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Abstract

Ori is a file system that manages user data in a modern

setting where users have multiple devices and wish to

access files everywhere, synchronize data, recover from

disk failure, access old versions, and share data. The

key to satisfying these needs is keeping and replicating

file system history across devices, which is now prac-

tical as storage space has outpaced both wide-area net-

work (WAN) bandwidth and the size of managed data.

Replication provides access to files from multiple de-

vices. History provides synchronization and offline ac-

cess. Replication and history together subsume backup

by providing snapshots and avoiding any single point of

failure. In fact, Ori is fully peer-to-peer, offering oppor-

tunistic synchronization between user devices in close

proximity and ensuring that the file system is usable so

long as a single replica remains. Cross-file system data

sharing with history is provided by a new mechanism

called grafting. An evaluation shows that as a local file

system, Ori has low overhead compared to a File system

in User Space (FUSE) loopback driver; as a network file

system, Ori over a WAN outperforms NFS over a LAN.

1 Introduction

The file system abstraction has remained unchanged

for decades while both technology and user needs have

evolved significantly. A good indication of users’ needs

comes from the products they choose. At $1/GB/year,

cloud storage like Dropbox [1] commands a 25x pre-

mium over the cost of a local hard disk. This pre-

mium indicates that users value data management—
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backup, versioning, access from any device, and multi-

user sharing—over storage capacity. But is the cloud re-

ally the best place to implement data management fea-

tures, or could the file system itself directly implement

them better?

In terms of technological changes, disk space has in-

creased dramatically and has outgrown the increase in

wide-area bandwidth. In 1990, a typical desktop machine

had a 60 MB hard disk, whose entire contents could tran-

sit a 9,600 baud modem in under 14 hours [2]. Today,

$120 can buy a 3 TB disk, which requires 278 days to

transfer over a 1 Mbps broadband connection! Clearly,

cloud-based storage solutions have a tough time keep-

ing up with disk capacity. But capacity is also outpac-

ing the size of managed data—i.e., the documents on

which users actually work (as opposed to large media

files or virtual machine images that would not be stored

on Dropbox anyway).

Ori is a new file system designed to leverage ever-

growing storage capacity to meet user’s data manage-

ment needs. Ori further capitalizes on the increasing di-

versity of devices containing storage (e.g., home PC,

work PC, laptop, cell phone, USB disks). Based on these

trends, Ori achieves several design goals.

First, Ori subsumes backup. It records file histories,

allowing easy recovery of accidentally deleted or cor-

rupted files. It furthermore replicates file systems across

devices, where device diversity makes correlated failure

less likely. Recovering from a device failure is as simple

as replicating an Ori file system to the replacement de-

vice. A new replica can be used immediately even as the

full data transfer completes in the background.

Second, Ori targets a wide range of connectivity sce-

narios. Because new replicas are immediately available,

replication feels light-weight, akin to mounting a net-

work file system. However, once replication is com-

plete, a replica can be used offline and later merged into

other replicas. Ori also uses mobile devices to overcome

limited network bandwidth. As an example, carrying a

256 GB laptop to work each day provides 20 times the

bandwidth of a 1 Mbps broadband connection. Ori lever-

ages this bandwidth to allow cross-site replication of file

systems that would be too large or too write-active for a
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traditional cloud provider. Several other techniques min-

imize wide area network (WAN) usage in Ori. These

should prove increasingly important as disk capacity and

managed data sizes outpace WAN bandwidth.

Finally, Ori is designed to facilitate file sharing. Using

a novel feature called grafts, one can copy a subtree of

one file system to another file system in such a way as to

preserve the file history and relationship of the two direc-

tories. Grafts can be explicitly re-synchronized in either

direction, providing a facility similar to a distributed ver-

sion control system (DVCS) such as Git [3]. However,

with one big difference: in a DVCS, one must decide

ahead of time that a particular directory will be a repos-

itory; while in Ori, any directory can be grafted at any

time. By grafting instead of copying, one can later deter-

mine whether one copy of a file contains all changes in

another (a common question when files have been copied

across file systems and edited in multiple places).

Ori’s key contribution is to store whole-file-system

history and leverage it for a host of features that improve

data management. To store history, Ori adapts techniques

from version control systems (VCS); doing so is now fea-

sible because of how much bigger disks have become

than typical home directories. Better data management

boils down to improving durability, availability, latency

over WANs, and sharing.

Ori’s history mechanism improves durability by facili-

tating replication, repair, and recovery. It improves avail-

ability because all data transmission happens through

pairwise history synchronization; hence, no distinction

exists between online and offline access—any replica can

be accessed regardless of the others’ reachability. History

improves WAN latency in several ways: by restricting

data transfers to actual file system changes, by facilitat-

ing opportunistic data transfers from nearby peers (such

as physically-transported mobile devices), and through a

novel background fetch technique that makes large syn-

chronizations appear to complete instantly. Finally, Ori

improves sharing with its graft mechanism.

We have built Ori for Linux, FreeBSD, and Mac OS

X as a File system in User Space (FUSE) driver. Our

benchmarks show that Ori suffers little if any perfor-

mance degradation compared to a FUSE loopback file

system, while simultaneously providing many data man-

agement benefits.

2 Ori Overview

Figure 1 illustrates the main concepts in Ori. Each user

owns one or more file systems replicated across his or

her devices. Devices contain repositories, each of which

is a replica of a file system. A repository is a collection

of objects that represent files, directories, and snapshots
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Figure 1: Example Ori usage. A file systems is repli-

cated across a user’s devices. The user has remotely

mounted and instantly accessed the file system on a

public workstation. A friend has grafted one of the

user’s directories into a different file system. Changes

to grafted files can later be manually synchronized

with their source.

in the file system. Both files and their history are repli-

cated across devices. Ori targets collections of files much

smaller than local storage, making it reasonable to repli-

cate multiple file systems on each device and incur sig-

nificant storage overhead for history.

The figure shows two ways of accessing remote data.

The first is through replication and mounting of a file sys-

tem, as shown with the Public PC. The second is through

grafts, which share both files and their history across dif-

ferent file systems. A graft can be repeated to keep syn-

chronizing a directory across file systems.

Ori does not assume constant connectivity between

replicas of a given file system. Instead, through auto-

matic device discovery, it synchronizes whatever repli-

cas happen to be able to communicate at any given time.

Such an approach necessarily prioritizes availability over

consistency, and can give rise to update conflicts. If pos-

sible, Ori resolves such conflicts automatically; other-

wise, it exposes them to the user, much like a VCS.

2.1 Challenges

Ori has to deal with several issues common to dis-

tributed file systems. First, devices may crash or suffer

from silent data corruption. Naı̈ve replication can ac-

tually compound such problems, as seen in cloud stor-

age solutions [4]. Second, replication and other heavy-

weight operations must not interfere with user productiv-

ity through poor performance. In particular, it is critical

for synchronization operations to minimize waiting time

and return needed data quickly, even as they continue to

transfer large histories in the background.
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Ori faces two additional challenges that are not present

in other distributed file systems. First, the normal case

for Ori is that we expect intermittent connectivity; some

pairs of nodes may never communicate directly. For ex-

ample, a cell phone carried by a user has connectivity

to different machines depending on the user’s physical

location, and a work and home machine may have no

direct connectivity. Typical distributed file systems con-

sider connectivity issues to be a failure case.

Ori must work offline, and as a consequence it must

handle update conflicts or so-called “split-brain” issues.

Conflicts need to be detected and resolved. Like cloud

storage solutions, we depend on the user to resolve con-

flicts if it is not possible to do so automatically. Unlike

the few previous file systems that allow update conflicts,

Ori leverages file history to provide three-way merges.

2.2 Mechanisms

To achieve our vision and address these challenges, we

made a few architectural choices. Ori borrows from

Venti [5] the concept of a content addressable stor-

age (CAS) system. It borrows Git’s model for storing

history [3]. For handling update conflicts, Ori borrows

three-way merging from VCS [3,6]. Finally, we designed

Ori to support two crucial optimizations: background

fetch allows data transfer operations to complete asyn-

chronously and thus hide the end-to-end time associated

with replication; distributed fetch leverages nearby Ori

file systems as a cache for objects.

Ori’s CAS uses SHA-256 hashes to obtain a globally

unique namespace for addressing objects. SHA-256’s

collision-resistance allows Ori to detect damaged files

and recover them from another device. Ori’s distributed

fetch optimization also leverages collision-resistance to

look for the same object in nearby peers (that may be

replicating different file systems).

In our data model, all objects (i.e., files, directories,

and snapshots) are stored in CAS and are immutable.

Immutable objects make it easier to record history and

create fast snapshots. This history is then used to de-

tect and resolve update conflicts. Because of three-way

merges, Ori can resolve many update conflicts automati-

cally. Note that update conflicts also occur in cloud stor-

age providers (e.g., Dropbox), when a file is modified on

two machines without network connectivity.

The background fetch optimization allows long run-

ning tasks, such as replication and synchronization plus

merging, to complete in the background while the user

continues working. This improves perceived perfor-

mance and enhances the usability of the system. By

virtue of completing any user-visible synchronization

first, these operations also reduce the window for update

conflicts when connectivity becomes available.

The distributed fetch optimization also helps us

achieve higher performance and reduce the impact to the

user. When synchronizing over slower network links, Ori

can use unrelated but nearby repositories as a cache to

accelerate the replication operation.

2.3 User Interface

Ori is an ordinary file system, accessed through the

customary POSIX system calls (e.g., open, close, read,

write). However, a command-line interface (CLI) by-

passes the POSIX API to provide Ori-specific functions.

Examples include setting up replication between two

hosts, using history to access an accidentally deleted file,

and reverting the file system after an undesirable change.

The CLI also allows cross-file-system sharing with his-

tory through our grafting mechanism. Manual synchro-

nization and conflict resolution is also possible through

the CLI.

Table 1 shows a list of commonly used commands.

Some commands are rarely used by users; for instance,

the pull command, used to initiate manual unidirectional

synchronization, is unnecessary for users of orisync.

Command Description

ori newfs Create a new file system

ori removefs Remove local repository

ori list List local repositories

ori status Show modified files

ori diff Show diff-like output

ori snapshot Create a snapshot

ori log Show history

ori replicate Replicate a remote repository

ori pull Manually synchronize one way

ori merge Manually merge two revisions

ori checkout Checkout a previous revision

ori purgesnapshot Purge a commit (reclaim space)

ori graft Graft a file or directory

orifs Mount repository as a file system

orisync init Configure orisync

Table 1: A list of the basic commands available to

Ori users through the command line. Included is

the ori CLI that controls the file system, the FUSE

driver (orifs), and the automatic repository manage-

ment daemon (orisync).

To give a feel for the Ori user experience, we present

several examples of tasks accomplished through the CLI.

◮ Our first example is configuring replication between

two hosts. To enable orisync, our device discovery and

synchronization agent, a user must interactively config-

ure a cluster name and cluster key using the orisync

init command. orisync detects changes within approx-
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imately five seconds (based on the advertisement inter-

val). The following commands create and mount an au-

tosynchronized file system.

Listing 1: Configuration of a user’s initial repository.

ori newfs MyRepo

orifs MyRepo

In the example above, a repository named MyRepo

is created, and mounted onto a directory with the same

name. By default orisync is enabled, but can be disabled

with the --nosync flag. Next, in Listing 2, we replicate

and mount the file system on a different computer from

the first host over SSH.

Listing 2: Remote mounting a file system

ori replicate --shallow user@host:MyRepo

orifs MyRepo

In this example we use the --shallow flag to enable

the background fetch optimization. Data is fetched from

the source in the background and on-demand, and once

enough data is replicated the machine will be ready for

offline operation. We mount the MyRepo replica onto a

directory with the same name.

◮ The second example, shown in Listing 3, shows how

to use version history to recover a deleted file. The

.snapshot directory in the file system’s root allows

users to access snapshots by name. Silent data corrup-

tion repair, which is not demonstrated in this example, is

transparent to the user.

Listing 3: Snapshots and recovery

ori snapshot BEFORE

rm deleted_file

ori snapshot AFTER

cp .snapshot/BEFORE/deleted_file ./

◮ The third example reverts the whole file system to

a previous state rather than recovering individual files.

We can discard all changes and revert to the snapshot

named BEFORE, with the use of the ori checkout

--force command.

◮ In Listing 4, we show the fourth example of sharing

files with history (grafting) between two locally mounted

file systems. Once complete, the history of the graft is

made available to the user. Diffs can be generated to see

what has changed or determine what is the latest version.

By re-running the graft command, new changes can

be pulled from the source

Listing 4: Grafting files between two repositories.

ori graft src_repo/dir_a dst_repo/dir_b

ori

(command line)

orifs

(FUSE driver)

libori

Local Repository

Stored on
ext4

libFUSE

orisync

(daemon)

Object 

Store

Object

Metadata
Index

Figure 2: Ori system diagram showing the ori CLI,

and orifs FUSE driver. These user interfaces are built

on top of libOri, which implements local repository

access and a client/server API for exchanging snap-

shots. In this figure we show the various storage files

of a local file system stored on an existing file system,

in this case ext4.

◮ Our final example uses the pull and merge commands

to manually synchronize and merge the file system when

orisync is disabled. For example this can be used to mi-

grate changes from a test to production setup once test-

ing is complete. Conflict resolution is done on a run-

ning file system, but if automatic resolution fails (or if

a file is actively being modified) two files will be created

next to the conflicting file with the suffixes :base and

:conflict. A user will have to manually resolve the

conflicts.

3 Design

Figure 2 shows a high level system diagram of Ori. It

includes user facing tools: the ori CLI, the automatic

synchronization tool orisync, and the FUSE driver orifs.

Users invoke ori to manage the file system and con-

duct manual operations. orisync discovers and automati-

cally synchronizes with other replicas. orifs implements

some automated operations such as periodic snapshotting

and provides a read-only view of all snapshots. These

tools are built on top of libOri, our main library that

implements the local and remote file system abstrac-

tions. It also implements higher-level operations includ-

ing pulling and pushing snapshots, merging, and other

operations discussed in the following sections.

Figure 2 also shows the three main structures that are

stored on a backing file system (e.g., local ext4): the in-

dex, object store, and object metadata. The index forms

an indirection layer necessary to locate objects on disk

by hash rather than location. Objects in our file system,
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e.g., files, directories and snapshots, are stored in the ob-

ject store. Mutable metadata, such as reference counts,

are stored in a separate metadata structure. The metadata

is a per-object key-value store that is not explicitly syn-

chronized between hosts.

In Section 3.1, we describe Ori’s core data model.

Next, the grafting mechanism that is used for file shar-

ing is described in Section 3.2. Replication operations

are described in Section 3.3, which also includes related

distributed and background fetch optimizations. In Sec-

tion 3.4 we describe the device discovery and manage-

ment agent. Subsequently, the space reclamation policy

is discussed in Section 3.5. Section 3.6 discusses repli-

cation and recovery. Finally, Section 3.7 describes the

integrity facility for detecting data corruption or unau-

thorized tampering with a file system.

3.1 Data Model

Like a DVCS (e.g., Git), Ori names files, directories, and

snapshots by the collision-resistant hash of their content

(using SHA-256). Each snapshot captures a single point

in the history of the file system. Each file system has a

Universally Unique Identifier (UUID) associated with it,

that is used to identify instances of the same file system.

Ori’s basic model supports four types of object: Com-

mit objects, which represent snapshots and their histori-

cal context; Trees, which represent directories; and both

Blobs and LargeBlobs, which represent individual files.

Throughout this paper, we use the term snapshot to re-

fer to the collection of objects that are accessible from a

single commit object and not just the commit itself.

The objects are stored in an append-only structure

called a packfile that contains multiple objects. Objects

are written in clusters, with headers grouped at the be-

ginning of each cluster. This speeds up rebuilding the in-

dex on crashes or corruptions. The index and metadata

files are log-structured and are updated after objects are

stored in a packfile. Ori uses a transaction number to al-

low for rollback and to ensure the index and metadata

are updated atomically. Deleted objects are marked for

deletion in the index and reclaimed later by rewriting

packfiles during garbage collection. Garbage collection

is done rarely to avoid write amplification, a reasonable

choice given Ori’s premise of abundant free space.

Commit objects consist of a series of immutable fields

that describe the snapshot. All snapshots have the follow-

ing fields: root tree hash, parent commit hash(es), time,

and user. Users may optionally give snapshots a name

and description, which may help them when working

with history-related operations. Other optional attributes

are specific to particular features such as grafting and

tamper resistance (see Sections 3.2 and 3.7).

Tree objects, which represent directories, are similar

to Git’s tree objects. Unlike directories in normal file

systems, a tree object combines both the directory en-

try and inode fields into a single structure. Unlike tradi-

tional inodes, Ori directory entries point to file contents

with a single content hash. Combining inodes with di-

rectory entries reduces IO overhead and file system com-

plexity. However, Ori does not support hard links, as a

separate data structure would be required to differentiate

them from deduplication.

Blobs store data of files less than one megabyte in size

(a configurable value). LargeBlobs split large files into

multiple Blobs by storing a list of Blob hashes of indi-

vidual file chunks. Ori uses a variable size chunking al-

gorithm that creates chunks between 2KB and 8KB, with

an average of 4KB. Variable size chunking uses Rabin-

Karp fingerprinting to break chunks at unique bound-

aries, which is similar to the technique used by LBFS [7].

LargeBlobs exploit the clustering of data in pack-

files by storing the large file contiguously in the pack-

file, while omitting any deduplicated chunks. When a

read operation spans multiple chunks of a LargeBlob,

Ori uses a vectored read, reordering and coalescing the

vectored chunks to benefit from packfile locality. (Coa-

lescing chunks reduces disk seeks, while vectored reads

reduce IO overhead.) Ori maintains this optimization

across replication operations, as discussed in Section 3.3.

LargeBlobs provide sub-file data deduplication, which

saves space and minimizes bandwidth use on transfers.

Other systems, such as Git, rely instead on delta com-

pression for the same purpose. But delta-compression al-

gorithms can be very CPU and memory intensive, too

high a price to pay in a general purpose file system. Note

that deduplication can occur between any two Blobs,

even if they do not share or are not part of a Large-

Blob. LargeBlob chunking (and thus deduplication) is

done during snapshot creation.

Figure 3 illustrates how Ori’s various objects are orga-

nized. Trees and Blobs mirror the structure of directories

and files in the actual file system. The Commit objects

correspond to snapshots. Objects may be referenced from

multiple places in the same tree or across snapshots, thus

enabling deduplication. The entire tree up to the latest

commit forms a Merkle tree that encompasses the file

system structure and full history.

The use of content hashes to name objects has two

implications. First, objects are uniquely identified in a

global namespace across devices and file system in-

stances. Second, file system layout is independent of

file system structure. However, this architecture in prac-

tice requires an index that simplifies locating objects by

hash. The object store consists of one or more local files

packed with objects, and thus the index contains file/off-

set pairs. All of Ori’s main structures are stored as files

in the local file system (e.g., ext4, UFS, or NTFS).
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Figure 3: Object model in Ori including the chain of

Commit objects corresponding to snapshots, Tree ob-

jects representing directories, and both LargeBlobs

and Blobs representing files.

All objects in a repository are reference-counted for

reclamation. Because directories are acyclic, unreach-

able objects always end up with a reference count of

zero. To minimize reference-tracking overhead, Ori only

counts unique, direct references from one object to an-

other. For example, if the same Tree object is reachable

from two snapshots, Ori only increments the reference

count of the Tree object itself, not its children. Reference

counts are local to a single repository and get updated

incrementally as part of the synchronization process.

3.2 Grafting: Inter-file system copy

Grafting enables two-way synchronization between file

systems. The operation copies a set of files or directories

between two file systems (or possibly two locations in the

same file system) while preserving the cross-file-system

history. The history of the graft will be integrated with

the history of the local file system and accessible through

the log command. Many other commands work as usual,

with a notable exception that automatic synchronization

is not supported.

When a file/directory path S (in file system FSS) is

grafted onto a file/directory path D in another file system

(FSD), it creates a special graft commit record in FSD.

Specifically, such a graft commit contains the following

extra fields, not present in regular commit records:

• graft-fsid: UUID of FSS

• graft-path: Source pathname S

• graft-commit: Hash of the original commit in FSS

• graft-target: Destination pathname D

The grafting algorithm takes a set of commits in FSS

and makes them a part of the history of FSD. At a high

level, these commits provide a series of changes to be

applied to the head of FSD at directory D. FSD im-

ports a full history of changes to FSS, from the first

commit before S existed to the last modification of FSS.

This imported history may indicate that S was previously

grafted from a third file system FSS′ , in which case the

graft commit will record FSS′ ’s graft-fsid and graft-path,

rather than that of FSS (unless S′ itself was grafted from

somewhere else, and so forth).

Though FSD incorporates the full history of commit

objects from FSS, it need not store the entire contents

of every snapshot in that history. Only the contents of

the grafted file or directory are stored. Each use of the

grafting mechanism transfers data in a single direction

so that users can control when they may need to merge

with someone else’s changes.

An important use case is when a group of users desire

to share files by synchronizing a directory amongst them-

selves. Here a grafted snapshot might be grafted again

multiple times as changes are propagated between ma-

chines. For this use case to work, all grafts must maintain

the original source of the commit. This lets Ori correctly

identify grafted snapshots and avoid accidentally creat-

ing branches depending on how changes are pulled.

By default, grafting requires full access to the source

file system by the destination. To support remote grafting

without giving access to the entire file system, the source

must explicitly export a graft (similar to an NFS export).

The source creates an exported history that others will

see and import. The destination file system will graft the

export onto the local repository.

We note that access control for remote grafts is per-

formed at the granularity of exported file system mount

points. If one has access to the exported file system, then

one can access all files within it. Individual file permis-

sions are ignored. Ori cannot be used directly in a tra-

ditional NFS-like multi-user setting, where a single ex-

port has different file permissions on a per file and per

user basis. We currently have no mechanism to enforce

such a policy. It is still possible, though clunkier, to create

multiple grafts—one for each different user—to achieve

similar use cases.

3.3 Replication

The ori replicate and pull commands are used to initi-

ate replication and initiate a unidirectional synchroniza-

tion between multiple repositories of the same file sys-

tem. Initiating replication creates an empty local reposi-

tory and then populates it with data mirroring the source
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repository. Pull updates an existing repository and trans-

fers only missing data, but does not merge new changes

into a mounted file system. (Note this operation is closer

to git fetch than git pull.) These commands support trans-

port over SSH, which relies on existing authentication

mechanisms, or HTTP. Automatic synchronization and

management is left to orisync, described in Section 3.4,

which synchronizes when devices are available.

The replicate operation creates a new replica of a file

system when given a path to a source replica (local or

remote). It works by first creating and configuring an

empty repository. Next, it retrieves the hash of latest

commit from the source and saves it for later use. It

then scans the source for all relevant objects and trans-

fers them to the destination. The set of relevant objects

depends on whether the new instance is a full replica

(including history) or shallow replica. Finally, when the

transfer is complete, the new file system head is set to

point to the latest commit object that was transfered.

Several important operations must occur during the

process. First, metadata, object reference counts, and the

file system index must be maintained. The index is up-

dated as objects are stored in the local repository. Large

portions of the index may be updated at once to re-

duce disk seeks. The computation of reference counts is

done incrementally, as objects are received, and requires

parsing Commit, Tree, and LargeBlob objects. Reference

counts are updated on disk in a single write after all data

has arrived.

A major performance concern is how we transfer and

store objects on the disk. When the destination requests a

set of objects, the source transmits the objects in the same

order they are stored in packfiles, along with hints for

when to break packfile boundaries. This is the network

equivalent of the vectored read operation that orders and

coalesces reads. This maintains spacial/temporal local-

ity of snapshots by keeping objects of the same snapshot

near one another. This heuristic improves source read

performance during the operation, and maintains read

performance for the destination. It also avoids breaking

the optimizations on LargeBlob objects discussed in Sec-

tion 3.1.

The unidirectional synchronization operation is used

by users or orisync to propagate changed data and his-

tory between two file systems. The operation is similar

initial replication and benefits from the same optimiza-

tions, with a few additions. Rather than scan all objects

from the source, it scans the graph of Commit objects to

identify the required file system snapshots that need to be

migrated over to the destination. As part of the operation,

we avoid asking for objects that the destination already

has. In addition, metadata is updated incrementally, so as

not to walk all objects in the file system.

After manually executing a synchronization through

the pull command, either the checkout or merge com-

mands must be used to make changes visible in the lo-

cal file system. orisync does this automatically and thus

these operations are only useful when manual synchro-

nization is used.

3.3.1 Distributed Fetch

The distributed fetch optimization helps Ori transfer data

by avoiding low bandwidth and high latency links, and

uses nearby hosts as a cache for requested data. During

replication operations Ori identifies the nearby instances

using mDNS/Zeroconf and statically configured hosts.

Ori contacts hosts in order of latency as an approxima-

tion of network quality. Before transferring objects from

the original source, the algorithm attempts to use nearby

hosts by asking for objects by hash.

There are a few security concerns that we address.

Foremost, the current design uses cryptographically

strong hashes and verifies them for all objects retrieved

from nearby hosts as a safe-guard against tampering.

Users can disable this feature or restrict it to static hosts

to prevent any leakage of data hashes. This would prevent

random hosts from attempting to identify what a user has

based on known hashes of files (e.g., a known file down-

loaded from the Internet).

3.3.2 Background Fetch

Recall that Ori’s background fetch optimization allows

operations such as replicate, pull, and graft, to complete

the bulk data transfer in the background while making the

file system immediately available. If a process accesses

files or directories that are not yet locally replicated, it

blocks and orifs moves the needed contents to the head

of queue, ahead of other less important remaining back-

ground operations. Any modified data can either be prop-

agated manually with a push command or automatically

at an interval configured with orisync.

Background fetch has three modes: background data

transfer, on-demand with read caching, and without read

caching. The –ondemand flag of orifs enables the back-

ground fetch feature and fetches objects on-demand

without performing any background data transfers, use-

ful for temporary access. The –nocache flag disables

caching objects read from a remote host.

Supporting background operations requires splitting

a task into two stages. First, completing any required

synchronous tasks—e.g., checking for merge conflicts—

then allowing users to proceed while pulling missing data

on-demand.

To initiate replication with background fetching, Ori

first connects to a remote host. It then creates an empty

repository with the same file system ID on the local host.
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Next, it adds the remote host to the local file system’s

peer list and marks it as an on-demand target. Finally, it

sets the local file system’s head version to match that of

the remote. At this point, the file system can be mounted.

Whenever an object that does not exist locally is ac-

cessed, Ori queries peers for the object. Objects received

from peers are stored based on which of the three modes

was selected. The mode also determines whether to run a

background thread that proactively fetches all objects in

the file system history.

Background fetch is generalized to support other op-

erations such as pull and merge. In this case, Ori must

complete a few tasks such as pulling all Tree objects

in the latest commit and attempting a merge. Conflict-

ing files will also be downloaded in order to attempt an

auto-merge algorithm. Once complete, the background

fetch optimization can continue to pull any missing ob-

jects (newly created files or modified files without merge

conflicts) and previous history in the background or on-

demand.

Background fetch exposes users to additional failure

scenarios. When remote hosts become unavailable, then

the current implementation will report that failure to the

user if it fails to find an object locally. We do attempt to

connect to all on-demand peers that are available. This

situation does not occur without background fetch, as all

normal Ori operations wait for completion to declare suc-

cess or roll back. This failure scenario is comparable to

that of NFS. One benefit over NFS is that files and direc-

tories that have already been accessed will continue to

function without connectivity, and new files can be cre-

ated without needing remote access.

3.4 Automatic Management

There are two automated tasks in Ori: automatic snap-

shots and automatic synchronization between devices,

which includes their discovery. Automatic snapshots are

needed so people can use Ori as a traditional file system,

without having to run extra commands or explicitly take

snapshots, but still get the benefits of versioning and be-

ing able to look at old files. These implicit snapshots are

time-based and change-based, and are part of the perma-

nent history. These snapshots may be reclaimed based

on a policy, e.g., keep daily snapshots for a month and

weekly snapshots for a year. Another policy is managing

external drives as long-term archival stores and moving

snapshots to these drives.

Ori supports automatic synchronization and discov-

ery among devices. This functionality is delegated to

the orisync agent. Users configure a cluster name and

a shared key. The agent then periodically broadcasts en-

crypted announcements containing information about the

repositories held on each machine. Agents running on

other devices owned by the user can decrypt these an-

nouncements and initiate file system synchronizations.

Users may also specify statically configured reposito-

ries/hosts so that devices can synchronize against a

hosted peer over the Internet.

Each announcement contains a list of repositories that

include the file system ID (UUID), path, and file sys-

tem head. When receiving an announcement the agent

checks against a list of locally registered repositories for

matching file system IDs, which are the same across all

instances of a file system. If the repositories have dif-

ferent revisions it can exchange snapshots and resolve

conflicts to ensure repositories have caught up with each

other. We assume that users are typically working on a

single device at a time, so periodic synchronization be-

tween devices prevents stale data from being accessed

on another machine. The maximum lag in synchroniza-

tion is controlled by the announcement interval, which is

about five seconds.

3.5 Space Reclamation Policy

Ori uses all the space allocated to it. In general Ori’s

space will have three parts: the latest version of the file

system holding current data, historical versions, and free

space. If the disk is large or the file system is new there

will be plenty of free space on disk. Over time this will be

filled with historical data. Eventually, the free space will

be used up and historical data will need to be removed

by Ori to create space for new files.

The eviction policy is to delete older snapshots, which

makes the history sparser as it ages. The basic premise is

that users care more about data in the past few weeks,

e.g., recovering an accidentally deleted file, but care

much less about the day-to-day changes they made a year

ago. The policy is applied in order of the rules below, but

in reverse historical order. That is Ori will look for the

oldest daily snapshots past a week to delete before delet-

ing any weekly snapshots. The deletions occur in the fol-

lowing order:

1. Temporary FUSE snapshots (never synchronized).

2. Daily snapshots past a week.

3. Weekly snapshots past a month.

4. Monthly snapshots past a year (keep quarterly).

5. Quarterly snapshots past a year (keep annual).

6. Annual snapshots.

3.6 Replication and Recovery

Ori focuses on a replication paradigm where data is

present on all user devices. Devices can be configured

in two modes: default or carrier. Carrier devices (like
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mobile phones) will first replicate incremental snapshots

needed to bring other devices up to speed, and then pro-

ceed to replicate the latest full snapshot (for availabil-

ity) if space permits. The default policy instead is used

on devices with ample space (like desktops) and it first

replicates the latest snapshot (so one can start working)

followed by historical data.

Using these replicas Ori can recover from silent disk

corruption by connecting to other devices and retriev-

ing objects by their hash. The data model uses object

hashes for the dual purpose of addressing and verify-

ing file system integrity. We can identify corrupted data

and attempt recovery by restoring corrupted objects from

other devices. The automatic repair functionality utilizes

the same background fetch mechanism to pull objects

from registered peers.

3.7 Tamper Resistance

Our data model, like that of Git, forms a Merkle tree in

which the Commit forms the root of the tree pointing

to the root Tree object and previous Commit object(s).

The root Tree object points to Blobs and other Tree ob-

jects that are recursively encapsulated by a single hash.

Ori supports signed commit objects, by signing the seri-

alized Commit object with a public key. The Commit ob-

ject is then serialized again with the key embedded into

it, thus forcing subsequent signatures to encapsulate the

full history with signatures. To verify the signature we

recompute the hash of the Commit object omitting the

signature and then verify it against the public key.

Note that Ori’s design allows users to delete data ref-

erence by older snapshots, but always retains commit ob-

jects for verifying history. This means that the Blobs,

LargeBlobs, and Tree objects will be reclaimed when

a snapshot is deleted, but the commit object of a snap-

shot will remain. This allows us to poke holes in his-

tory and still be able to access older snapshots and verify

them. This differs from Git’s Merkle trees where previ-

ous states are always available.

4 Implementation

Ori currently runs on Linux, Mac OS X, and FreeBSD.

It consists of approximately 21,000 lines of C++ code

including 4,000 lines of headers. Ori is built in a modular

way, making it simple to add functionality to the core file

system. For example, background fetch is less than 100

lines of code. Another example is a standalone tool to

backup to Amazon S3 (online storage) built using libs3,

an open source Amazon S3 client. This entire example

tool consists of less than 800 lines of code and headers.

4.1 FUSE Driver

We implemented Ori using FUSE, a portable API for

writing file systems as user-space programs. FUSE for-

wards file system operations through the kernel and back

into the user-space Ori driver. FUSE increases portability

and makes development easier, but also adds latency to

file system operations and makes performance sensitive

to operating system scheduling behavior.

In response to file system read requests, Ori fetches

data directly from packfiles. This is more space-efficient

than Git, which provides access through a “checked-out”

working directory containing a second copy of the latest

repository tree. For write support, orifs maintains a tem-

porary flat tree in memory, containing file and directory

metadata, while the file data is stored in temporary files.

We call this temporary file store the staging area.

The FUSE implementation provides convenient access

to explicit snapshots and periodic snapshotting. Users

have access to snapshots through a .snapshot di-

rectory located at the root mount point. Periodic snap-

shots are made in what can be thought of as a FUSE

branch. We use Ori’s metadata structure to flag FUSE

commits for reclamation. When a garbage collection cy-

cle is run, which occurs rarely, we can delete temporary

FUSE commits. This may entail rewriting packfiles. Peri-

odic snapshotting also speeds up permanent snapshots as

we lack a true copy-on-write (COW) backend (because

the staging area is outside of the packfiles).

Snapshotting works by copying data from the staging

area to a packfile. When creating a permanent snapshot,

we create a new commit object and any new or modified

Trees and Blobs. This requires Ori to to read, compress,

deduplicate, and write objects from the staging area into

the repository. A COW file system would avoid some of

the read and write overhead by placing data in a tempo-

rary area within the repository or in memory (rather than

packfiles). This performance improvement could be ad-

dressed by implementing known techniques, but would

require more frequent snapshotting and garbage collec-

tion. Our current design avoids a lot of the complexity

of building a garbage collector, as we expect the current

collector to run infrequently.

Currently the FUSE file system supports almost all

standard POSIX functionality except hard links. Of

course, a common usage of hard links is to dedupli-

cate data, which Ori already handles transparently even

across files. Ori does not store link counts for directories;

we emulate them in orifs, which adds overhead when

statting a directory (as the directory must be read to

determine the number of subdirectories).
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Benchmark ext4 Ori loopback

Create 8561±28% 6683±7% 6117±12%

Delete 4536±25% 1737±25% 3399±14%

Stat 14368 11099 10567

MakeDir 17732 10040 12197

DeleteDir 4402±8% 7229 3379±7%

ListDir 13597 6351 5717

Table 2: Filebench microbenchmark results for cre-

ate, delete, and stat of files, as well as make, delete,

and list of directories. Are results are in operations

per second.

5 Evaluation

We evaluate Ori in two main settings: as a general pur-

pose local file system and as a distributed file system.

The tests were run on an 8-core, 16-thread ma-

chine with two Intel Xeon E5620 processors clocked at

2.4 GHz and 48 GiB of RAM running Ubuntu Linux

3.8.0-26. Although Ori and FUSE are multithreaded, we

limited the memory and CPU using Linux boot time flags

to 4 GiB and a single processor. This serves the dual pur-

pose of providing a realistic desktop configuration and

reducing variability in the results (due to the uniproces-

sor configuration). The machine had a 3 TB 7200 RPM

magnetic disk and a 120 GB Intel X25-M SSD, both

connected via SATA. In addition, we used another ma-

chine with identical hardware that was connected with

Gigabit Ethernet. For wide area network tests we used

a host running FreeBSD 9.1 powered by an Intel Core

2 Duo E8400 processor running at 3 GHz with a ZFS

RAIDZ1 (software RAID 5) spanning four 5400 RPM

green drives.

We report SSD numbers for all local tests, as this

demonstrated the file system bottlenecks better. The

magnetic disk’s latency hides most of the file system

overhead and FUSE latency. We ran tests five times re-

porting the mean and state the standard deviation only

when it exceeds 5% of the mean. For a few benchmarks,

the SSD had a much higher variance than the magnetic

disk, but the results are meaningful as only one or two

runs were outliers.

5.1 Microbenchmarks

We start by examining the cost of common file system

operations like creating and deleting files and directories.

We use Filebench [8] for this and the results are shown in

Table 2. We compare Ori (using FUSE) against ext4. As

a baseline and to isolate the cost of FUSE itself, we also

compare against the FUSE loopback driver that simply

forwards all file system operations to the kernel.

Benchmark ext4 Ori loopback

16K read 284,078 237,399 236,762

16K write 108,685 106,938 107,053

16K rewrite 71,664 64,926 63,674

Table 3: Bonnie++ benchmark result averaged

over five rounds taken on the SSD device. Read-

/write/rewrite units are KiB/sec.

The file creation benchmark creates a file and appends

data to the file. In this benchmark, Ori and the loopback

perform about 27% and 21% slower than ext4, mostly

due to the overhead of FUSE that requires crossing be-

tween user and kernel space multiple times. Ori is slower

than FUSE loopback because it additionally needs to

journal the file creation. Another reason Ori is slower is

because the benchmark creates 400k files in a directory

tree, but Ori creates all the files in one directory (the stag-

ing area), putting pressure on the ext4 directory code.

The file stat benchmark creates 100k files and then

measures the performance of calling fstat on random

files. Ori performs 5% better than the loopback. In all

cases the data suggests fstat information, stored in the

inodes, is cached. Thus, Ori has lower latency than the

loopback driver because it caches metadata inside it’s

own structures, rather than relying on the underlying file

system’s metadata.

The directory creation and deletion operations in Ori

are not directly comparable to ext4. These operations in

Ori happen on data structures resident in memory and

only a journal entry is written on the disk itself. Ori also

outperforms ext4 in the directory list benchmark because

it caches directory structures that contain modified files

or directories.

We now examine the cost of file IO operations using

the Bonnie++ [9] benchmark. Table 3 shows the results

of file reads and writes. Compared to ext4, Ori’s user-

space implementation incurs a penalty of at most 20%

on reads and 2% on writes. Ori performs nearly the same

as loopback, however, since both perform similar actions

and forward IOs to the underlying file system.

5.2 Filesystem macrobenchmarks

Filebench provides some synthetic macrobenchmarks,

whose results we report in Table 4. A few benchmarks

had high variance because of calls to delete and

fsync. Filebench’s macrobenchmarks function by pop-

ulating a directory structure with files randomly and then

operating on those files. It should immediately stand out

that Ori and the FUSE loopback file system performed

similarly except on the varmail benchmark.

One reason Ori performs well is that the directory
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Benchmark ext4 Ori loopback

fileserver 2919±23% 2235±24% 2258±27%

webserver 10990 8250 8046

varmail 3840±10% 1961±17% 8376

webproxy 10689 6955 7281

networkfs 603 612 570±13%

Table 4: Filebench macrobenchmarks for ext4, Ori,

and FUSE loopback driver. The numbers are listed in

operations per second.

structure is largely cached in memory as a consequence

of optimizing snapshot creation. Moreover, Ori’s staging

area consists of a single directory in which temporary

files record writes since the previous snapshot. Such a

flat structure incurs fewer expensive multi-level directory

lookups in the underlying ext4 file system.

The varmail benchmark is unique in that it is the only

benchmark that is calling fsync operations. The FUSE

loopback ignores fsync operations, which is why the

varmail benchamark is faster than even the ext4 runs.

Ori instead fsyncs the corresponding file in the staging

area to give the same guarantees as the local file system.

As this operation is synchronous, performance is much

worse when calling fsync through a FUSE file system.

5.3 Snapshot and Merge Performance

We examine the utility of the snapshot feature by com-

paring how quickly Ori can take snapshots. In this simple

test, we extracted the zlib source tree into an Ori file sys-

tem and took a snapshot. The snapshot time includes the

time required to read all of the staging area. Then we

compress, deduplicate, and store the data from the stag-

ing area into our file system store. We also have to flatten

the in-memory metadata state and transform it into a se-

ries of Tree objects and one Commit object. This entire

process for 3 MBs of source files took 62 ms on a SSD.

To put this number in perspective, we compare it to

Git and ZFS. It took 121 ms to add and commit the files

into Git using the same SSD. Taking a ZFS snapshot (on

the FreeBSD host) took approximately 1.3 s. These tests

are not ideal comparisons, but strongly suggest that Ori’s

performance is more than acceptable.

Merge performance is largely dependent on the num-

ber of files modified. We measured the total time required

to merge two file systems containing one change in each

(not including pull time). The merge completed in ap-

proximately 30 ms.

Data Set Raw Size Ori Git

Linux Snapshot 537.6M 450.0M 253.0M

Zlib 3.044M 2.480M 2.284M

Wget 13.82M 12.46M 6.992M

User Documents 4.5G 4.6G 3.4G

Tarfiles 2.8G 2.3G 2.3G

Table 5: Repository size in Ori and Git.

5.4 Ori as a Version Control System

Ori’s history mechanism is essentially a version con-

trol system, which can be used as an alternative to Git.

The key differences between the two are that Git uses

a combination of whole file deduplication, differential

compression, and compression to save space (at the cost

of using more CPU), whereas Ori simply relies on sub-

file deduplication and compression. We wished to com-

pare the two approaches. However, Ori’s FUSE interface

gives it an unfair advantage (by avoiding the need to cre-

ate a checked-out tree). Hence, to make the comparison

fair, we disabled the FUSE driver and used Ori as a stan-

dalone check-in/check-out tool. In this setting, we found

that Ori has faster adds and commits (by 64%). Similarly,

clone operations in Ori are 70% faster than Git. However,

Git’s more expensive compression does save more space.

The space savings that occur thanks to deduplication

and compression, where identical file chunks are stored

only once, are shown in Table 5. The table shows the

amount of disk space needed when storing files in Ori

compared to their original size. Git saves even more

space thanks to its differential compression, which came

at the cost of slower commits and clones. Ori also has

the ability to delete snapshots, which Git does not sup-

port. The lack of differential compression avoids the ex-

tra decompression and recompression steps that would

otherwise be necessary when deleting snapshots.

5.5 Network Performance

We now examine some of the networked aspects of Ori.

We took several measurements of Ori’s remote file ac-

cess both in a Gigabit local area network (LAN) setting

and over a WAN. In the WAN scenario, we were upload-

ing from a remote machine that had a 2 Mbps up and

20 Mbps down link with a 17 ms round-trip time (RTT).

In all cases we used magnetic disks rather than SSDs,

which also means disk seeks due to deduplication im-

pacted performance.

5.5.1 Network Throughput

Table 6 shows how long it took to migrate a 468 MB

home directory containing media, source code, and user
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LAN WAN

rsync ori rsync ori

Time 9.5s 15s±6% 1753s 1511s

Sent 3MiB 5.4MiB 12.3MiB 13.3MiB

Rcv. 469MiB 405MiB 469MiB 405MiB

BW 49MiB/s 27MiB/s 267KiB/s 268KiB/s

Table 6: Network performance comparison to rsync

in the LAN and WAN. We include the total time,

megabytes sent and recieved (Rcv.), and bandwidth

(BW).

documents over the LAN (left columns) and WAN. On

the LAN, Both rsync and Ori are bandwidth limited by

the disk. Ori cannot perform as fast as rsync because sub-

file deduplication induces some fragmentation in the IO

workload that causes additional disk seeks. The fragmen-

tation combined with the recreation of the repository on

each run caused the higher standard deviation of 6%.

In the WAN scenario, the systems are bandwidth lim-

ited (2 Mbps uplink), and Ori’s compression and dedu-

plication allowed it to outperform rsync. More generally,

the compression and deduplication allows Ori to outper-

form rsync as bandwidth falls below 49 MiB/s, which is

equivalent to a very high-end wireless connection. Many

mobile devices today have 802.11n with a single an-

tenna, which caps bandwidth at 150 Mbps, far below

the 49 MiB/s disk throughput. Thus, Ori can synchro-

nize data faster, and our WAN measurement confirms

Ori’s protocol is capable of handling higher latency con-

nections. We note that rsync has compression built into

the protocol and it can perform better or worse than Ori

depending on the compression level and bandwidth. All

of Ori’s deduplication and compression is from what al-

ready is achieved in the object store.

5.5.2 Ori as a Network File System

As a sample workload, we built zlib over the network,

showing any replication, configuration, build, snapshot,

and push times over both a LAN and WAN network. The

compile output (object files) is stored on the networked

file system so both read and write operations happen. The

WAN scenario was conducted by pulling or mounting

from the remote FreeBSD machine.

Table 7 shows the results for our LAN and WAN

configurations. We ran the benchmark on NFS ver-

sion 3, NFS version 4, Ori with replication, and Ori with

background fetch enabled in the on-demand mode (i.e.,

prefetching disabled). In both the NFSv3 and NFSv4

benchmarks we used TCP. Notice that the failure seman-

tics of these two systems are very different: A server

crash or network interruption would block the NFS

workloads, whereas Ori does not make data available to

others until after the push. Nonetheless, this comparison

is still meaningful.

The most interesting result is that even with back-

ground fetching, which is slower, Ori over the WAN

slightly outperforms NFSv3 and NFSv4 over the LAN.

If we compare the WAN numbers, Ori runs more than

twice as fast as NFSv3 and NFSv4. While compiles over

a remote network are not a common use case they pro-

vide a nice mixture of file and directory operations. A

major reason Ori outperforms NFS is that it batches the

writes into a single push operation at the end of the build.

The results also give us a measure of the performance

impact of background fetching. The building time in-

creased by approximately a factor of 1.3 and 1.2 in the

LAN and WAN cases respectively. The WAN case has

less overhead because the test becomes bandwidth lim-

ited, thus background fetching lowers end-to-end time.

If we had enabled prefetching objects we would expect

to see even lower results, but with more variability.

We can see how Ori performs with respect to the in-

crease in network latency and bandwidth constraints. La-

tency has a smaller impact on the results when Ori be-

comes bandwidth limited. This is because the vectored

read and write operations effectively pipeline requests to

hide network latency (in addition to disk latency). In this

test the clone and pull operations take between three and

five synchronous requests to transfer all changes. This

can vary widely depending on the tree and history depth.

Ori also suffers from the additional latency associated

with SSH (i.e., encryption and protocol overhead).

5.5.3 Distributed Fetch

Recall the distributed fetch feature uses nearby replicas

(possibly of unrelated file systems) to fetch data through

faster networks. We benchmark this aspect of Ori com-

paring a standard, non-distributed fetch of the Python

3.2.3 sources (2,364 files, 60 MB total) against two dis-

tributed fetch variants shown in Table 8. The source

for all three scenarios was across a long-distance link

(average latency 110 ms, up/down throughput 290/530

KB/sec). In the scenario labeled “Remote,” no local Ori

peers were present and all objects were pulled from the

source. In the “Distributed” scenario, an exact copy of

the repository was available on a local peer. In the “Par-

tial Distributed” scenario, a similar repository (in this

case, the Python 2.7.3 sources) was available on a peer.

Our results show that distributed fetch can be effective

even in the last scenario, where only a distantly-related

repository was available as a distributed fetch source. Ori

was still able to source 26% of the objects from the re-

lated repository, decreasing total time spent by 22.7%. In

the case of an identical repository, distributed fetch was

22 times faster than when distributed fetch is disabled.
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NFSv3 NFSv4 Ori Ori on-demand

Benchmark LAN WAN LAN WAN* LAN WAN LAN WAN

Replicate 0.49 s 2.93 s

Configure 8.14 s 21.52 s 7.25 s 15.54 s 0.66 s 0.66 s 1.01 s 1.33 s

Build 12.32 s 33.33 s 12.20 s 28.54 s 9.50 s 9.55 s 11.45 s 12.77 s

Snapshot 0.19 s 0.19 s 2.72 s 3.37 s

Push 0.49 s 1.58 s 0.85 s 1.89 s

Total Time 20.45 s 54.85 s 19.45 s 44.07 s 11.33 s 15.30 s 16.04 s 19.34 s

Table 7: The configure and build times for zlib 1.2.7 over a LAN and WAN network for NFS, Ori, and Ori

on-demand enabled (i.e., no prefetching). (*) The NFSv4 WAN numbers were taken with a host running Linux,

since the FreeBSD 9.1 NFSv4 stack performed worse than NFSv3.

Distributed Partial Distributed Remote

Time 7.75 s 132.05 s 170.79 s

Table 8: Time to pull a repository with a local peer

available, a local peer that has some of the data, and

from a remote peer.

6 Related Work

Ori borrows many ideas from past work on archival file

systems, version control, and network file systems.

Distributed version control systems such as Git [3] and

mercurial provide offline use. However, they are inade-

quate as general-purpose file systems, as they lack mech-

anisms to reclaim space and deal with large files. Git An-

nex [10] is one attempt to use Git for storing general data

by using Git to manage symbolic links pointing into a

shared storage system. Of course, this just pushes a lot

of data management issues onto the shared storage sys-

tem, for which one option is Amazon S3.

Another limitation of Git and related tools is the lack

of instant access to remote files or transparent synchro-

nization, even with good network connectivity. We are

aware of concurrent efforts by Facebook to speed up

Mercurial’s clone command. However, without a FUSE

driver to provide the illusion of a complete tree and fetch

chunks on demand, we do not believe mercurial can ever

compete with the near instant access provided by Ori’s

background fetch feature.

Network File System (NFS) [11], Common Internet

File System (CIFS) [12, 13], and Apple Filing Proto-

col (AFP) [14] are all examples of network file systems

designed for LANs. These allow instant access to re-

mote files but lack offline use, versioning, or integrated

backup. They also perform poorly over WANs.

AFS [15], Coda [16] and InterMezzo [17] are dis-

tributed file systems that use caching. Coda provides

Ficus-like [18] offline access, but users must manually

configure hoarding policies or risk missing files. Unlike

Ori’s peer-to-peer architecture, clients do not synchro-

nize with one another; nor can a client replace a failed

server, since clients do not contain complete replicas

of the file system. Coda’s architecture results in sepa-

rate client and server implementations and a vastly larger

code base than Ori.

Another source of complexity is that Coda aggres-

sively resolves update conflicts in application-specific

ways, violating traditional abstraction layering. By con-

trast, Ori simply exposes unresolvable conflicts to the

user. However, because Ori has history, the user can un-

derstand where and how files relate. In particular, Ori

always supplies a “merge-base” ancestor for three-way

merging, which is not possible without history in Coda.

JetFile [19] is a peer-to-peer distributed file system

based around a multicast transport, though it does not

fully support offline use. GlusterFS [20] is another dis-

tributed peer-to-peer file system, designed to span a clus-

ter of machines. Like Ori, GlusterFS is peer-to-peer and

avoids any central point of failure. Unlike Ori, GlusterFS

targets a completely different use case—large data sets

too large to store on any single node. This leads to a very

different design. For example, GlusterFS does not store

history and has more problems recovering from split-

brain conditions.

6.1 Other relevant storage systems

Eyo [21] is an application API for file synchronization

and versioning between mobile devices. It shares sev-

eral of Ori’s goals, such as device transparency and ver-

sioning, but focuses on space-constrained devices. Eyo

lacks atomic snapshots and integrity protection. The au-

thors modified several applications to support Eyo and

reported less than 10% of application source code needed

to change. Being a general-purpose file system, Ori does

not require any modifications to applications, though it

provides an extended API with similar features to Eyo.

Cimbiosys [22] and EnsemBlue [23] are both repli-

cated storage systems that do not require application
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modification. Both systems replicate individual files and

focus on allowing users to subset files for different de-

vices. Ori presumes that embedded device storage capac-

ities will continue to grow relative to the size of managed

data, and hence primarily targets complete replication.

Ori users can, however, subset files either by replicating

only recent history, grafting a subtree into a new repos-

itory, or accessing data on-demand through the back-

ground fetch feature.

PRACTI [24] is a replication system that supports par-

tial replication, arbitrary consistency, and topology inde-

pendence. One of the applications built on PRACTI is

a peer-to-peer distributed file system for WANs, which

could be viewed as a more latency-tolerant version Glus-

terFS. Ori has topology independence, but is not intended

for partial replication and exclusively supports eventual

consistency. Ori’s primary contributions center around

the practicality of totally replicated file histories, which

only loosely relates to PRACTI’s contributions.

Dropbox [1] is a cloud-based data management sys-

tem. Like Ori, it allows synchronization between devices

and supports file sharing. Unlike Ori, it is centralized,

has a single point of failure, and generally does not bene-

fit from fast LAN-based peer-to-peer transfers. Dropbox

offers limited version control that cannot be controlled

by the user. There is no equivalent of grafting for users to

compare histories. Most importantly, Ori leverages exist-

ing unused space on user’s devices, while Dropbox wants

users to rent additional storage in the Cloud.

Archival File Systems The Write Anywhere File Lay-

out (WAFL) and ZFS are both file systems based around

implementing copy-on-write from the superblock down

to the individual files [25,26]. WAFL and ZFS operate at

the block layer, whereas Ori works on top of an existing

file system at a file granularity.

The Elephant file system [27] allowed versioning on

individual files. Unlike Ori, which works on the entire

file system, in Elephant it is difficult to snapshot the en-

tire file system at once.

Plan 9’s fossil file system [28] stores data in a sim-

ple tree format with the file system layered on top of it.

This is similar to Ori, which stores information in a set of

simple containers, except that Ori has tighter integration

between the object interface and the file system. More-

over, fossil is a client-server system in which history is

not replicated on clients.

Wayback [29] and Versionfs [30] are both archival file

systems centered around enabling users to control and

access versioning. Wayback is implemented as a user-

level (FUSE) file system, while Versionfs is built as a

kernel-level stackable file system. Both systems are de-

signed for single machines. Neither provides the non-

versioning functionality that Ori provides, and neither

provides integrity protection.

Apple’s Time Machine [31] and Microsoft Windows 8

File History [32] are backup solutions that provide users

a way to visualize the history of directories and files. Un-

like Ori, these systems are stored on external or network

drives and are not mobile.

Network File Systems Ori borrows deduplication

techniques from LBFS [7] and Shark [33]. In particular,

Ori uses a distributed pull mechanism that searches for

other nearby copies of file fragments in a manner similar

to Shark.

SFSRO [34] and SUNDR [35] both use Merkle

trees [36] to represent and verify file system data struc-

tures. To verify consistency in the presence of an un-

trusted server, SUNDR described a “straw-man” design

that logged all file system operations, an impractical ap-

proach for SUNDR. Interestingly, because Ori supports

compound updates, tolerates conflicts, and keeps a com-

plete log anyway, it effectively implements SUNDR’s

straw man. This opens the possibility of using Ori to

achieve a form of fork linearizability in a distributed set-

ting. (Critical reads must be logged as empty commits to

record where in the order of commits they occurred.)

7 Conclusion

Most people spend their time working on at most a few

tens of Gigabytes of documents, yet the knee in the

cost curve for disks is now at 3 TB. Hence, it is time

to rethink the decades-old file system abstraction and

ask how all this storage capacity can better serve user

needs. Specifically, the popularity of cloud storage ser-

vices demonstrates a demand for several management

features—backup, versioning, remote data access, and

sharing.

Ori is a new file system designed to meet these needs.

Ori replicates file systems across devices, making it triv-

ial to recover from the loss of a disk. It provides both

explicit and implicit versioning, making it easy to undo

changes or recover from accidentally deleted files. Ori

provides the illusion of instant replication and synchro-

nization, even as data transfers proceed in the back-

ground. Finally, Ori introduces grafting, a technique that

preserves file histories across file systems, simplifying

the process of reconciling changes after sharing files.

Benchmarks show Ori’s performance to be acceptably

close to other file systems, and that Ori significantly out-

performs NFS over a WAN. The implementation cur-

rently supports Linux, Mac OS X, and FreeBSD. Source

code is available at http://ori.scs.stanford.

edu/.
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