
Elle: Inferring Isolation Anomalies from Experimental
Observations

Kyle Kingsbury
Jepsen

aphyr@jepsen.io

Peter Alvaro
UC Santa Cruz

palvaro@ucsc.edu

ABSTRACT

Users who care about their data store it in databases, which (at

least in principle) guarantee some form of transactional isolation.

However, experience shows that many databases do not provide

the isolation guarantees they claim. With the recent proliferation

of new distributed databases, demand has grown for checkers that

can, by generating client workloads and injecting faults, produce

anomalies that witness a violation of a stated guarantee. An ideal

checker would be sound (no false positives), efficient (polynomial

in history length and concurrency), effective (finding violations in

real databases), general (analyzing many patterns of transactions),

and informative (justifying the presence of an anomaly with un-

derstandable counterexamples). Sadly, we are aware of no checkers

that satisfy these goals.

We present Elle: a novel checker which infers an Adya-style

dependency graph between client-observed transactions. It does

so by carefully selecting database objects and operations when

generating histories, so as to ensure that the results of database

reads reveal information about their version history. Elle can detect

every anomaly in Adya et al’s formalism (except for predicates),

discriminate between them, and provide concise explanations of

each. This paper makes the following contributions: we present

Elle, demonstrate its soundness over specific datatypes, measure

its efficiency against the current state of the art, and give evidence

of its effectiveness via a case study of four real databases.

PVLDB Reference Format:

Kyle Kingsbury and Peter Alvaro. Elle: Inferring Isolation Anomalies from

Experimental Observations. PVLDB, 14(3): 268 - 280, 2021.

doi:10.14778/3430915.3430918

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/jepsen-io/jepsen.

1 INTRODUCTION

Database systems often offer multi-object transactions at varying

isolation levels, such as serializable or read committed. However,

design flaws or bugs may result in weaker isolation levels than

claimed. In order to verify whether a given database actually pro-

vides claimed safety properties, we can execute carefully chosen

transactions against the database, record a history of how those

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.
doi:10.14778/3430915.3430918

transactions completed, and analyze that history to identify invari-

ant violations. This property-based approach is especially powerful

when combined with fault injection techniques. [29]

Many checkers use a particular pattern of transactions, and check

that under an expected isolation level, some hand-proved invari-

ant(s) hold. For instance, one could check for snapshot isolation by

inserting two records x and y in separate transactions, and in two

more transactions, reading both records. If one read observes x but

not y, and the other observes y but not x , then we have an example

of a long fork, and can conclude that the system does not provide

snapshot isolationÐor any stronger isolation level.

These checkers are generally efficient (i.e. completing in poly-

nomial time), and do identify bugs in real systems, but they have

several drawbacks. They find a small number of anomalies in a spe-

cific pattern of transactions, and tell us nothing about the behavior

of other patterns. They require hand-proven invariants: one must

show that for chosen transactions under a given consistency model,

those invariants hold. They also do not compose: transactions we

execute for one checker are, in general, incompatible with another

checker. Each property may require a separate test.

More general checkers, includingKnossos [23] and Porcupine [3],

can verify whether an arbitrary history of operations over a user-

defined datatype is linearizable, using techniques from Wing &

Gong [36] and Lowe [28]. Since strict serializability is equivalent

to linearizability (where operations are transactions, and the lin-

earizable object is a map), these checkers can be applied to strict

serializable databases as well. While this approach does find anom-

alies in real databases, its use is limited by the NP-complete nature

of linearizability checking, and the combinatorial explosion of states

in a concurrent multi-register system.

Serializability checking is also (in general) NP-complete [30]Ð

and unlike linearizability, one cannot use real-time constraints to

reduce the search space. Following the abstract execution formal-

ism of Cerone, Bernardi, and Gotsman [12], Kingsbury attempted

to verify serializability by identifying write-read dependencies be-

tween transactions, translating those dependencies to an integer

constraint problem on transaction orders [24], and applying con-

straint solvers like Gecode [20] to solve for a particular order. This

approach works, but, like Knossos, is limited by the NP-complete

nature of constraint solving. Histories of more than a hundred-

odd transactions quickly become intractable. Moreover, constraint

solvers give us limited insight into why a particular transaction

order was unsolvable. They can only tell us whether a history is

serializable or not, without insight into specific transactions that

may have gone wrong. Finally, this approach cannot distinguish

between weaker isolation levels, such as snapshot isolation or read

committed.

What would an ideal checker for transaction isolation look like?

Such a checker would accept many patterns of transactions, rather

than specific, hand-coded examples. It would distinguish between

different types of anomalies, allowing us to verify stronger (e.g.

strict-1SR) and weaker (e.g. read uncommitted) isolation levels. It

ought to localize the faults it finds to specific subsets of transactions.

Of course, it should do all of this efficiently.

In this paper, we present Elle: an isolation checker for black-box

databases. Instead of solving for a transaction order, Elle uses its

knowledge of the transactions issued by the client, the objects writ-

ten, and the values returned by reads to reason about the possible

transaction dependency graphs in the language of Adya’s formal-

ism. [2] While Elle can make limited inferences from read-write

registers, it shines with richer datatypes, like append-only lists.

All history checkers depend on the system which generated their

transactions. Elle’s most powerful analysis requires that we gen-

erate histories in which reads of an object yield its entire version

history, and where a unique mapping exists between versions and

transactions. However, we show that generating histories which al-

low these inferences is straightforward, that the required datatypes

are broadly supported, and that these choices do not prevent Elle

from identifying bugs in real-world database systems.

2 DEDUCING DEPENDENCIES

Adya et al. [1, 2] formalized a variety of transactional isolation

levels in terms of proscribed behaviors in an abstract history H .

These histories (hereafter: łAdya historiesž) comprise of a set of

transactions, an event order which encodes the order of operations

in those transactions, and a version order ≪, which is total over

installed versions of each object. This abstract history gives rise to

a Direct Serialization Graph (DSG), whose nodes are transactions

and whose edges capture dependencies between them.

Setting aside predicates, these dependencies may be of three

kinds. A transactionTj has awrite dependency (WW) onTi ifTj
łoverwrotež an object version written by Ti . Tj has a read depen-

dency (WR) on Ti if it read a version written by Ti . Finally, Tj has

an anti-dependency (RW) on Ti if Tj replaced a version read by

Ti . Any one of these dependencies implies that Tj must follow Ti
in any equivalent serial history.

All but two of the anomalies identified by Adya are defined in

terms of cycles in the DSGÐthe intuition is that there cannot be

an equivalent serial history if there are cycles in the graph. For

example, a G0 anomaly is a cycle in the DSG comprised entirely

of write dependencies. G1c anomalies include read dependencies.

Instances of G2 involve at least one anti-dependency (those with

exactly one are G-single).

This is a tantalizing model for several reasons. Its definitions

are relatively straightforward. Its anomalies are local, in the sense

that they involve a specific set of transactions. We can point to

those transactions and say, łthings went wrong here!žÐwhich aids

debugging. Moreover, because anomaly detection had been reduced

to cycle checking, we can check these properties in linear time.

However, there is one significant obstacle to working with an

Adya history: we don’t have it. In fact, one may not even existÐthe

database system may not have any concept of a version order, or it

might not expose that ordering information to clients.

As an example, consider the following transactions. Are they

serializable?

T1: w (z1),w (x1),w (y1), c

T2: r (x1),w (y2), c

T3: w (x3), r (y2),w (z3), c

T2 read x1, so it must read-depend on T1, and likewise, T3 must

read-depend on T2. What about T1 and T2’s writes to y? Which

overwrote the other? As Crooks et al. observe [15], we cannot tell,

because we lack a key component in Adya’s formalism: the version

order.

We would like to be able to infer an Adya history based purely

on the information available to clients of the system, which we call

an observation. When a client submits an operation to a database, it

generally knows what kind of operation it performed (e.g. a read, a

write, etc.), the object that operation applies to, and the arguments

it provided. For instance, a client might write the value 5 to object

x . If (and this does not always happen!) the database returns a

response for an operation, we may also know a return value; for

instance, that a read of x returned the number 5.

Clients know the order of operations within every transaction.

They may also know whether a transaction was definitely aborted,

definitely committed, or could be either, based on whether a commit

request was sent, and how (or if) the database acknowledged that

request. Clients can also record their own per-client and real-time

orders of events.

This is not, in general, enough to go on: none of this information

tells us whether y1 or y2 came first. In addition, we must consider

indeterminate transactions whose effects are not observed: did they

commit or not? We can’t tell.

This implies there might be many possible histories which are

compatible with a given observation. Are there conditions under

which only one history is possible? Or, if more than one is possible,

can we infer something about the structure of all of them which

allows us to identify anomalies?

We argue that yes: one can infer properties of every Adya his-

tory compatible with a given observation, by taking advantage of

datatypes which allow us to trace the sequence of versions which

gave rise to a particular version of an object, and which let us re-

cover the particular writes which gave rise to those versions. Next,

we offer intuition for how this can be accomplished.

2.1 Traceable and Recoverable Histories

Consider a set of observed transactions interacting with some read-

write register x . One transaction Tj read x and observed some

version xi . Another transactionTi wrote xi to x . In general, we can-

not tell whetherTi was the transaction which produced xi , because

some other transaction might have written xi as well. However, if

we know that no other transaction wrote xi , then we can recover

the particular transaction which wrote xi :Ti . This allows us to infer

a direct write-read dependency: Ti <wr Tj .

If every value written to a given register is unique1, then we can

recover the transaction which gave rise to any observed version.

We call this property recoverability: every version we observe can

be mapped to a specific write in some observed transaction.

1This approach is used by Crooks et al, and has a long history in the literature.

2

Recoverability allows us to infer read dependencies. However,

inferring write- and anti-dependencies takes more than recoverabil-

ity: we still need the version order≪. Read-write registers make

inferring ≪ impossible in general: if two transactions set x to xi
and x j respectively, we can’t tell which came first.

In a sense, blind writes to a register łdestroy history.ž If we used

a compare-and-set operation, we could tell something about the

preceding version, but a blind write can succeed regardless of what

value was present before. Moreover, the version resulting from a

blind write carries no information about the previous version.

Most database systems provide datatypes that allowmore sophis-

ticated operations than blind register writes, including counters,

sets and lists. As we discuss in a technical report [25], every one

of these rich datatypes can allow us to infer some details of the

internal version history.

The list datatype and its append operation, however, are special.

If x is a list type to which we only perform appends, we can obtain

the complete version history for x simply by reading it. A read of xi
tells us the order of all versions written prior: xi = [1, 2, 3] implies

that x took on the versions [], [1], [1, 2], and [1, 2, 3] in exactly that

order. We call this property traceability. If our appends add a unique

element to the end of x , we can also infer the exact write which

gave rise to any observed version: they are recoverable as well.

We can use traceability and recoverability to reconstruct write-

write, write-read, and read-write dependencies: traceability gives

us the version graph up any observed version, and recoverability

lets us map the versions in that graph to transactions. For instance,

a read of [1, 2] tells us that a transaction which read x[1] must

precede a transaction which appended 2. There may be some writes

near the end of a history which are never observed, but so long as

histories are long and include reads every so often, the unknown

fraction of a version order can be made relatively small.

Recoverability and traceability are the key to inferring dependen-

cies between observed transactions. Constraining the histories that

we generate to have these properties makes it possible to reason

from external observations to łhiddenž Adya histories with which

they are compatible. However, we have glossed over the mapping

between observed dependencies and Adya histories, as well as the

challenges arising from aborted and indeterminate transactions. In

the following section, we discuss these issues more rigorously.

3 FORMAL MODEL

In this section we present our abstract model of databases and

transactional isolation. We establish the notions of traceability and

recoverability, which we use to constrain abstract histories based

on external observations. We use these properties to argue that

Elle’s inferences are sound: that is, any anomalies identified in an

observation must be present in any corresponding Adya history.

Throughout this section, we will make reference to the concrete

example presented in Figure 1, which shows an external observation

(1.a) consisting of three transactions operating over a single list

object, and one possible interpretation of that observation. This in-

terpretation, as we will see, allows us to reason about the otherwise

opaque version order among subsequent object versions (e.g. [1]

and [1,2]), which in turn allows us to infer ordering dependencies

among transactions, ultimately identifying a serializability violation

that must exist in every interpretation.

Due to space considerations, we do not present the formal def-

initions of traceability and recoverability or their accompanying

proofs here; instead, we summarize these results.

3.1 Preliminaries

We begin our formalism by defining a model of a database, trans-

actions, and histories, closely adapted from Adya et al. We omit

predicates for simplicity, and generalize Adya’s read-write registers

to objects supporting arbitrary transformations as writes, result-

ing in a version graph. We constrain Adya’s version order ≪ to

be compatible with this version graph. This generalization intro-

duces a new class of anomaly, dirty updates, which we define in

Section 3.3.1.

3.1.1 Objects, Operations, Databases. An object x is a mutable

datatype, consisting of a set of versions2, written xi , x j , etc., an

initial version, labeled xinit , and a set of object operations.

An object operation represents a state transition between two

versions xi and x j of some object x . Object operations take an argu-

ment a and produce a return value r . We write this as f (x ,xi ,a) −→

(x j , r). Where the object, argument, return value, or return tuple

can be inferred from context or are unimportant, we may omit

them: f (xi ,a) −→ (x j), f (xi) −→ (x j), f (xi), etc.

Like Adya, we consider two types of operations: reads (r) and

writes (w). A read takes no argument, leaves the version of the

object unchanged, and returns that version: r (xi ,nil) −→ (xi ,xi).

A write operationw changes a version somehow. Write seman-

tics are object-dependent. Adya’s model (like much work on trans-

actional databases) assumes objects are registers, and that writes

blindly replace the current value.

The versions and write operations on an object x together yield

a version graph vx : a directed graph whose vertices are versions,

and whose edges are write operations.

A database is a set of objects x , y, etc.

In Figure 1.c, we see a graphvx of versions of the object x , whose

initial value was [] and whose final version has value [1,2,3]. The

edges labeled Tr denote the graph edges corresponding to write

operations.

3.1.2 Transactions. A transaction is a sequence of object operations,

followed by at most one commit or abort operation. Transactions

also include a unique identifier for disambiguation.

We say a transaction is committed if it ends in a commit, and

aborted if it ends in an abort. We call the version resulting from a

transaction’s last write to object x its final version of x ; any other

writes of x result in intermediate versions. If a transaction commits,

we say it installs all final versions; we call these installed versions.

Unlike Adya, we use committed versions to refer to all versions writ-

ten by committed transactions, including intermediate versions.

Versions from transactions which did not commit are called uncom-

mitted versions. The initial version of every object is considered

committed.

2For simplicity, we assume versions are values, and that versions do not repeat in a
history.

3

In the observation shown in Figure 1.a, we are aware of three

transactions, but only the read-only transactionT1 is actually known

to have committed. Blind write transaction T2’s commit status is

unknown, as is that of T3.

3.1.3 Histories. An Adya history H comprises a set of transactions

T on objects in a database D, a partial order E over operations in T ,

and a version order≪ over versions of the objects in D.

The event order E has the following constraints. It preserves

the order of all operations within a transaction, including commit

or abort events. One cannot read from the future: if a read r (xi)

is in E, then there must exist a write w −→ (xi) which precedes it.

Transactions observe their own writes: if a transaction T contains

w (xi) followed by r (x j), and there exists no w (xk) between the

write and read of xi in T , xi = x j . Finally, the history must be

complete: if E contains a read or write operation for a transaction

Tm , E must contain a commit or abort event for Tm .

The version order≪ has two constraints, per Adya et al. First,

it is a total order over installed versions of each individual object;

there is no ordering of objects written by uncommitted, aborted,

or intermediate transactions. Second, the version order for each

object x (which we write≪x) begins with the initial version xinit .

Driven by the intuition that the version order should be con-

sistent with the order of operations on an object, that xi ≪ x j
means x j overwrote xi , and that cycles in≪ are meant to capture

anomalies like circular information flow, we introduce an additional

constraint that was not necessary in Adya et al.’s formalism: the

version order≪ should be consistent with the version graphs vx ,

vy , Specifically, if xi ≪ x j , there exists a path from xi to x j in

vx . It would be odd if one appended 3 to the list [1, 2], obtaining

[1, 2, 3], and yet the database believed [1, 2, 3] ≪ [1, 2].

3.1.4 Dependency Graphs. We define write-write, read-write, and

write-read dependencies between transactions, adapted directly

from Adya’s formalism.

Finally, we (re-)define the Direct Serialization Graph using those

dependencies. The anomalies we wish to find are expressed in terms

of that serialization graph.

• Direct write-write dependency. A transactionTn directly

ww-depends on Tm if Tm installs a version xi of x , and Tn
installs x ’s next version x j , by≪.

• Direct write-read dependency. A transaction Tn directly

wr-depends onTm ifTm installs some version xi andTn reads

xi .
3

• Direct read-write dependency. A transaction Tn directly

rw-depends onTm ifTm reads version xi of x , andTn installs

x ’s next version in≪.

A Direct Serialization Graph, or DSG, is a graph of dependencies

between transactions. The DSG for a history H is denoted DSG(H).

If Tn ww-depends on Tm , there exists an edge labeled ww from Tm
to Tn in DSG(H), and similarly for wr- and rw-dependencies.

3It appears that Adya et al.’s read dependencies don’t rule out a transaction depending
on itself. We preserve their definitions here, but assume that in serialization graphs,
Tm , Tn .

Figure 1.b shows an Adya-style DSG for the given interpretation

of the observation. It shows three cycles, one of which (the G1-

single cycle shown in bold) is successfully inferred by Elle (we will

see how in the remainder of this section).

3.1.5 Dirty Updates. Adya defines G1a: aborted read as a com-

mitted transaction T2 containing a read of some value xi which

was written by an aborted transaction T1. However, our abstract

datatypes allow a transaction to commit a write which incorporates

aborted state.

We therefore define a complementary phenomenon to G1a, in-

tended to cover scenarios in which information łleaksž from uncom-

mitted versions to committed ones via writes. A history exhibits

dirty update if it contains an uncommitted transaction T1 which

writes xi , and a committed transaction T2 which contains a write

acting on xi .

3.1.6 Traceable Objects, Version Orders and Version Graphs. We

now define a class of traceable objects, which permit recovery of the

writes and versions leading to any given version. Recall that for an

object x , the version graphvx is comprised of versions connected by

object operations. We call a path in vx from xinit to some version

xi a trace of xi . Intuitively, a trace captures the version history of

an object.

We say an object x is traceable if every version xi has exactly

one trace; i.e. vx is a tree.

Given a history with version order ≪, we call the largest ver-

sion of x (by≪x) xmax . Because≪ is a total order over installed

versions, and because a path in the version graph exists between

any two elements ordered by≪, it follows that every committed

version of x is in the trace of xmax . Moreover, for any installed

version xi of x , we can recover the prefix of≪x up to and including

xi simply by removing intermediate and aborted versions from the

trace of xi .

Restricting our histories to traceable objects (e.g., lists) will allow

us to directly reason about the version order≪ using the results of

individual read operations.

3.2 A Theory of Mind for Externally-Observed
Histories

When we interact with a database system, the history may not

be accessible from outside the databaseÐor perhaps no łrealž his-

tory exists at all. We construct a formal łtheory of mindž which

allows us to reason about potential Adya histories purely from

client observations.

We define an observation of a system as a set of experimentally-

accessible transactions where versions, return values, and commit-

ted states may be unknown, and consider the interpretations of an

observationÐthe set of all histories which could have resulted in

that particular observation.

To be certain that an external observation constitutes an ir-

refutable proof of an internal isolation anomaly requires that ob-

servations have a unique mapping between versions and observed

transactions, a notion we call recoverability. We provide practical,

sufficient conditions to produce recoverable histories.

3.2.1 Observations. Imagine a set of single-threaded logical pro-

cesseswhich interact with a database system as clients. Each process

4

orders ofT1 andT2. There may also be many observations compati-

ble with a given history: for instance, we could observe transaction

T1’s commit, or fail to observe it and label T1 indeterminate.

In each interpretation of an observation, every observed transac-

tion corresponds to a distinct abstract transaction in that interpre-

tation’s history, taking into account that we may not know exactly

what versions or return values were involved, or whether or not

observed transactions actually committed. These definitions of com-

patible formalize an intuitive łtheory of mindž for a database: what

we think could be going on behind the scenes.

3.2.3 Recoverability. Traceability allows us to derive version de-

pendencies, but in order to infer transaction dependencies, we need

a way to map between versions and observed transactions. We also

need a way to identify aborted and intermediate versions, which

means proving which particular write yielded some version(s). To

do this, we exploit the definition of reads, and a property relating

versions to observed writes, which we call recoverability.

The definition of a read requires that the pre-version, post-

version, and return value are all equal. This means for an observed

committed read, we know exactly what version it observedÐand

conversely, given a version, we know which reads definitely ob-

served it.4 We say an observed transaction T̂m read xi when xi is

returned in one of T̂m ’s reads. By compatibility, any corresponding

transaction Tm must also have read xi .

Writes are more difficult, because in general multiple writes

could have resulted in a given version. For example, consider two

observed increment operations ŵ1 = w (x , _, 1) −→ (_,nil) and

ŵ2 = w (x , _, 1) −→ (_,nil). Which of these writes resulted in, say,

the version 2? It could be either ŵ1 or ŵ2. We cannot construct a

single transaction dependency graph for this observation. We could

construct a (potentially exponentially large) set of dependency

graphs, and check each one for cycles, but this seems expensive. To

keep our analysis computationally tractable, we restrict ourselves

to those cases where we can infer a single write, as follows.

Given an observation O and an object x with some version xi ,

we say that xi is recoverable iff there is exactly one write ŵi in O

which is compatible with any write leading to xi in the version

graph vx . We call ŵi recoverable as well, and say that xi must have

been written by ŵi . Since there is only one ŵi , there is exactly one

transaction T̂m in O which performed ŵi .

Any interpretation of O has exactly onewi compatible with ŵi ,

again performed by a unique transaction Tm . When a version is

recoverable, we know which single transaction wrote it in every

interpretation.

We say a version xi is known-aborted if it is recoverable to an

aborted transaction, known-committed if it is recoverable to a com-

mitted transaction, and known-intermediate if it is recovered to a

non-final write. By compatibility, these properties apply not just to

an observation O , but to every interpretation of O .

We say an observation O is completely recoverable if every write

in O is recoverable. O is intermediate-recoverable if every interme-

diate write in O is recoverable. O is trace-recoverable if, for every

x in O , x is traceable, and every non-initial version in the trace of

every committed read of x is recoverable.

4Indeterminate reads, of course, may have read different values in different
interpretations.

We can obtain complete recoverability for a register by choosing

unique arguments for writes. Counters and sets are difficult to

recover in general: a set like {1, 2} could have resulted either from a

write of 1 or 2.5 However, restricting observations to a single write

per object makes recovery trivial.

In the history shown in Figure 1, for example, we know that

transaction T1 read the version with value [], and later read the

version with value [1, 2]. Recoverability allows us to infer that the

object version with value [1] was written by T2, as was the version

with value [1, 2].

For traceable objects, we can guarantee an observation O is

trace-recoverable when O satisfies three criteria:

(1) Every argument in the observed writes to some object is

distinct.

(2) Given a committed read of xi , every argument to every write

in the trace of xi is distinct.

(3) Given a committed read of xi , every write in the trace of xi
has a compatible write in O .

We can ensure the first criterion by picking unique values when

we write to the database. We can easily detect violations of the

remaining two criteria, and each points to pathological database

behavior: if arguments in traces are not distinct, it implies some

write was somehow applied twice; and if a trace’s write has no

compatible write inO , then it must have manifested from nowhere.

Similar conditions suffice for intermediate-recoverability.

With a model for client observations, interpretations of those

observations, and ways to map between versions and observed

operations, we are ready to infer anomalies.

3.3 Soundness of Elle

We would like our checker to be sound: if it reports an anomaly in

an observation, that anomaly should exist in every interpretation

of that observation. We would also like it to be complete: if an

anomaly occurred in an history, we should be able to find it in

any observation of that history. In this section, we establish the

soundness of Elle for trace-recoverable histories formally, and

show how our approach comes close to guaranteeing completeness.

The anomalies identified by Adya et al. can be broadly split into

two classes. Some anomalies involve transactions operating on ver-

sions that they should not have observed, either because an aborted

transaction wrote them or because they were not the final write of

some committed transaction. Our soundness proof must show that

if one of these anomalies is detected in an observation, it surely oc-

curred in every interpretation of that observation. Other anomalies

involve a cycle in the dependency graph between transactions; we

show that given an observation, we can can construct a dependency

graph which is a subgraph of every possible history compatible with

that observation. If we witness a cycle in the subgraph, it surely

exists in any compatible history.

We begin with the first class: non-cycle anomalies.

3.3.1 Non-Cycle Anomalies. We can use the definition of compati-

bility, along with properties of traceable objects and recoverability,

5We can define a weaker notion of recoverability which identifies all writes in the
causal past of some version, but we lack space to discuss it here.

6

to infer whether or not an observation implies that every inter-

pretation of that observation contains aborted reads, intermediate

reads, or dirty updates.

Direct Observation Consider an observation O with a known-

aborted version xi . If xi is read by an observed committed trans-

action T̂m , that read must correspond to a committed read of an

aborted version in every interpretation of O : an aborted read. A

similar argument holds for intermediate reads.

Inconsistent Observations For traceable objects, we can go fur-

ther. If an observation O is inconsistent, it contains a committed

read of some version xi which does not appear in the trace of

xlonдest . As previously discussed, all committed versions of x must

be in the trace of xmax . At most one of xlonдest or xi may be in

this trace, so at least one of them must be aborted.

Via Traces Consider a committed read of some value xc whose

trace contains a known-aborted version xa . Either xc is aborted

(an aborted read), or a dirty update exists between xa and xc . A

similar argument allows us to identify dirty updates when xc is the

product of a known-committed write. The closer xa and xc are in

the version graph, the better we can localize the anomaly.

Completeness The more recoverable a history is, and the fewer

indeterminate transactions it holds, the more non-cycle anomalies

we can catch. If an observation is determinate and trace-recoverable,

we know exactly which reads committed in every interpretation,

and which writes aborted, allowing us to identify every case of

aborted read. With complete recoverability, we can detect every

dirty update.

For an intermediate-recoverable observation O , we can iden-

tify every intermediate read. We can do the same if O is trace-

recoverable. Let xi be a version read by a committed read in O .

Trace-recoverability ensures xi is recoverable to a particular write,

and we know from that write’s position in its observed transac-

tion whether it was intermediate or not. Compatibility ensures all

interpretations agree.

In practice, observations are rarely complete, but as we show in

section 6, we typically observe enough of a history to detect the

presence of non-cycle anomalies.

3.3.2 Dependency Cycles. The remainder of the anomalies identi-

fied by Adya et al. are defined in terms of cycles in the dependency

graph between transactions. Given an observation O , we begin by

inferring constraints on the version order≪, then use properties

of reads and recoverability to map dependencies on versions into

dependencies on transactions.

Inferred Version Orders Consider an intermediate-recoverable

observation O of a database composed of traceable objects,6 and

an interpretation (H ,R) of O . We wish to show that we can derive

part ofH ’s version order≪ fromO alone, with minimal constraints

on H and R. Traceability allows us to recover a prefix of≪x from

any installed xi in H , assuming we know which transactions in the

trace of xi committed, and which aborted. Let us assume H does

not contain aborted reads, intermediate reads, or dirty updates. We

call such a history clean.

Given O , which version of x should we use to recover ≪x ?

Ideally, we would have xmax . However, there could be multiple

6We can also derive weaker constraints on the version order from non-traceable objects,
which we leave as an exercise for the reader.

interpretations of O with distinct xmax . Instead, we take a version

xf read by a transaction T̂f such that:

• T̂f is committed.

• T̂f read xf before performing any writes to x .

• No other version of x satisfying the above properties has a

longer trace than xf .

We use xf to obtain an inferred version order <x that is consis-

tent with≪x , as follows. First, we know that xf corresponds to an

installed version of x in H because H contains no intermediate or

aborted reads. By a similar argument, we also know that every ver-

sion of x in the trace of xf was written by a committed transaction.

Therefore, if we remove the intermediate versions in the trace of

xf (which we know, thanks to intermediate-recoverability), we are

left with a total order over committed versions that corresponds

directly to the prefix of≪x up to and including xf . We define < as

the union of <x for all objects x .

Figure 1.c shows a collection of versions of a single list-append

object. The starting point for our analysis is object version [1,2],

read by transactionT1, which is xf . Version [] < [1,2] in the inferred

version order <, which is only a prefix of the (opaque) order≪x . In

the abstract version order≪x , we also have [1,2]≪x [1,2,3], due

to T3’s write of 3 which, in the Adya history corresponding to this

interpretation, replaced version [1,2].

Inferred Serialization Graphs Given an intermediate-recoverable

observationO of a database of traceable objects, we can infer a chain

of versions <x which is a prefix of≪x , for every object x inO . IfO

is trace-recoverable, we can map every version in < to a particular

write in O which produced it, such that the corresponding write

in every interpretation of O produced that same version. Using

these relationships, we define inferred dependencies between pairs

of transactions T̂m and T̂n in O as follows:

• Direct inferred write-write dependency. A transaction

T̂n directly inferred-ww-depends on T̂m if T̂m performs a final

write of a version xi of x , and T̂n performs a final write

resulting in x ’s next version x j , by <.

• Direct inferred write-read dependency. A transaction

T̂n directly inferred-wr-depends on T̂m if T̂m performs a final

write of a version xi in <, and T̂n reads xi .

• Direct inferred read-write dependency. A transaction

T̂n directly inferred-rw-depends on T̂m if T̂m reads version xi
of x , and T̂n performs a final write of x ’s next version in <.

Unlike Adya et al.’s definitions, we don’t require that a trans-

action install some xi , because an indeterminate transaction in O

might be committed in interpretations ofO , and have corresponding

dependency edges there. Instead, we rely on the fact that < only

relates installed versions (in clean interpretations).

An Inferred Direct Serialization Graph, or IDSG, is a graph of

dependencies between observed transactions. The IDSG for an

observation O is denoted IDSG(O). If T̂n inferred-ww-depends on

T̂m , there exists an edge labeled ww from T̂m to T̂n in IDSG(O), and

similarly for inferred-wr and inferred-rw-dependencies.

All that remains is to show that for every clean interpretation

(H ,R) of an observation, IDSG(O) is (in some sense) a subgraph

of DSG(H). However, the IDSG and DSG are graphs over different

types of transactions; we need the bijection R to translate between

7

them. Given a relation R and a graphG , we write R ⋄G to denoteG

with each vertex v replaced by Rv .

Soundness provides us with the assurance that for any depen-

dency edge (and by extension, cycle) we infer from a given observa-

tion (Figure 1.a), there is a corresponding edge (respectively, cycle)

among the (unobserved) Adya Transactions in every possible inter-

pretation (Figure 1.b). We see that there is a WR dependency from

T2 toT1 becauseT1 read object value [1,2] written byT2. We further

know that there is a RW dependency from T1 to T2 because T2
wrote object value [1], T1 read object value [], and [1] immediately

follows [] in the inferred version order < (and hence in≪, of which

< is a prefix). Figure 1.b shows one interpretation that is consistent

with this observation that includes two more dependency cycles

(a G-Single and a G2 cycle) in addition to the G-Single cycle we

observed.

The soundness proof for Elle first establishes that for every

clean interpretation (H ,R) of a trace-recoverable observation O ,

R ⋄ IDSG (O) is a subgraph of DSG (H). The proof proceeds by cases

showing that for each class of dependency, if a given edge exists in

the IDSG, it surely exists in every compatible DSG. We omit these

details, which are straightforward, in this paper.

For every anomaly defined in terms of cycles on a DSG (e.g. G0,

G1c, G-Single, G2, . . .), we can now define a corresponding anomaly

on an IDSG. If we detect that anomaly in IDSG(O), its corresponding

anomaly must be present in every clean interpretation ofO as well!

We present a soundness theorem for Elle below:

Theorem 3.1. Given a trace-recoverable observation O , if Elle

infers aborted reads, dirty updates, or intermediate reads, then ev-

ery interpretation of O exhibits corresponding phenomena. If Elle

infers a cycle anomaly, then every clean interpretation of O exhibits

a corresponding phenomenon.

Unclean Interpretations What of unclean interpretations, like

those with aborted reads or dirty updates? If those occurred, the

trace of a version read by a committed transaction could cause us

to infer a version order <x which includes uncommitted versions,

and is not a prefix of≪x . A clean interpretation could have cycles

absent from an unclean interpretation, and vice versa.

Phenomena like aborted reads and dirty updates are, in an infor-

mal sense, łworsež than dependency cycles like G1c and G2. If every

interpretation of an observation must exhibit aborted reads, the

question of whether it also exhibits anti-dependency cycles is not

as pressing! And if some interpretations exist which don’t contain

aborted reads, but all of those exhibit anti-dependency cycles, we

can choose to give the system the benefit of the doubt, and say that

it definitely exhibits G2, but may not exhibit aborted reads.

Completeness The more determinate transactions an ob-

servation contains, the more likely we are to definitively detect

anomalies. In special cases (e.g. whenO is determinate, completely-

recoverable, etc.), we can prove completeness. In practice, we typi-

cally fail to observe the results of some transactions, and must fall

back on probabilistic arguments. In section 6 we offer experimental

evidence that Elle is complete enough to detect anomalies in real

databases.

4 INFERRING MORE DEPENDENCIES

We have argued that Elle can infer transaction dependencies based

on traceability and recoverability. In this section, we suggest addi-

tional techniques for inferring the relationships between transac-

tions and versions.

4.1 Transaction Dependencies

In addition to dependencies on values, we can infer additional de-

pendencies purely from the concurrency structure of a history.

For instance, if process P1 performs T1 then T2, we can infer that

T1 <p T2. These dependencies encode a constraint akin to sequen-

tial consistency: each process should (independently) observe a

logically monotonic view of the database. We can use these de-

pendencies to strengthen any consistency model testable via cycle

detection. For instance, Berenson et al’s definition of snapshot isola-

tion [4] does not require that transaction start timestamps proceed

in any particular order, which means that a single process could

observe, then un-observe, a write. If we augment the dependency

graph with per-process orders, we can identify these anomalies,

distinguishing between SI and strong session SI [16].

Similarly, serializability makes no reference to real-time con-

straints: it is legal, under Adya’s formalism, for every read-only

transaction to return an initial, empty state of the database, or to

discard every write-only transaction by ordering it after all reads.

Strict serializability [22] enforces a real-time order: if transactionT1
completes before T2 begins, T2 must appear to take effect after T1.

We can compute a transitive reduction of the realtime precedence

order in O (n · p) time, where n is the number of operations in the

history, and p is the number of concurrent processes, and use it to

detect additional cycles.

Some snapshot-isolated databases expose transaction start and

commit timestamps to clients. Where this information is available,

we can use it to infer the time-precedes order used in Adya’s for-

malization of snapshot isolation [1], and construct a start-ordered

serialization graph.

4.2 Version Dependencies

Traceability on x allows us to infer a prefix of the version order

<xÐbut this does not mean that non-traceable objects are useless!

If we relax <x to be a partial order, rather than total, and make some

small, independent assumptions about the behavior of individual

objects, we can recover enough version ordering information to

detect cyclic anomalies on less-informative datatypes.

For instance, if we assume that the initial version xinit is never

reachable via any write, we can infer xinit <x xi for every xi other

than xinit . With registers, for example, we know that 1, 2, 3, etc.

must all follow nil . When the number of versions per object is small

(or when databases have a habit of incorrectly returning nil), this

trivial inference can be sufficient to find real-world anomalies.

If we assume that writes follow reads within a single transaction,

we can link versions together whenever a transaction reads, then

recoverably writes, the same key. For instance, T1 = r (xi),w (x j)

allows us to infer xi <x x j .

Many databases claim that each record is independently lineariz-

able, or sequentially consistent. After computing the process or

8

real-time precedence orders, we can use those transaction rela-

tionships to infer version dependencies. If a transaction finishes

writing or reading a linearizable object x at xi , then another trans-

action writes or reads x j , we can infer (on the basis of per-key

linearizability) that xi <x x j .

Where databases expose version metadata to clients, we can

use that metadata to construct version dependency graphs directly,

rather than inferring the version order from values.

Sincewe can use transaction dependencies to infer version depen-

dencies, and version dependencies to infer transaction dependen-

cies, we can iterate these procedures to infer increasingly complete

dependency graphs, up to some fixed point. We can then use the

resulting transaction graph to identify anomalies.

5 FINDING COUNTEREXAMPLES

These techniques allow us to identify several types of dependen-

cies between transactions: write-read, write-write, and read-write

relationships on successive versions of a single object, process and

real-time orders derived from the concurrency structure of the his-

tory, and version and snapshot metadata orders where databases

offer them. We take the union of these dependency graphs, with

each edge labeled with its dependency relationship(s), and search

for cycles with particular properties.

• G0: A cycle comprised entirely of write-write edges.

• G1c: A cycle comprised of write-write or write-read edges.

• G-single: A cycle with exactly one read-write edge.

• G2: A cycle with one or more read-write edges.

Optionally, we may expand these definitions to allow process,

realtime, version, and/or timestamp dependencies to count towards

a cycle.

To find a cycle, we apply Tarjan’s algorithm to identify strongly

connected components [34]. Within each component, we apply

breadth-first search to identify a short cycle.

To find G0, we restrict the graph to only write-write edges, which

ensures that any cycle we find is purely comprised of write depen-

dencies. For G1c, we select only write-write and write-read edges.

G-single is trickier, because it requires exactly one read-write edge.

We partition the dependency graph into two subgraphs: one with,

and one without read-write edges. We find strongly connected com-

ponents in the full graph, but for finding a cycle, we begin with

a node in the read-write subgraph, follow exactly one read-write

edge, then attempt to complete the cycle using only write-write

and write-read edges. This allows us to identify cycles with exactly

one read-write edge, should one exist.

These cycles can be presented to the user as a witness of an

anomaly. We examine the graph edges between each pair of trans-

actions, and use those relationships to construct a human-readable

explanation for the cycle, and why it implies a contradiction.

5.1 Additional Anomalies

As described in section 3.3.1, we can exploit recoverability and

traceability to directly detect aborted read, intermediate read, and

dirty update. In addition, there are phenomena which Adya et al.’s

formalism does not admit, but which we believe (having observed

them in real databases) warrant special verification.

In garbage reads anomaly, a read observes a value which was

never written. In Duplicate writes, the trace of a committed read

version contains a write of the same argument multiple times. In In-

ternal inconsistency, a transaction reads some value of an object

which is incompatible with its own prior reads and writes.

Garbage reads may arise due to client, network, or database

corruption, errors in serialization or deserialization, etc. Duplicate

writes can occur when a client or database retries an append op-

eration; with registers, duplicate writes can manifest as G1c or

G2 anomalies. Internal inconsistencies can be caused by improper

isolation, or by optimistic concurrency control which fails to apply

a transaction’s writes to its local snapshot.

6 IMPLEMENTATION AND CASE STUDY

We have implemented Elle as a checker in the open-source dis-

tributed systems testing framework Jepsen [27] and applied it

to four distributed systems, including SQL, document, and graph

databases. We have implemented full support for counters, regis-

ters, and lists; sets are upcoming. Elle revealed anomalies in every

system we tested, including G2, G-single, G1a, lost updates, cyclic

version dependencies, and internal inconsistencies. Almost all of

these anomalies were previously unknown. We have also demon-

strated, as a part of Elle’s test suite, that Elle can identify G0, G1b,

and G1c anomalies, as well as anomalies involving real-time and

process orders.

Our implementation takes an expected consistency model (e.g.

strict-serializable) and automatically detects and reports anomalies

which contradict that consistency model as data structures, visual-

izations, and human-verifiable explanations. For example, consider

the G-single anomaly in Figures 2 and 3.

Elle is straightforward to run against real-world databases. Most

transactional databases offer some kind of list with append. The

SQL standard’s CONCAT function and the TEXT datatype are a natural

choice for encoding lists, e.g. as comma-separated strings. Some SQL

databases, like Postgres, offer JSON collection types. Document

stores typically offer native support for ordered collections. Even

systems which only offer registers can emulate lists by performing

a read followed by a write.

While list-append gives us the most precise inference of anom-

alies, we can use the inference rules discussed in section 4 to analyze

systems without support for lists. Wide rows in Cassandra and

predicates in SQL are a natural fit for sets. Many systems have a no-

tion of an object version number or counter datatype: we can detect

cycles in both using Elle. Even systems which offer only read-write

registers allow us to infer write-read dependencies directly, and

version orders can be (partially) inferred by write-follows-read,

process, and real-time orders.

In all our tests, we generated transactions of varying length (typ-

ically 1-10 operations) comprised of random reads and writes over a

handful of objects. We performed anywhere from one to 1024 writes

per object; fewer writes per object stresses codepaths involved in

the creation of fresh database objects, and more writes per object

allows the detection of anomalies over longer time periods.

We ran 10-30 client threads across 5 to 9 nodes, depending on

the particular database under test. When a client thread times out

while committing a transaction (as is typical for fault-injection tests)

9

Let:

T1 = {:value [[:append 250 10] [:r 253 [1 3 4]] [:r 255 [2 3 4 5]] [:append 256 3]], ...}

T2 = {:value [[:append 255 8] [:r 253 [1 3 4]]], ...}

T3 = {:value [[:append 256 4] [:r 255 [2 3 4 5 8]] [:r 256 [1 2 4]] [:r 253 [1 3 4]]], ...}

Then:

- T1 < T2, because T1 did not observe T2's append of 8 to 255.

- T2 < T3, because T3 observed T2's append of 8 to key 255.

- However, T3 < T1, because T1 appended 3 after T3 appended 4 to 256: a contradiction!

Figure 2: A textual explanation of an experimentally obtained real-time G-single cycle, as presented by our checker.

Figure 3: The same cycle, as plotted by our checker. Arrows

show dependencies between transactions: wr denotes a read

dependency, rw denotes an anti-dependency, and rt denotes

a real-time ordering.

Jepsen spawns a new logical process for that thread to execute. This

causes the logical concurrency of tests to rise over time. Tens of

thousands of logically concurrent transactions are not uncommon.

TiDB [32] is an SQL database which claims to provide snapshot

isolation, based on Google’s Percolator [31]. We tested list ap-

pend with SQL CONCAT over TEXT fields, and found that versions

2.1.7 through 3.0.0-beta.1 exhibited frequent anomaliesÐeven in

the absence of faults. For example, we observed the following trio

of transactions:

T1: r(34, [2, 1]), append(36, 5), append(34, 4)

T2: append(34, 5)

T3: r(34, [2, 1, 5, 4])

T1 did not observe T2’s append of 5 to key 34, so T2 must rw-

depend on T1. However, T3’s read implies T1’s append of 4 to key

34 followed T2’s append of 5, so T1 ww-depends on T2. This cycle

contains exactly one anti-dependency edge, so it is a case of G-

single: read skew. We also found numerous cases of inconsistent

observations (implying aborted reads) as well as lost updates.

These cases stemmed from an automated transaction retry mech-

anism: when one transaction conflicted with another, TiDB re-

applied the transaction’s writes again, ignoring the conflict. Turn-

ing it off revealed the existence of a second, undocumented retry

mechanism. Version 3.0.0-rc2 resolved these issues by disabling

both retry mechanisms by default.

Furthermore, TiDB’s engineers claimed that select ... for

update preventedwrite skew. Elle demonstrated that G2 anomalies

including write skew were still possible, even when all reads used

select ... for update. TiDB’s locking mechanism could not

express a lock on an object which hadn’t been created yet, which

meant that freshly inserted rows were not subject to concurrency

control. TiDB has documented this limitation.

YugaByteDB [38] is a serializable SQL database based onGoogle’s

Spanner [14]. We evaluated version 1.3.1 using CONCAT over TEXT

fields, identified either by primary or secondary keys, both with

and without indices. We found that when master nodes crashed,

paused, or otherwise became unavailable to tablet servers, those

tablet servers could exhibit a handful of G2-item anomalies. For

instance, this cycle (condensed for clarity), shows two transactions

which fail to observe each other’s appends:

T1: . . . append(3, 837) . . . r(4, [. . . 874, 877, 883])

T1: . . . append(4, 885) . . . r(3, [. . . 831, 833, 836])

Every cycle we found involved multiple anti-dependencies; we

observed no cases of G-single, G1, or G0. YugaByte DB’s engineers

traced this behavior to a race condition: after a leader election, a

fresh master server briefly advertised an empty capabilities set to

tablet servers.When a tablet server observed that empty capabilities

set, it caused every subsequent RPC call to include a read times-

tamp. YugaByte DB should have ignored those read timestamps for

serializable transactions, but did not, allowing transactions to read

from inappropriate logical times. This issue was fixed in 1.3.1.2-b1.

FaunaDB [18] is a deterministic, strict-serializable document

database based on Calvin [35]. It offers native list datatypes, but

the client we used had no list-append functionÐwe used strings

with concat instead. While FaunaDB claimed to provide (up to)

strict serializability, we detected internal inconsistencies in version

2.6.0, where a single transaction failed to observe its own prior

writes:

T1: append(0, 6), r(0, nil)

These internal inconsistencies also caused Elle to infer G2 anom-

alies. Internal anomalies occurred frequently, under low contention,

in clusters without any faults. However, they were limited to index

reads. Fauna believes this could be a bug in which coordinators fail

to apply tentative writes to a transaction’s view of an index.

Dgraph [17] is a graph database with a homegrown transaction

protocol influenced by Shacham, Ohad et al. [33] Dgraph’s data

model is a set of entity-attribute-value triples, and it has no native

list datatype. However, it does lend itself naturally to registers (e.g.

stored as (key, łvalue",value) triples) whichwe analyzedwith Elle.

10

c=1

c=5

c=10

c=20

c=40

c=1

c=20

c=5

c=100

0

20

40

60

80

100

0 20000 40000 60000 80000 100000

R
u
n
ti
m

e
 (

s
)

Operations

Runtime vs history length, for various concurrencies (c=1, 2, ...)

Elle

Figure 4: Performance of Elle vs Knossos.

We evaluatedDgraph version 1.1.1, which claimed to offer snapshot

isolation, plus per-key linearizability.

Like FaunaDB, Dgraph failed to provide internal consistency

under normal operation: reads would fail to observe previously

read (or written!) values. This transaction, for instance, set key 10

to 2, then read an earlier value of 1.

T1: w(10, 2), r(10, 1)

To find cycles over registers, we allowed Elle to infer partial ver-

sion orders from the initial state, from writes-follow-reads within

individual transactions, and (sinceDgraph claims linearizable keys)

from the real-time order of operations. These inferred dependencies

were often cyclicÐhere, transaction T1 finished writing key 540 a

full three seconds before T2 began, but T2 failed to observe that

write:

T1: r(541, nil), w(540, 2)

T2: r(540, nil), w(544, 1)

Elle automatically reports and discards these inconsistent ver-

sion orders, to avoid generating trivial cycles, but it went on to

identify numerous instances of read skew, both with and without

real-time edges:

T1: r(2432, 10), r(2434, nil)

T2: w(2434, 10)

T3: w(2432, 10), r(2434, 10)

These cycles stemmed from a family of bugs in Dgraph related

to shard migration: transactions could read from freshly-migrated

shards without any data in them, returning nil . Dgraph Labs is

investigating these issues.

6.1 Performance

Elle’s performance on real-world workloads was excellent; where

Knossos (Jepsen’s main linearizability checker) often timed out

or ran out of memory after a few hundred transactions, Elle was

able to check histories of hundreds of thousands of transactions

in tens of seconds. To confirm this behavior experimentally, we

designed a history generator which simulates clients interacting

with an in-memory serializable-snapshot-isolated database, and

analyzed those histories with both Elle and Knossos.

Our histories were composed of randomly generated transactions

performing one to five operations each, interacting with any of 100

possible objects at any point in time. We performed 100 appends

per object.

We generated histories of different lengths, and with varying

numbers of concurrent processes, and measured both Elle and

Knossos’ runtime. SincemanyKnossos runs involved search spaces

on the order of 1024, we capped runtimes at 100 seconds. All tests

were performed on a 24-core Xeon with 128 GB of ram.

As Figure 4 shows, Knossos’ runtime rises dramatically with

concurrency: given c concurrent transactions, the number of per-

mutations to evaluate is c!. Symmetries and pruning reduce the

state space somewhat, but the problem remains fundamentally

NP-complete. With 40+ concurrent processes, even histories of

5000 transactions were (generally) uncheckable in reasonable time

frames. Of course, runtime rises with history length as well.

Elle does not exhibit Knossos’ exponential runtimes. Building

indices, checking for consistent orders, looking for internal and

aborted reads, constructing the inferred serialization graph, and

detecting cycles are all linear-time operations. Concurrency does

not have a strong impact on ElleÐthere are mild effects due to

conflicts and aborts.

7 RELATED WORK

As we discuss in Section 1, there has been a significant amount of

work on history checkers in the concurrent programming commu-

nity. As early as 1993, Wing & Gong [36] simulated executions of

linearizable objects to record concurrent histories, and described a

checker algorithm which could search for bugs in those histories.

Line-Up [9], Knossos [23], and Lowe’s linearizability checker [28]

11

follow similar strategies. Gibbons & Korach showed [21] that se-

quential consistency checking is NP-complete via reduction to SAT.

Knossos and similar approaches are more general than Elle,

supporting arbitrary datatypes and workloads, but are exponential

in concurrency history while Elle is constant.

Generating random operations, applying them to some imple-

mentation of a datatype, and checking that the resulting history

obeys certain invariants is a key concept in generative, or property-

based testing. Perhaps the most well-known implementation of

this technique is QuickCheck [13], and Jepsen applies a similar

approach to distributed systems [26]. Majumdar & Niksic argued

probabilistically for the effectiveness of this randomized testing

approach [29], which helps explain why our technique finds bugs.

Brutschy et al. propose both a static [8] and a trace-based dy-

namic [7] analysis to find serializability violations in programs run

atop weakly-consistent stores. Quite recently, Biswas & Enea pro-

vided polynomial-time checkers for read committed, read atomic,

and causal consistency, as well as exponential-time checkers for

prefix consistency, snapshot isolation, and serializability. [6]

Using graphs to model dependencies among transactions has

a long history in the database literature. The dependency graph

model was first proposed by Bernstein [4, 5] and later refined by

Adya [1, 2]. Dependency graphs have been applied to the problem

of safely running transactions at a mix of isolation levels [19] and to

the problem of runtime concurrency control[11, 37], in addition to

reasoning formally about isolation levels and anomalous histories.

As attractive as dependency graphs may be as a foundation

for database testing, they model orderings among object versions

and operations that are not necessarily visible to external clients.

Instead of defining isolation levels in terms of internal operations,

some declarative definitions of isolation levels [10, 12] are based

upon a pair of compatible dependency relations: a visibility relation

capturing the order in which writes are visible to transactions and

an arbitration relation capturing the commit order of writes.

The client-centric formalism of Crooks et al. [15] goes a step

further, redefining consistency levels strictly in terms of client-

observable states. While both approaches, like ours, enable reason-

ing about existing isolation levels from the outside of the database

implementation, our goal is somewhat different. We wish instead to

provide a faithful mapping between externally-observable events

and Adya’s data-centric definitions, which have become a lingua

franca in the database community. In so doing, we hope to build a

bridge between two decades of scholarship on dependency graphs

and emerging techniques for black-box database testing.

8 FUTUREWORK & CONCLUSIONS

Future Work There are some well-known anomalies, like long

fork, which Elle detects but tags as G2. We believe it should be

possible to provide more specific hints to users about what anom-

alies are present. Ideally, we would like to tell a user exactly which

isolation levels a given history does and does not satisfy.

Our approach ignores predicates and deals only in individual

objects; we cannot distinguish between repeatable read and serializ-

ability. Nor can we detect anomalies like predicate-many-preceders.

We would like to extend our model to represent predicates, and

infer dependencies on them.

Conclusions Wepresent Elle: a novel theory and tool for exper-

imental verification of transactional isolation. By using datatypes

and generating histories which couple the version history of the

database to client-observable reads and writes, we can extract rich

dependency graphs between transactions. We can identify cycles in

this graph, categorize them as various anomalies, and present users

with concise, human-readable explanations as to why a particular

set of transactions implies an anomaly has occurred.

Elle is sound. it identifies G0, G1a, G1b, G1c, G-single, and G2

anomalies, as well as inferring cycles involving per-process and real-

time dependencies. In addition, it can identify dirty updates, garbage

reads, duplicated writes, and internal consistency violations. When

Elle identifies an anomaly in an observation of database, it must

be present in every interpretation of that observation.

Elle is efficient. It is linear in the length of a history and effec-

tively constant with respect to concurrency. It can quickly analyze

real-world histories of hundreds of thousands of transactions, even

when processes crash leading to high logical concurrency. It is

dramatically faster than existing linearizability [23] and serializ-

ability [24] checkers.

Elle is effective. It has found anomalies in every database we’ve

checked, ranging from internal inconsistency and aborted reads to

anti-dependency cycles.

Elle is general. Unlike checkers which hard-code a particular

example of an anomaly (e.g. long fork), Elle works with arbitrary

patterns of writes and reads over different types of objects, so

long as they satisfy some simple properties: traceability and re-

coverability. Generating random histories with these properties is

straightforward; list append is broadly supported in transactional

databases. Elle can also make limited inferences from less infor-

mative datatypes, such as registers, counters, and sets.

Elle is informative. Unlike solver-based checkers, Elle’s cycle-

detection approach produces short witnesses of specific transac-

tions and human-readable explanations of why each witness must

be an instance of the claimed anomaly.

We are aware of no other checker which combines these prop-

erties. Using Elle, testers can write a small test which verifies a

wealth of properties against almost any database. The anomalies

Elle reports can rule out (or tentatively support) that database’s

claims for various isolation levels. Moreover, each witness points to

particular transactions at particular times, which helps engineers

investigate and fix bugs. We believe Elle will make the database

industry safer.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foun-

dation (Award #1652368) and gifts from Facebook and Ebay. The

authors wish to thank the anonymous reviewers for their feedback,

Asha Karim for discussions leading to Elle, and Kit Patella for her

assistance in building the Elle checker.

REFERENCES
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Imple-

mentations for Distributed Transactions. Technical Report. MIT.
[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation

Level Definitions (ICDE’00).
[3] Anish Athalye. 2017-2018. Porcupine. https://github.com/anishathalye/

porcupine.

12

[4] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Computing Survey 13, 2 (1981).

[5] Philip A. Bernstein, D. W. Shipman, and W. S. Wong. 1979. Formal Aspects of
Serializability in Database Concurrency Control. IEEE Transactions on Software
Engineering 5, 3 (1979).

[6] Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of Checking
Transactional Consistency. Proceedings of the ACM on Programming Languages 3,
OOPSLA (2019).

[7] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2017. Serial-
izability for Eventual Consistency: Criterion, Analysis, and Applications (POPL).

[8] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2018. Static
Serializability Analysis for Causal Consistency (PLDI).

[9] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. Line-
up: A Complete and Automatic Linearizability Checker (PLDI).

[10] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. 2012.
Eventually consistent transactions (ESOP).

[11] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable Isolation for
Snapshot Databases. ACM Transactions on Database Systems 34, 4 (2009).

[12] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework
for Transactional Consistency Models with Atomic Visibility (CONCUR).

[13] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs (ICFP).

[14] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. 2012. Spanner: Google’s globally-distributed database (OSDI).

[15] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. Seeing is
Believing: A Client-Centric Specification of Database Isolation (PODC).

[16] Khuzaima Daudjee and Kenneth Salem. 2006. Lazy Database Replication with
Snapshot Isolation (VLDB).

[17] Dgraph Labs. 2020. Dgraph. https://dgraph.io.
[18] Fauna Inc. 2019. FaunaDB. https://fauna.com.
[19] Alan Fekete. 2005. Allocating Isolation Levels to Transactions (PODS).
[20] Gecode Team. 2005. Gecode: Generic Constraint Development Environment.

https://www.gecode.org/.
[21] Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J.

Comput. 26, 4 (1997).

[22] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems 12, 3 (1990).

[23] Kyle Kingsbury. 2013-2019. Knossos. https://github.com/jepsen-io/knossos.
[24] Kyle Kingsbury. 2016. Gretchen. https://github.com/aphyr/gretchen.
[25] Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies from

Experimental Observations. arXiv:2003.10554
[26] Kyle Kingsbury and Kit Patella. 2013-2019. Jepsen (Reports). http://jepsen.io/

analyses.
[27] Kyle Kingsbury and Kit Patella. 2013-2019. Jepsen (Software Library). https:

//github.com/jepsen-io/jepsen.
[28] Gavin Lowe. 2017. Testing and Verifying Concurrent Objects. Concurrency and

Computation: Practice and Experience 29, 4 (2017).
[29] Rupak Majumdar and Filip Niksik. 2018. Why is Random Testing Effective for

Partition Tolerance Bugs (POPL).
[30] Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database

Updates. Journal of the Association for Computing Machinery 26, 4 (1979).
[31] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using

Distributed Transactions and Notifications (OSDI).
[32] PingCAP. 2019. TiDB. https://pingcap.com/en.
[33] Ohad Shacham, Francisco Perez-Sorrosal, Edward Bortnikov, Eshcar Hillel, Idit

Keidar, Ivan Kelly, Matthieu Morel, and Sameer Paranjpye. 2017. Omid, Reloaded:
Scalable and Highly Available Transaction Processing. USENIX Conference on
File and Store Technologies (2017).

[34] Robert Tarjan. 1971. Depth-first Search and Linear Graph Algorithms (SWAT).
[35] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems (SIGMOD).

[36] Jeannette M. Wing and Chun Gong. 1993. Testing and Verifying Concurrent
Objects. J. Parallel and Distrib. Comput. 17, 1-2 (1993).

[37] Chang Yao, Divyakant Agrawal, Pengfei Chang, Gang Chen, Beng Chin Ooi,
Weng-Fai Wong, and Meihui Zhang. 2015. DGCC: A New Dependency Graph
based Concurrency Control Protocol for Multicore Database Systems. CoRR
abs/1503.03642 (2015).

[38] YugaByte Inc. 2019. YugaByte DB. https://yugabyte.com.

13

	Abstract
	1 Introduction
	2 Deducing Dependencies
	2.1 Traceable and Recoverable Histories

	3 Formal Model
	3.1 Preliminaries
	3.2 A Theory of Mind for Externally-Observed Histories
	3.3 Soundness of Elle

	4 Inferring More Dependencies
	4.1 Transaction Dependencies
	4.2 Version Dependencies

	5 Finding Counterexamples
	5.1 Additional Anomalies

	6 Implementation and Case Study
	6.1 Performance

	7 Related Work
	8 Future Work & Conclusions
	References

