
Tackling the Awkward Squad:
monadic input/output, concurrency, exceptions, and

foreign-language calls in Haskell

Simon PEYTON JONES

Microsoft Research, Cambridge

simonpj@microsoft.com

http://research.microsoft.com/users/simonpj

April 7, 2010

Abstract

Functional programming may be beautiful, but to write real applications we must grapple with awk-
ward real-world issues: input/output, robustness, concurrency, and interfacing to programs written in
other languages.

These lecture notes give an overview of the techniques that have been developed by the Haskell
community to address these problems. I introduce various proposed extensions to Haskell along the way,
and I offer an operational semantics that explains what these extensions mean.

This tutorial was given at the Marktoberdorf Summer School 2000. It will appears in the book
“Engineering theories of software construction, Marktoberdorf Summer School 2000”, ed CAR Hoare,
M Broy, and R Steinbrueggen, NATO ASI Series, IOS Press, 2001, pp47-96.

This version has a few errors corrected compared with the published version. Change summary:

• Jan 2009: Clarifyν andfn () in Section 3.5; reword the one occurrence offv () in Section 2.7

• Feb 2008: Fix typo in Section 3.5

• May 2005: Section 6: correct the way in which the FFI declaresan imported function to be pure
(no “unsafe” necessary).

• Apr 2005: Section 5.2.2: some examples added to clarifyevaluate.

• March 2002: substantial revision

1 Introduction

There are lots of books about functional programming in Haskell [44, 14, 7]. They tend to concentrate on
the beautiful core of functional programming: higher orderfunctions, algebraic data types, polymorphic
type systems, and so on. These lecture notes are about the bits that usuallyaren’t written about. To write
programs that areusefulas well asbeautiful, the programmer must, in the end, confront the Awkward
Squad, a range of un-beautiful but crucial issues, generally concerning interaction with the external world:

• Input and output.

• Error detection and recovery; for example, perhaps the program should time out if something does
not happen in time.

• Concurrency, when the program must react in a timely way to independent input sources.

• Interfacing to libraries or components written in some other language.

The call-by-value (or strict) family of functional languages have generally taken a pragmatic approach to
these questions, mostly by adopting a similar approach to that taken by imperative languages. You want to
print something? No problem; we’ll just have a functionprintChar that has the side effect of printing
a character. Of course,printChar isn’t really a function any more (because it has a side effect), but in
practice this approach works just fine, provided you are prepared to specify order of evaluation as part of
the language design — and that is just what almost all other programming languages do, from FORTRAN
and Java to mostly-functional ones like Lisp, and Standard ML.

Call-by-need (or lazy) languages, such as Haskell, wear a hair shirt because their evaluation order is delib-
erately unspecified. Suppose that we were to extend Haskell by adding side-effecting “functions” such as
printChar. Now consider this list

xs = [printChar ’a’, printChar ’b’]

(The square brackets and commas denote a list in Haskell.) What on earth might this mean? In SML,
evaluating this binding would print’a’ followed by’b’. But in Haskell, the calls toprintChar will
only be executed if the elements of the list are evaluated. For example, if the only use ofxs is in the call
(length xs), then nothing at all will be printed, becauselength does not touch the elements of the
list.

The bottom line is thatlazinessandside effectsare, from a practical point of view, incompatible. If you
want to use a lazy language, it pretty much has to be apurely functional language; if you want to use side
effects, you had better use a strict language.

For a long time this situation was rather embarrassing for the lazy community: even the input/output story
for purely-functional languages was weak and unconvincing, let alone error recovery, concurrency, etc.
Over the last few years, a surprising solution has emerged: the monad. I say “surprising” because anything
with as exotic a name as “monad” — derived from category theory, one of the most abstract branches of
mathematics — is unlikely to be very useful to red-blooded programmers. But one of the joys of functional
programming is the way in which apparently-exotic theory can have a direct and practical application, and
the monadic story is a good example. Using monads we have found how to structure programs that perform
input/output so that we can, in effect, do imperative programming where that is what we want, and only
where we want. Indeed, theIO monad is the unifying theme of these notes.

The “standard” version of Haskell is Haskell 98, which comeswith an I/O library that uses the monadic
approach. However, Haskell 98 is not rich enough to deal withthe rest of the Awkward Squad (exceptions,
concurrency, etc), so we have extended Haskell 98 in a numberof experimental ways, adding support for
concurrency [35], exceptions [37, 29], and a foreign-language interface [36, 11]. So far, these developments
have mostly been documented in scattered research papers; my purpose in these lectures is to gather some
of it together into a coherent account. In what follows, whenI refer to “Haskell”, I will always mean
Haskell 98, rather than earlier versions of the language, unless otherwise specified.

2

As a motivating example, we will explore the issues involvedin writing a web server in Haskell. It makes
an interesting case study because it involves every member of the Awkward Squad:

• It is I/O intensive.

• It requires concurrency.

• It requires interaction with pre-existing low-level I/O libraries.

• It requires robustness. Dropped connections must time out;it must be possible to reconfigure the
server without dropping running connections; errors must be logged.

The Haskell web server we use as a case study is remarkably small [27]. It uses only 1500 lines of Haskell
to implement (more than) the HTTP/1.1 standard. It is robustenough to run continuously for weeks at a
time, and its performance is broadly comparable with the widely-used Apache server. Apache handles 950
connections/sec on the machine we used, while the Haskell web server handles 700 connections/sec. But
this is a bit of an apples-and-oranges comparison: on the onehand Apache has much more functionality
while, on the other, the Haskell web server has had very little performance tuning applied.

I began this introduction by saying that we must confront theAwkward Squad if we are to write useful
programs. Does that mean that useful programs are awkward? You must judge for yourself, but I believe
that the monadic approach to programming, in which actions are first class values, is itself interesting,
beautiful, and modular. In short, Haskell is the world’s finest imperative programming language.

2 Input and output

The first member of the Awkward Squad is input/output, and that is what we tackle first.

2.1 The problem

We begin with an apparently fundamental conflict. A purely functional program implements afunction; it
has no side effect. Yet the ultimate purpose of running a program is invariably to cause some side effect:
a changed file, some new pixels on the screen, a message sent, or whatever. Indeed it’s a bit cheeky to
call input/output “awkward” at all. I/O is the raison d’être of every program. — a program that had no
observable effect whatsoever (no input, no output) would not be very useful.

Well, if the side effect can’t be in the functional program, it will have to be outside it. For example, perhaps
the functional program could be a function mapping an input character string to an output string:

main :: String -> String

Now a “wrapper” program, written in (gasp!) C, can get an input string from somewhere (a specified file,
for example, or the standard input), apply the function to it, and store the result string somewhere (another
file, or the standard output). Our functional programs must remain pure, so we locate all sinfulness in the
“wrapper”.

The trouble is that one sin leads to another. What if you want to read more than one file? Or write more
than one file? Or delete files, or open sockets, or sleep for a specified time, . . . ? The next alternative, and
one actually adopted by the first version of Haskell, is to enrich the argument and result type of the main
function:

main :: [Response] -> [Request]

Now the program takes as its argument a (lazy) list ofResponse values and produces a (lazy) list of
Request values (Figure 1). Informally aRequest says something like “please get the contents of file

3

Haskell
program

[Request][Response]

Figure 1: The stream I/O model

/etc/motd”, while a Response might say “the contents you wanted isNo email today”. More
concretely,Request andResponse are both ordinary algebraic data types, something like this:

type FilePath = String

data Request = ReadFile FilePath
| WriteFile FilePath String
|

data Response = RequestFailed
| ReadSucceeded String
| WriteSucceeded
| ...

There is still a wrapper program, as before. It repeatedly takes a request off the result list, acts on the
request, and attaches an appropriate response to the argument list. There has to be some clever footwork to
deal with the fact that the function has to be applied to a listof responses before thereareany responses in
the list, but that isn’t a problem in a lazy setting.

This request/response story is expressive enough that it was adopted as the main input/output model in the
first version of Haskell, but it has several defects:

• It is hard to extend. New input or output facilities can be added only by extending theRequest and
Response types, and by changing the “wrapper” program. Ordinary users are unlikely to be able
to do this.

• There is no very close connection between a request and its corresponding response. It is extremely
easy to write a program that gets one or more “out of step”.

• Even if the program remains in step, it is easy to accidentally evaluate the response stream too
eagerly, and thereby block emitting a request until the response to that request has arrived – which it
won’t.

Rather than elaborate on these shortcomings, we move swiftly on to a better solution, namelymonadic
I/O. Hudak and Sundaresh give a useful survey of approaches to purely-functional input/output [15], which
describes the pre-monadic state of play.

2.2 Monadic I/O

The big breakthrough in input/output for purely-functional languages came when we learned how to use
so-calledmonadsas a general structuring mechanism for functional programs. Here is the key idea:

4

A value of typeIO a is an “action” that, when performed, may do some input/output, before
delivering a value of typea.

This is an admirably abstract statement, and I would not be surprised if it means almost nothing to you at
the moment. So here is another, more concrete way of looking at these “actions”:

type IO a = World -> (a, World)

This type definition says that a value of typeIO a is a function that, when applied to an argument of type
World, delivers a newWorld together with a result of typea. The idea is rather program-centric: the
program takes the state of the entire world as its input, and delivers a modified world as a result, modified
by the effects of running the program. I will say in Section 3.1 why I don’t think this view ofIO actions as
functions is entirely satisfactory, but it generates many of the right intuitions, so I will use it unashamedly
for a while. We may visualise a value of typeIO a like this:

IO a
World outWorld in

result::a

TheWorld is fed in on the left, while the newWorld, and the result of typea, emerge on the right. In
general, we will call a value of typeIO a anI/O actionor justaction. In the literature you will often also
find them calledcomputations.

We can giveIO types to some familiar operations, which are supplied as primitive:

getChar :: IO Char
putChar :: Char -> IO ()

getChar is an I/O action that, when performed, reads a character fromthe standard input (thereby hav-
ing an effect on the world outside the program), and returns it to the program as the result of the action.
putChar is a function that takes a character and returns an action that, when performed, prints the char-
acter on the standard output (its effect on the external world), and returns the trivial value(). The pictures
for these actions look like this (the box forputChar takes an extra input for theChar argument):

putChar

()Char

getChar

Char

getChar :: IO Char putChar :: Char -> IO ()

Suppose we want to read a character, and print the character we have read. Then we need to glue together
putChar andgetChar into a compound action, like this:

putChar

()

getChar

Char

getChar >>= putChar

To achieve this we use a glue function, or combinator, also provided as primitive:

(>>=) :: IO a -> (a -> IO b) -> IO b

5

echo :: IO ()
echo = getChar >>= putChar

The combinator(>>=) is often pronounced “bind”. It implements sequential composition: it passes
the result of performing the first action to the (parameterised) second action. More precisely, when the
compound action(a >>= f) is performed, it performs actiona, takes the result, appliesf to it to get a
new action, and then performs that new action. In theecho example,(getChar >>= putChar) first
performs the actiongetChar, yielding a characterc, and then performsputChar c.

Suppose that we wanted to performecho twice in succession. We can’t say(echo >>= echo), be-
cause(>>=) expects afunctionas its second argument, not an action. Indeed, we want to throw away the
result,(), of the firstecho. It is convenient to define a second glue combinator,(>>), in terms of the
first:

(>>) :: IO a -> IO b -> IO b
(>>) a1 a2 = a1 >>= (\x -> a2)

The term(\x -> a2) is Haskell’s notation for a lambda abstraction. This particular abstraction simply
consumes the argument,x, throws it away, and returnsa2. Now we can write

echoTwice :: IO ()
echoTwice = echo >> echo

“(>>)” is often pronounced “then”, so we can read the right hand side as “echo thenecho”.

In practice, it is very common for the second argument of(>>=) to be an explicit lambda abstraction. For
example, here is how we could read a character and print it twice:

echoDup :: IO ()
echoDup = getChar >>= (\c -> (putChar c >> putChar c))

All the parentheses in this example are optional, because a lambda abstraction extends as far to the right as
possible, and you will often see this laid out like this:

echoDup :: IO ()
echoDup = getChar >>= \c ->

putChar c >>
putChar c

The fact that this looks a bit like a sequence of imperative actions is no coincidence — that is exactly what
we wish to specify. Indeed, in Section 2.3 we will introduce special syntax to mirror an imperative program
even more closely.

How could we write an I/O action that reads two characters, and returns both of them? We can start well
enough:

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
???

But what are we to put for the “???” part? It must be of typeIO (Char,Char), but we have done all
the input/output required. What we need is one more combinator:

return :: a -> IO a

The action(return v) is an action that does no I/O, and immediately returnsv without having any side
effects. We may draw its picture like this:

6

return

aa

Now we can easily completegetTwoChars:

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
return (c1,c2)

Here is a more realistic action that reads a whole line of input:

getLine :: IO [Char]
getLine = getChar >>= \c ->

if c == ’\n’ then
return []

else
getLine >>= \cs ->
return (c : cs)

In this example, the “[]” is Haskell’s notation for the empty list, while the infix constructor “:” is the list
constructor.

A complete Haskell program defines a single big I/O action, called main, of typeIO (). The program
is executed by performing the action. Here, for example, is aprogram that reads a complete line from the
input, reverses it, and prints it on the output:

main :: IO ()
main = getLine >>= \ cs ->

putLine (reverse cs)

We have not yet definedputLine :: [Char] -> IO (); we leave it as an exercise.

Notice that the only operation that combines, or composes I/O actions is(>>=), and it treats the world in a
single-threaded way. That is, it takes the world produced from the first action andpasses it on to the second
action. The world is never duplicated or thrown away, no matter what code the programmer writes. It is
this property that allows us to implementgetChar (and otherIO primitives) by performing the operation
right away — a sort of “update in place”. I will say more about implementation in Section 2.8.

You might worry that there is an unbounded number of possibleI/O “primitives”, such asputChar and
getChar, and you would be right. Some operations can be defined in terms of existing ones (such as
getLine) but many cannot. What is needed, of course, is a way to call arbitrary I/O libraries supplied by
the operating system, a topic I discuss in detail in Section 6.

7

2.3 “do” notation

Rather than make you write programs in the stylised form of the last section, Haskell provides a spe-
cial syntax, dubbed “thedo notation”, for monadic computations. Using thedo notation we can write
getTwoChars as follows:

getTwoChars :: IO (Char,Char)
getTwoChars = do { c1 <- getChar ;

c2 <- getChar ;
return (c1,c2)

}

You can leave out the “c <-” part when you want to throw away the result of the action:

putTwoChars :: (Char,Char) -> IO ()
putTwoChars (c1,c2) = do { putChar c1; putChar c2 }

The syntax is much more convenient than using(>>=) and lambdas, so in practice everyone usesdo
notation for I/O-intensive programs in Haskell. But it is just notation! The compiler translates thedo
notation into calls to(>>=), just as before. The translation rules are simple1:

do { x <- e; s } = e >>= \x-> do { s }
do { e; s } = e >> do { s }

do { e } = e

It follows from this translation that thedo statement “x <- e” binds the variablex. It does notassign to
the locationx, as would be the case in an imperative program. If we use the same variable name twice on
the left hand side, we bind two distinct variables. For example:

do { c <- getChar ; -- c :: Char
c <- putChar c ; -- c :: ()
return c

}

The first line bindsc to the character returned bygetChar. The second line feeds thatc to putChar
and binds adistinctc to the value returned byputChar, namely(). This example also demonstrates that
the scope ofx bound by “x <- e” does not includee.

A do expression can appear anywhere that an expression can (as long as it is correctly typed). Here, for
example, isgetLine in do notation; it uses a nesteddo expression:

getLine :: IO [Char]
getLine = do { c <- getChar ;

if c == ’\n’ then
return []

else
do { cs <- getLine ;

return (c:cs)
} }

2.4 Control structures

If monadic I/O lets us do imperative programming, what corresponds to the control structures of imperative
languages: for-loops, while-loops, and so on? In fact, we donot need to add anything further to get them:
we can build them out of functions.

1Haskell also allows alet form in do notation, but we omit that for brevity.

8

For example, after some initialisation our web server goes into an infinite loop, awaiting service requests.
We can easily express an infinite loop as a combinator:

forever :: IO () -> IO ()
forever a = a >> forever a

So(forever a) is an action that repeatsa forever; this iteration is achieved through the recursion of
forever. Suppose instead that we want to repeat a given action a specified number of times. That is, we
want a function:

repeatN :: Int -> IO a -> IO ()

So(repeatN n a) is an action that, when performed, will repeata n times. It is easy to define:

repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

Notice thatforever andrepeatN, like (>>) and(>>=), take an action as one of their arguments.
It is this ability to treat an action as a first class value thatallows us to define our own control structures.
Next, afor loop:

for :: [a] -> (a -> IO ()) -> IO ()

The idea is that(for ns fa) will apply the functionfa to each element ofns in turn, in each case
giving an action; these actions are then combined in sequence.

for [] fa = return ()
for (n:ns) fa = fa n >> for ns fa

We can usefor to print the numbers between 1 and 10, thus:

printNums = for [1..10] print

(Here, [1..10] is Haskell notation for the list of integers between 1 and 10;andprint has type
Int -> IO ().) Another way to definefor is this:

for ns fa = sequence_ (map fa ns)

Here,map appliesfa to each element ofns, giving a list of actions; thensequence_ combines these
actions together in sequence. Sosequence_ has the type

sequence_ :: [IO a] -> IO ()
sequence_ as = foldr (>>) (return ()) as

The “_” in “ sequence_” reminds us that it throws away the results of the sub-actions, returning only().
We call this function “sequence_” because it has a close cousin, with an even more beautiful type:

sequence :: [IO a] -> IO [a]

It takes a list of actions, each returning a result of typea, and glues them together into a single compound
action returning a result of type[a]. It is easily defined:

sequence [] = return []
sequence (a:as) = do { r <- a;

rs <- sequence as ;
return (r:rs) }

Notice what is happening here. Instead of having a fixed collection of control structures provided by the
language designer, we are free to invent new ones, perhaps application-specific, as the need arises. This is
an extremely powerful technique.

9

2.5 References

TheIO operations so far allow us to write programs that do input/output in strictly-sequentialised, im-
perative fashion. It is natural to ask whether we can also model another pervasive feature of imperative
languages, namely mutable variables. Taking inspiration from ML’s ref types, we can proceed like this:

data IORef a -- An abstract type
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

A value of typeIORef a is a reference to a mutable cell holding a value of typea. A new cell can be
allocated usingnewIORef, supplying an initial value. Cells can be read and written using readIORef
andwriteIORef.

Here is a small loop to compute the sum of the values between1 andn in an imperative style:

count :: Int -> IO Int
count n = do { r <- newIORef 0 ;

loop r 1 }
where

loop :: IORef Int -> Int -> IO Int
loop r i | i>n = readIORef r

| otherwise = do { v <- readIORef r ;
writeIORef r (v+i) ;
loop r (i+1) }

Just for comparison, here is what it might look like in C:

count(int n) {
int i, v = 0 ;
for (i=1; i<=n; i++) { v = v+i ; }
return(v) ;

}

But this is an absolutely terrible example! For a start, the program is much longer and clumsier than it
would be in a purely-functional style (e.g. simplysum [1..n]). Moreover, it purports to need theIO
monad but does not really require any side effects at all. Thus, theIO monad enables us to transliterate an
imperative program into Haskell, but if that’s what you wantto do, it would be better to use an imperative
language in the first place!

Nevertheless, anIORef is often useful to “track” the state of some external-world object. For example,
Haskell 98 provides a direct analogy of the Standard C library functions for opening, reading, and writing
a file:

openFile :: String -> IOMode -> IO Handle
hPutStr :: Handle -> [Char] -> IO ()
hGetLine :: Handle -> IO [Char]
hClose :: Handle -> IO ()

Now, suppose you wanted to record how many characters were read or written to a file. A convenient way
to do this is to arrange thathPutStr andhGetLine each increment a mutable variable suitably. The
IORef can be held in a modified Handle:

type HandleC = (Handle, IORef Int)

Now we can define a variant ofopenFile that creates a mutable variable as well as opening the file,
returning aHandleC; and variants ofhPutStr andhGetLine that take aHandleC and modify the
mutable variable appropriately. For example:

10

openFileC :: String -> IOMode -> IO HandleC
openFileC fn mode = do { h <- openFile fn mode ;

v <- newIORef 0 ;
return (h,v) }

hPutStrC :: HandleC -> String -> IO ()
hPutStrC (h,r) cs = do { v <- readIORef r ;

writeIORef r (v + length cs) ;
hPutStr h cs }

In this example, the mutable variable models (part of) the state of the file being written to, by tracking the
number of characters written to the file. Since the file itselfis, in effect, an external mutable variable, it is
not surprising that an internal mutable variable is appropriate to model its state.

2.6 Leaving the safety belt at home

I have been careful to introduce theIO monad as anabstract data type: that is, a type together with a
collection of operations over that type. In particular, we have:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char
putChar :: Char -> IO ()
...more operations on characters...

openFile :: [Char] -> IOMode -> IO Handle
...more operations on files...

newIORef :: a -> IO (IORef a)
...more operations on IORefs...

A key feature of an abstract data type is what itpreventsas well as what itpermits. In particular, notice the
following:

• All the operations except one,(>>=), have an I/O action as theirresult, but do not take one as an
argument.

• The only operation thatcombinesI/O actions is(>>=).

• TheIO monad is “sticky”: no operation takes argument(s) with anIO type and returns a result with
a non-IO type.

Sometimes, however, such restrictions are irksome. For example, suppose you wanted to read a configura-
tion file to get some options for your program, using code something like this:

configFileContents :: [String]
configFileContents = lines (readFile "config") -- WRONG!

useOptimisation :: Bool
useOptimisation = "optimise" ‘elem‘ configFileContents

Here,lines :: String -> [String] is a standard function that breaks a string into its constituent
lines, whileelem :: Eq a => a -> [a] -> Bool tells whether its first argument is a member of
its second argument. Alas, the code is not type correct, becausereadFile has type

readFile :: FilePath -> IO String

11

SoreadFile produces anIO String, while lines consumes aString. We can “solve” this by
giving configFileContents the typeIO String, anduseOptimisation the typeIO Bool,
plus some changes to the code. But that means we can only testuseOptimisation when we are in
theIO monad2, which would be very inconvenient! What we want is a way to getfrom IO String to
String, but that is the very thing we cannot do in theIO monad!

There is a good reason for this: reading a file is an I/O action,so in principle it matterswhenwe read the
file, relative to all the other I/O operations in the program.But in this case, we are confident that the file
config will not change during the program run, so it really doesn’t matter when we read it. This sort of
thing happens often enough that all Haskell implementations offer one more, unsafe, I/O primitive:

unsafePerformIO :: IO a -> a

Now we can write

configFileContents :: [String]
configFileContents = lines (unsafePerformIO (readFile "config"))

and all is well. This combinator has a deliberately long name! Whenever you use it, you are promising the
compiler that the timing of this I/O operation, relative to all the other I/O operations of the program, does
not matter. You must undertake this proof obligation, because the compiler cannot do it for you; that is
what the “unsafe” prefix means. Just to make the point even clearer, here is the“plumbing diagram” for
unsafePerformIO:

act

Discard world

Invent
world

unsafePerformIO act

Result

As you can see, we have to invent a world out of thin air, and then discard it afterwards.

unsafePerformIO is a dangerous weapon, and I advise you against using it extensively.
unsafePerformIO is best regarded as a tool for systems programmers and library writers, rather than
for casual programmers. Because the input/output it encapsulates can happen at unpredictable moments
(or even not at all) you need to know what you are doing. What isless obvious is that you can also use it to
defeat the Haskell type, by writing a functioncast :: a -> b; see [25]!

unsafePerformIO is often mis-used to force an imperative program into a purely-functional setting.
This a bit like using a using a chain saw to repair a dishwasher— it’s the wrong tool for the job. Such
programs can invariably be restructured into a cleaner, functional form. Nevertheless, when the proof
obligations are satisfied,unsafePerformIO can be extremely useful. In practice, I have encountered
three very common patterns of usage:

• Performing once-per-run input/output, as forconfigFileContents.

• Allocating a global mutable variable. For example:

noOfOpenFiles :: IORef Int
noOfOpenFiles = unsafePerformIO (newIORef 0)

• Emitting trace messages for debugging purposes:

2We would also need to be careful not to read the file every time we tested the boolean!

12

trace :: String -> a -> a
trace s x = unsafePerformIO (putStrLn s >> return x)

2.7 A quick review

Let us summarise what we have learned so far:

• A complete Haskell program is a single (perhaps large) I/O action calledmain.

• Big I/O actions are built by gluing together smaller actionsusing(>>=) andreturn.

• An I/O action is a first-class value. It can be passed to a function as an argument, or returned as the
result of a function call (consider(>>), for example). Similarly, it can be stored in a data structure
— consider the argument tosequence, for example.

• The fact that I/O actions can be passed around so freely makesit easy to define new “glue” combi-
nators in terms of existing ones.

Monads were originally invented in a branch of mathematics called category theory, which is increasingly
being applied to describe the semantics of programming languages. Eugenio Moggi first identified the
usefulness of monads to describe composable “computations” [32]. Moggi’s work, while brilliant, is not
for the faint hearted. For practical programmers the breakthrough came in Phil Wadler’s paper “Compre-
hending monads” [47], in which he described the usefulness of monads in a programming context. Wadler
wrote several more very readable papers about monads, whichI highly recommend [48, 49, 50]. He and I
built directly on this work to write the first paper about monadic I/O [38].

In general, amonadis a triple of a type constructorM , and two functions,return and>>=, with types

return :: ∀α. α → M α
>>= :: ∀αβ. M α → (α → M β) → M β

That is not quite all: these three must satisfy the followingalgebraic laws:

return x >>= f = f x (LUNIT)

m >>= return = m (RUNIT)

x does not appear free inm3

m1 >>= (λx.m2 >>= (λy.m3)) = (m1 >>= (λx.m2)) >>= (λy.m3)
(BIND)

(In this box and ones like it, I use names like (LUNIT) simply as a convenient way to refer to laws from the
running text.) The last of these rules, (BIND), is much easier to understand when written indo notation:

do { x <- m1;
y <- m2;
m3

=
do { y <- do { x <- m1;

m2}
m3}

In any correct implementation of theIO monad,return and(>>=) should satisfy these properties. In
these notes I present only one monad, theIO monad, but a single program may make use of many different
monads, each with its own type constructor,return andbind operators. Haskell’s type class mechanism
allows one to overload the functionsreturn and(>>=) so they can be used in any monad, and thedo
notation can likewise be used for any monad. Wadler’s papers, cited above, give many examples of other
monads, but we do not have space to pursue that topic here.

13

2.8 Implementation notes

How difficult is it for a compiler-writer to implement theIO monad? There seem to be two main alterna-
tives.

Keep the monad right through. The first technique carries theIO monad right through the compiler to
the code generator. Most functional-language compilers translate the source program to an interme-
diate form based closely on the lambda calculus, apply optimising transformations to that interme-
diate form, and then generate code. It is entirely possible to extend the intermediate form by adding
monadic constructs. One could simply add(>>=) andreturn as primitives, but it makes trans-
formation much easier if one adds thedo-notation directly, instead of a primitive(>>=) function.
(Compare the two forms of the (BIND) rule given in the previous section.) This is the approach taken
by Benton and Kennedy in MLj, their implementation of ML [6].

The functional encoding. The second approach, and the one used in the Glasgow Haskell Compiler
(GHC), is to adopt the functional viewpoint of theIO monad, which formed the basis of our earlier
pictorial descriptions:

type IO a = World -> (a, World)

If we represent the “world” argument by an un-forgeable token, of typeWorld, then we can directly
implementreturn and(>>=) like this:

return :: a -> IO a
return a = \w -> (a,w)

(>>=) :: IO a -> (a -> IO b) -> IO b
(>>=) m k = \w -> case m w of

(r,w’) -> k r w’

Herew is the un-forgeable token that stands for the world. In the definition of (>>=) we see that
the world returned by the first action is passed to the second,just as in the picture in Section 2.2. We
must also implement the primitiveIO operations, such asgetChar, but that is now no different to
implementing other primitive operations, such as additionof two integers.

So which of these two approaches is better? Keeping theIO monad explicit is principled, but it means that
every optimisation pass must deal explicitly with the new constructs. GHC’s approach is more economical.
For example, the three laws in Section 2.7, regarded as optimisations, are simple consequences and need
no special attention. All the same, I have to say that I think the GHC approach is a bit of a hack. Why?
Because it relies for its correctness on the fact that the compiler never duplicates a redex. Consider this
expression:

getChar >>= \c -> (putChar c >> putChar c)

If we use GHC’s definitions of(>>=) we can translate this to:

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar c w2

The compiler would be entirely justified in replacing this code with:

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar (fst (getChar w)) w2

14

Here I have replaced the second use ofc with another call togetChar w. Two bad things have hap-
pened: first, the incoming world token,w, has been duplicated; and second, there will now be two calls
to getChar instead of one. If this happens, our assumption of single-threadedness no longer holds, and
neither does our efficient “update-in-place” implementation ofgetChar. Catastrophe!

In the functional language Clean, the whole I/O system is built on an explicit world-passing style. The
single-threadedness of the world is ensured by Clean’s uniqueness-type system, which verifies that values
which should be single-threaded (notably the world) are indeed used in single threaded way [4]. In Haskell,
theIO monad maintains the world’s single-threadedness by construction; so the programmer cannot err,
but it is in principle possible for the compiler to do so.

In practice, GHC is careful never to duplicate an expressionwhose duplication might give rise to extra
work (a redex), so it will never duplicate the call togetChar in this way. Indeed, Ariola and Sabry have
shown formally that if the compiler never duplicates redexes, then indeed our implementation strategy is
safe [2]. So GHC’s approach is sound, but it is uncomfortablethat an apparently semantics-preserving
transformation, such as that above, does not preserve the semantics at all. This observation leads us neatly
to the next question I want to discuss, namely how to give a semantics to the Awkward Squad.

3 What does it all mean?

It is always a good thing to give a precise semantics to a language feature. How, then, can we give a
semantics for theIO monad? In this section I will describe the best way I know to answer this question. I
will introduce notation as we go, so you should not need any prior experience of operational semantics to
understand this section. You can also safely skip to Section4. Nevertheless, I urge to persevere, because I
will use the same formal framework later, to explain the semantics of concurrency and exceptions.

3.1 A denotational semantics?

One approach to semantics is to take the functional viewpoint I described earlier:

type IO a = World -> (a, World)

In this view, the meaning of an action is just a function. One can make this story work, but it is a bit
unsatisfactory:

• Regarded as a function onWorlds, this program

loop :: IO ()
loop = loop

has denotation bottom (⊥). But, alas, this program

loopX :: IO ()
loopX = putChar ’x’ >> loopX

unfortunately also has denotation⊥. Yet these programs would be regarded as highly distinguishable
by a user (one loops for ever, the other prints’x’ for ever). Nor is the problem restricted to erroneous
programs: some programs (server processes, for example) may bedesignedto run essentially forever,
and it seems wrong to say that their meaning is simply⊥!

• Consider two Haskell programs running in parallel, each sending output to the other — a Web server
and a Web browser, for example. The output of each must form part of theWorld given as the input
to the other. Maybe it would be possible to deal with this through a fixpoint operator, but it seems
complicated and un-intuitive (to me anyway!).

15

x, y ∈ Variable

k ∈ Constant

con ∈ Constructor

c ∈ Char

Values V ::= \x->M | k | con M1 · · · Mn | c
| return M | M >>=N
| putChar c | getChar

Terms M, N, H ::= x | V | M N | if M then N1 else N2 | · · ·

Evaluation contexts E ::= [·] | E>>=M

Figure 2: The syntax of values and terms.

• The approach does not scale well when we add concurrency, which we will do in Section 4.

These problems may be soluble while remaining in a denotational framework, perhaps by producing a
sequence ofWorlds, or by returning a set oftracesrather than a newWorld. To give the idea of the trace
approach, we modelIO like this:

type IO a = (a, Set Trace)
type Trace = [Event]
data Event = PutChar Char | GetChar Char | ...

A program that reads one character, and echoes it back to the screen, would have semantics

((), { [GetChar ’a’, PutChar ’a’],
[GetChar ’b’, PutChar ’b’],
[GetChar ’c’, PutChar ’c’],
... })

We return asetof traces, because the trace contains details ofinputsas well asoutputs, so there must be a
trace for each possible input. The set of traces describes all the behaviours the program can have, and no
others. For example[GetChar ’x’, PutChar ’y’] is excluded.

This approach is used to give the semantics of CSP by Roscoe [42]. However we will instead adopt an
operationalsemantics, based on standard approaches to the semantics ofprocess calculi [31]. Ultimately,
I think the two approaches have similar power, but I find the operational approach simpler and easier to
understand.

3.2 An operational semantics

Our semantics is stratified in two levels: aninner denotational semanticsthat describes the behaviour of
pure terms, while anouter monadic transition semanticsdescribes the behaviour ofIO computations. We
consider a simplified version of Haskell: our language has the usual features of a lazy functional language
(lambda abstraction, application, data structures, case expressions,etc.), augmented with constants cor-
responding toIO operations. We will only present those elements of the syntax that are relevant to the
semantics; other aspects (such as how we represent lists, orhow to write a case expression) would not aid
comprehension of the semantics, and are not presented.

M andN range overtermsin our language, andV ranges over values (Figure 2). Avalueis a term that
is considered by the inner, purely-functional semantics tobe evaluated. The values in Figure 2 include
constants and lambda abstractions, as usual, but they are unusual in two ways:

16

• We treat the primitive monadicIO operations as values. For example,putChar ’c’ is a value. No
further work can be done on this term in the purely-functional world; it is time to hand it over to the
outer, monadic semantics. In the same way,M >>=N , getChar, andreturnM are all values.

• Some of these monadicIO values have arguments that are not arbitrary terms (M, N , etc.), but
are themselves values (e.g.c). The only example in Figure 2 is the valueputChar c but others
will appear later. SoputChar ’A’ is a value, butputChar (chr 65) is not (it is a term,
though). It is as ifputChar is astrict data constructor. The reason for this choice is that evaluating
putChar’s argument is something that can be done in the purely-functional world; indeed, itmust
be done before the output operation can take place.

We will give the semantics by describing how oneprogram stateevolves into a new program state by
making atransition. For now, we model a program state simply as a term, but we write it in curly braces,
thus{M}, to remind us that it is a program state.

3.3 Labelled transitions

The transition from one program state to the next may or may not be labelledby anevent, α. So we write
a transition like this:

P
α
−→ Q

The eventsα represent communication with the external environment; that is, input and output. Initially
we will use just two events:

• P
!c

−−→ Q means “program stateP can move toQ, by writing the characterc to the standard
output”.

• P
?c

−−→ Q means “program stateP can move toQ, by reading the characterc from the standard
input”.

Here, then, are our first two transition rules.

{putChar c}
!c

−−→ {return ()}

{getChar}
?c

−−→ {return c}

The first rule says that a program consisting only ofputChar c can make a transition, labelled by!c, to
a program consisting ofreturn (). The second rule is similar. But most programs consist of more than
a single I/O action! What are we to do then? To answer that question we introduceevaluation contexts.

3.4 Evaluation contexts

The getChar transition rule is all very well, but what if the program consists of more than a single
getChar? For example, consider the program3:

main = getChar >>= \c -> putChar (toUpper c)

Which is the first I/O action that should be performed? ThegetChar, of course! We need a way to say
“the first I/O action to perform is to the left of the(>>=)”. Sometimes we may have to look to the left of
more than one(>>=). Consider the slightly artificial program

main = (getChar >>= \c -> getChar) >>= \d -> return ()

3toUpper :: Char -> Char converts a lower-case character to upper case, and leaves other characters unchanged.

17

{E[putChar c]}
!c

−−→ {E[return ()]} (PUTC)

{E[getChar]}
?c

−−→ {E[return c]} (GETC)

{E[returnN >>=M]} −→ {E[M N]} (LUNIT)

E [[M]] = V M 6≡ V

{E[M]} −→ {E[V]}
(FUN)

Figure 3: The basic transition rules

Here, the first I/O action to be performed is the leftmostgetChar. In general, to find the first I/O action
we “look down the left branch of the tree of(>>=) nodes”.

We can formalise all this arm-waving by using the now well-established notion of anevaluation context
[9, 52]. The syntax of evaluation contexts is this (Figure 2):E ::= [·] | E>>=M

An evaluation contextE is a term with a hole, written[·], in it. For example, here are three possible
evaluation contexts: E1 = [·]E2 = [·] >>= (\c -> return (ord c))E3 = ([·] >>= f) >>= g

In each case the “[·]” indicates the location of the hole in the expression. We write E[M] to denote the
result of filling the hole inE with the termM . Here are various ways of filling the holes in our examples:E1[print "hello"] = print "hello"E2[getChar] = getChar >>= (\c -> return (ord c))E3[newIORef True] = (newIORef True >>= f) >>= g

Using the notation of evaluation contexts, we can give the real rules forputChar andgetChar, in Figure
3. In general we will give each transition rule in a figure, andgive it a name — such as (PUTC) and (GETC)
— for easy reference.

The rule for (PUTC), for example, should be read: “if aputChar occurs as the next I/O action, in a
contextE[·], the program can make a transition, emitting a character andreplacing the call toputChar by
return ()”. This holds for any evaluation contextE[·].

Let us see how to make transitions using our example program:

main = getChar >>= \c -> putChar (toUpper c)

Using rule (GETC) and the evaluation context([·] >>= \c -> putChar (toUpper c)), and as-
suming that the environment delivers the character’w’ in response to thegetChar, we can make the
transition:

{getChar >>= \c -> putChar (toUpper c)}
?’w’
−−−−→

{return ’w’ >>= \c -> putChar (toUpper c)}

How did we choose the correct evaluation context? The best way to see is to try choosing another one!
The context we chose is the only one formed by the syntax in Figure 2 that allows any transition rule
to fire. For example the context[·], which is certainly well-formed, would force the term in thehole to
begetChar >>= \c -> putChar (toUpper c), and no rule matches that. The context simply
reaches down the left-branching chain of(>>=) combinators to reach the left-most action that is ready to
execute.

18

What next? We use the (LUNIT) law of Section 2.7, expressed asa new transition rule:

{E[returnN >>=M]} −→ {E[M N]} (LUNIT)

Using this rule, we make the transition

{return ’w’ >>= \c -> putChar (toUpper c)}
−→

{(\c -> putChar (toUpper c)) ’w’}

Now we need to do some ordinary, purely-functional evaluation work. We express this by “lifting” the
inner denotational semantics into our transition system, like this (the “(FUN)” stands for “functional”):

E [[M]] = V M 6≡ V

{E[M]} −→ {E[V]}
(FUN)

That is, if the termM has valueV , as computed by the denotational semantics ofM , namelyE [[M]], then
we can replaceM by V at the active site. The functionE [[]] is a mathematical function that given a termM ,
returns its valueE [[M]]. This function defines the semantics of thepurely-functionalpart of the language –
indeed,E [[]] is called thedenotational semanticsof the language. Denotational semantics is well described
in many books [43, 1], so we will not study it here; meanwhile,you can simply think ofE [[M]] as the value
obtained by evaluatingM4.

The side conditionM 6≡ V is just there to prevent the rule firing repeatedly without making progress,
becauseE [[V]] = V for anyV . Rule (FUN) allows us to make the following transition, using normal beta
reduction:

{(\c -> putChar (toUpper c)) ’w’} −→ {putChar ’W’}

In making this transition, notice thatE [[]] produced the valueputChar ’W’, and not
putChar (toUpper ’w’). As we discussed towards the end of Section 3.2, we modelputChar as
a strict constructor.

Now we can use theputChar rule to emit the character:

{putChar ’W’}
!’W’
−−−−→ {return ()}

And now the program is finished.

Referring back to the difficulties identified in Section 3.1,we can now distinguish a programloop that
simply loops forever, from programloopX that repeatedly prints’x’ forever. These programs both have
denotation⊥ in a (simple) denotational semantics (Section 3.1), but they have different behaviours in our
operational semantics.loopX will repeatedly make a transition with the label!x. But what happens to
loop? To put it another way, what happens in rule (FUN) ifE [[M]] = ⊥? The simplest thing to say is
that then there is no valueV such thatE [[M]] = V , and so (FUN) cannot fire. So no rule applies, and the
program is stuck. This constitutes an observably differentsequence of transitions thanloopX5.

Lastly, before we leave the topic of evaluation contexts, let us note that the termM in rule (FUN) always
has typeIO τ for some typeτ ; that is, an evaluation contextE[·] always has an I/O action in its hole. (Why?
Because the hole in an evaluation context is either the wholeprogram, of typeIO (), or the left argument
of a (>>=), of typeIO τ for someτ .) So there is no need to explain how the program (say){True}
behaves, because it is ill-typed.

4I am being a bit sloppy here, because a denotational semantics yields a mathematical value, not a term in the original language,
but in fact nothing important is being swept under the carpethere. From a technical point of view it may well be simpler, inthe end,
to adopt an operational semantics for the inner purely-functional part too, but that would be a distraction here. Notice, too, that the
valuation function of a denotational semantics would usually have an environment,ρ. But the rule (FUN) only requires the value of a
closed term, so the environment is empty.

5By “observable” I mean “observablelooking only at the labelled transitions”; the labelled transitions constitute the interaction
of the program with its environment. You may argue that we should not say thatloop gets “stuck” when actually it is in an infinite
loop. For example, the programforever (return ()) is also an infinite loop with no external interactions, and itmakes an
infinite sequence of (unlabelled) transitions. If you prefer, one can instead add a variant of (FUN) that makes an un-labelled transition
to an unchanged state ifE[[M]] = ⊥. Thenloop would also make an infinite sequence of un-labelled transitions. It’s just a matter
of taste.

19

r ∈ IORef

V ::= . . . | writeIORef r N | readIORef r | newIORefM | r

P, Q, R ::= {M} The main program
| 〈M〉r An IORef namedr, holdingM
| P | Q Parallel composition
| νx.P Restriction

{E[readIORef r]} | 〈M〉r −→ {E[returnM]} | 〈M〉r (READIO)
{E[writeIORef r N]} | 〈M〉r −→ {E[return ()]} | 〈N〉r (WRITEIO)

r 6∈ fn (E, M)

{E[newIORefM]} −→ νr.({E[return r]} | 〈M〉r)
(NEWIO)

Figure 4: Extensions forIORefs

3.5 Dealing withIORefs

Let us now addIORefs to our operational semantics. The modifications we need are given in Figure 4:

• We add a new sort ofvalue for eachIORef primitive; namelynewIORef, readIORef, and
writeIORef.

• We add a new sort of value forIORef identifiers,r. An IORef identifier is the value returned by
newIORef — you can think of it as the address of the mutable cell.

• We extend a program state to be a main thread{M}, as before, together with zero or moreIORefs,
each associated with a reference identifierr.

The syntax for program states in Figure 4 might initially be surprising. We use a vertical bar to join the
main thread and theIORefs into a program state. For example, here is a program state for a program that
has (so far) allocated twoIORefs, calledr1 andr2 respectively:

{M} | 〈N1〉r1
| 〈N2〉r2

If you like, you can think of running the (active) programM in parallel with two (passive) containersr1

andr2, containingN1 andN2 respectively.

Here is the rule fornewIORef, which creates a new reference cell:

r 6∈ fn (E, M)

{E[newIORefM]} −→ νr.({E[return r]} | 〈M〉r)
(NEWIO)

If the next I/O action in the main program is to create a newIORef, then it makes a transition to a new
state in which the main program is in parallel with a newly-created (and suitably initialised)IORef named
r. What isr? It is an arbitrary name whose only constraint is that it mustnot already be used inM , or in
the evaluation contextE. That is what the side conditionr 6∈ fn (E, M) means —fn (E, M) means “the
free names ofE andM ”.

The new formνr.P , shown in the syntax of programs in Figure 4, means “letr be the name of a reference
cell, in program stateP ”. The ν is the binding for all the occurrences ofr in P — it’s always a good thing
to know where a variable is bound. Another way to understand the side conditionr 6∈ fn (E, M) is this: if
the side condition did not hold, then the old occurrences ofr in (say)M would erroneously be captured by
theν.

20

P | Q ≡ Q | P (COMM)
P | (Q | R) ≡ (P | Q) | R (ASSOC)

νx.νy.P ≡ νy.νx.P (SWAP)
(νx.P) | Q ≡ νx.(P | Q), x /∈ fn (Q) (EXTRUDE)

νx.P ≡ νy.P [y/x], y /∈ fn (P) (ALPHA)

P
α
−→ Q

P | R
α
−→ Q | R

(PAR)
P

α
−→ Q

νx.P
α
−→ νx.Q

(NU)

P ≡ P ′ P ′
α
−→ Q′ Q′ ≡ Q

P
α
−→ Q

(EQUIV)

Figure 5: Structural congruence, and structural transitions.

Here are the rules for reading and writingIORefs:

{E[readIORef r]} | 〈M〉r −→ {E[returnM]} | 〈M〉r (READIO)
{E[writeIORef r N]} | 〈M〉r −→ {E[return ()]} | 〈N〉r (WRITEIO)

The rule forreadIORef says that if the next I/O action in the main program isreadIORef r, and the
main program is parallel with anIORef namedr containingM , then the actionreadIORef r can be
replaced byreturn M 6. This transition is quite similar to that forgetChar, except that the transition
is unlabelled because it is internal to the program — remember that only labelled transitions represent
interaction with the external environment.

We have several tiresome details to fix up. First, we originally said that the transitions were for whole
program states, but these two are for onlypart of a program state; there might be otherIORefs, for
example. Second, what if the main program was not adjacent tothe relevantIORef? We want to say
somehow that it can become adjacent to whicheverIORef it pleases. To formalise these matters we have
to give several “structural” rules, given in Figure 5. Rule (PAR), for example, says that ifP can move
to Q, thenP in parallel with anything (R) can move toQ in parallel with the same anything — in short,
non-participating pieces of the program state are unaffected. The equivalence rules (COMM), (ASSOC)
say that | is associative and commutative, while (EQUIV) says that we are free to use these equivalence
rules to bring parts of the program state together. In these rules, we takeα to range over both events, such
as!c and?c, and also over the empty label. (In the literature, you will often see the empty event written
τ .) Finally, (SWAP), (EXTRUDE), and (ALPHA) allow you to moveν’s around so that they don’t get in
the way.

It’s all a formal game. If you read papers about operational semantics you will see these rules over and over
again, so it’s worth becoming comfortable with them. They aren’t optional though; if you want to conduct
water-tight proofs about what can happen, it’s important tospecify the whole system in a formal way.

Here is an example of working through the semantics for the following program:

main = newIORef 0 >>= \ v ->
readIORef v >>= \ n ->
writeIORef v (n+1)

The program allocates a newIORef, reads it, increments its contents and writes back the new value. The
semantics works like this, where I have saved space by abbreviating “newIORef” to “new” and similarly
for readIORef andwriteIORef:

6The alert reader will notice that (READIO) duplicates the term M , and hence modelscall-by-namerather thatcall-by-need. It
is straightforward to model call-by-need, by adding aheapto the operational semantics, as Launchbury first showed [24]. However,
doing so adds extra notational clutter that is nothing do to with the main point of this tutorial. In this tutorial I take the simpler path
of modelling call-by-name.

21

{new 0 >>= \v -> read v >>= \n -> write v (n+1)}
−→ νr.({return r >>= \v -> read v >>= \n -> write v (n+1)} | 〈0〉r) (NEWIO)
−→ νr.({(\v -> read v >>= \n -> write v (n+1)) r} | 〈0〉r) (LUNIT)
−→ νr.({read r >>= \n -> write r (n+1))} | 〈0〉r) (FUN)
−→ νr.({return 0 >>= \n -> write r (n+1))} | 〈0〉r) (READIO)
−→ νr.({(\n -> write r (n+1)) 0} | 〈0〉r) (LUNIT)
−→ νr.({write r (0+1))} | 〈0〉r) (FUN)
−→ νr.({return ()} | 〈0+1〉r) (WRITEIO)

It should be clear that naming a newIORef with a name that is already in use would be a Bad Thing. That
is the reason for the side condition on rule (NEWIO) says thatr cannot be mentioned inE or M . But what
if r was in use somewhereelsein the program state — remember that there may be other threads running
in parallel with the one we are considering? That is the purpose of the “νr” part: it restricts the scope ofr.
Having introducedν in this way, we need a number of structural rules (Figure 5) tolet us moveν around.
Notably, (EXTRUDE) lets us move all theν’s to the outside. Before we can use (EXTRUDE), though, we
may need to use (ALPHA) to change our mind about the name we chose if we come across a name-clash.
Once all theν’s are at the outside, they don’t get in the way at all.

4 Concurrency

A web server works by listening for connection requests on a particular socket. When it receives a request,
it establishes a connection and engages in a bi-directionalconversation with the client. Early versions of
the HTTP protocol limited this conversation to one utterance in each direction (“please send me this page”;
“ok, here it is”), but more recent versions of HTTP allow multiple exchanges to take place, and that is what
we do here.

If a web server is to service multiple clients, it must deal concurrently with each client. It is simply not
acceptable to deal with clients one at a time. The obvious thing to do is to fork a newthreadof some kind
for each new client. The server therefore must be aconcurrentHaskell program.

I make a sharp distinction betweenparallelismandconcurrency:

• A parallel functional program uses multiple processors to gain performance. For example, it may be
faster to evaluatee1 +e2 by evaluatinge1 ande2 in parallel, and then add the results. Parallelism has
no semantic impact at all: the meaning of a program is unchanged whether it is executed sequentially
or in parallel. Furthermore, the results are deterministic; there is no possibility that a parallel program
will give one result in one run and a different result in a different run.

• In contrast, aconcurrentprogram has concurrency as part of its specification. The program must
run concurrent threads, each of which can independently perform input/output. The program may
be run on many processors, or on one — that is an implementation choice. The behaviour of the
program is, necessarily and by design, non-deterministic.Hence, unlike parallelism, concurrency
has a substantial semantic impact.

Of these two, my focus in these notes is exclusively on concurrency, not parallelism. For those who are
interested, a good introduction to parallel functional programming is [46], while a recent book gives a
comprehensive coverage [12].

Concurrent Haskell [35] is an extension to Haskell 98 designed to support concurrent programming, and
we turn next to its design.

22

4.1 Threads andforkIO

Here is the main loop of the web server:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket

= forever (do { conn <- accept socket ;
forkIO (serviceConn config conn) })

(We definedforever in Section 2.4.) This infinite loop repeatedly callsaccept, a Haskell function that
calls the Unix procedure of the same name (via mechanisms we will discuss in Section 6), to accept a new
connection.accept returns, as part of its result, aHandle that can be used to communicate with the
client.

accept :: Socket -> IO Connection

type Connection = (Handle, -- Read from here
SockAddr) -- Peer details

Having established a connection,acceptConnections then usesforkIO to fork off a fresh thread,
(serviceConn config conn), to service that connection. The type offorkIO is this:

forkIO :: IO a -> IO ThreadId

It takes an I/O action and arranges to run it concurrently with the “parent” thread. The call toforkIO
returns immediately, returning as its result an identifier for the forked thread. We will see in Section 5.3
what thisThreadId can be used for.

Notice that the forked thread doesn’t need to be passed any parameters, as is common in C threads packages.
The forked action is a full closure that captures the values of its free variables. In this case, the forked action
is (serviceConn config conn), which obviously captures the free variablesconfig andconn.

A thread may go to sleep for a specified number of microsecondsby callingthreadDelay:

threadDelay :: Int -> IO ()

forkIO is dangerous in a similar way thatunsafePerformIO is dangerous (Section 2.6). I/O actions
performed in the parent thread may interleave in an arbitrary fashion with I/O actions performed in the
forked thread. Sometimes that is fine (e.g. the threads are painting different windows on the screen), but
at other times we want the threads to co-operate more closely. To support such co-operation we need a
synchronisation mechanism, which is what we discuss next.

4.2 Communication andMVars

Suppose we want to add some sort of throttling mechanism, so that when there are more than N threads
running the server does something different (e.g. stops accepting new connections or something). To
implement this we need to keep track of the total number of (active) forked threads. How can we do this?
The obvious solution is to have a counter that the forked thread increments when it begins, and decrements
when it is done. But we must of course be careful! If there are lots of threads all hitting on the same counter
we must make sure that we don’t get race hazards. The increments and decrements must be indivisible.

To this end, Concurrent Haskell supports a synchronised version of anIORef called anMVar:

data MVar a -- Abstract
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

Like anIORef, anMVar is (a reference to) a mutable location that either can contain a value of typea,

23

or can instead be empty. Like newIORef, newEmptyMVar creates anMVar but, unlike anIORef, the
MVar is created empty.

putMVar fills an emptyMVar with a value, andtakeMVar takes the contents of anMVar out, leaving it
empty. If it was empty in the first place, the call totakeMVar blocks until another thread fills it by calling
putMVar. A call toputMVar on anMVar that is already full blocks until theMVar becomes empty7.

With the aid ofMVars it is easy to implement our counter:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket

= do { count <- newEmptyMVar ;
putMVar count 0 ;
forever (do { conn <- accept socket ;

forkIO (do { inc count ;
serviceConn config conn ;
dec count})

}) }

inc,dec :: MVar Int -> IO ()
inc count = do { v <- takeMVar count; putMVar count (v+1) }
dec count = do { v <- takeMVar count; putMVar count (v-1) }

Presumably there would also be some extra code inacceptConnections to inspect the value of the
counter, and take some action if it gets too large.

The update of the counter, performed byinc anddec is indivisible because, during the brief moment
while inc has read the counter but not yet written it back, the counter location is empty. So any other
thread that tries to useinc or dec at that moment will simply block.

4.3 Semantics

One of the advantages of the operational semantics we set up in Section 3 is that it can readily be extended
to support concurrency andMVars. The necessary extensions are given in Figure 6:

• We add new values to represent (a) each new primitiveIO operation; (b) the name of anMVar m,
and a threadt; (c) the integer argument of athreadDelay, d.

• We extend program states by adding a form for anMVar, both in the full state〈M〉m, and in the
empty state〈〉m; and a form for a named thread{M}t.

• We provide transition rules for the new primitives.

Rules (FORK) and (NEWM) work in a very similar way as the (NEWIO) rule that we described in Sec-
tion 3.5. In particular, they useν in an identical fashion to control the new names that are required. Rules
(PUTM) and (TAKEM) are similar to (WRITEIO) and (READIO), except that (TAKEM) leaves theMVar
empty, while (PUTM) fills it.

For the first time, the semantics of the program has become non-deterministic. If there are two threads
both of which want to take the contents of anMVar, the semantics leaves deliberately unspecified which
one “wins”. Once it has emptied theMVar with rule (TAKEM), however, the other thread can make no
progress until some other thread fills it.

The rule (DELAY) deals withthreadDelay. To express the delay, I have invented an extra event$d,
which means “d microseconds elapse”. Recall that an event indicates interaction with the external world

7This represents a change from an earlier version of Concurrent Haskell, in whichputMVar on a fullMVar was a program error.

24

m ∈ MVar
t ∈ ThreadId
d ∈ Integer

V ::= . . .forkIOM | threadDelay d | t | d
| putMVar m N | takeMVarm | newEmptyMVar | m

P, Q, R ::= . . .
| {M}t A thread calledt
| 〈M〉m An MVar calledm containingM
| 〈〉m An emptyMVar calledm

u 6∈ fn (M,E)

{E[forkIOM]}t −→ νu.({E[return u]}t | {M}u)
(FORK)

m 6∈ fn (E)

{E[newEmptyMVar]}t −→ νm.({E[returnm]}t | 〈〉m)
(NEWM)

{E[takeMVarm]}t | 〈M〉m −→ {E[returnM]}t | 〈〉m (TAKEM)
{E[putMVarm M]}t | 〈〉m −→ {E[return ()]}t | 〈M〉m (PUTM)

{E[threadDelay d]}t

$d
−→ {E[return ()]}t (DELAY)

Figure 6: Extensions to support concurrency

(Section 3.3), so I am modelling a delay as an interaction with an external clock. This is not very satis-
factory (e.g. I/O events are presumably queued up, but clockticks should not be), but it gives the general
idea.

Notice that there is no explicit rule for “blocking” a threadwhen it tries to take the contents of anMVar
that is empty. All that happens is that there is no valid transition rule involving that thread, so it stays
unchanged in the program state until theMVar it is trying to take is filled.

4.4 Channels

The thread created byforkIO and its parent thread can each independently perform input and output. We
can think of the state of the world as a shared, mutable object, and race conditions can, of course, arise. For
example, if two threads are foolish enough to write to the same file, say, bad things are likely to happen.

But what if wewant to have two threads write to the same file, somehow merging their writes, at some
suitable level of granularity? Precisely this behaviour isneeded in our web server, because we want to log
errors found by the client-service threads to a single error-log file. The simplest thing to do is to create a
single thread whose business is to write to the error-log file; to log an error, a client-service thread need
only send a message to the error-logging thread. But we have just pushed the problem to a different place:
what does it mean to “send a message”?

UsingMVars we can define a new type of buffered channels, which we will implement in this section:

type Channel a = ...given later...
newChan :: IO (Channel a)
putChan :: Channel a -> a -> IO ()

25

Second value Third valueFirst value

Item Item Item

Channel

Read end Write end

Figure 7: A channel with unbounded buffering

getChan :: Channel a -> IO a

A Channel permits multiple processes to write to it, and read from it, safely. The error-logging thread
can now repeatedly dogetChan, and write the value it receives into the file; meanwhile a client-service
thread wanting to log an error can useputChan to send the error message to the error logger.

One possible implementation ofChannel is illustrated in Figure 7. The channel is represented by a pair
of MVars (drawn as small boxes with thick borders), that hold the read end and write end of the buffer:

type Channel a = (MVar (Stream a), -- Read end
MVar (Stream a)) -- Write end (the hole)

TheMVars in aChannel are required so that channel put and get operations can atomically modify the
write and read end of the channels respectively. The data in the buffer is held in aStream; that is, an
MVar which is either empty (in which case there is no data in theStream), or holds anItem (a data type
we will define shortly):

type Stream a = MVar (Item a)

An Item is just a pair of the first element of theStream together with aStream holding the rest of the
data:

data Item a = MkItem a (Stream a)

A Stream can therefore be thought of as a list, consisting of alternatingItems and fullMVars, terminated
with a “hole” consisting of an emptyMVar. The write end of the channel points to this hole.

Creating a new channel is now just a matter of creating the read and writeMVars, plus one (empty)MVar
for the stream itself:

newChan = do { read <- newEmptyMVar ;
write <- newEmptyMVar ;
hole <- newEmptyMVar ;
putMVar read hole ;
putMVar write hole ;
return (read,write) }

26

Putting into the channel entails creating a new emptyStream to become the hole, extracting the old hole
and replacing it with the new hole, and then putting anItem in the old hole.

putChan (read,write) val
= do { new_hole <- newEmptyMVar ;

old_hole <- takeMVar write ;
putMVar write new_hole ;
putMVar old_hole (MkItem val new_hole) }

Getting an item from the channel is similar. In the code that follows, notice thatgetChan may block at
the secondtakeMVar if the channel is empty, until some other process does aputChan.

getChan (read,write)
= do { head_var <- takeMVar read ;

MkItem val new_head <- takeMVar head_var ;
putMVar read new_head ;
return val }

It is worth noting that any number of processes can safely write into the channel and read from it. The
values written will be merged in (non-deterministic, scheduling-dependent) arrival order, and each value
read will go to exactly one process.

Other variants are readily programmed. For example, consider a multi-cast channel, in which there are
multiple readers, each of which should see all the values written to the channel. All that is required is to
add a new operation:

dupChan :: Channel a -> IO (Channel a)

The idea is that the channel returned bydupChan can be read independently of the original, and sees all
(and only) the data written to the channel after thedupChan call. The implementation is simple, since it
amounts to setting up a separate read pointer, initialised to the current write pointer:

dupChan (read,write)
= do { new_read <- newEmptyMVar ;

hole <- readMVar write ;
putMVar new_read hole ;
return (new_read, write) }

To make the code clearer, I have used an auxiliary function,readMVar, which reads the value of anMVar,
but leaves it full:

readMVar :: MVar a -> IO a
readMVar var = do { val <- takeMVar var ;

putMVar var val ;
return val }

But watch out! We need to modifygetChan as well. In particular, we must change the call
“takeMVar head_var” to “readMVar head_var”. The MVars in the bottom row of Figure 7 are
used to block the consumer when it catches up with the producer. If there are two consumers, it is essential
that they can both march down the stream without intefering with each other. Concurrent programming is
tricky!

Another easy modification, left as an exercise for the reader, is to add an inverse togetChan:

unGetChan :: Channel a -> a -> IO ()

4.5 Summary

AddingforkIO andMVars to Haskell leads to a qualitative change in the sorts of applications one can
write. The extensions are simple to describe, and our operational semantics was readily extended to de-

27

forkIO :: IO a -> IO ThreadId
threadDelay :: Int -> IO () -- Sleep for n microseconds

data MVar a -- Abstract
newEmptyMVar :: IO (MVar a) -- Created empty
newMVar :: a -> IO (MVar a) -- Initialised

takeMVar :: MVar a -> IO a -- Blocking take
putMVar :: MVar a -> a -> IO () -- Blocking put

tryTakeMVar :: MVar a -> IO (Maybe a) -- Non-blocking take
tryPutMVar :: MVar a -> a -> IO Bool -- Non-blocking put
isEmptyMVar :: MVar a -> IO Bool -- Test for emptiness

Figure 8: The most important concurrent operations

scribe them. Figure 8 lists the main operations in Concurrent Haskell, including some that we have not
discussed.

You will probably have noticed the close similarity betweenIORefs (Section 2.5) andMVars (Sec-
tion 4.2). Are they both necessary? Probably not. In practice we find that we seldom useIORefs at
all:

• Although they have slightly different semantics (anIORef cannot be empty) it is easy to simulate
anIORef with anMVar (but not vice versa).

• An MVar is not much more expensive to implement than anIORef.

• An IORef is fundamentally unsafe in a concurrent program, unless youcan prove that only one
thread can access it at a time.

I introducedIORefs in these notes mainly as a presentational device; they allowed me to discuss the idea
of updatable locations, and the operational machinery to support them, before getting into concurrency.

While the primitives are simple, they are undoubtedly primitive. MVars are surprisingly often useful “as
is”, especially for holding shared state, but they are a rather low-level device. Nevertheless, they provide
the raw material from which one can fashion more sophisticated abstractions, and a higher-order language
like Haskell is well suited for such a purpose.Channels are an example of such an abstraction, and we
give several more in [35]. Einar Karlsen’s thesis describesa very substantial application (a programming
workbench) implemented in Concurrent Haskell, using numerous concurrency abstractions [22].

It is not the purpose of these notes to undertake a proper comparative survey of concurrent programming,
but I cannot leave this section without mentioning two otherwell-developed approaches to concurrency
in a declarative setting. Erlang is a (strict) functional language developed at Ericsson for programming
telecommunications applications, for which purpose it hasbeen extremely successful [3]. Erlang must be
the most widely-used concurrent functional language in theworld. Concurrent ML (CML) is a concurrent
extension of ML, with a notion of first-class events and synchronisation constructs. CML’seventsare
similar, in some ways, to Haskell’sIO actions. CML lays particular emphasis on concurrency abstractions,
and is well described in Reppy’s excellent book [41].

28

5 Exceptions and timeouts

The next member of the Awkward Squad is robustness and error recovery. A robust program should not
collapse if something unexpected happens. Of course, one tries to write programs in such a way that they
will not fail, but this approach alone is insufficient. Firstly, programmers are fallible and, secondly, some
failures simply cannot be avoided by careful programming.

Our web server, for example, should not cease to work if

• A file write fails because the disk is full.

• A client requests a seldom-used service, and that code takesthe head of an empty list or divides by
zero.

• A client vanishes, so the client-service thread should timeout and log an error.

• An error in one thread makes it go into an infinite recursion and grow its stack without limit.

All these events are (hopefully) rare, but they are all unpredictable. In each case, though, we would like
our web server to recover from the error, and continue to offer service to existing and new clients.

We cannot offer this level of robustness with the facilitieswe have described so far. We could check for
failure on every file operation, though that would be rather tedious. We could try to avoid dividing by zero
— but we will never know that we have found every bug. And timeouts and loops are entirely inaccessible.

This is, of course, exactly what exceptions were invented for. An exception handler can enclose an arbi-
trarily large body of code, and guarantee to give the programmer a chance to recover from errors arising
anywhere in that code.

5.1 Exceptions in Haskell 98

Like many languages, Haskell’sIO monad offers a simple form of exception handling. I/O operations may
raisean exception if something goes wrong, and that exception canbecaughtby a handler. Here are the
primitives that Haskell 98 offers:

userError :: String -> IOError
ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

You can raise an exception by callingioError passing it an argument of typeIOError. You can
construct anIOError from a string usinguserError. Finally, you can catch an exception withcatch.
The call(catch a h) is an action that, when performed, attempts to perform the actiona and return its
results. However, if performinga raises an exception, thena is abandoned, and instead(h e) is returned,
wheree is theIOError in the exception.

29

e ∈ Exception

V ::= . . . | ioError e | catch M NE ::= [·] | E>>=M | catch E M

{E[ioError e >>= M]}t −→ {E[ioError e]}t (IOERROR)
{E[catch (ioError e) M]}t −→ {E[M e]}t (CATCH1)
{E[catch (return N) M]}t −→ {E[returnN]}t (CATCH2)

Figure 9: Extensions for exceptions

Here is an example of how we might extend our main web-server loop:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket

= forever (do { conn <- accept socket ;
forkIO (service conn) }

where
service :: Connection -> IO ()
service conn = catch (serviceConn config conn)

(handler conn)

handler :: Connection -> Exception -> IO ()
handler conn e = do { logError config e ;

hClose (fst conn) }

Now the forked thread(service conn) has an exception handler wrapped around it, so that if anything
goes wrong,handler will be invoked. This handler logs the error (presumably by sending a message to
the error-logging thread through a channel held inconfig), and closes the connection handleh.

Figure 9 gives the extra semantics required to support Haskell 98 exceptions, in a style that by now will
be familiar. The extra evaluation context says that we should evaluate inside acatch. Rule (IOERROR)
says that a call toioError is propagated by(>>=); this is what corresponds to “popping the stack” in
a typical implementation. Rules (CATCH1) describes what happens when the exception meets acatch:
it is passed on to the handler. Lastly, (CATCH2) explains that catch does nothing if execution of the
protected code terminates normally withreturnN .

The Haskell 98 design falls short in two ways:

• It does not handle things that might go wrong in purely-functional code, because an exception can
only be raised in theIO monad. A pattern-match failure8, or division by zero, brings the entire
program to a halt. We address this problem in Section 5.2

• It does not deal withasynchronousexceptions. A synchronous exception arises as a direct result of
executing some piece of code — opening a non-existent file, for example. Synchronous exceptions
can be raised only at well-defined places. An asynchronous exception, in contrast, is raised by
something in the thread’s environment: a timeout or user interrupt is an asynchronous exception.
It is useful to treat resource exhaustion, such as stack overflow, in the same way. An asynchronous
exception can strike at any time, and this makes them much harder to deal with than their synchronous
cousins. We tackle asynchronous exceptions in Section 5.3

8A pattern-match failure occurs when a function defined by pattern-matching is applied to a value for which no pattern matches.
Example: taking the head of an empty list.

30

5.2 Synchronous exceptions in pure code

Why does Haskell 98 not allow the program to raise an exception in purely-functional code? The reason
is that, as with input/output, Haskell’s unconstrained order of evaluation makes it hard to say what the
program means. Suppose we invented a new primitive to raise an exception:

throw :: Exception -> a

(throw differs fromioError in that it lacks anIO on its result type.) There are two difficulties:

(a) Consider the following expression:

length [throw ex1]

Does the expression raise exceptionex1? Sincelength does not evaluate the elements of its argu-
ment list, the answer is presumably “no”. Sowhether an exception is raised depends on how much
evaluation takes place.

(b) Which exception does the following expression raise,ex1 or ex2?

throw ex1 + throw ex2

The answer clearly depends on the order in which the arguments to (+) are evaluated. Sowhich
exception is raised depends on evaluation order.

As with input/output (right back in Section 1), one possibility is to fully define evaluation order and, as
before, we reject that alternative.

5.2.1 Imprecise exceptions

The best approach is to take the hint from denotational semantics. The purely-functional part of the lan-
guage should have a straightforward denotational semantics, and that requires us to answer the question:
“what value doesthrow e return?”. The answer must be “an exceptional value”. So we divide the world
of values (or denotations) intoordinary values(like ’a’ or True or132) andexceptional values. This is
not a new idea. The IEEE Floating Point standard defines certain bit-patterns as “not-a-numbers”, or NaNs.
A NaN is returned by a floating point operation that fails in some way, such as division by zero. Intel’s
IA-64 architecture extends this idea to arbitrary data types, using “not-a-thing” (NaT) values to represent
the result of speculative operations that have failed. In our terminology, a NaN or NaT is an exceptional
value.

Sothrow simply constructs an exceptional value. It is a perfectly well-behaved value provided you never
actually evaluate it; only then is the exception raised. Thesituation is very similar to that for a divergent
(non-terminating) expression in a lazy language. Useful programs may contain such values; the program
will only diverge if it actually evaluates the divergent term.

That deals with point (a) above, but how about (b)? A good solution is to say that the denotation of an
expression is

• A single ordinary value, or

• A setof exceptions.

By making the denotation into asetof exceptions we can finesse the question of which exception is raised
if many could be. Let us return to our troublesome example

throw ex1 + throw ex2

31

The denotation of this expression is now an exceptional value consisting of a set of two exceptions,ex1
andex2. In saying this, we do not need to say anything about evaluation order.

I amnotsuggesting that an implementation should actuallyconstructthe set of exceptions. The idea is that
an implementation can use an entirely conventional exception-handling mechanism: when it evaluates an
exceptional value, it rolls back the stack looking for a handler. In effect it chooses a single member of the
set of exceptions to act as its representative [16].

5.2.2 Catching an imprecise exception

I describe this scheme as using “imprecise” exceptions, because we are deliberately imprecise about which
exception is chosen as the representative. How, then, can wecatch and handle an exception? At first we
might try a non-IO version ofcatch:

bogusCatch :: a -> (Exception -> a) -> a -- Bogus

bogusCatch evaluates its first argument; if it is an ordinary value,bogusCatch just returns it; if it is an
exceptional value,bogusCatch applies the hander to the exception. ButbogusCatch is problematic
if the exceptional value contains a set of exceptions – whichmember of the set should be chosen? The
trouble is that if the compiler decided to change evaluationorder (e.g. optimisation is switched on) a
different exception might be encountered, and the behaviour of the program would change.

A better approach is to separate the choice of which exception to throw from the exception-catching busi-
ness:

evaluate :: a -> IO a

evaluate x evaluates its argumentx; if the resulting value is an ordinary value,evaluate behaves
just likereturn, and just returns the value. Ifx instead returns an exceptional value,evaluate chooses
an arbitrary member, saye, from the set of exceptions, and then behaves just likeioError e; that is, it
throws the exceptione. So, for example, consider these four actions:

a1, a2, a3, a4 :: IO ()
a1 = do { x <- evaluate 4; print x }
a2 = do { evaluate (head []); print "no" }
a3 = do { return (head []); print "yes" }
a4 = do { xs <- evaluate [1 ‘div‘ 0]; print (length xs) }

The first simply evaluates4, binds it tox, and prints it; we could equally well have written(return 4)
instead. The second evaluates(head []), finds an exceptional value, and throws an exception in the
IO monad; the followingprint never executes. In contrasta3 instead returns the exceptional value,
ignores it, and printsyes. Lastly,a4 evaluates the list[1 ‘div‘ 0], binds it toxs, takes its length,
and prints the result. The list contains an exceptional value, butevaluate only evalutes the top level of
its argument, and does not look inside its recursive structure (c.f. thelength example in Section 5.2).

Now consider the case where the argument ofevaluate is a set of exceptions; for example

evaluate (throw ex1 + throw ex2)

Sinceevaluate x is an I/O action (of typeIO t if x has typet), there is no reason to suppose that
it will choose the same member from the set of exceptions eachtime you run the program. It is free to
perform input/output, so it can consult some external oracle (whether it is raining, say) to decide which
member of the set to choose. More concretely, suppose we catch the exception like this:

catch (evaluate (throw ex1 + throw ex2)) h

(Recall thatcatch and its semantics was defined in Section 5.1.) The handlerh will be applied to either
ex1 or ex2, and there is no way to tell which. It is up toevaluate to decide. This is different from
bogusCatch, because the non-deterministic choice is made by an I/O action (evaluate) and not by a
pure function (bogusCatch). I/O actions are not required to return the same result given the same input,

32

V ::= . . . | evaluateM

E [[M]] = Ok V

{E[evaluateM]}t −→ {E[return V]}t

(EVAL1)

E [[M]] = Bad S e ∈ S

{E[evaluateM]}t −→ {E[ioError e]}t

(EVAL2)

E [[M]] = Ok V M 6≡ V

{E[M]}t −→ {E[V]}t

(FUN1)

E [[M]] = Bad S e ∈ S

{E[M]}t −→ {E[ioError e]}t

(FUN2)

M 6= (N1 >>=N2) M 6= (catch N1 N2)

{E1[throwTo t e]}s | {E2[M]}t −→ {E1[return ()]}s | {E2[ioError e]}t

(INT)

Figure 10: Further extensions for exceptions

whereas pure functions are. In practice,evaluate will not really be non-deterministic; the decision is
really taken by the evaluation order chosen by the compiler when it compiles the argument toevaluate.

Notice what we have done:

• An exception can beraised anywhere, including in purely-functional code. This is tremendously
useful. For example, pattern-match failure can now raise anexception rather than bringing execution
to a halt. Similarly, Haskell 98 provides a functionerror:

error :: String -> a

Whenerror is called, the string is printed, and execution comes to a halt. In our extended version
of Haskell,error instead raises an exception, which gives the rest of the program a chance to
recover from the failure.

• An exception can only becaughtby catch, which is in theIO monad. This confines recovery to
the monadic-I/O layer of the program, unlike ML (say) where you can catch an exception anywhere.
In my view, this restriction is not irksome, and has great semantic benefits. In particular,by confining
the non-deterministic choice to theIOmonad we have prevented non-determinism from infecting the
entire language.

5.2.3 Semantics of imprecise exceptions

This approach to synchronous exceptions in Haskell is described in much more detail in [37]. In partic-
ular, the paper describes how to extend a standard denotational semantics to include exceptional values,
something we have not treated formally here. We will not discuss that here, for lack of space, but will
content ourselves with saying that the meaning functionE [[M]] returns eitherOk v for an ordinary value
v, or Bad S for an exceptional value, whereS is a non-empty set of exceptions. For example, here is the
semantics of addition:

E [[e1+e2]] = E [[e1]] +′ E [[e2]]

33

where+′ is an addition function defined over the semantic domain of values, thus:

(Ok v1) +′ (Ok v2) = Ok (v1 + v2)
(Ok v1) +′ (Bad s2) = Bad s2

(Bad s1) +′ (Ok v2) = Bad s1

(Bad s1) +′ (Bad s2) = Bad (s1 ∪ s2)

The first equation deals with the normal case. The second and third deal with the case when one or other
of the arguments throws an exception. The last equation handles the case when both arguments throw an
exception; in this case+′ takes the union of the exceptions that can be thrown by the twoarguments. The
whole point is that+′ is commutative, so thatE [[e1+e2]] = E [[e2+e1]].

Given this, Figure 10 gives the extra semantics forevaluate. If the argument toevaluate is an ordi-
nary value,evaluate just returns that value (EVAL1); if the value is an exceptional value,evaluate
chooses an arbitrary member of the set of exceptions, and throws that exception usingioError. This
deliberately-unconstrained choice is where the non-determinism shows up in the operational semantics.

SinceE [[]] has changed we must do something to rule (FUN). This is a placewhere our semantics forces
us to recognise something we might otherwise have forgotten. Rules (FUN1) and (FUN2) replace (FUN).
(FUN2) says that if the next action to perform is itself an exceptional value, then we should just propagate
that as anIO-monad exception usingioError. If it is not, then we behave just like (FUN). Here is an
example that shows the importance of this change:

catch (if (1/0) then a1 else a2) recovery_code

Beforecatch can perform the action that is its first argument, it must evaluate it; in this case, evaluating
it gives divide-by-zero exception, and rule (FUN2) propagates that into anioError.

TheException data type is really the same asIOError, except that “IOError” does not seem an ap-
propriate name any more. To keep things simple, we just say thatIOError is a synonym forException.
To summarise, we now have the following primitives:

type IOError = Exception
throw :: Exception -> a
evaluate :: a -> IO a
ioError :: IOError -> IO a
catch :: IO a -> (Exception -> IO a) -> IO a

5.3 Asynchronous exceptions

We now turn our attention to asynchronous exceptions. For asynchronous exceptions, we add the following
new primitive:

throwTo :: ThreadId -> Exception -> IO ()

This allows one thread to interrupt another. So far as the interrupted thread is concerned, the situation is
just as if it abruptly calledioError; an exception is raised and propagated to the innermost enclosing
catch. This is where theThreadId of a forked thread becomes really useful: we can use it as a handle
to send an interrupt to another thread. One thread can raise an exception in another only if it has the latter’s
ThreadId, which is returned byforkIO. So a thread is in danger of interruption only from its parent,
unless its parent passes on itsThreadId to some other thread.

5.3.1 Using asynchronous exceptions

UsingthrowTo we can implement a variety of abstractions that are otherwise inaccessible. For example,
we can program the combinatorparIO, which “races” its two argument actions against each other in
parallel. As soon as one terminates, it kills the other, and the overall result is the one returned by the
“winner”.

34

parIO :: IO a -> IO a -> IO a

How can we implement this? We can use an MVar to contain the overall result. We spawn two threads, that
race to fill the result MVar; the first will succeed, while the second will block. The parent takes the result
from the MVar, and then kills both children:

parIO :: IO a -> IO a -> IO a
parIO a1 a2

= do { m <- newEmptyMVar ;
c1 <- forkIO (child m a1) ;
c2 <- forkIO (child m a2) ;
r <- takeMVar m ;
throwTo c1 Kill ;
throwTo c2 Kill ;
return r

}
where
child m a = do { r <- a ; putMVar m r }

UsingparIO we can implement a simple timeout:

timeout :: Int -> IO a -> IO (Maybe a)

The idea here is that(timeout n a) returnsNothing if a takes longer thann microseconds to com-
plete, andJust r otherwise, wherer is the value returned bya:

timeout :: Int -> IO a -> IO (Maybe a)
timeout n a = parIO (do { r <- a; return (Just r) })

(do { threadDelay n; return Nothing })

Now we might want to answer questions like this: what happensif a thread is interrupted (via athrowTo)
while it is executing under a timeout? We can’t say for sure until we give a semantics tothrowTo, which
is what we do next.

5.3.2 Semantics of asynchronous exceptions

We can express the behaviour ofthrowTo nicely in our semantics: athrowTo in one thread makes the
target thread abandon its current action and replace it withioError:

M 6= (N1 >>=N2) M 6= (catch N1 N2)

{E1[throwTo t e]}s | {E2[M]}t −→ {E1[return ()]}s | {E2[ioError e]}t

(INT)

(“(INT)” is short for “interrupt”.) The conditions above the line are essential to ensure that the contextE2

is maximal; that is, it includes all the activecatches.

It should be clear that external interrupts, such as the userpressing Control-C, can also be modeled in this
way. Before we can write the semantics we have to answer several questions. Does a Control-C interrupt
every thread, or just a designated thread? If the latter, howdoes a thread get designated? These are good
questions to be forced to answer, because they really do makea difference to the programmer.

Having a semantics is very helpful in answering questions like: what happens if a thread is interrupted when
it is blocked waiting for anMVar? In the semantics, such a thread is simply stuck, with atakeMVar at
the active site, so (INT) will cause thetakeMVar to be replaced withioError. So being blocked on an
MVar doesn’t stop a thread receiving an interrupt.

Now we can say what happens to a thread that executes a sub-computation usingtimeout, but is inter-
rupted bythrowTowhile it is waiting for the sub-computation to complete. Theparent thread receives the
interrupt while it is blocked on the “takeMVar m” insideparIO (Section 5.3.1); so it abandons the wait
and proceeds to the innermostcatch handler. But that means that the two threads spawned byparIO

35

are not killed, and we probably want them to be. So we have to goback to fix upparIO somehow. In fact
this turns out to be tricky to do: we have to make sure that there is no “window” in which the parent has
spawned a child thread but has not set up a handler that will kill the child if the parent is interrupted.

Indeed, programming in the presence of asynchronous exceptions is notoriously difficult, so much so that
Modula-3, for example, simply outlaws them. (Instead, well-behaved threads regularly poll analert flag,
and commit suicide if it is set [33].) Haskell differs from Modula in two ways that are relevant here. First,
there are fewer side effects, so there are fewer windows of vulnerability to worry about. Second, there
are large parts of purely-functional code that we would liketo be able to interrupt — and can indeed do
so safely — but where any polling mechanism would be very undesirable. These considerations led us to
define new primitive combinators to allow a thread to mask andun-mask external interrupts. This further
complicates the semantics, but as a result we can write code where we have a chance ofprovingthat it has
no race hazards. The details are in [29].

5.4 Summary

This section on exceptions is the most experimental of our main themes. Two papers, [37, 29], give a great
deal more detail on the design, which I have introduced here only in outline. Indeed, some aspects of the
asynchronous-exceptions design are still in flux at the timeof writing.

Adding exceptions undoubtedly complicates the language and its semantics, and that is never desirable.
But they allow a qualitative change in the robustness of a program. Now, if there is a pattern match failure
almost anywhere in the code of the web server, the system can recover cleanly. Without exceptions, such a
failure would be fatal.

6 Interfacing to other programs

In the programming-language world, one rule of survival is simple: dance or die. It is not enough to
make a beautiful language. You must also make it easy for programs written in your beautiful language
to interact with programs written in other languages. Java,C++, and C all have huge, and hugely useful,
libraries available. For example, our web server makes extensive use of socket I/O libraries written in C. It
is fruitless to reproduce many of these libraries in Haskell; instead, we want to make it easy to call them.
Similarly, if we want to plug a small Haskell program into a large project, it is necessary to enable other
programs to call Haskell. It is hubristic to expect the Haskell part to always be “on top”.

Haskell 98 does not specify any way to call foreign-languageprocedures, but there has been a lot
of progress on this front in the last few years, which I surveyin this section. In particular, a pro-
posal has emerged for a Haskell language extension to support foreign-language interfacing. We
will call this proposal the Haskell Foreign Function Interface (FFI) proposal; it is documented at
http://haskell.org/definition/ffi.

6.1 Calling C from Haskell, and Haskell from C

Here is how you can call a C procedure from Haskell, under the FFI proposal:

foreign import ccall putChar :: Char -> IO ()

Theforeign declaration brings into scope a Haskell functionputChar with the specified type. When
this function is called, the effect is to call a C procedure, also calledputChar. Simple, eh? The complete
syntax is given in Figure 11. The following points are worth noting:

• As usual, we use theIO monad in the result type ofputChar to indicate thatputChar may
perform I/O, or have some other side effect. However, some foreign procedures may have purely-

36

decl ::= foreign import callconv [safety] imp entity varid :: ftype

| foreign export callconv [safety] exp entity varid :: ftype

callconv ::= ccall | stdcall | ...other calling conventions...
safety ::= safe | unsafe

imp entity ::= [string]
exp entity ::= [string]

ftype ::= () | IO fatype | fatype | fatype -> ftype

fatype ::= Int | Float | Double | Char | Bool
| Ptr type | FunPtr type | StablePtr type
| Int8 | Int16 | Int32 | Int64
| Word8 | Word16 | Word32 | Word64
| A Haskellnewtype of a fatype

| A Haskell type synonym for afatype

Figure 11: The Haskell FFI proposal syntax

functional semantics. For example, the Csin function really is a function: it has no side effects. In
this case it is extremely tiresome to force it to be in theIO monad. So the Haskell FFI allows one to
omit the “IO” from the return type, thus:

foreign import ccall sin :: Float -> Float

The non-IO type indicates that the programmer takes on a proof obligation, in this case that foreign
procedure is genuinely functional.

• The keyword “ccall” indicates the calling convention to use; that is, which arguments are passed
in which registers, which on the stack, where the result is returned, and so on. The only other
currently-defined calling convention at the moment is “stdcall”, used on Win32 platforms.

• If the foreign procedure does not have the same name as its Haskell counterpart — for example, it
might start with a capital letter, which is illegal for Haskell functions — you can specify the foreign
name directly:

foreign import ccall "PutChar" putChar :: Char -> IO ()

• Foreign procedures may take several arguments. Their Haskell type is curried, as is usually the case
for multi-argument Haskell functions, but on the C side the arguments are passed all at once, as is
usual for C:

foreign import ccall drawLine :: Int -> Int -> IO ()

• There is a strictly limited range of Haskell types that can beused in arguments and results, namely
the “atomic” types such asInt, Float, Double, and so on. So how can we pass structured types,
such as strings or arrays? We address this question in Section 6.3.

• An implementation of the FFI proposal must provide a collection of new atomic types (Figure 11).
In particular,Ptr t is the type of uninterpreted9 machine addresses; for example, a pointer to a
malloc’d structure, or to a C procedure. The typet is a “phantom type”, which allows the Haskell
programmer to enforce the distinction between (say) the typesPtr Foo andPtr Baz. No actual
valuesof typeFoo or Baz are involved.

9“Uninterpreted” in the sense that they are treated simply asbit patterns. The Haskell garbage collector does not followthe pointer.

37

“foreign import” lets you call a C procedure from Haskell. Dually, “foreign export” lets you
expose a Haskell function as a C procedure. For example:

foreign export ccall "Foo" foo :: Int -> Int
foreign export ccall bar :: Float -> IO Float

These declarations are only valid if the same module defines (or imports) Haskell functionsfoo andbar,
which have the specified types. An exported function may haveanIO type, but it does not have to — here,
bar does, andfoo does not. When the module is compiled, it will expose two procedures,Foo andbar,
which can be called from C.

6.2 Dynamic calls

It is quite common to make anindirect call to an external procedure; that is, one is supplied with the
address of the procedure and one wants to call it. An example is the dynamic dispatch of a method call in
an object-oriented system, indirecting through the methodtable of the object.

To make such an indirect call from Haskell, use thedynamic keyword:

foreign import ccall "dynamic"
foo :: FunPtr (Int -> IO Int) -> Int -> IO Int

The first argument must be of typeFunPtr t, and is taken to be the machine address of the external
procedure to be called. As in the case ofPtr t, the typet is used simply to express the distinction between
pointers to procedures of different types.

There is also a way to export a dynamic Haskell value:

foreign import ccall "wrapper"
mkCB :: (Int -> IO Int) -> IO (FunPtr (Int -> IO Int)

This declaration defines a Haskell functionmkCB. WhenmkCB is given an arbitrary Haskell function of
type(Int->IO Int), it returns a C function pointer (of typeFunPtr (Int -> IO Int)) that can
be called by C. Typically, thisFunPtr is then somehow passed to the C program, which subsequently
uses it to call the Haskell function using a C indirect call.

6.3 Marshalling

Transferring control is, in some ways, the easy bit. Transferring data “across the border” is much harder.
For “atomic” types, such asInt andFloat, it is clear what to do, but for structured types, matters are
much murkier.

For example, suppose we wanted to import a function that operates on strings:

foreign import ccall uppercase :: String -> String

• First there is the question of data representation. One has to decide either to alter the Haskell language
implementation, so that its string representation is identical to that of C, or to translate the string from
one representation to another at run time. This translationis conventionally calledmarshalling.

Since Haskell is lazy, the second approach is required. In any case, it is tremendously constraining to
try to keep common representations between two languages. For example, C terminates strings with
a null character, but other languages may keep a length field.Marshalling, while expensive, serves
to separate the implementation concerns of the two different languages.

• Next come questions of allocation and lifetime. Where should we put the translated string? In a static
piece of storage? (But how large a block should we allocate? Is it safe to re-use the same block on
the next call?) Or in Haskell’s heap? (But what if the called procedure does something that triggers

38

garbage collection, and the transformed string is moved? Can the called procedure hold on to the
string after it returns?) Or in C’smalloc’d heap? (But how will it get deallocated? Andmalloc
is expensive.)

• C procedures often accept pointer parameters (such as strings) that can beNULL. How is that to be
reflected on the Haskell side of the interface? For example, if uppercase did something sensible
when called with aNULL string (e.g. returns aNULL string) we might like the Haskell type for
uppercase to be

foreign import ccall uppercase :: Maybe String -> Maybe String

so that we can modelNULL by Nothing.

The bottom line is this: there are many somewhat-arbitrary choices to make when marshalling parameters
from Haskell to C and vice versa. And that’s only C! There are even more choices when we consider
arbitrary other languages.

What are we to do? The consensus in the Haskell community is this:

We define alanguage extensionthat is as small as possible, and buildseparate toolsto generate
marshalling code.

Theforeign import andforeign export declarations constitute the language extension. They
embody just the part of foreign-language calls that cannot be done in Haskell itself,and no more. For
example, suppose you want to import a procedure that draws a line, whose C prototype might look like
this:

void DrawLine(float x1, float y1, float x2, float y2)

One might ideally like to import this procedure with the following Haskell signature.

type Point = (Float,Float)
drawLine :: Point -> Point -> IO ()

The FFI proposal does not let you do this directly. Instead you have to do some marshalling yourself (in
this case, unpacking the pairs):

type Point = (Float,Float)

drawLine :: Point -> Point -> IO ()
drawLine (x1,y1) (x2,y2) = dl_help x1 y1 x2 y2

foreign import ccall "DrawLine"
dl_help :: Float -> Float -> Float -> Float -> IO ()

Writing all this marshalling code can get tedious, especially when one adds arrays, enumerations, in-out
parameters passed by reference, NULL pointers, and so on. There are now several tools available that take
some specification of the interface as input, and spit out Haskell code as output. Notably:

Green Card [34] is a pre-processor for Haskell that reads directives embedded in a Haskell module and
replaces these directives with marshalling code. Using Green Card one could write

type Point = (Float,Float)
drawLine :: Point -> Point -> IO ()
%call (float x1, float y1) (float x2, float y2)
%code DrawLine(x1, y1, x2, y2)

Green Card is C-specific, and doesn’t handle the foreign-export side of things at all.

39

C->Haskell [8] reads both a Haskell module with special directives (or “binding hooks”) and a standard
C header file, and emits new Haskell module with all the marshalling code added. The advantage
compared to Green Card is that less information need be specified in the binding hooks than in Green
Card directives.

H/Direct [10] instead reads a description of the interface written inInterface Definition Language(IDL),
and emits a Haskell module containing the marshalling code.IDL is a huge and hairy language, but
it is neither Haskell-specific nor C-specific. H/Direct deals with both import and export, can read
Java class files as well as IDL files, and can generate code to interface to C, COM, and Java.

It is well beyond the scope of these notes to give a detailed introduction to any of these tools here. However,
in all cases the key point is the same:any of these tools can be used with any Haskell compiler that
implements theforeign declaration. The very fact that there are three tools stresses the range of possible
design choices, and hence the benefit of a clear separation.

6.4 Memory management

One of the major complications involved in multi-language programs is memory management. In the
context of the Haskell FFI, there are two main issues:

Foreign objects. Many C procedures return a pointer or “handle”, and expect the client tofinaliseit when
it is no longer useful. For example: opening a file returns a file handle that should later be closed;
creating a bitmap may allocate some memory that should laterbe freed; in a graphical user interface,
opening a new window, or a new font, returns a handle that should later be closed. In each case,
resources are allocated (memory, file descriptors, window descriptors) that can only be released
when the client explicitly says so. The termfinalisation is used to describe the steps that must be
carried out when the resource is no longer required.

The problem is this: if such a procedure is imported into a Haskell program, how do we know when
to finalise the handle returned by the procedure?

Stable pointers. Dually, we may want to pass a Haskell value into the C world, either by passing it as a
parameter to aforeign import, or by returning it as a result of aforeign export. Here,
the danger is not that the value will live too long, but that itwill die too soon: how does the Haskell
garbage collector know that the value is still needed? Furthermore, even if it does know, the garbage
collector might move live objects around, which would be a disaster if the address of the old location
of the object is squirreled away in a C data structure.

In this section we briefly survey solutions to these difficulties.

6.4.1 Foreign objects

One “solution” to the finalisation problem is simply to require the Haskell programmer to call the ap-
propriate finalisation procedure, just as you would in C. This is fine, if tiresome, for I/O procedures, but
unacceptable for foreign libraries that have purely functional semantics.

For example, we once encountered an application that used a Clibrary to manipulate bit-maps [39]. It
offered operations such as filtering, thresholding, and combining; for example, to ‘and’ two bit-maps to-
gether, one used the C procedureand_bmp:

bitmap *and_bmp(bitmap *b1, bitmap *b2)

Here,and_bmp allocates a new bit-map to contain the combined image, leaving b1 andb2 unaffected.
We can importand_bmp into Haskell like this:

40

data Bitmap = Bitmap -- A phantom type
foreign import ccall

and_bmp :: Ptr Bitmap -> Ptr Bitmap -> IO (Ptr Bitmap)

Notice the way we use the fresh Haskell typeBitmap to help ensure that we only give toand_bmp an
address that is the address of a bitmap.

The difficulty is that there is no way to know when we have finished with a particular bit-map. The result
of a call toand_bmp might, for example, be stored in a Haskell data structure forlater use. The only time
we can be sure that a bitmap is no longer needed is when the Haskell garbage collector finds that itsPtr
is no longer reachable.

Rather than ask the garbage collector to track allPtrs, we wrap up thePtr in a foreign pointer, thus:

newForeignPtr :: Ptr a -> IO () -> IO (ForeignPtr a)

newForeignPtr takes a C-world address, and a finalisation action, and returns aForeignPtr. When
the garbage collector discovers that thisForeignPtr is no longer accessible, it runs the finalisation
action.

To unwrap a foreign pointer we usewithForeignPtr:

withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b

(We can’t simply unwrap it with a function of typeForeignPtr a -> IO Ptr a because then the
foreign pointer itself might be unreferenced after the unwrapping call, and its finaliser might therefore be
called before we are done with thePtr.)

So now we can importadd_bmp like this:

foreign import ccall "and_bmp"
and_bmp_help :: Ptr Bitmap -> Ptr Bitmap -> IO (Ptr Bitmap)

foreign import ccall free_bmp :: Ptr Bitmap -> IO ()

and_bmp :: ForeignPtr Bitmap -> ForeignPtr Bitmap -> IO (ForeignPtr Bitmap)
and_bmp b1 b2 = withForeignPtr b1 (\ p1 ->

withForeignPtr b2 (\ p2 ->
do { r <- and_bmp_help p1 p2

newForeignObj r (free_bmp r) }))

The functionand_bmp unwraps its argumentForeignPtrs, callsand_bmp_help to get the work
done, and wraps the result back up in aForeignPtr.

6.4.2 Stable pointers

If one wants to write a Haskell library that can be called by a Cprogram, then the situation is reversed
compared to foreign objects. The Haskell library may construct Haskell values and return them to the C
caller. There is not much the C program can do with them directly (since their representation depends on
the Haskell implementation), but it may manipulate them using other Haskell functions exported by the
library.

As we mentioned earlier, we cannot simply return a pointer into the Haskell heap, for two reasons:

• The Haskell garbage collector would not know when the objectis no longer required. Indeed, if the
C program holds theonly pointer to the object, the collector is likely to treat the object as garbage,
because it has no way to know what Haskell pointers are held bythe C program.

• The Haskell garbage collector may move objects around (GHC’s collector certainly does), so the
address of the object is not a stable way to refer to the object.

41

The straightforward, if brutal, solution to both of these problems is to provide a way to convert a Haskell
value into astable pointer:

newStablePtr :: a -> IO (StablePtr a)
deRefStablePtr :: StablePtr a -> IO a
freeStablePtr :: StablePtr a -> IO ()

The functionnewStablePtr takes an arbitrary Haskell value and turns it into a stable pointer, which has
two key properties:

• First, it is stable; that is, it is unaffected by garbage collection. AStablePtr can be passed to
C as a parameter or result to aforeign import or a foreign export. From the C side,
a StablePtr looks like anint. The C program can subsequently pass the stable pointer to a
Haskell function, which can get at the original value usingdeRefStablePtr.

• Second, callingnewStablePtr v registers the Haskell value as a garbage-collection root, by in-
stalling a pointer tov in theStable Pointer Table(SPT). Once you have callednewStablePtr v,
the valuev will be kept alive indefinitely by the SPT, even ifv, or even theStablePtr itself are
no longer reachable.

How, then, canv ever die? By callingfreeStablePtr: This removes the entry from the SPT, so
v can now die unless it is referenced some other way.

Incidentally, the alert reader may have noticed thatforeign import "wrapper", described in Sec-
tion 6.2, must use stable pointers. Taking the example in that section,mkCB turns a Haskell function value
into a plainAddr, the address of a C-callable procedure. It follows thatmkCB fmust registerf as a stable
pointer so that the code pointed to by theAddr (which the garbage collector does not follow) can refer to
it. Wait a minute! How can we free the stable pointer that is embedded inside thatAddr? You have to use
this function:

freeHaskellFunctionPtr :: Addr -> IO ()

6.5 Implementation notes

It is relatively easy to implement theforeign import declaration. The code generator needs to be
taught how to generate code for a call, using appropriate calling conventions, marshalling parameters from
the small, fixed range of types required by the FFI. Thedynamic variant offoreign import is no
harder.

A major implementation benefit is that all the I/O libraries can be built on top of suchforeign imports;
there is no need for the code generator to treatgetChar, say, as a primitive.

Matters are not much harder forforeign export; here, the code generator must produce a
procedure that can be called by the foreign language, again marshalling parameters appropriately.
foreign import "wrapper" is tricker, though, because we have to generate a single, static ad-
dress that encapsulates a full Haskell closure. The only wayto do this is to emit a little machine code at
run-time; more details are given in [11]10.

6.6 Summary and related work

So far I have concentrated exclusively on interfacing to programs written in C. Good progress has also been
made for other languages and software architectures:

10In that paper,foreign import "wrapper" is called “foreign export dynamic”; the nomenclature has changed
slightly.

42

COM is Microsoft’s Component Object Model, a language-independent, binary interface for composing
software components. Because of its language independenceCOM is a very attractive target for
Haskell. H/Direct directly supports both calling COM objects from Haskell, and implementing COM
objects in Haskell [36, 10, 11, 26].

CORBA addresses similar goals to COM, but with a very different balance of design choices. H/Direct
can read CORBA’s flavour of IDL, but cannot yet generate the relevant marshalling and glue code.
There is a good CORBA interface for the functional/logic language Mercury, well described in [20].

Lambada [30] offers a collection of Haskell libraries that makes it easy to write marshalling code for
calling, and being called by, Java programs. Lambada also offers a tool that reads Java class files
and emits IDL that can then be fed into H/Direct to generate the marshalling code. There is ongoing
work on extending theforeign declaration construct to support Java calling conventions.

The actual Haskell FFI differs slightly from the one give here; in particular, there are many operations over
the typesAddr, ForeignObj andStablePtr that I have omitted. Indeed, some of the details are still
in flux.

Finalisation can be very useful even if you are not doing mixed language working, and many languages
support it, including Java, Dylan, Python, Scheme, and manyothers. Hayes gives a useful survey [13],
while a workshop paper gives more details about the Glasgow Haskell Compiler’s design for finalisers
[28].

This section is notably less thorough and precise than earlier sections. I have given a flavour of the issues
and how they can be tackled, rather than a detailed treatment. The plain fact is that interfacing to foreign
languages is a thoroughly hairy enterprise, and no matter how hard we work to build nice abstractions, the
practicalities are undoubtedly complicated. There are many details to be taken care of; important aspects
differ from operating system to operating system; there area variety of interface definition languages (C
header files, IDL, Java class files etc); you have to use a variety of tools; and the whole area is moving
quickly (e.g. the recent announcement of Microsoft’s .NET architecture).

7 Have we lost the plot?

Now that we have discussed the monadic approach in some detail, you may well be asking the following
question: once we have added imperative-looking input/output, concurrency, shared variables, and excep-
tions, have we not simply re-invented good old procedural programming? Have we “lost the plot” — that
is, forgotten what the original goals of functional programming were?

I believe not. The differences between conventional procedural programming and the monadic functional
style remain substantial:

• There is a clear distinction, enforced by the type system, betweenactionswhich may have side
effects, andfunctionswhich may not. The distinction is well worth making from a software engi-
neering point of view. A function can be understood as an independent entity. It can only affect its
caller through the result it returns. Whenever it is called with the same arguments it will deliver the
same result. And so on.

In contrast, the interaction of an action with its caller is complex. It may read or writeMVars, block,
raise exceptions, fork new threads... and none of these things are explicit in its type.

• No reasoning laws are lost when monadic I/O is added. For example, it remains unconditionally true
that

let x = e in b = b[e/x]

There are no side conditions, such as “e must not have side effects”. (There is an important caveat,
though: I am confident that this claim is true, but I have not proved it.)

43

• In our admittedly-limited experience, most Haskell programs consist almost entirely of functions,
not actions: a small monadic-I/O “skin” surrounds a large body of purely-functional code. While it
is certainly possible to write a Haskell program that consists almost entirely of I/O, it is unusual to
do so.

• Actions are first class values. They can be passed as arguments to functions, returned as results,
stored in data structures, and so on. This gives unusual flexibility to the programmer.

Another good question is this: is theIO monad a sort of “sin-bin”, used whenever we want to do something
that breaks the purely-functional paradigm? Could we be a bit more refined about it? In particular, if we
argue that it is good to know from the type of an expression that it has no side effects, would it not also
be useful to express in the type some limits on the side effects it may cause? Could we have a variant
of IO that allowed exceptions but not I/O? Or I/O but not concurrency? The answer is technically, yes
of course. There is a long history of research into so-calledeffect systems, that track what kind of effects
an expression can have [21]. Such effect systems can be expressed in a monadic way, or married with a
monadic type system [51]. However, the overhead on the programmer becomes greater, and I do not know
of any language that uses such a system11. An interesting challenge remains, to devise a more refined
system that is still practical; there is some promising workin this direction [6, 51, 45, 5]. Meanwhile I
argue that a simple pure-or-impure distinction offers an excellent cost/benefit tradeoff.

8 Summary

We have surveyed Haskell’s monadic I/O system, along with three significant language extensions12. It is
easy to extend a language, though! Are these extensions any good? Are they just anad hocset of responses
to anad hocset of demands? Will every new demand lead to a new extension?Could the same effect be
achieved with something simpler and more elegant?

I shall have to leave these judgments to you, gentle reader. These notes constitute a status report on devel-
opments in the Haskell community at the time of writing. The extensions I have described cover the needs
of a large class of applications, so I believe we have reachedat least a plateau in the landscape. Neverthe-
less the resulting language is undeniably complicated, andthe monadic parts have a very imperative feel. I
would be delighted to find a way to make it simpler and more declarative.

The extensions are certainly practical — everything I describe is implemented in the Glasgow Haskell
compiler — and have been used to build real applications.

You can find a great deal of information about Haskell on the Web, at

http://haskell.org

There you will find the language definition, tutorial material, book reviews, pointers to free implementa-
tions, details of mailing lists, and more besides.

Acknowledgements

These notes have been improved immeasurably by many conversations with Tony Hoare. Thank you
Tony! I also want to thank Peter Aachten, Ken Anderson, Richard Bird, Paul Callaghan, Andy Cheese,
Chiyan Chen, Olaf Chitil, Javier Deniz, Tyson Dowd, Conal Elliott, Pal-Kristian Engstad, Tony Finch,
Sigbjorn Finne, Richard Gomes, John Heron, Stefan Karrmann, Richard Kuhns, Ronald Legere, Phil

11Some smart compilers use type-based effect systems to guidetheir optimisers, but that is different from the programmer-visible
type system.

12I describe them all as “language extensions” because, whilenone has a significant impact on Haskell’s syntax or type system, all
have an impact on its semantics and implementation

44

Molyneux, Andy Moran, Vincent Labrecque, Anders Lau Olsen,Andy Pitts, Tom Pledger, Martin Poko-
rny, Daniel Russell, George Russell, Tim Sauerwein, JulianSeward, Christian Sievers, Dominic Steinitz,
Jeffrey Straszheim, Simon Thompson, Mark Tullsen, RichardUhtenwoldt, Don Wakefield, and Fredrik
Winkler for their extremely helpful feedback.

References

[1] A LLISON, L. A Practical Introduction to Denotational Semantics. Cambridge University Press, Cambridge,
England, 1986.

[2] A RIOLA, Z., AND SABRY, A. Correctness of monadic state: An imperative call-by-need calculus. In25th ACM
Symposium on Principles of Programming Languages (POPL’98) (San Diego, Jan. 1998), ACM.

[3] A RMSTRONG, J., VIRDING, R., , WIKSTROM, C., AND WILLIAMS, M. Concurrent programming in Erlang
(2nd edition). Prentice Hall, 1996.

[4] BARENDSEN, E., AND SMETSERS, S. Uniqueness typing for functional languages with graph rewriting seman-
tics. Mathematical Structures in Computer Science 6(1996), 579–612.

[5] BENTON, N., AND KENNEDY, A. Monads, effects, and transformations. InHigher Order Operational Tech-
niques in Semantics: Third International Workshop(1999), no. 26 in Electronic Notes in Theoretical Computer
Science, Elsevier, pp. 1–18.

[6] BENTON, N., KENNEDY, A., AND RUSSELL, G. Compiling Standard ML to Java bytecodes. In ICFP98 [18],
pp. 129–140.

[7] B IRD, R., AND WADLER, P. Introduction to Functional Programming. Prentice Hall, 1988.

[8] CHAKRAVARTY, M. C -> Haskell: yet another interfacing tool. In Koopman and Clack[23].

[9] FELLEISEN, M., AND HIEB, R. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Science 103(1992), 235–271.

[10] FINNE, S., LEIJEN, D., MEIJER, E., AND PEYTON JONES, S. H/Direct: a binary foreign language interface for
Haskell. In ICFP98 [18], pp. 153–162.

[11] FINNE, S., LEIJEN, D., MEIJER, E., AND PEYTON JONES, S. Calling Hell from Heaven and Heaven from Hell.
In ICFP99 [19], pp. 114–125.

[12] HAMMOND, K., AND M ICHAELSON, G., Eds. Research Directions in Parallel Functional Programming.
Springer-Verlag, 1999.

[13] HAYES, B. Finalization in the collector interface. InInternational Workshop on Memory Management,
Y. Bekkers and J. Cohen, Eds., no. 637 in Lecture Notes in Computer Science. Springer Verlag, St. Malo, France,
Sept. 1992, pp. 277–298.

[14] HUDAK, P. The Haskell school of expression. Cambridge University Press, 2000.

[15] HUDAK, P., AND SUNDARESH, R. On the expressiveness of purely-functional I/O systems. Tech. Rep.
YALEU/DCS/RR-665, Department of Computer Science, Yale University, Mar. 1989.

[16] HUGHES, R., AND O’DONNELL, J. Expressing and reasoning about non-deterministic functional programs.
In Functional Programming, Glasgow 1989, K. Davis and R. Hughes, Eds. Workshops in Computing, Springer
Verlag, 1989, pp. 308–328.

[17] HUTTON, G., Ed.Proceedings of the 2000 Haskell Workshop, Montreal(Sept. 2000), no. NOTTCS-TR-00-1 in
Technical Reports.

[18] ACM SIGPLAN International Conference on Functional Programming (ICFP’98)(Baltimore, Sept. 1998), ACM.

[19] ACM SIGPLAN International Conference on Functional Programming (ICFP’99)(Paris, Sept. 1999), ACM.

[20] JEFFERY, D., DOWD, T., AND SOMOGYI, Z. MCORBA: a CORBA binding for Mercury. InPractical Applica-
tions of Declarative Languages(San Antonio, Texas, 1999), Gupta, Ed., no. 1551 in Lecture Notes in Computer
Science, Springer Verlag, pp. 211–227.

[21] JOUVELOT, P., AND GIFFORD, D. Algebraic reconstruction of types and effects. In18’th ACM Symposium on
Principles of Programming Languages (POPL), Orlando. ACM, Jan. 1991.

[22] KARLSEN, E. Tool integration in a functional programming language. PhD thesis, University of Bremen, Nov.
1998.

45

[23] KOOPMAN, P.,AND CLACK, C., Eds.International Workshop on Implementing Functional Languages (IFL’99)
(Lochem, The Netherlands, 1999), no. 1868 in Lecture Notes in Computer Science, Springer Verlag.

[24] LAUNCHBURY, J. A natural semantics for lazy evaluation. In POPL93 [40],pp. 144–154.

[25] LAUNCHBURY, J., LEWIS, J., AND COOK, B. On embedding a microarchitectural design language within
Haskell. In ICFP99 [19], pp. 60–69.

[26] LEIJEN, D., AND HOOK, E. M. J. Haskell as an automation controller. InThird International School on
Advanced Functional Programming (AFP’98)(Braga, Portugal, 1999), no. 1608 in Lecture Notes in Computer
Science, Springer Verlag.

[27] MARLOW, S. Writing high-performance server applications in haskell. In Hutton [17].

[28] MARLOW, S., PEYTON JONES, S.,AND ELLIOTT, C. Stretching the storage manager: weak pointers and stable
names in Haskell. In Koopman and Clack [23].

[29] MARLOW, S., PEYTON JONES, S., AND MORAN, A. Asynchronous exceptions in Haskell. InACM Confer-
ence on Programming Languages Design and Implementation (PLDI’99) (Snowbird, Utah, June 2001), ACM,
pp. 274–285.

[30] MEIJER, E., AND FINNE, S. Lambada: Haskell as a better Java. In Hutton [17].

[31] M ILNER, R. Communicating and Mobile Systems : The Pi-Calculus. Cambridge University Press, 1999.

[32] MOGGI, E. Computational lambda calculus and monads. InLogic in Computer Science, California. IEEE, June
1989.

[33] NELSON, G., Ed.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

[34] NORDIN, T., PEYTON JONES, S., AND REID, A. Green Card: a foreign-language interface for Haskell. In
Haskell workshop(Amsterdam, 1997), J. Launchbury, Ed.

[35] PEYTON JONES, S., GORDON, A., AND FINNE, S. Concurrent Haskell. In23rd ACM Symposium on Principles
of Programming Languages (POPL’96)(St Petersburg Beach, Florida, Jan. 1996), ACM, pp. 295–308.

[36] PEYTON JONES, S., MEIJER, E.,AND L EIJEN, D. Scripting COM components in Haskell. InFifth International
Conference on Software Reuse(Los Alamitos, CA, June 1998), IEEE Computer Society, pp. 224–233.

[37] PEYTON JONES, S., REID, A., HOARE, C., MARLOW, S., AND HENDERSON, F. A semantics for imprecise
exceptions. InACM Conference on Programming Languages Design and Implementation (PLDI’99) (Atlanta,
May 1999), ACM, pp. 25–36.

[38] PEYTON JONES, S.,AND WADLER, P. Imperative functional programming. In POPL93 [40], pp.71–84.

[39] POOLE, I. Public report of the SADLI project: safety assurance in diagnostic laboratory imaging. Tech. rep.,
MRC Human Genetics Unit, Edinburgh, Mar. 1995.

[40] 20th ACM Symposium on Principles of Programming Languages (POPL’93)(Jan. 1993), ACM.

[41] REPPY, J. Concurrent programming in ML. Cambridge University Press, 1999.

[42] ROSCOE, B. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[43] SCHMIDT, D. Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, 1986.

[44] THOMPSON, S. Haskell: the craft of functional programming. Addison Wesley, 1999.

[45] TOLMACH, A. Optimizing ML using a hierarchy of monadic types. InWorkshop on Types in Compilation ’98,
Kyoto(Mar. 1998), Lecture Notes in Computer Science, Springer Verlag, pp. 97–113.

[46] TRINDER, P., HAMMOND, K., LOIDL, H.-W., AND PEYTON JONES, S. Algorithm + strategy = parallelism.
Journal of Functional Programming 8(Jan. 1998), 23–60.

[47] WADLER, P. Comprehending monads.Mathematical Structures in Computer Science 2(1992), 461–493.

[48] WADLER, P. The essence of functional programming. In20th ACM Symposium on Principles of Programming
Languages (POPL’92). ACM, Albuquerque, Jan. 1992, pp. 1–14.

[49] WADLER, P. Monads for functional programming. InAdvanced Functional Programming, J. Jeuring and E. Mei-
jer, Eds., vol. 925 ofLecture Notes in Computer Science. Springer Verlag, 1995.

[50] WADLER, P. How to declare an imperative.ACM Computing Surveys 29, 3 (1997).

[51] WADLER, P. The marriage of effects and monads. In ICFP98 [18], pp. 63–74.

[52] WRIGHT, A., AND FELLEISEN, M. A syntactic approach to type soundness.Information and Computation 115
(Nov. 1994), 38–94.

46

