented
access typically associated with relational systems. The development of
distributed database architectures that efficiently support both associative
and navigational access is a major focus of our ongoing work.
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