A History of Haskell:
Being Lazy With Class

Paul Hudak

Yale University
paul.hudak®@yale.edu

John Hughes

Chalmers University
rimh@cs.chalmers.se

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

Abstract

This paper describes the history of Haskell, including eeepis
and principles, technical contributions, implementatiand tools,
and applications and impact.

1. Introduction

In September of 1987 a meeting was held at the confer-
ence on Functional Programming Languages and Computer
Architecture in Portland, Oregon, to discuss an unfortenat
situation in the functional programming community: there
had come into being more than a dozen non-strict, purely
functional programming languages, all similar in expressi
power and semantic underpinnings. There was a strong con-
sensus at this meeting that more widespread use of this class
of functional languages was being hampered by the lack of
a common language. It was decided that a committee should
be formed to design such a language, providing faster com-
munication of new ideas, a stable foundation for real ap-
plications development, and a vehicle through which others
would be encouraged to use functional languages.

These opening words in the Preface of the first Haskell Report
Version 1.0 dated 1 April 1990, say quite a bit about the nystd
Haskell. They establish the motivation for designing Hisltke

lution that are distinctive in themselves, or that devetbpeun-

expected or surprising ways. We reflect on five areas: syi@ag-(
tion 4); algebraic data types (Section 5); the type systemi,tgpe

classes in particular (Section 6); monads and input/ou{fet-

tion 7); and support for programming in the large, such asutesd
and packages, and the foreign-function interface (Se&jon

Part 11l describes implementations and tools: what has lpedh
for the users of Haskell. We describe the various implememsitio
of Haskell, including GHC, hbc, hugs, nhc, and Yale Hask&dd-
tion 9), and tools for profiling and debugging (Section 10).

Part IV describes applications and impact: what has bedt liui
the users of Haskell. The language has been used for a bewjde
variety of applications, and in Section 11 we reflect on ttetiri-
tive aspects of some of these applications, so far as we &n di
cern them. We conclude with a section that assesses thetimipac
Haskell on various communities of users, such as educaijmn-
source, companies, and other language designers (Se2ion 1

Our goal throughout is to tell the story, including who wasoived
and what inspired them: the paper is supposed totistaryrather
than a technical description or a tutorial.

We have tried to describe the evolution of Haskell in an even-
handed way, but we have also sought to convey some of the ex-
citement and enthusiasm of the process by including anesdwid

need for a common language), the nature of the language to bepersonal reflections. Inevitably, this desire for vividneseans that

designed (non-strict, purely functional), and the prodsssvhich
it was to be designed (by committee).

Part | of this paper describes genesis and principles: hoskélia
came to be. We describe the developments leading up to Hiaskel
and its early history (Section 2) and the processes andipiésc
that guided its evolution (Section 3).

Part Il describes Haskell's technical contributions: wiHaskell is.
We pay particular attention to aspects of the language arel/d-

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Third ACM SIGPLAN History of Programming Languages Confere (HOPL-III)
San Diego, CA

Copyright(© 2007 ACM . .. $5.00.

our account will be skewed towards the meetings and convensa
in which we personally participated. However, we are cansxi
that many, many people have contributed to Haskell. Theesize
quality of the Haskell community, its breadth and its deptle,both
the indicator of Haskell's success and its cause.

One inevitable shortcoming is a lack of comprehensivendsskell

is now more than 15 years old and has been a seedbed for an im-
mense amount of creative energy. We cannot hope to do justice

all of it here, but we take this opportunity to salute all taagho

have contributed to what has turned out to be a wild ride.

Part | Lisp, and showed soundness of their evaluator with respet t
denotational semantics.

1 I I e David Turner (at St. Andrews and Kent) introduced a series

GeneSIS and PrlnCIpleS of influential languages: SASL (St Andrews Static Language)
(Turner, 1976), which was initially designed as a strict-lan

guage in 1972 but became lazy in 1976, and KRC (Kent Re-

2. The genesis of Haskell cursive Calculator) (Turner, 1982). Turner showed thealeg

In 1978 John Backus delivered his Turing Award lecture, “@eo of programming with lazy evaluation, and in particular tree u
gramming be liberated from the von Neumann style?” (Backus, ©f lazy lists to emulate many kinds of behaviours (Turneg19
1978a), which positioned functional programming as a icid- Turner, 1982). SASL was even used at Burroughs to develop an
tack on the whole programming enterprise, from hardwarkiarc entire operating system—almost certainly the first exerofs
tecture upwards. This prominent endorsement from a giatiten pure, lazy, functional programming “in the large”.

field—Backus led the team that developed Fortran, and iedent
Backus Naur Form (BNF)—put functional programming on the
map in a new way, as a practical programming tool rather than a
mathematical curiosity. ¢ In software, a variety of techniques basedgvaph reduction
were being explored, and in particular Turner’s inspinagity
elegant use 08K combinatorgTurner, 1979b; Turner, 1979a).
(Turner's work was based on Haskell Currgismbinatory cal-
culus(Curry and Feys, 1958), a variable-less version of Alonzo
Church’s lambda calculus (Church, 1941).)

Another potent ingredient was the possibility that all thiauld

Atthe same time, there was a symbiotic effort on exciting nays
to implementazy languages. In particular:

Even at that stage, functional programming languages hadg |
history, beginning with John McCarthy’s invention of Ligp the

late 1950s (McCarthy, 1960). In the 1960s, Peter Landin and
Christopher Strachey identified the fundamental impoeasfache
lambda calculus for modelling programming languages aidl la
the foundations of both operational semantics, throughiradis

machines (Landin, 1964), and denotational semantics di$tya lead to a radically different non-von Neumann hardwareiarch
1964). A few years later Strachey’s collaboration with D&uatt tectures. Several serious projects were underway (or wedre g
put denotational semantics on firm mathematical foundatiom ting underway) to buildiataflowandgraph reductiormachines
derpinned by Scott's domain theory (Scott and Strachey1197 of various sorts, including the Id project at MIT (Arvind and
Scott, 1976). In the early '70s, Rod Burstall and John Dgrlin Nikhil, 1987), the Rediflow project at Utah (Keller et al., 7)),
ton were doing program transformation in a first-order fiowl the SK combinator machine SKIM at Cambridge (Stoye et al.,
language with function definition by pattern matching (Balls 1984), the Manchester dataflow machine (Watson and Gurd,
and Darlington, 1977). Over the same period David Turneora f 1982), the ALICE parallel reduction machine at Imperial (Da
mer student of Strachey, developed SASL (Turner, 1976),ra pu lington and Reeve, 1981), the Burroughs NORMA combinator
higher-order functional language with lexically scopedalales— machine (Scheevel, 1986), and the DDM dataflow machine at
a sugared lambda calculus derived from the applicativeetufs Utah (Davis, 1977). Much (but not all) of this architectlyal
Landin’s ISWIM (Landin, 1966)—that incorporated Burstalid oriented work turned out to be a dead end, when it was later dis
Darlington’s ideas on pattern matching into an executatdgm@am- covered that good compilers for stock architecture coutgem
ming language. form specialised architecture. But at the time it was alicald
and exciting.

In the late '70s, Gerry Sussman and Guy Steele developedrgche
a dialect of Lisp that adhered more closely to the lambdauealc ~ Several significant meetings took place in the early '80$ lat
lus by implementing lexical scoping (Sussman and Steelé5;19 additional impetus to the field.

Steele, 1978). At more or less the same time, Robin Milner in-
vented ML as a meta-language for the theorem prover LCF at Ed-
inburgh (Gordon et al., 1979). Milner's polymorphic typessgm

for ML would prove to be particularly influential (Milner, ¥8;
Damas and Milner, 1982). Both Scheme and ML were strict{call

In August 1980, the first Lisp conference took place in Stahfo
California. Presentations included Rod Burstall, Dave Qlagen,
and Don Sannella on Hope, the language that introducedraligeb
data types (Burstall et al., 1980).

by-value) languages and, although they contained imper&a- In July 1981, Peter Henderson, John Darlington, and Daviddru
tures, they did much to promote the functional programmigntes ran an Advanced Course on Functional Programming and it§-App
and in particular the use of higher-order functions. cations, in Newcastle (Darlington et al., 1982). All the bigmes

. were there: attendees included Gerry Sussman, Gary Lamdstr
2.1 The call of laziness David Park, Manfred Broy, Joe Stoy, and Edsger Dijkstragias
Then, in the late '70s and early '80s, something new happeked and Peyton Jones attended as students.) Dijkstra was t#résac
series of seminal publications ignited an explosion ofregein the tically unimpressed—he wrote “On the whole | could not avoid
idea oflazy (or non-strict, or call-by-need) functional languages as some feelings of deep disappointment. I still believe thattbpic
a vehicle for writing serious programs. Lazy evaluationespp to deserves a much more adequate treatment; quite a lot we were e
have been invented independently three times. posed to was definitely not up to par.” (Dijkstra, 1981)—bott f

e Dan Friedman and David Wise (both at Indiana) published many attendees it was a watershed.

“Cons should not evaluate its arguments” (Friedman and Wise In September 1981, the first conference on Functional Pnogra
1976), which took on lazy evaluation from a Lisp perspective ~ ming Languages and Computer Architecture (FPCA)—note the
o Peter Henderson (at Newcastle) and James H. Morris Jr (attltle!—took place in Portsmouth, New Hampshire. Here Turne
: « » : " " gave his influential paper on “The semantic elegance of eaple
Xerox PARC) published “A lazy evaluator” (Henderson and languages” (Turner, 1981). (Wadler also presented hisdinster-
Morris, 1976). They cite Vuillemin (Vuillemin, 1974) and guag ' ' p

Wadsworth (Wadsworth, 1971) as responsible for the origins ence paper.) FPCA became a key biennial conference in the fiel

the idea, but popularised the idea in POPL and made one otherin September 1982, the second Lisp conference, now renamed
important contribution, the name. They also used a variént o Lisp and Functional Programming (LFP), took place in Piitgb,

Pennsylvania. Presentations included Peter Hendersoruran f
tional geometry (Henderson, 1982) and an invited talk byw&uon
programming with infinite data structures. (It also saw thst fiub-
lished papers of Hudak, Hughes, and Peyton Jones.) Speeisisy

at this conference included Church and Curry. The aftenatitalk

was given by Barkley Rosser, and received two ovations intide

dle, once when he presented the proof of Curry’s paradoatingl

it to the Y combinator, and once when he presented a new proof
of the Church-Rosser theorem. LFP became the other keyihlenn
conference.

(In 1996, FPCA merged with LFP to become the annual Interna-
tional Conference on Functional Programming, ICFP, whieh r
mains the key conference in the field to the present day.)

In August 1987, Ham Richards of the University of Texas and
David Turner organised an international school on Dedlarat
Programming in Austin, Texas, as part of the UT “Year of Pro-
gramming”. Speakers included: Samson Abramsky, John Backu
Richard Bird, Peter Buneman, Robert Cartwright, Simon Thom
son, David Turner, and Hughes. A major part of the school was a
course in lazy functional programming, with practical skesusing
Miranda.

All of this led to a tremendous sense of excitement. The sonpl
ity and elegance of functional programming captivated tfesgnt
authors, and many other researchers with them. Lazy ei@huat
with its direct connection to the pure, call-by-name lamiodé
culus, the remarkable possibility of representing and maating
infinite data structures, and addictively simple and béaluthple-
mentation techniques—was like a drug.

(An anonymous reviewer supplied the following: “An inteing
sidelight is that the Friedman and Wise paper inspired Sassmd
Steele to examine lazy evaluation in Scheme, and for a time th
weighed whether to make the revised version of Scheme ygall-b
name or call-by-value. They eventually chose to retain tigiral
call-by-value design, reasoning that it seemed to be musieret@
simulate call-by-name in a call-by-value language (usamghda-
expressions as thunks) than to simulate call-by-value ialleby-
name language (which requires a separate evaluatiomépneech-
anism). Whatever we might think of that reasoning, we cary onl
speculate on how different the academic programming-laggu
landscape might be today had they made the opposite detjsion

2.2 A tower of Babel

As a result of all this activity, by the mid-1980s there wemsum-
ber of researchers, including the authors, who were keeégy-i
ested in both design and implementation techniques for, pazg
languages. In fact, many of us had independently designeovau
lazy languages and were busily building our own implemémtat
for them. We were each writing papers about our efforts, ifrctvh
we first had to describe our languages before we could desoub
implementation techniques. Languages that contributéugdazy
Tower of Babel include:

e Miranda, a successor to SASL and KRC, designed and imple-
mented by David Turner using SK combinator reduction. While
SASL and KRC were untyped, Miranda added strong polymor-
phic typing and type inference, ideas that had proven vety su
cessful in ML.

e Lazy ML (LML), pioneered at Chalmers by Augustsson and
Johnsson, and taken up at University College London by Reyto
Jones. This effortincluded the influential developmenhefG-
machine which showed that one coutmpilelazy functional
programs to rather efficient code (Johnsson, 1984; Augustss
1984). (Although it is obvious in retrospect, we had become

used to the idea that laziness meant graph reduction, apt gra
reduction meant interpretation.)

Orwell, a lazy language developed by Wadler, influenced by
KRC and Miranda, and OL, a later variant of Orwell. Bird and
Wadler co-authored an influential book on functional proagra
ming (Bird and Wadler, 1988), which avoided the “Tower of
Babel” by using a more mathematical notation close to both
Miranda and Orwell.

Alfl, designed by Hudak, whose group at Yale developed a
combinator-based interpreter for Alfl as well as a compiler
based on techniques developed for Scheme and for T (a dialect
of Scheme) (Hudak, 1984b; Hudak, 1984a).

Id, a non-strict dataflow language developed at MIT by Arvind
and Nikhil, whose target was a dataflow machine that they were
building.

Clean, a lazy language based explicitly on graph reduction,
developed at Nijmegen by Rinus Plasmeijer and his colleague
(Brus et al., 1987).

Ponder, a language designed by Jon Fairbairn, with an impred
icative higher-rank type system and lexically scoped tyge-v
ables that was used to write an operating system for SKIM
(Fairbairn, 1985; Fairbairn, 1982).

Daisy, a lazy dialect of Lisp, developed at Indiana by Cadedel
Hall, John O’Donnell, and their colleagues (Hall and O’'Delhin
1985).

With the notable exception of Miranda (see Section 3.8pfdliese
were essentially single-site languages, and each indillidiacked
critical mass in terms of language-design effort, impletagons,
and users. Furthermore, although each had lots of intaceistéas,
there were few reasons to claim that one language was deraonst
bly superior to any of the others. On the contrary, we felt thay
were all roughly the same, bar the syntax, and we started nol@ro
why we didn’t have a single, common language that we could all
benefit from.

At this time, both the Scheme and ML communities had develope
their own standards. The Scheme community had major loci in
MIT, Indiana, and Yale, and had just issued its ‘revised sedi
report (Rees and Clinger, 1986) (subsequent revisionsdteat! to

the ‘revised’ report (Kelsey et al., 1998)). Robin Milner had issued
a ‘proposal for Standard ML’ (Milner, 1984) (which would dait
evolve into the definitiveDefinition of Standard ML(Milner and
Tofte, 1990; Milner et al., 1997)), and Appel and MacQueed ha
released a new high-quality compiler for it (Appel and Mae@u,
1987).

2.3 The birth of Haskell

By 1987, the situation was akin to a supercooled solutior-that

was needed was a random event to precipitate crystallisafimat
event happened in the fall of ‘87, when Peyton Jones stopped a
Yale to see Hudak on his way to the 1987 Functional Program-
ming and Computer Architecture Conference (FPCA) in Podja
Oregon. After discussing the situation, Peyton Jones ardbaku
decided to initiate a meeting during FPCA, to garner interede-
signing a new, common functional language. Wadler alsopstdp

at Yale on the way to FPCA, and also endorsed the idea of a meet-
ing.

The FPCA meeting thus marked the beginning of the Haskell de-
sign process, although we had no name for the language and ver
few technical discussions or design decisions occurrefhadth) a

key point that came out of that meeting was that the easigstava
move forward was to begin with an existing language, andvevol

it in whatever direction suited us. Of all the lazy languageder
development, David Turner’s Miranda was by far the most meatu

It was pure, well designed, fulfilled many of our goals, hada r
bust implementation as a product of Turner's company, Rebea
Software Ltd, and was running at 120 sites. Turner was naigmte

at the meeting, so we concluded that the first action item ef th
committee would be to ask Turner if he would allow us to adopt
Miranda as the starting point for our new language.

After a brief and cordial interchange, Turner declined. bisls
were different from ours. We wanted a language that couldsed,u
among other purposes, for research into language feafarpar-
ticular, we sought the freedom for anyone to extend or mathiéy
language, and to build and distribute an implementatiomndiy
by contrast, was strongly committed to maintaining a sirigie
guage standard, with complete portability of programs ivithe
Miranda community. He did not want there to be multiple ditde
of Miranda in circulation and asked that we make our new lan-
guage sufficiently distinct from Miranda that the two woulat be
confused. Turner also declined an invitation to join the esign
committee.

For better or worse, this was an important fork in the road. Al
though it meant that we had to work through all the minutiae of
a new language design, rather than starting from an alreatly w
developed basis, it allowed us the freedom to contemplatee mo
radical approaches to many aspects of the language desigex+
ample, if we had started from Miranda it seems unlikely that w
would have developed type classes (see Section 6.1). Kevert
less, Haskell owes a considerable debt to Miranda, bothebel
inspiration and specific language elements that we freebpted
where they fitted into our emerging design. We discuss tlatiosl-
ship between Haskell and Miranda further in Section 3.8.

Once we knew for sure that Turner would not allow us to use Mi-
randa, an insanely active email discussion quickly ensusitg

the mailing listfplangc@cs.ucl.ac.uk, hosted at the Univer-
sity College London, where Peyton Jones was a faculty member
The email list name came from the fact that originally we axll
ourselves the “FPLang Committee,” since we had no name &or th
language. It wasn't until after we named the language (6e&i4)

that we started calling ourselves the “Haskell Committee.”

2.4 The first meetings

The Yale Meeting The first physical meeting (after the im-
promptu FPCA meeting) was held at Yale, January 9-12, 1988,
where Hudak was an Associate Professor. The first order of bus
ness was to establish the following goals for the language:

1. It should be suitable for teaching, research, and applmadi,

including building large systems.

. It should be completely described via the publication ofra fo
mal syntax and semantics

. It should be freely availableAnyone should be permitted to
implement the language and distribute it to whomever they
please.

. It should be usable as a basis for further language research.
. It should be based on ideas that enjoy a wide consensus.

. It should reduce unnecessary diversity in functional paogr
ming languagesMore specifically, we initially agreed to base
it on an existing language, namely OL.

The last two goals reflected the fact that we intended theulage
to be quite conservative, rather than to break new grourttiofgh
matters turned out rather differently, we intended to dtelinore

than embody the current consensus of ideas and to unite sur di
parate groups behind a single design.

As we shall see, not all of these goals were realised. We aiaad
the idea of basing Haskell explicitly on OL very early; we laied
the goal of embodying only well-tried ideas, notably by theli-
sion of type classes; and we never developed a formal seraanti
We discuss the way in which these changes took place in $&ktio

Directly from the minutes of the meeting, here is the comamitt
process that we agreed upon:

1. Decide topics we want to discuss, and assign “lead person”

each topic.

. Lead person begins discussion by summarising the issues f
his topic.

¢ |n particular, begin with a description of how OL does it.
o OL will be the default if no clearly better solution exists.

3. We should encourage breaks, side discussions, andiitera

research if necessary.

4. Some issues wilhot be resolved! But in such cases we should

establish action items for their eventual resolution.

5. It may seem silly, but we should not adjourn this meetinti un

at least one thing is resolvednamefor the language!

. Attitude will be important: a spirit of cooperation anchepro-
mise.

We return later to further discussion of the committee degig-
cess, in Section 3.5. A list of all people who served on thekelhs
Committee appears in Section 14.

Choosing a Name The fifth item above was important, since a

small but important moment in any language’s evolution is th

moment it is named. At the Yale meeting we used the following
process (suggested by Wadler) for choosing the name.

Anyone could propose one or more names for the languagehwhic
were all written on a blackboard. At the end of this proceks, t
following names appeared: Semla, Haskell, Vivaldi, Moz&fL
(Common Functional Language), Funl 88, Semlor, Candle (Com
mon Applicative Notation for Denoting Lambda Expressiofsin,
David, Nice, Light, ML Nouveau (or Miranda Nouveau, or LML
Nouveau, or ...), Mirabelle, Concord, LL, Slim, Meet, Levalrry,
Frege, Peano, Ease, Portland, and Haskell B Curry. Aftesiden
able discussion about the various names, each person wefsebe

to cross out a name that he disliked. When we were done, trese w
one name left.

That name was “Curry,” in honour of the mathematician and lo-
gician Haskell B. Curry, whose work had led, variously andi-in
rectly, to our presence in that room. That night, two of udised
that we would be left with a lot of curry puns (aside from thesp
and the thought of currying favour, the one that truly hcedfus
was Tim Curry—TIM was Jon Fairbairn’s abstract machine, and
Tim Curry was famous for playing the lead in the Rocky Horror
Picture Show). So the next day, after some further discnssie
settled on “Haskell” as the name for the new language. Oniér la
did we realise that this was too easily confused with Pasddbs-
sle!

Hudak and Wise were asked to write to Curry’s widow, Virginia
Curry, to ask if she would mind our naming the language aféer h
husband. Hudak later visited Mrs. Curry at her home andnesde
to stories about people who had stayed there (such as Chuodch a
Kleene). Mrs. Curry came to his talk (which was about Hask#ll
course) at Penn State, and although she didn't understaratch w

of what he was saying, she was very gracious. Her partingrlema
was “You know, Haskell actually never liked the name Haskell

The Glasgow Meeting Email discussions continued fervently af-
ter the Yale Meeting, but it took a second meeting to resolaayn
of the open issues. That meeting was held April 6-9, 1988et th
University of Glasgow, whose functional programming grovgs
beginning a period of rapid growth. It was at this meeting tha
many key decisions were made.

It was also agreed at this meeting that Hudak and Wadler wueild
the editors of the first Haskell Report. The name of the rejBe-
port on the Programming Language Haskell, A Non-stricteBur
Functional Language,” was inspired in part by the “Reportlun
Algorithmic Language Scheme,” which in turn was modelleaf
the “Report on the Algorithmic Language Algol.”

IFIP WG2.8 Meetings The '80s were an exciting time to be do-
ing functional programming research. One indication ot tha
citement was the establishment, due largely to the effottobin
Williams (long-time collaborator with John Backus at IBM-Al
maden), of IFIP Working Group 2.8 on Functional Programming
This not only helped to bring legitimacy to the field, it alsoyided

a convenient venue for talking about Haskell and for pigggking
Haskell Committee meetings before or after WG2.8 meetifgs.
first two WG2.8 meetings were held in Glasgow, Scotland, Ity
15, 1988, and in Mystic, CT, USA, May 1-5, 1989 (Mystic is abou
30 minutes from Yale). Figure 1 was taken at the 1992 meefing o
WG2.8 in Oxford.

2.5 Refining the design

After the initial flurry of face-to-face meetings, thereléated fif-
teen years of detailed language design and developmentlicoo
nated entirely by electronic mail. Here is a brief time-liwfehow
Haskell developed:

September 1987 Initial meeting at FPCA, Portland, Oregon.
December 1987.Subgroup meeting at University College London.
January 1988. A multi-day meeting at Yale University.

April 1988. A multi-day meeting at the University of Glasgow.
July 1988. The first IFIP WG2.8 meeting, in Glasgow.

May 1989. The second IFIP WG2.8 meeting, in Mystic, CT.

1 April 1990. The Haskell version 1.0 Report was published (125
pages), edited by Hudak and Wadler. At the same time, the
Haskell mailing list was started, open to all.

The closedfplangc mailing list continued for committee dis-
cussions, but increasingly debate took place on the public
Haskell mailing list. Members of the committee became in-
creasingly uncomfortable with the “us-and-them” overwooé
having both public and private mailing lists, and by Aprilo9

the fplangc list fell into disuse. All further discussion about
Haskell took place in public, but decisions were still mage b
the committee.

August 1991. The Haskell version 1.1 Report was published (153
pages), edited by Hudak, Peyton Jones, and Wadler. This was
mainly a “tidy-up” release, but it includerkt expressions and
operator sections for the first time.

the Noticeseditor Dick Wexelblat, for their willingness to pub-
lish such an enormous document. It gave Haskell both visibil
and credibility.

1994. Haskell gained Internet presence when John Peterson regis-
tered the haskell.org domain name and set up a server and web-
site at Yale. (Hudak’s group at Yale continues to maintam th
haskell.org server to this day.)

May 1996. The Haskell version 1.3 Report was published, edited
by Hammond and Peterson. In terms of technical changes,
Haskell 1.3 was the most significant release of Haskell after
1.0. In particular:

e A Library Report was added, reflecting the fact that pro-
grams can hardly be portable unless they can rely on stan-
dard libraries.

e Monadic I/O made its first appearance, including “do” syn-
tax (Section 7), and the 1/0O semantics in the Appendix was
dropped.

e Type classes were generalised to higher kinds—so-called
“constructor classes” (see Section 6).

e Algebraic data types were extended in several ways: new-
types, strictness annotations, and named fields.

April 1997. The Haskell version 1.4 report was published (139

+ 73 pages), edited by Peterson and Hammond. This was a
tidy-up of the 1.3 report; the only significant change is that
list comprehensions were generalised to arbitrary monads,
decision that was reversed two years later.

February 1999 The Haskell 98 Report: Language and Libraries
was published (150 + 89 pages), edited by Peyton Jones and
Hughes. As we describe in Section 3.7, this was a very signifi-
cant moment because it represented a commitment to syabilit
List comprehensions reverted to just lists.

1999-2002In 1999 the Haskell Committgeer seceased to exist.
Peyton Jones took on sole editorship, with the intention of
collecting and fixing typographical errors. Decisions wate
longer limited to a small committee; now anyone reading the
Haskell mailing list could participate.

However, as Haskell became more widely used (partly because
of the existence of the Haskell 98 standard), many small flaws
emerged in the language design, and many ambiguities in the
Report were discovered. Peyton Jones's role evolved toofhat
Benign Dictator of Linguistic Minutiae.

December 2002The Revised Haskell 98 Report: Language and
Libraries was published (260 pages), edited by Peyton Jones
Cambridge University Press generously published the Regor
a book, while agreeing that the entire text could still balatsée
online and be freely usable in that form by anyone. Their flex-
ibility in agreeing to publish a book under such unusual &erm
was extraordinarily helpful to the Haskell community, ared d
fused a tricky debate about freedom and intellectual ptgper

Itis remarkable that it took four years from the first publioa

of Haskell 98 to “shake down” the specification, even though
Haskell was already at least eight years old when Haskell 98
came out. Language design is a slow process!

March 1992. The Haskell version 1.2 Report was published (164 Figure 2 gives the Haskell time-line in graphical fdtnVany of
pages), edited by Hudak, Peyton Jones, and Wadler, introduc the implementations, libraries, and tools mentioned infthere
ing only minor changes to Haskell 1.1. Two months later, in are discussed later in the paper.

May 1992, it appeared iBIGPLAN Noticesaccompanied by
a “Gentle introduction to Haskell” written by Hudak and Hase
We are very grateful to the SIGPLAN chair Stu Feldman, and *This figure was kindly prepared by Bernie Pope and Don Stewart

Back row

Next row

John Launchbury, Neil Jones, Sebastian Hunt, Jeel Faeraint Jones (glasses),
Geoffrey Burn, Colin Runciman (moustache)
Philip Wadler (big beard), Jack Dennis (beard)riBlaO’Keefe (glasses), Alex Aiken (mostly

hidden), Richard Bird, Lennart Augustsson, Rex Page, Ghaitkin (moustache), Joe Stoy (red
shirt), John Williams, John O’Donnell, David Turner (red)ti

Front standing row

John Hughes, David Lester
Seated
On floor

Mario Coppo, Warren Burton, Corrado Bogbave MacQueen (beard), Mary Sheeran,

Karen MacQueen, Luca Cardelli, Dick Kieburtz, C8tack, Mrs Boehm, Mrs Williams, Dorothy Peyton Jones
Simon Peyton Jones, Paul Hudak, Richard (Corkyv@agiht

Figure 1. Members and guests of IFIP Working Group 2.8, Oxford, 1992

2.6 Was Haskell a joke?

The first edition of the Haskell Report was published on Afril
1990. It was mostly an accident that it appeared on April Bool

Day—a date had to be chosen, and the release was close enough t 2

April 1 to justify using that date. Of course Haskell was nikgpbut
the release did lead to a number of subsequent April Fodisso

What got it all started was a rather frantic year of Haskeliettep-
ment in which Hudak’s role as editor of the Report was esigcia
stressful. On April 1 a year or two later, he sent an email agss
to the Haskell Committee saying that it was all too much fon hi

and that he was not only resigning from the committee, he was

also quitting Yale to pursue a career in music. Many membgrs o
the committee bought into the story, and David Wise immedijat
phoned Hudak to plead with him to reconsider his decision.

Of course it was just an April Fool's joke, but the seed hadhbee
planted for many more to follow. Most of them are detailed loa t
Haskell website at haskell.org/humor, and here is a sumofahe
more interesting ones:

1. On April 1, 1993, Will Partain wrote a brilliant announcem

about an extension to Haskell calleidskerlthat combined the
best ideas in Haskell with the best ideas in Perl. Its teciiyic
detailed and very serious tone made it highly believable.

Several of the responses to Partain’s well-written hoaxew
equally funny, and also released on April 1. One was by Hudak,
in which he wrote:

“Recently Haskell was used in an experiment here at Yale in
the Medical School. It was used to replace a C program that
controlled a heart-lung machine. In the six months that & wa

in operation, the hospital estimates that probably a dozes |
were saved because the program was far more robust than the C
program, which often crashed and killed the patients.”

In response to this, Nikhil wrote:

“Recently, a local hospital suffered many malpracticessdite
to faulty software in their X-ray machine. So, they decided t
rewrite the code in Haskell for more reliability.

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

— - Haskell mailing list

www.haskell.org .

(Haskell Cafe mailing Iist) - -

roskeiwii) (Template Haskell)

- - . Meetings . Compilers and interpreters

. Reports . Literature

Online activities . Tools and libraries

Figure 2. Haskell timeline

“Malpractice suits have now dropped to zero. The reasorais th
they haven't taken any new X-rays (‘we're still compilingeth
Standard Prelude’).”

. On April 1, 1998, John Peterson wrote a bogus press releas
in which it was announced that because Sun Microsystems had
sued Microsoft over the use of Java, Microsoft had decided to
adopt Haskell as its primary software development language
Ironically, not long after this press release, Peyton Jares
nounced his move from Glasgow to Microsoft Research in
Cambridge, an event that Peterson knew nothing about at the
time.

[S)

programs, and there can be much more than a constant factor at
stake. As we discuss in Section 10.2, the prevalence of Spes®
leaks led us to add some strict features to Haskell, suek@and

strict data types (as had been done in SASL and Miranda garlie
Dually, strict languages have dabbled with laziness (Waetllal.,
1988). As a result, the strict/lazy divide has become mush &n
all-or-nothing decision, and the practitioners of eaclogeise the
value of the other.

3.2 Haskell is pure

An immediate consequence of laziness is that evaluatioer asd

Subsequent events have made Peterson’s jape even more prodemand-driven. As a result, it becomes more or less implestib

phetic. Microsoft did indeed respond to Java by backingtaarot
language, but it was C# rather than Haskell. But many of the
features in C# were pioneered by Haskell and other fundtiona
languages, notably polymorphic types and LINQ (Language In
tegrated Query). Erik Meijer, a principal designer of LINQys
that LINQ is directly inspired by the monad comprehensians i
Haskell.

. On April 1, 2002, Peterson wrote another bogus but ererta
ing and plausible article entitled “Computer Scientist <t
the ‘Bottom’ of Financial Scandal.” The article describesvh
Peyton Jones, using his research on formally valuating ¢inhn
contracts using Haskell (Peyton Jones et al., 2000), was abl
to unravel Enron’s seedy and shaky financial network. Peyton
Jones is quoted as saying:

“It's really very simple. If | write a contract that says italue

is derived from a stock price and the worth of the stock depend
solely on the contract, we have bottom. So in the end, Enrdn ha
created a complicated series of contracts that ultimatadirio
value at all.”

3. Goals, principles, and processes

In this section we reflect on the principles that underlaythink-
ing, the big choices that we made, and processes that ledra th

3.1 Haskellis lazy

Laziness was undoubtedly the single theme that united theus
groups that contributed to Haskell’s design. Technicaflgskell
is a language with a non-strict semantics; lazy evaluasosim-
ply one implementation technique for a non-strict languaeyv-
ertheless the term “laziness” is more pungent and evocttme
“non-strict,” so we follow popular usage by describing Helslas
lazy. When referring specifically to implementation teciugs we
will use the term “call-by-need,” in contrast with the chl-value
mechanism of languages like Lisp and ML.

By the mid-eighties, there was almost a decade of experiehce
lazy functional programming in practice, and its attracsiovere
becoming better understood. Hughes'’s paper “Why functiprea
gramming matters” captured these in an influential marofést
lazy programming, and coincided with the early stages okkléis
design. (Hughes first presented it as his interview talk wdygly-
ing for a position at Oxford in 1984, and it circulated infaathy
before finally being published in 1989 (Hughes, 1989).)

Laziness has its costs. Call-by-need is usually less affi¢tean
call-by-value, because of the extra bookkeeping requivedetay
evaluation until a term is required, so that some terms maypeo
evaluated, and to overwrite a term with its value, so thatenmts
evaluated twice. This cost is a significant but constaniofaetnd
was understood at the time Haskell was designed.

A much more important problem is this: it is very hard for even
experienced programmers to predict gpacebehaviour of lazy

reliably perform input/output or other side effects as theuit of a
function call. Haskell is, therefore, gure language. For example,
if a function £ has typeInt -> Int you can be sure that will
not read or write any mutable variables, nor will it performya
input/output. In shortf really is afunctionin the mathematical
sense: every callf 3) will return the same value.

Once we were committed to kazy language, apure one was
inescapable. The converse is not true, but it is notable ithat
practice most pure programming languages are also lazy.?Why
Because in a call-by-value language, whether functionabarthe
temptation to allow unrestricted side effects inside a ttion” is
almost irresistible.

Purity is a big bet, with pervasive consequences. Unrestfiside
effects are undoubtedly very convenient. Lacking side césfe
Haskell's input/output was initially painfully clumsy, wih was a
source of considerable embarrassment. Necessity beimgdtieer

of invention, this embarrassment ultimately led to the imi@n of
monadic I/Q which we now regard as one of Haskell's main con-
tributions to the world, as we discuss in more detail in S&cH.

Whether a pure language (with monadic effects) is ultinyatie
best way to write programs is still an open question, butriiadely

is a radical and elegant attack on the challenge of progragymi
and it was that combination of power and beauty that motivate
the designers. In retrospect, therefore, perhaps the dtigiegle
benefit of laziness is not lazinepgr se but rather that laziness
kept us pure, and thereby motivated a great deal of produatirk

on monads and encapsulated state.

3.3 Haskell has type classes

Although laziness was what brought Haskell’s designerstteey, it
is perhaps type classes that are now regarded as Haskeditslieo
tinctive characteristic. Type classes were introducethéd-taskell
Committee by Wadler in a message sent to theangc mailing

list dated 24 February 1988.

Initially, type classes were motivated by the narrow problef
overloading of numeric operators and equality. These problhad
been solved in completely different ways in Miranda and SML.

SML used overloading for the built-in numeric operatorsofeed
at the point of call. This made it hard to define new numeriacape
tions in terms of old. If one wanted to define, say, squarersef
multiplication, then one had to define a different versiondach
numeric type, say integers and floats. Miranda avoided thub-p
lem by having only a single numeric type, calbean, which was a
union of unbounded-size integers and double-precisionsfl@ath
automatic conversion afnt to float when required. This is con-
venient and flexible but sacrifices some of the advantagestf s
typing — for example, in Miranda the expressiarnd 8 3.4) is
type-correct, even though in most languages the modulusatpe
mod only makes sense for integer moduli.

SML also originally used overloading for equality, so oneldmnot
define the polymorphic function that took a list and a value &
turned true if the value was equal to some element of the(list.
define this function, one would have to pass in an equalitirtg
function as an extra argument.) Miranda simply gave equalit
polymorphic type, but this made equality well defined on fiorc
types (it raised an error at run time) and on abstract type(n-
pared their underlying representation for equality, aatioh of the
abstraction barrier). A later version of SML included polyiphic
equality, but introduced special “equality type variabl@sritten

’ 73 instead of’ a) that ranged only over types for which equality
was defined (that is, not function types or abstract types).

Type classes provided a uniform solution to both of thesblpros.
They generalised the notion of equality type variables ff&iflL,
introducing a notion of a “class” of types that possessedangset
of operations (such as numeric operations or equality).

The type-class solution was attractive to us because itesgemore
principled, systematic and modular than any of the alt@resit so,
despite its rather radical and unproven nature, it was adopy
acclamation. Little did we know what we were letting oursshin
for!

Wadler conceived of type classes in a conversation with dselF
after one of the Haskell meetings. Fasel had in mind a diftere
idea, but it was he who had the key insight that overloadiryikh
be reflected in the type of the function. Wadler misundedigbat
Fasel had in mind, and type classes were born! Wadler’s stude
Steven Blott helped to formulate the type rules, and proved t
system sound, complete, and coherent for his doctoral rtizm
(Wadler and Blott, 1989; Blott, 1991). A similar idea wasrfar-
lated independently by Stefan Kaes (Kaes, 1988).

We elaborate on some of the details and consequences ofife ty
class approach in Section 6. Meanwhile, it is instructiveettect

on the somewhat accidental nature of such a fundamentaleand f
reaching aspect of the Haskell language. It was a happyideince

of timing that Wadler and Blott happened to produce this kimai

at just the moment when the language design was still in flux.
It was adopted, with little debate, in direct contradictimnour
implicit goal of embodying a tried-and-tested consensusatl
far-reaching consequences that dramatically exceedednidial
reason for adopting it in the first place.

3.4 Haskell has no formal semantics

Indeed, in practice the static semantics of Haskell (i.e.stman-
tics of its type system) is where most of the complexity liElse
consequences of not having a formal static semantics ispsra
challenge for compiler writers, and sometimes results ialkdif-
ferences between different compilers. But for the usereanpro-
gram type-checks, there is little concern about the statitastics,
and little need to reason formally about it.

Fortunately, the dynamic semantics of Haskell is relayisénple.

Indeed, at many times during the design of Haskell, we reddd
denotational semantics to discuss design options, as iflwkaew

what the semantics of Haskshouldbe, even if we didn’t write it
all down formally. Such reasoning was especially usefuesmson-
ing about “bottom” (which denotes error or non-terminatemd

occurs frequently in a lazy language in pattern matchingetion

calls, recursively defined values, and so on).

Perhaps more importantly, the dynamic semantics of Haiskegip-
tured very elegantly for the average programmer throughudeq
tional reasoning”—much simpler to apply than a formal danot
tional or operational semantics, thanks to Haskell's gufTthe
theoretical basis for equational reasoning derives froensfan-
dard reduction rules in the lambda calculys andn-reduction),
along with those for primitive operations (so-calledules). Com-
bined with appropriate induction (and co-induction) pijres, it
is a powerful reasoning method in practice. Equationalmeiag
in Haskell is part of the culture, and part of the trainingttee-
ery good Haskell programmer receives. As a result, there lmeay
more proofs of correctness properties and program tramsttions
in Haskell than any other language, despite its lack of a &ilsm
specified semantics! Such proofs usually ignore the fa¢tsiime
of the basic steps used—suchpaeduction in Haskell—would not
actually preserve a fully formal semantics even if there was,
yet amazingly enough, (under the right conditions) the keaions
drawn are valid even so (Danielsson et al., 2006)!

Nevertheless, we always found it a little hard to admit th&ra
guage as principled as Haskell aspires to be has no formaili-defi
tion. But that is the fact of the matter, and it is not withcistad-
vantages. In particular, the absence of a formal languafieititen
does allow the language &wolvemore easily, because the costs of
producing fully formal specifications of any proposed ctevage
heavy, and by themselves discourage changes.

3.5 Haskell is a committee language
Haskell is a language designed by committee, and convettion

One of our explicit goals was to produce a language that had awisdom would say that a committee language will be full of
formally defined type system and semantics. We were strongly warts and awkward compromises. In a memorable letter to the

motivated by mathematical techniques in programming laggu

Haskell Committee, Tony Hoare wistfully remarked that Hekk

design. We were inspired by our brothers and sisters in the ML was “probably doomed to succeed.”

community, who had shown that it was possible to give a coteple
formal definition of a language, and tBefinition of Standard ML
(Milner and Tofte, 1990; Milner et al., 1997) had a place ofibwor
on our shelves.

Nevertheless, we never achieved this goal. The Haskell iRépo
lows the usual tradition of language definitions: it usesfdly
worded English language. Parts of the language (such asthe s
mantics of pattern matching) are defined by a translation int
small “core language”, but the latter is never itself foripabeci-
fied. Subsequent papers describe a good part of Haskeltiabpe
its type system (Faxen, 2002), but there is no one documaint th
describes the whole thing. Why not? Certainly not because of
conscious choice by the Haskell Committee. Rather, it jesen
seemed to be the most urgent task. No one undertook the watk, a
in practice the language users and implementers seemedtmma
perfectly well without it.

Yet, as it turns out, for all its shortcomings Haskell is ofte
described as “beautiful” or “elegant"—even “cool’—whichea
hardly words one would usually associate with committeégthas
How did this come about? In reflecting on this question wetiden
fied several factors that contributed:

e The initial situation, described above in Section 2, wasy/ver
favourable. Our individual goals were well aligned, and we
began with a strong shared, if somewhat fuzzy, vision of what
we were trying to achieve. We all needed Haskell.

e Mathematical elegance was extremely important to us, fborma
semantics or no formal semantics. Many debates were punctu-
ated by cries of “does it have a compositional semantics?” or
“what does the domain look like?” This semi-formal approach
certainly made it more difficult foad hoclanguage features to
creepin.

¢ We held several multi-day face-to-face meetings. Many ensitt
that were discussed extensively by email were only resahwed
one of these meetings.

3.7 Haskell and Haskell 98

The goal of using Haskell for research demassislution while
using the language for teaching and applications reqsiadslity.

* At each moment in the design process, one or two members of At the beginning, the emphasis was firmly on evolution. Trefpr

the committee served d$he Editor The Editor could not make
binding decisions, but was responsible for driving debtdes

ace of every version of the Haskell Report statd$ie committee
hopes that Haskell can serve as a basis for future researdtnin

conclusion. He also was the custodian of the Report, and was guage design. We hope that extensions or variants of theifmey

responsible for embodying the group’s conclusion in it.

e At each moment in the design process, one member of the
committee (not necessarily the Editor) served as Slgatax

may appear, incorporating experimental features.”

However, as Haskell started to become popular, we startgétto
complaints about changes in the language, and questiong abo

Czar The Czar was empowered to make binding decisions \hat our plans were. “I want to write a book about Haskell, but

about syntactic matters (only). Everyone always says #rat f

| can't do that if the language keeps changing” is a typical a

too much time is devoted to discussing syntax—but many of the fyjly justified, example.

same people will fight to the death for their preferred synfibol
lambda. The Syntax Czar was our mechanism for bringing such
debates to an end.

3.6 Haskell is a big language

A major source of tension both within and between members of
the committee was the competition between beauty andyutit

the one hand we passionately wanted to design a simple,ntlega
language; as Hoare so memorably put it, “There are two ways of
constructing a software design: one way is to make it so sitinalt
there are obviously no deficiencies, and the other way is tkema

it so complicated that there are no obvious deficiencies.fiFsie
method is far more difficult.” On the other hand, we aleally
wanted Haskell to be a useful language, for both teachingeald
applications.

Although very real, this dilemma never led to open warfarelid,
however, lead Richard Bird to resign from the committee id-mi
1988, much to our loss. At the time he wrote, “On the eviderice o
much of the material and comments submitted gang, there is

a severe danger that the principles of simplicity, ease affpand
elegance will be overthrown. Because much of what is prap@se
half-baked, retrogressive, and even baroque, the redikitig to be

a mess. We are urged to return to the mind-numbing syntaxspf Li
(a language that held back the pursuit of functional prognarg

for over a decade). We are urged to design for ‘big’ programs,
because constructs that are ‘aesthetic’ for small progmithkose
their attractiveness when the scale is increased. We agsl um
allow large where-clauses with deeply nested structureshort,

it seems we are urged to throw away the one feature of furaition
programming that distinguishes it from the conventionaldkand
may ensure its survival into the 21st century: susceptjbiid
formal proof and construction.”

In the end, the committee wholeheartedly embrasegerficial
complexity; for example, the syntax supports many ways ef ex
pressing the same thing, in contradiction to our originaliia-
tions (Section 4.4). In other places, we eschewedpcomplex-
ity, despite the cost in expressiveness—for example, wéaso
parametrised modules (Section 8.2) and extensible redQels
tion 5.6). In just one case, type classes, we adopted an fdea t
complicated everything but was just too good to miss. Thdeea
will have to judge the resulting balance, but even in retecspve
feel that the elegant core of purely functional programnfiag sur-
vived remarkably unscathed. If we had to pick places wheaé re
compromises were made, they would be the monomorphism re-
striction (see Section 6.2) and the loss of parametricitytying,
and surjective pairing due &®q (see Section 10.3).

In response to this pressure, the committee evolved a siamule
obvious solution: we simply named a particular instancdeflain-
guage “Haskell 98,” and language implementers committechth
selves to continuing to support Haskell 98 indefinitely. \&garded
Haskell 98 as a reasonably conservative design. For exafmple
that time multi-parameter type classes were being widedg isut
Haskell 98 only has single-parameter type classes (Peytoas]
etal., 1997).

The (informal) standardisation of Haskell 98 was an impurtarn-

ing point for another reason: it was the moment that the Haske
Committee dishanded. There was (and continues to be) artreme
dous amount of innovation and activity in the Haskell comityin
including numerous proposals for language features. Bihiera

than having a committee to choose and bless particular dnes,
seemed to us that the best thing to do was to get out of the way,

let a thousand flowers bloom, and see which ones survivedadt w
also a huge relief to be able to call the task finished and to€ite
enormous mail archives safely away.

We made no attempt to discourage variants of Haskell otlar th

Haskell 98; on the contrary, we explicitly encouraged thethfer
development of the language. The nomenclature encourages t
idea that “Haskell 98" is a stable variant of the languageilevh
its free-spirited children are free to term themselves %eds

In the absence of a language committee, Haskell has coudtitoue
evolve apace, in two quite different ways.

e First, as Haskell has become a mature language with thosisand
of users, it has had to grapple with the challenges of scale
and complexity with which any real-world language is faced.
That has led to a range of practically oriented features and
resources, such as a foreign-function interface, a ridectbn
of libraries, concurrency, exceptions, and much else bssid
We summarise these developments in Section 8.

At the same time, the language has simultaneously served as
a highly effective laboratory in which to explore advanced
language design ideas, especially in the area of type sgstem
and meta-programming. These ideas surface both in papers—
witness the number of research papers that take Haskekias th
base language—and in Haskell implementations. We discuss a
number of examples in Section 6.

The fact that Haskell has, thus far, managed the tensionelestw
these two strands of development is perhaps due to an ataiiden
virtue: Haskell has not becomeo successful. The trouble with

runaway success, such as that of Java, is that you get too many
users, and the language becomes bogged down in standaeds, us
groups, and legacy issues. In contrast, the Haskell contynimi

small enough, and agile enough, that it usually not only disso

language changes but positively welcomes them: it’s likevting
red meat to hyenas.

3.8 Haskell and Miranda

At the time Haskell was born, by far the most mature and widely
used non-strict functional language was Miranda. Miranda &
product of David Turner’'s company, Research Software ladhit
which he founded in 1983. Turner conceived Miranda to carry
lazy functional programming, with Hindley-Milner typing/finer,
1978), into the commercial domain. First released in 198% w

Miranda’s proprietary status did not enjoy universal suppo

the academic community. As required to safeguard his tradem
Turner always footnoted the first occurrence of Miranda sga-
pers to state it was a trademark of Research Software Limited
In response, some early Haskell presentations includedtadte
"Haskell is not a trademark”. Miranda’s licence conditiatsthat
time required the licence holder to seek permission befistellit-

ing an implementation of Miranda or a language whose desag w

subsequent releases in 1987 and 1989, Miranda had a well sup-substantially copied from Miranda. This led to frictionween Ox-

ported implementation, a nice interactive user interfacel, a vari-
ety of textbooks (four altogether, of which the first was jgaitarly

influential (Bird and Wadler, 1988)). It was rapidly takenhypboth

academic and commercial licences, and by the early 199Gkl
was installed (although not necessarily taught) at 250eusities
and around 50 companies in 20 countries.

Haskell's design was, therefore, strongly influenced byaita.
At the time, Miranda was the fullest expression of a norektri
purely functional language with a Hindley-Milner type ssstand
algebraic data types—and that was precisely the kind ofuagg
that Haskell aspired to be. As a result, there are many gitigls
between the two languages, both in their basic approactitypur
higher order, laziness, static typing) and in their syritdobk and
feel. Examples of the latter include: the equational stfléunc-
tion definitions, especially pattern matching, guards, ahere
clauses; algebraic types; the notation for lists and listjm@hen-
sions; writing pair types aénum,bool) rather than thent*bool
of ML; capitalisation of data constructors; lexically digjuished
user-defined infix operators; the use of a layout rule; anchéme-
ing of many standard functions.

There are notable differences from Miranda too, includpigce-
ment of guards on the left of=" in a definition; a richer syntax
for expressions (Section 4.4); different syntax for dafetyecla-
rations; capitalisation of type constructors as well aa dahstruc-
tors; use of alphanumeric identifiers for type variabletheathan
Miranda’s*, **, etc.; how user-defined operators are distinguished
(x $op y in Miranda vs.x ‘op‘ y in Haskell); and the details
of the layout rule. More fundamentally, Haskell did not atlbj-
randa’s abstract data types, using the module system thésee-
tion 5.3); added monadic I/O (Section 7.2); and incorpatatany
innovations to the core Hindley-Milner type system, esaiéctype
classes (Section 6).

Today, Miranda has largely been displaced by Haskell. Ode in
cation of that is the publication of textbooks: while Has$keloks
continue to appear regularly, the last textbook in Englishuse
Miranda was published in 1995. This is at first sight surpgsbe-
cause it can be hard to displace a well-established incumben
the economics worked against Miranda: Research Softwaseawa
small company seeking a return on its capital; academiadies
were cheaper than commercial ones, but neither were frei&e wh
Haskell was produced by a group of universities with puhlicds
and available free to academic and commercial users alikee M
over, Miranda ran only under Unix, and the absence of a Wisdow
version increasingly worked against it.

Although Miranda initially had the better implementatidtaskell
implementations improved more rapidly—it was hard for a kma
company to keep up. Hugs gave Haskell a fast interactivefaue
similar to that which Research Software supplied for Miaiand
Hugs ran under both Unix and Windows), while Moore’s law made
Haskell's slow compilers acceptably fast and the code tlemeg
ated even faster. And Haskell had important new ideas, ap#per
describes. By the mid-1990s, Haskell was a much more pedctic
choice for real programming than Miranda.

ford University and Research Software over the possibleilis
tion of Wadler's language Orwell. However, despite Haskelear
debt to Miranda, Turner raised no objections to Haskell.

The tale raises a tantalising “what if” question. What if hv
Turner had placed Miranda in the public domain, as some urged
him to do? Would the mid '80s have seen a standard lazy func-
tional language, supported by the research commuanity with

a company backing it up? Could Research Software have found
a business model that enabled it to benefit, rather thanrstriien
university-based implementation efforts? Would the addél con-
straints of an existing design have precluded the creatislesame-
times anarchic ferment that has characterised the Haskalnu-
nity? How different could history have been?

Miranda was certainly no failure, either commercially oiestif-
ically. It contributed a small, elegant language desigrmaitvell-
supported implementation, which was adopted in many usities
and undoubtedly helped encourage the spread of functiawal p
gramming in university curricula. Beyond academia, theafddi-
randa in several large projects (Major and Turcotte, 198teRand
Moe, 1993) demonstrated the industrial potential of a lamycf
tional language. Miranda is still in use today: it is stilutdat in
some institutions, and the implementations for Linux anthS®
(now free) continue to be downloaded. Turner’s efforts mager-
manent and valuable contribution to the development oféstan
the subject in general, paving the way for Haskell a few ykses.

Part Il

Technical Contributions

4. Syntax

The phrase “syntax is not important” is often heard in dismrss
about programming languages. In fact, in the 1980s thisgghneas
heard more often than it is today, partly because there wasisb
interest at the time in developing the theory behind, andhersig-
ing the importance of, thiormal semantic®f programming lan-
guages, which was a relatively new field in itself. Many peogr
ming language researchers considered syntax to be thal pant
of language design, and semantics to be “where the actiofi was

Despite this, the Haskell Committee worked very hard—mmagiti
spent endless hours—on designing (and arguing about) thiexsy

of Haskell. It wasn’t so much that we were boldly bucking ttest,

or that the phrase “syntax is important” was a new retro-ghthat
became part of our discourse, but rather that, for betteioosey we
found that syntax design could be not only fun, but an obeassi
We also found that syntax, being the user interface of a laggu
could become very personal. There is no doubt that some of our
most heated debates were over syntax, not semantics.

In the end, was it worth it? Although not an explicit goal, @f¢he
most pleasing consequences of our effort has been comnesants h

many times over the years that “Haskell is a pretty langtdg.
some reason, many people think that Haskell programs logk ni
Why is that? In this section we give historical perspectivesnany
of the syntactic language features that we think contriboiténis
impression. Further historical details, including sonmesislconsid-
ered and ultimately rejected, may be found in Hud&snputing
Surveysrticle (Hudak, 1989).

4.1 Layout

Most imperative languages use a semicolon to separatergejue
commands. In a language without side effects, however,dtiem
of sequencing is completely absent. There is still the neeskp-
arate declarations of various kinds, but the feeling of tlaeske!l
Committee was that we should avoid the semicolon and itsesequ
tial, imperative baggage.

Exploiting the physical layout of the program text is a sienphd
elegant way to avoid syntactic clutter. We were familiarhatite
idea, in the form of the “offside rule” from our use of Turretan-
guages SASL (Turner, 1976) and Miranda (Turner, 1986)oatth
the idea goes back to Christopher Strachey’'s CPL (Barrom. et a
1963), and it was also featured in ISWIM (Landin, 1966).

The layout rules needed to be very simple, otherwise usentdwo
object, and we explored many variations. We ended up with-a de
sign that differed from our most immediate inspiration, afida,

in supporting larger function definitions with less enfatéeden-
tation. Although we felt that good programming style invadv
writing small, short function definitions, in practice wepected
that programmers would also want to write fairly large fumct
definitions—and it would be a shame if layout got in the way. So
Haskell's layout rules are considerably more lenient tharaila’s

in this respect. Like Miranda, we provided a way for the user t
override implicit layout selectively, in our case by usinglkcit
curly braces and semicolons instead. One reason we tholight t
was important is that we expected people to write prograras th
generated Haskell programs, and we thought it would be retasie
generate explicit separators than layout.

Influenced by these constraints and a desire to “do what the pr
grammer expects”, Haskell evolved a fairly complex layau¢+—
complex enough that it was formally specified for the firsteim
in the Haskell 98 Report. However, after a short adjustment p
riod, most users find it easy to adopt a programming styleftiiat
within the layout rules, and rarely resort to overridingrttie

4.2 Functions and function application

There are lots of ways to define functions in Haskell—aftkiitdb
a functional language—»but the ways are simple and all fitttuage
in a sensible manner.

Currying Following a tradition going back to Frege, a function of

hyp :: Float -> Float -> Float
hyp x y = sqrt (x*x + y*y)

hyp :: (Float, Float) -> Float
hyp (x,y) = sqrt (x*xx + y*y)

In the latter, the function is viewed as taking a single argom
which is a pair of numbers. One advantage of currying is that i
is often more compact x y contains three fewer lexemes than
f(x,y).

Anonymous functions The syntax for anonymous functions,
\x -> exp, was chosen to resemble lambda expressions, since
the backslash was the closest single ASCII character to thekG
letter \. However, =>" was used instead of a period in order to
reserve the period for function composition.

Prefix operators Haskell has only one prefix operator: arithmetic
negation. The Haskell Committee in fact did not wanty prefix
operators, but we couldn’t bring ourselves to force usensrite
something likeminus 42 or ~42 for the more conventionat42.
Nevertheless, the dearth of prefix operators makes it eésier
readers to parse expressions.

Infix operators The Haskell Committee wanted expressions to
look as much like mathematics as possible, and thus from day o
we bought into the idea that Haskell would have infix opesdtor

It was also important to us that infix operators be definable by
the user, including declarations of precedence and asityia
Achieving all this was fairly conventional, but we also defin
the following simple relationship between infix applicatiand
conventional function application: the formatways binds less
tightly than the latter. Thug x + g y never needs parentheses,
regardless of what infix operator is used. This design datisi
proved to be a good one, as it contributes to the readabifity o
programs. (Sadly, this simple rule is not adhered t@{patterns,
which bind more tightly than anything; this was probably ataike,
althoughe-patterns are not used extensively enough to cause major
problems.)

Sections Although a commitment to infix operators was made
quite early, there was also the feeling that all values inkidihs
should be “first class"—especially functions. So there was-c
siderable concern about the fact that infix operators wetghiyo
themselves, first class, a problem made apparent by comgjder
the expressiort + x. Does this mean the functiof applied to
two arguments, or the functionapplied to two arguments?

The solution to this problem was to use a generalised notfon o
sections a notation that first appeared in David Wile's disserta-
tion (Wile, 1973) and was then disseminated via IFIP WG2.1—
among others to Bird, who adopted it in his work, and Turner,
who introduced it into Miranda. A section is a partial apation

two arguments may be represented as a function of one argumen of an infix operator to no arguments, the left argument, oritet

that itself returns a function of one argument. This traditivas

argument—and by surrounding the result in parenthesestheme

honed by Moses Schonfinkel and Haskell Curry and came to be has a first-class functional value. For example, the folgrequiv-

calledcurrying.

Function application is denoted by juxtaposition and aisses to
the left. Thusf x yis parsed(f x) y. This leads to concise and

powerful code. For example, to square each number in a list we (+y) =

writemap square [1,2,3], while to square each number in alist
of lists we writemap (map square) [[1,2],[3]].

alences hold:

) =\xy -> xty

(x+) = \y > x+y
\X -> X+y

Being able to partially apply infix operators is consisterithw
being able to partially apply curried functions, so this adsappy

Haskell, like many other languages based on lambda calculus solution to our problem.

supports both curried and uncurried definitions:

2The same is true of Miranda users.

3This is in contrast to the Scheme designers, who consigtaséld prefix
application of functions and binary operators (for example x y)),
instead of adopting mathematical convention.

(Sections did introduce one problem though: Recall thatkelas
has only one prefix operator, namely negation. So the questio
arises, what is the meaning @+42)? The answer is negative
42! In order to get the functiohx-> x-42 one must write either
\x-> x-42, or (subtract 42), wheresubtract is a predefined
function in Haskell. This “problem” with sections was viedve
more as a problem with prefix operators, but as mentionedeearl
the committee decided not to buck convention in its treatroén
negation.)

Once we had sections, and in particular a way to convert infix
operators into ordinary functional values, we then askedelves
why we couldn’t go the other way. Could we design a mechanism
to convert an ordinary function into an infix operator? Oungle
solution was to enclose a function identifier in backquotem
examplex ‘f¢ yisthe same a$ x y. We liked the generality
that this afforded, as well as the ability to use “words” afixin
operators. For example, we felt that list membership, sag,more
readable when written as ‘elem‘ xs rather thanelem x xs.
Miranda used a similar notatiorx, $elem xs, taken from Art
Evans’ PAL (Evans, 1968).

4.3 Namespaces and keywords

Namespaces were a point of considerable discussion in thiectia
Committee. We wanted the user to have as much freedom as possi
ble, while avoiding any form of ambiguity. So we carefullyfided

a set of lexemes for each namespace that wwetfogonal when
they needed to be, araVerlappedwhen context was sufficient to
distinguish their meaning. As an example of orthogonality,de-
signed normal variables, infix operators, normal data cookirs,
and infix data constructors to be mutually exclusive. As aarex
ple of overlap, capitalised names can, in the same lexicgesc
refer to a type constructor, a data construcamg a module, since
whenever the namBoo appears, it is clear from context to which
entity it is referring. For example, it is quite common to ldee a
single-constructor data type like this:

data Vector = Vector Float Float

Here,Vector is the name of the data type, and the name of the
single data constructor of that type.

We adopted from Miranda the convention that data constrsieti@
capitalised while variables are not, and added a similavexttion
for infix constructors, which in Haskell must start with a@ol The
latter convention was chosen for consistency with our udep(eed
from SASL, KRC, and Miranda) of a single colanfor the list
“cons” operator. (The choice of:" for cons and “:” for type
signatures, by the way, was a hotly contested issue (ML does t
opposite) and remains controversial to this day.)

As a final comment, a small contingent of the Haskell Committe
argued that shadowing of variables shontd be allowed, because
introducing a shadowed name might accidentally captureiable
bound in an outer scope. But outlawing shadowing is incoesis
with alpha renaming—it means that you must know the bound
names of the inner scope in order to choose a name for use in al
outer scope. So, in the end, Haskell allowed shadowing.

4.4 Declaration style vs. expression style

As our discussions evolved, it became clear that there weoe t
different styles in which functional programs could be verit
“declaration style” and “expression style” For example, here is
the filter function written in both stylés

filter :: (a -> Bool) -> [a] -> [a]

-- Declaration style
filter p [] d

filter p (x:xs) | p x = x : rest
| otherwise = rest
where
rest = filter p xs

-- Expression style
filter = \p -> \xs ->
case xs of
0 ->10
(x:xs) -> let
rest filter p xs
in if (p x)
then x :
else rest

rest

The declaration style attempts, so far as possible, to deffnac-
tion by multiple equations, each of which uses pattern niagch
and/or guards to identify the cases it covers. In contraghe ex-
pression style a function is built up by composing expressimo-
gether to make bigger expressions. Each style is charseteby a
set of syntactic constructs:

Declaration style

where Clause

Function arguments on left hand side
Pattern matching in function definition
Guards on function definitions

Expression-style

let expression

Lambda abstraction
S case expression

if expression

The declaration style was heavily emphasised in Turnanglages
KRC (which introduced guards for the first time) and Miranda
(which introduced a where clause scoping over several gdard
equationsjncluding the guards The expression style dominates
in other functional languages, such as Lisp, ML, and Scheme.

It took some while to identify the stylistic choice as we halame
here, but once we had done so, we engaged in furious debate abo
which style was “better.” An underlying assumption was ttiat
possible there should be “just one way to do something,” ag th
for example, having bothet andwhere would be redundant and
confusing.

In the end, we abandoned the underlying assumption, and pro-
vided full syntactic support for both styles. This may seéka |

a classic committee decision, but it is one that the presgthibes
believe was a fine choice, and that we now regard as a strength
of the language. Different constructs have different neapand

real programmers do in practice employ bdtet and where,

both guards and conditionals, both pattern-matching diefits and

case expressions—not only in the same program but sometimes in

the same function definition. It is certainly true that thelisidnal

syntactic sugar makes the language seem more elaborateistait

Haskell has 21 reserved keywords that cannot be used as namesuperficial sort of complexity, easily explained by purgiptactic

for values or types. This is a relatively low number (Erlarg 28,

transformations.

OCaml has 48, Java has 50, C++ has 63—and Miranda has only

10), and keeping it low was a priority of the Haskell Comndtte
Also, we tried hard to avoid keywords (such as™) that might
otherwise be useful variable names.

4The example is a little contrived. One might argue that ttéeasould be
less cluttered (in both cases) if one eliminated ke or where, replacing
rest with filter p xs.

Two small but important matters concern guards. First, Miea
placed guards on the far right-hand side of equations, thsesnn-
bling common notation used in mathematics, thus:

ged x y = X, if x=y
= gcd (x-y) y, if x>y
= gcd x (y-x), otherwise
However, as mentioned earlier in the discussion of laydus, t

Haskell Committee did not buy into the idea that programmers
should write (or feel forced to writeshortfunction definitions, and
placing the guard on the far right ofleng definition seemed like a
bad idea. So, we moved them to the left-hand side of the definit
(seefilter andf above), which had the added benefit of placing
the guard right next to the patterns on formal parametersctwh

4.6 Comments

Comments provoked much discussion among the committee, and
Wadler later formulated a law to describe how effort wasttglb

to various topics: semantics is discussed half as much aaxsyn
syntax is discussed half as much as lexical syntax, anddexic
syntax is discussed half as much as the syntax of commenis. Th
was an exaggeration: a review of the mail archives shows that
well over half of the discussion concerned semantics, afig in
operators and layout provoked more discussion than consment
Still, it accurately reflected that committee members héldng
views on low-level details.

Originally, Haskell supported two commenting styles. Detiag
on your view, this was either a typical committee decisionao

logically made more sense), and in a place more suggestive ofvalid response to a disparate set of needs. Short commegits be

the evaluation order (which builds the right operationdaliitons).

with a double dask- and end with a newline; while longer com-

Because of this, we viewed our design as an improvement over ments begin wit{- and end with+}, and can be nested. The longer

conventional mathematical notation.

Second, Haskell adopted from Miranda the idea thateare clause

is attached to aleclaration not an expression, and scopes over
the guards as well as the right-hand sides of the declaratfor
example, in Haskell one can write:

firstSat :: (a->Bool) -> [a] -> Maybe a

firstSat p xs | null xps = Nothing
| otherwise = Just xp
where
xps = filter p xs

Xp head xps

Here, xps is used in a guard as well as in the binding far. In
contrast, det binding is attached to aexpressionas can be seen
in the second definition ofilter near the beginning of this sub-
section. Note also thabp is defined only in the second clause—but
that is fine since the bindings in thaere clause are lazy.

4.5 List comprehensions

List comprehensions provide a very convenient notatiomfaps,
filters, and Cartesian products. For example,

[x¢x | x <= xs]
returns the squares of the numbers in thedistand
[£f | £f<- [1..n], n ‘mod® f == 0]
returns a list of the factors of n, and

concatMap :: (a -> [b]l) -> [a]l -> [b]
concatMap f xs = [y | x <- xs, y <- f x]

applies a functiort to each element of a lists, and concatenates
the resulting lists. Notice that each elementhosen fromxs is
used to generate a new ligt x) for the second generator.

The list comprehension notation was first suggested by Jan D
lington when he was a student of Rod Burstall. The notatios wa
popularised—and generalised to lazy lists—by David Tusnese

of it in KRC, where it was called a “ZF expression” (named afte
Zermelo-Fraenkel set theory). Turner put this notationfecgve
use in his paper “The semantic elegance of applicative agpes’
(Turner, 1981). Wadler introduced the name *“list comprefent

in his paper “How to replace failure by a list of successesa@\sr,
1985).

For some reason, list comprehensions seem to be more papular
lazy languages; for example they are found in Miranda andélas
but notin SML or Scheme. However, they are present in Erlawg a
more recently have been added to Python, and there are pladd t
them to Javascript as array comprehensions.

form was designed to make it easy to comment out segments of
code, including code containing comments.

Later, Haskell added support for a third convention, litergom-
ments, which first appeared in OL at the suggestion of Richard
Bird. (Literate comments also were later adopted by Miranda
Bird, inspired by Knuth’s work on “literate programming” iith,
1984), proposed reversing the usual comment conventioes Ibf
code rather than lines ofommentshould be the ones requiring

a special mark. Lines that were not comments were indicayed b
a greater-than sign to the left. For obvious reasons, these non-
comment indicators came to be called ‘Bird tracks’.

Haskell later supported a second style of literate commengre
code was marked bybegin{code} and\end{code} as it is in
Latex, so that the same file could serve both as source foreséyp
paper and as an executable program.

5. Datatypes and pattern matching

Data types and pattern matching are fundamental to mostnmode
functional languages (with the notable exception of Scheifire
inclusion of basic algebraic types was straightforward jfmerest-
ing issues arose for pattern matching, abstract typesesuplew
types, records;+k patterns, and views.

The style of writing functional programs as a sequence ofequ
tions with pattern matching over algebraic types goes batdaat
to Burstall's work on structural induction (Burstall, 196%nd
his work with his student Darlington on program transforiomat
(Burstall and Darlington, 1977).

Algebraic types as a programming language feature firstaapge
in Burstall's NPL (Burstall, 1977) and Burstall, MacQueamd
Sannella’s Hope (Burstall et al., 1980). They were abseamh fthe
original ML (Gordon et al., 1979) and KRC (Turner, 1982), but
appeared in their successors Standard ML (Milner et al.7)188d
Miranda (Turner, 1986). Equations with conditional guavre
introduced by Turner in KRC (Turner, 1982).

5.1 Algebraic types

Here is a simple declaration of an algebraic data type andaitin
accepting an argument of the type that illustrates the Heatares
of algebraic data types in Haskell.

data Maybe a = Nothing | Just a

mapMaybe :: (a->b) -> Maybe a -> Maybe b
mapMaybe f (Just x) = Just (f x)
mapMaybe f Nothing = Nothing

The data declaration declareaybe to be a data type, with two
data constructorsiothing and Just. The values of thélaybe
type take one of two forms: eith@lothing or (Just x). Data
constructors can be used bothgattern-matchingto decompose
a value ofMaybe type, and inan expressionto build a value of
Maybe type. Both are illustrated in the definition @épMaybe.

The use of pattern matching against algebraic data typesligre
increases readability. Here is another example, this tigfimidg a
recursive data type of trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

size :: Tree a -> Int
size (Leaf x) =1
size (Branch t u) = size t + size u + 1

Haskell took from Miranda the notion of defining algebraipdyg as
a ‘sum of products’. Inthe above, a tree is either a leaf osadin (a
sum with two alternatives), a leaf contains a value (a trpiaduct
with only one field), and a branch contains a left and rightrae

(a product with two fields). In contrast, Hope and Standard ML

separated sums (algebraic types) and products (tuple)tyipebe
equivalent definition of a tree, a branch would take one agnim
which was itself a tuple of two trees.

In general, an algebraic type specifies a sum of one or mae alt
natives, where each alternative is a product of zero or melasfilt
might have been useful to permit a sum of zero alternativag;tw
would be a completely empty type, but at the time the valuaichs
a type was not appreciated.

Haskell also took from Miranda the rule that constructor aam
always begin with a capital, making it easy to distinguishstouc-
tors (like Leaf andBranch) from variables (likex, t, andu). In

Standard ML, it is common to use lower case for both; if a pat-

tern consists of a single identifier it can be hard to tell wbethis
is a variable (which will match anything) or a constructothwmno
arguments (which matches only that constructor).

Haskell further extended this rule to apply to type constmsc(like
Tree) and type variables (lika). This uniform rule was unusual.
In Standard ML type variables were distinguished by stgrtiith
atick (e.g.,tree ’a), and in Miranda type variables were written
as a sequence of one or more asterisks (ergs *).

5.2 Pattern matching

The semantics of pattern matching in lazy languages is nare ¢
plex than in strict languages, because laziness means hisdher

one chooses to first match against a variable (doesn't foraiee

ation) or a constructor (does force evaluation) can chahgesé¢-

mantics of a program, in particular, whether or not the paogr
terminates.

In SASL, KRC, Hope, SML, and Miranda, matching against equa-

tions is in order from top to bottom, with the first matchingiation

being used. Moreover in SASL, KRC, and Miranda, matching is

from left to right within each left-hand-side—which is impant in

a lazy language, since as soon as a non-matching patterand,fo
matching proceeds to the next equation, potentially amgidion-
termination or an error in a match further to the right. Eveiiy,
these choices were made for Haskell as well, after consiglexi
length and rejecting some other possibilities:

¢ Tightest match, as used in Hope+ (Field et al., 1992).

e Sequential equations, as introduced by Huet and Levy (Huet

and Levy, 1979).

Top-to-bottom, left-to-right matching was simple to immplent, fit
nicely with guards, and offered greater expressivenesganed to
the other alternatives. But the other alternatives had asgaos in
which the order of equations did not matter, which aids eqoat
reasoning (see (Hudak, 1989) for more details). In the dntas
thought better to adopt the more widely used top-to-bottesigh
than to choose something that programmers might find ligpitin

5.3 Abstract types

In Miranda, abstract data types were supported by a speuial |
guage construcgbstype:

abstype stack * == [*]

with push :: * -> stack * -> stack *
pop :: stack *x —> x*
empty :: stack *
top :: stack * -> *
isEmpty :: stack * -> bool

push x Xs = X:Xs

pop (x:xs) = xs

empty = []

top (x:xs) = x

isEmpty xs = xs = []

Here the typestack * and [*] are synonyms within the defini-
tions of the named functions, but distinguished everywk¢se.

In Haskell, instead of a special construct, the module sy&eised
to support data abstraction. One constructs an abstraattylas
by introducing an algebraic type, and then exporting the tigpt
hiding its constructors. Here is an example:

module Stack(Stack, push, pop,
empty, top, isEmpty) where
data Stack a = Stk [a]
push x (Stk xs) = Stk (x:xs)
pop (Stk (x:xs)) = Stk xs
empty = Stk []
top (Stk (x:xs)) = x
isEmpty (Stk xs) = null xs

Since the constructor for the data typeack is hidden (the export
list would sayStack(Stk) if it were exposed), outside of this
module a stack can only be built from the operatipnsh, pop,
andempty, and examined witltop andisempty.

Haskell's solution is somewhat cluttered by ek constructors,
but in exchange an extra construct is avoided, and the tyjpbe o
operations can be inferred if desired. The most importairitps
that Haskell’'s solution allows one to give a different imsta to a
type-class for the abstract type than for its represemtatio

instance Show Stack where
show s = ...

The Show instance forStack can be different from th&how in-
stance for lists, and there is no ambiguity about whethewvangi
subexpression is 8tack or a list. It was unclear to us how to
achieve this effect withbstype.

5.4 Tuples and irrefutable patterns

An expression that diverges (or calls Haskedlisror function) is
considered to have the value “bottom”, usually writtena value
that belongs to every type. There is an interesting choibe tnade
about the semantics of tuples: ateand (L, L) distinct values?
In the jargon of denotational semanticslifted tuple semantics

¢ Uniform patterns, as described by Wadler in Chapter 5 of Pey- distinguishes the two values, while amlifted semantics treats

ton Jones’s textbook (Peyton Jones, 1987).

them as the same value.

In an implementation, the two values will bepresenteddiffer-
ently, but under the unlifted semantics they must be imiystish-
able to the programmer. The only way in which they might be dis
tinguished is by pattern matching; for example:

f (x,y) = True

If this pattern match evaluatesss argument thert 1. = 1, but
f (L, 1) = True, thereby distinguishing the two values. One can
instead consider this definition to be equivalent to

f t = True
where

x = fst t

y =snd t

in which case 1. = True and the two values are indistinguishable.

This apparently arcane semantic point became a subjecteat gr
controversy in the Haskell Committee. Miranda’s desigmiidied

L with (L, L), which influenced us considerably. Furthermore,
this identification made currying an exact isomorphism:

(a,b) ->c =2 a->b ->c

But there were a number of difficulties. For a start, shoutd)le-
constructor data types, such as

data Pair a b = Pair a b

share the same properties as tuples, with a semantic disaiyt
induced by adding a second constructor? We were also cattern
about the efficiency of this lazy form of pattern matchingd dime
space leaks that might result. Lastly, the unlifted formugfiés is
essentially incompatible witeeq—another controversial feature
of the language, discussed in Section 10.3—because panedle
uation would be required to implemes¢q on unlifted tuples.

In the end, we decided to make both tuples and algebraic yjaea t
have a lifted semantics, so that pattern matching alwaysciesl
evaluation. However, in a somewhat uneasy compromise, see al
reintroduced lazy pattern-matching, in the form of tildsttprns,
thus:

g :: Bool -> (Int,Int) -> Int
g b “(x,y) = if b then x+y else 0

The tilde “” makes matching lazy, so that the pattern match for
(x,y) is performed only ifx or y is demanded; that is, in this
example, wherb is True. Furthermore, pattern matching irt
andwhere clauses is always lazy, so thatan also be written:

g x pr = if b then x+y else 0
where
(x,y) = pr

(This difference in the semantics of pattern matching betwe
let/where andcase/\ can perhaps be considered a wart on the
language design—certainly it complicates the languageripes
tion.) All of this works uniformly when there is more than one
constructor in the data type:

h :: Bool -> Maybe Int -> Int
h b “(Just x) = if b then x else O

Here againh evaluates its second argument only i True.

5.5 Newtype

The same choice described above for tuples arose for anraige
type with one constructor. In this case, just as with tulesre was
a choice as to whether or not the semantics should be lifteain F
Haskell 1.0, it was decided that algebraic types with a singin-
structor should have a lifted semantics. From Haskell 1\8ands

there was also a second way to introduce a new algebraic tighe w
a single constructor and a single component, with an udlie-
mantics. The main motivation for introducing this had to dithw
abstract data types. It was unfortunate that the Haskehitlefi

of Stack given above forced the representation of stacks to be not
quite isomorphic to lists, as lifting added a new bottom ealudis-

tinct from Stk L. Now one could avoid this problem by replacing
the data declaration inStack above with the following declara-
tion.

Stk [al

We can view this as a way to define a new type isomorphic to an
existing one.

newtype Stack a =

5.6 Records

One of the most obvious omissions from early versions of Elhsk
was the absence akcords offering named fields. Given that
records are extremely useful in practice, why were they texfit

The strongest reason seems to have been that there was ro obvi
ous “right” design. There are a huge number of record systems
variously supporting record extension, concatenatiodatgy and
polymorphism. All of them have a complicating effect on thpe
system (e.g., row polymorphism and/or subtyping), whicls &k
ready complicated enough. This extra complexity seemeticpar
ularly undesirable as we became aware that type classes beul
used to encode at least some of the power of records.

By the time the Haskell 1.3 design was under way, in 1993, see u
pressure for named fields in data structures was strongesmth-
mittee eventually adopted a minimalist design originallggested
by Mark Jones: record syntax in Haskell 1.3 (and subseqgydstl
simply syntactic sugar for equivalent operation on regalgebraic
data types. Neither record-polymorphic operations notygibg
are supported.

This minimal design has left the field open for more sophisti-
cated proposals, of which the best documented is TRex (Gaste
and Jones, 1996) (Section 6.7). New record proposals eentm
appear regularly on the Haskell mailing list, along withengus
ways of encoding records using type classes (Kiselyov £2@04).

5.7 n+k patterns

An algebraic type isomorphic to the natural numbers can beeatt
as follows:

data Nat = Zero | Succ Nat

This definition has the advantage that one can use patteahingt

in definitions, but the disadvantage that the unary reptaten
implied in the definition is far less efficient than the buiitrepre-
sentation of integers. Instead, Haskell provides so-dali pat-
terns that provide the benefits of pattern matching withbetdss

of efficiency. (Then+k pattern feature can be considered a special
case of aview(Wadler, 1987) (see Section 5.8) combined with con-
venient syntax.) Here is an example:

fib :: Int -> Int

fib O = 1

fib 1 = 1

fib (n+2) = fib n + fib (n+1)

The patternn+k only matches a valuen if m > k, and if it
succeeds it binds tom — k.

Patterns of the form+k were suggested for Haskell by Wadler,
who first saw them in Godel's incompleteness proof (GobieB1),
the core of which is a proof-checker for logic, coded usingure
sive equations in a style that would seem not unfamiliar ®rsis

of Haskell. They were earlier incorporated into DarlingsoNPL
(Burstall and Darlington, 1977), and (partially at Wadédristiga-
tion) into Miranda.

This seemingly innocuous bit of syntax provoked a great déal
controversy. Some users considene# patterns essential, because
they allowed function definition by cases over the naturahbers
(as infib above). But others worried that that type did not, in
fact, denote the natural numbers. Indeed, worse was to cgne

in Haskell the numeric literal®(1 etc) were overloaded, it seemed
only consistent thatib’s type should be

fib :: Num a => a -> a

although the programmer is, as always, allowed to specifsa |
general type, such aent -> Int above. In Haskell, one can
perfectly well applyf ib to matrices! This gave rise to a substantial
increase in the complexity of pattern matching, which now ha
to invoke overloaded comparison and arithmetic operatiBnsn
syntactic niceties resulted:

n+1=7
is a (function) definition of, while
(n+1) =7

is a (pattern) definition oh—so apparently redundant brackets
change the meaning completely!

Indeed, these complications led to the majority of the Heske
Committee suggesting thak#k patterns be removed. One of the
very few bits of horse-trading in the design of Haskell ocedr
when Hudak, then Editor of the Report, tried to convince \&ati)
agree to remove+k patterns. Wadler said he would agree to their
removal only if some other feature went (we no longer remembe
which). In the endn+k patterns stayed.

5.8 Views

Wadler had noticed there was a tension between the conwenign
pattern matching and the advantages of data abstractidrsiay:

principled solution to a relatively small problem (operatwer-
loading for numeric operations and equality). As time wenttgpe
classes began to be generalised in a variety of interestidgar-
prising ways, some of them summarised in a 1997 paper “Type
classes: exploring the design space” (Peyton Jones efflr).1

An entirely unforeseen development—perhaps encouragégpby
classes—is that Haskell has become a kind of laboratory iohwh
numerous type-system extensions have been designed,-imple
mented, and applied. Examples include polymorphic reonrsi
higher-kinded quantification, higher-rank types, leXicaicoped
type variables, generic programming, template meta-progring,

and more besides. The rest of this section summarises tioeités
development of the main ideas in Haskell's type system,rregg

with type classes.

6.1 Type classes

The basic idea of type classes is simple enough. Considatiggu
for example. In Haskell we may write

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a => a -> Bool

instance Eq Int where
il == i2 = eqlnt il i2
i1 /= i2 = not (il == i2)

instance (Eq a) => Eq [a] where
(1 == [] = True
(x:x8) == (y:ys) = (x ==y) & (xs == ys)
xs /= ys = not (xs == ys)

member :: Eq a => a -> [a] -> Bool
member x [] = False
member x (y:ys) | x==y = True

| otherwise = member x ys

gestedviewsas a programming language feature that lessens this In the instance folEq Int, we assume thaéqInt is a primi-

tension. A view specifies an isomorphism between two datestyp
where the second must be algebraic, and then permits cotssu
of the second type to appear in patterns that match agam$irsh
(Wadler, 1987). Several variations on this initial progdseve been
suggested, and Chris Okasaki (Okasaki, 1998b) providezaat-e
lent review of these.

The original design of Haskell included views, and was based
the notion that the constructors and views exported by a teodu
should be indistinguishable. This led to complications Xpat
lists and derived type classes, and by April 1989 Wadler was a
guing that the language could be simplified by removing views

At the time views were removed, Peyton Jones wanted to adgvie
to an experimental extension of Haskell, and a detailed qgzalp

to include views in Haskell 1.3 was put forward by Burton and
others (Burton et al., 1996). But views never made it back int
the language nor appeared among the many extensions &vailab
in some implementations.

There is some talk of including views or similar features in

Haskell, a successor to Haskell now under discussion, but they

are unlikely to be included as they do not satisfy the cirerf
being “tried and true”.

6. Haskell as a type-system laboratory

Aside from laziness, type classes are undoubtedly Haskalst
distinctive feature. They were originally proposed earlyhe de-
sign process, by Wadler and Blott (Wadler and Blott, 19898)aa

tive function defining equality at typent. The type signature for
member uses a form of bounded quantification: it declares that
member has typea -> [a] -> Bool, for any typea that is an
instance of the clasBq. A class declaration specifies the meth-
ods of the class (just two in this case, namé#g) and (/=)) and
their types. A type is made into an instance of the class using
instance declaration, which provides an implementation for each
of the class’s methods, at the appropriate instance type.

A particularly attractive feature of type classes is thatytttan
be translated into so-called “dictionary-passing stylg”ebtype-
directed transformation. Here is the translation of thevatzmde:

data Eq a = MkEq (a->a->Bool) (a->a->Bool)

eq (MkEq e _) = e
ne (MkEQ _ n) = n

dEqInt :: Eq Int

dEqInt = MkEq eqInt (\x y -> not (eqInt x y))
dEqList :: Eq a -> Eq [al

dEqList d = MkEq el (\x y -> not (el x y))

where el [] [1 = True
el (x:xs) (y:ys) =eqd xy && el xs ys
el _ _ = False
member :: Eq a -> a -> [a] -> Bool
member d x [] = False

member d x (y:ys) | eqd xy = True
| otherwise = member d x ys

Theclass declaration translates todata type declaration, which
declares alictionary for Eq, that is, a record of its methods. The
functionseq andne select the equality and inequality method from
this dictionary. Thenember function takes a dictionary parameter
of typeEq a, corresponding to thBq a constraint in its original
type, and performs the membership test by extracting thalequ
ity method from this dictionary usingq. Finally, aninstance
declaration translates to a function that takes some diaties and
returns a more complicated one. For examgligl.ist takes a dic-
tionary forEq a and returns a dictionary faq [a].

Once type classes were adopted as part of the language dbsign
were immediately applied to support the following main grsu
of operations: equalityEg) and ordering §rd); converting values
to and from stringsRead and Show); enumerationsEnum); nu-
meric operationsNum, Real, Integral, Fractional, Floating,
RealFrac andRealFloat); and array indexingIx). The rather
daunting collection of type classes used to categorise uheeric
operations reflected a slightly uneasy compromise betwkgn a
braic purity (which suggested many more classes, suckiag
andMonoid) and pragmatism (which suggested fewer).

In most statically typed languages, the type system cheuksis-
tency, but one can understand how the programexicutevithout
considering the types. Not so in Haskell: the dynamic seitsof
the program necessarily depends on the way that its tyss-olaer-
loading is resolved by the type checker. Type classes havepito
be a very powerful and convenient mechanism but, becauseisor
happening “behind the scenes”, it is more difficult for thegram-
mer to reason about what is going to happen.

Type classes were extremely serendipitous: they were tiedeat
exactly the right moment to catch the imagination of the tétisk
Committee, and the fact that the very first release of Hasial
thirteen type classes in its standard library indicates hapidly
they became pervasive. But beyond that, they led to a wildher
set of opportunities than their initial purpose, as we disdn the
rest of this section.

6.2 The monomorphism restriction

A major source of controversy in the early stages was theaieec
“monomorphism restriction.” Suppose thgénericLength has

this overloaded type:
genericLength :: Num a => [b] -> a

Now consider this definition:

f xs = (len, len)
where
len = genericlength xs

It looks as iflen should be computed only once, but it can ac-
tually be computedwice Why? Because we can infer the type
len :: (Num a) => a; when desugared with the dictionary-
passing translationlen becomes dunction that is called once

for each occurrence a@fen, each of which might used at a different

type.

Hughes argued strongly that it was unacceptable to siletghyi-
cate computation in this way. His argument was motivated by a
program he had written that ran exponentially slower thamxte
pected. (This was admittedly with a very simple compilet, wa
were reluctant to make performance differences as big agithi
pendent on compiler optimisations.)

Following much debate, the committee adopted the now-imtsr
monomorphism restriction. Stated briefly, it says that anitésin
that does not look like a function (i.e. has no arguments @n th
left-hand side) should be monomorphic in any overloadec typ

variables. In this example, the rule forcksn to be used at the
same type at both its occurrences, which solves the perfarena
problem. The programmer can supply an explicit type sigedftr
len if polymorphic behaviour is required.

The monomorphism restriction is manifestly a wart on the lan
guage. It seems to bite every new Haskell programmer by gjivin
rise to an unexpected or obscure error message. There has bee
much discussion of alternatives. The Glasgow Haskell Canpi
(GHC, Section 9.1) provides a flag:

-fno-monomorphism-restriction
to suppress the restriction altogether. But in all this time truly
satisfactory alternative has evolved.
6.3 Ambiguity and type defaulting

We rapidly discovered a second source of difficulty with type
classes, namelgmbiguity Consider the following classic exam-

ple:

show ::
read ::

Show a
Read a

=> a -> String
=> String -> a

f :: String -> String
f s show (read s)

Here,show converts a value of any type in cla&sow to aString,
while read does does the reverse for any type in clasad.

So £ appears well-typed... but the difficulty is there is nothing
to specify the type of the intermediate subexpressipead s).
Shouldread parse arint from s, or aFloat, or even a value of
typeMaybe Int? There is nothing to say which should be chosen,
and the choice affects the semantics of the program. Pragiiken

this are said to bambiguousand are rejected by the compiler. The
programmer may then say which types to use by adding a type
signature, thus:

f :: String -> String
fs show (read s ::

Int)

However, sometimes rejecting the un-annotated prograqmssee
unacceptably pedantic. For example, consider the expressi

(show (negate 4))

In Haskell, the literalt is short for(fromInteger (4::Integer)),
and the types of the functions involved are as follows:

fromInteger :: Num a => Integer -> a
negate :: Num a => a -> a
show :: Show a => a -> String

Again the expression is ambiguous, because it is not cleatheh
the computation should be done at tyhet, or Float, or indeed
any other numeric type. Performing numerical calculatimmson-
stants is one of the very first things a Haskell programmesdoe
and furthermore there is more reason to expect numeric opera
tions to behave in similar ways for different types than ¢hiex
for non-numeric operations. After much debate, we compserhi
by adding anad hocrule for choosing a particular default type.
When at least one of the ambiguous constraints is numerialbut
the constraints involve only classes from the StandardiBegkhen
the constrained type variabledgfaultable The programmer may
specify a list of types in a special top-lewidfault declaration,
and these types are tried, in order, until one satisfies allctin-
straints.

This rule is clumsy but conservative: it tries to avoid makim
arbitrary choice in all but a few tightly constrained siioas. In
fact, it seemgoo conservative for Haskell interpreters. Notably,

consider the expressidizhow [1). Are we trying toshow a list of
Char or a list of Int, or what? Of course, it does not matter, since
the result is the same in all cases, but there is no way foryje t
system to know that. GHC therefore relaxes the defaultingsru
further for its interactive version GHCi.

6.4 Higher-kinded polymorphism

The first major, unanticipated development in the typesckiery
came when Mark Jones, then at Yale, suggested paramegeaisin
class over a typeonstructorinstead of over dype an idea he
calledconstructor classe§lones, 1993). The most immediate and
persuasive application of this idea was to monads (disdusse
Section 7), thus:

class Monad m where
return :: a -> m a
(>>=) ::ma->((@->mb) ->mbd

Here, the type variabla has kind *->*, so that theéMonad class
can be instantiated at a type constructor. For exampled#ukara-
tion makes thelaybe type an instance dfonad by instantiatingn
with Maybe, which has kindk->x*:

data Maybe a = Nothing | Just a

instance Monad Maybe where

return x = Just x
Nothing >>= k = Nothing
Just x >>=k = k x

So, for example, instantiatingeturn’s type (a -> m a) with
m=Maybe gives the type(a -> Maybe a), and that is indeed the
type of thereturn function in theinstance declaration.

Jones’s paper appeared in 1993, the same year that monaaisebec
popular for 1/0O (Section 7). The fact that type classes sectly

be generalised to multiple parameters. They gave the failpw
example:

class Coerce a b where
coerce :: a —> b

instance Coerce Int Float where
coerce convertIntToFloat

Whereas a single-parameter type class can be viewed asiegieed
over types (for exampleEq a holds whenever is a type for
which equality is defined), a multi-parameter class can baed a
relation between types (for exampyerce a b holds whenever
a is a subtype ob).

Multi-parameter type classes were discussed in severbl par
pers on type classes (Jones, 1991; Jones, 1992; Chen &%), 1
and they were implemented in Jones’s language Gofer (see Sec
tion 9.3) in its first 1991 release. The Haskell Committee veas
sistant to including them, however. We felt that singlegpaeter
type classes were already a big step beyond our initial ceaibee
design goals, and they solved the problem we initially askkrd
(overloading equality and numeric operations). Going belythat
would be an unforced step into the dark, and we were anxioustab
questions of overlap, confluence, and decidability of tyfperence.
While it was easy to defineoerce as above, it was less clear when
type inference would make it usable in practice. As a reblaskell
98 retained the single-parameter restriction.

As time went on, however, user pressure grew to adopt multi-
parameter type classes, and GHC adopted them in 1997 (wersio
3.00). However, multi-parameter type classes did notyeaime

into their own until the advent of functional dependencies.

6.6 Functional dependencies

supported monads made monads far more accessible and popuThe trouble with multi-parameter type classes is that it ésyv

lar; and dually, the usefulness of monadic 1/0 ensured thetash

of higher-kinded polymorphism. However, higher-kindedypaor-

phism has independent utility: it is entirely possible, aodasion-
ally very useful, to declare data types parameterised oiggreh
kinds, such as:

Nil | Cons a (f a)

Furthermore, one may need functions quantified over higher-
kinded type variables to process nested data types (Okd$89;
Bird and Paterson, 1999).

Type inference for a system involving higher kinds seemgsittfh
require higher-order unification, which is both much harttem
traditional first-order unification and lacks most genenaifiars
(Huet, 1975). However, by treating higher-kinded type tarts
tors as uninterpreted functions and not allowing lambdaetype
level, Jones’s paper (Jones, 1993) shows that ordinaryoficer
unification suffices. The solution is a litted hoe—for example,
the order of type parameters in a data-type declaration cédierm—
but it has an excellent power-to-weight ratio. In retrospbigher-
kinded quantification is a simple, elegant, and useful geisa-
tion of the conventional Hindley-Milner typing disciplin®lilner,
1978). All this was solidified into the Haskell 1.3 Report,igrh
was published in 1996.

data ListFunctor f a

6.5 Multi-parameter type classes

While Wadler and Blott’s initial proposal focused on typasses
with a single parameter, they also observed that type dasgght

5Kinds classify types just as types classify values. The kifsbronounced
“type”, so if m has kind*->*, thenm is a type-level function mapping one
type to another.

easy to write ambiguous types. For example, consider thanfivig
attempt to generalise thiam class:

class Add a b r where
(+#) ::a->b -—>r

Add Int Int Int where ...
Add Int Float Float where ...
Add Float Int Float where ...
Add Float Float Float where ...

instance
instance
instance
instance

Here we allow the programmer to add numbers of differentgype
choosing the result type based on the input types. Alas, teivéml
programs have ambiguous types. For example, consider:

n=x+y

wherex andy have typeInt. The difficulty is that the compiler
has no way to figure out the type af The programmer intended
that if the arguments of+) are bothInt then so is the result, but
that intent is implied only by thabsencef an instance declaration
such as

instance Add Int Int Float where ...

In 2000, Mark Jones published “Type classes with functiatel

pendencies”, which solves the problem (Jones, 2000). Tée il

to borrow a technique from the database community and aeatar
explicit functional dependency between the parametersoidiss,

thus:

class Add abr | a b -> r where ...

The “a b -> r” says that fixinga andb should fixr, resolving
the ambiguity.

But that was not all. The combination of multi-parameteissés
and functional dependencies turned out to allow computatiahe
type level. For example:

=z
S a

data Z
data S a

class Sumabr | ab->r

instance Sum Z b b
instance Sum a b r => Sum (S a) b (S r)

Here,Sum is a three-parameter class with no operations. The re-
lation Sum ta tb tc holds if the typetc is the Peano represen-
tation (at the type level) of the sum o6& andtb. By liberalising
other Haskell 98 restrictions on the form of instance detians
(and perhaps thereby risking non-termination in the typeckér),

it turned out that one could write arbitrary computationthattype
level, in logic-programming style. This realisation gaiserto an
entire cottage industry of type-level programming thatvehmo
sign of abating (e.g., (Hallgren, 2001; McBride, 2002; Kys&

et al., 2004), as well as much traffic on the Haskell mailirsg) i

It also led to a series of papers suggesting more direct wiags-0
pressing such programs (Neubauer et al., 2001; Neubaudr, et a
2002; Chakravarty et al., 2005b; Chakravarty et al., 2005a)

Jones’s original paper gave only an informal descriptiotfiuoic-
tional dependencies, but (as usual with Haskell) that didstap
them from being implemented and widely used. These apfitsit
have pushed functional dependencies well beyond theirvateti
ing application. Despite their apparent simplicity, fuontl depen-
dencies have turned out to be extremely tricky in detaileeily
when combined with other extensions such as local univensal
existential quantification (Section 6.7). Efforts to urstand and
formalise the design space are still in progress (Glynn.e2a00;
Sulzmann et al., 2007).

6.7 Beyond type classes

As if all this were not enough, type classes have spawned rume
ous variants and extensions (Peyton Jones et al., 1997mkeéeand
Peyton Jones, 2005; Shields and Peyton Jones, 2001). Fodie
even leaving type classes aside, Haskell has turned outacsbe
ting in which advanced type systems can be explored andeappli
The rest of this section gives a series of examples; spackuges

a proper treatment of any of them, but we give citations fer th
interested reader to follow up.

Existential data constructors A useful programming pattern is to
package up a value with functions over that value and exisign
quantify the package (Mitchell and Plotkin, 1985). Perrgwtd in
his dissertation (Perry, 1991b; Perry, 1991a) and in hidempn-
tation of Hope+ that this pattern could be expressed witloatmo
new language complexity, simply by allowing a data congtiuc
to mention type variables in its arguments that do not apeés
result. For example, in GHC one can say this:

data T = forall a. MkT a (a->Int)
f :: T -> Int
f (MkT x g) = g x

Here the constructafkT has typeVa.a — (¢ — Int) — T;
note the occurrence af in the argument type but not the result.
A value of typeT is a package of a value of some (existentially
quantified) typer, and a function of type — Int. The package
can be unpacked with ordinary pattern matching, as showhein t
definition off.

This simple but powerful idea was later formalised by Odgrsk
and Laufer (Laufer and Odersky, 1994). Laufer also dbedrhow

to integrate existentials with Haskell type classes (E§uf996).
This extension was first implemented in hbc and is now a widely
used extension of Haskell 98: every current Haskell impleatéon
supports the extension.

Extensible records Mark Jones showed that type classes were
an example of a more general framework he catjadlified types
(Jones, 1994). With his student Benedict Gaster he develapec-
ond instance of the qualified-type idea, a system of polyimorp
extensible records called TRex (Gaster and Jones, 1996giGas
1998). The type qualification in this case is a collectiorlaaks
predicatesthus:

f :: (r\x, r\y)
=> Rec (x::Int, y::Int | r) -> Int
f p= (#x p) + (#y p)

The type should be read as follovfstakes an argument record with
anx andy fields, plus other fields described by the row-variahle
and returns arint. Thelackspredicate(r\x, r\y) says thatr
should range only over rows that do not havezaor y field—
otherwise the argument typec (x::Int, y::Int | r) would

be ill formed. The selectatx selects the field from its argument,
so (#x p) is what would more traditionally be writtep. x. The
system can accommodate a full complement of polymorphic-ope
ations: selection, restriction, extension, update, arnd fanaming
(although not concatenation).

Just as each type-class constraint corresponds to a ruatijoe
ment (a dictionary), so eadhckspredicate is also witnessed by a
runtime argument. The witness for the predicat®l) is the offset

in r at which a field labelled would be inserted. Thus receives
extra arguments that tell it where to find the fields it needi ifiea
of passing extra arguments to record-polymorphic funstismot
new (Ohori, 1995), but the integration with a more generainfe-
work of qualified types is particularly elegant; the readayrfind

a detailed comparison in Gaster’s dissertation (Gast&8)19

Implicit parameters A third instantiation of the qualified-type
framework, so-called “implicit parameters”, was develbpey
Lewis, Shields, Meijer, and Launchbury (Lewis et al., 20@&)p-
pose you want to write a pretty-printing library that is pams
terised by the page width. Then each function in the libransim
take the page width as an extra argument, and in turn pasghi¢ to
functions it calls:

pretty ::
pretty pw doc

Int -> Doc -> String

if width doc > pw
then pretty2 pw doc
else pretty3 pw doc

These extra parameters are quite tiresome, especially tisgn
are only passed on unchanged. Implicit parameters arrdrage t
this parameter passing happens implicitly, rather likdialary
passing, thus:

pretty ::
pretty doc

(?pw::Int) => Doc -> String
if width doc > 7pw

then pretty2 doc

else pretty3 doc

The explicit parameter turns into an implicit-parametgretycon-
straint; a reference to the page width itself is signalled by, and
the calls topretty2 andpretty3 no longer pass an expligits pa-
rameter (it is passed implicitly instead). One way of untierding
implicit parameters is that they allow the programmer to ensé-
lective use of dynamic (rather than lexical) scoping. (¥@sglyov
and Shan, 2004) for another fascinating approach to thdegrobf
distributing configuration information such as the pagetiid

Polymorphic recursion This feature allows a function to be used
polymorphically in its own definition. It is hard tafer the type of
such a function, but easy theckthat the definition is well typed,
given the type signature of the function. So Haskell 98 adlpaly-
morphic recursion when (and only when) the programmer expli
itly specifies the type signature of the function. This ingwon is
extremely simple to describe and implement, and sometiores t
out to be essential, for example when using nested data (Bres
and Paterson, 1999).

Higher-rank types Once one starts to use polymorphic recursion,
it is not long before one encounters the need to abstract aver
polymorphic function. Here is an example inspired by (Okgsa
1999):

type Sq v a =v (v a) -- Square matrix:
-- A vector of vectors
sq_index :: (forall a . Int -> v a -> a)

-> Int -> Int -> Sq va->a
sq_index index i j m = index i (index j m)

The functionindex is used insideq_index at two different types,
so it must be polymorphic. Hence the first argumenigoindex is

a polymorphic function, andq_index has a so-called rank-2 type.
In the absence of any type annotations, higher-rank typé&s type
inference undecidable; but a few explicit type annotatioos the
programmer (such as that feg_index above) transform the type
inference problem into an easy one (Peyton Jones et al.)2007

Higher-rank types were first implemented in GHC in 2000, in
a ratherad hoc manner. At that time there were two main mo-
tivations: one was to allow data constructors with polyniicp
fields, and the other was to allow th@nST function to be de-
fined (Launchbury and Peyton Jones, 1995). However, once im-
plemented, another cottage industry sprang up offeringnpies

of their usefulness in practice (Baars and Swierstra, 2D@gymel

and Peyton Jones, 2003; Hinze, 2000; Hinze, 2001), and GHE's
plementation has become much more systematic and geneyal (P
ton Jones et al., 2007).

Generalised algebraic data typesGADTs are a simple but far-
reaching generalisation of ordinary algebraic data typestfon 5).
The idea is to allow a data constructor’s return type to beifipd
directly:

data Term a where

Lit :: Int -> Term Int
Pair :: Term a -> Term b -> Term (a,b)
..etc..

In a function that performs pattern matching Derm, the pattern
match givesypeas well asvalueinformation. For example, con-
sider this function:

eval :: Term a -> a
eval (Lit i) i
eval (Pair a b) (eval a, eval b)

If the argument matcheksit, it must have been built with Bit
constructor, sa must beInt, and hence we may retuin(anInt)

in the right-hand side. This idea is very well known in theeyp
theory community (Dybjer, 1991). Its advent in the world obp
gramming languages (under various names) is more recenit, bu
seems to have many applications, including generic progriag)
modelling programming languages, maintaining invariantdata
structures (e.g., red-black trees), expressing consdrairdomain-
specific embedded languages (e.g. security constraimi)mad-
elling objects (Hinze, 2003; Xi et al., 2003; Cheney and Idinz

2003; Sheard and Pasalic, 2004; Sheard, 2004). Type icfefen
GADTs is somewhat tricky, but is now becoming better undert
(Pottier and Régis-Gianas, 2006; Peyton Jones et al.,)2664d
support for GADTs was added to GHC in 2005.

Lexically scoped type variablesin Haskell 98, it is sometimes
impossible to write a type signature for a function, becayge
signatures are alwaydosed For example:

prefix :: a -> [[a]l] -> [[al]
prefix x yss = map xcons yss
where
xcons :: [a]l -> [a] -- BAD!

Xcons ys = X : ys

The type signature foxcons is treated by Haskell 98 as speci-
fying the typeVa.[a] — [a], and so the program is rejected. To
fix the problem, some kind of lexically scoped type varialdes
required, so thata” is bound byprefix and used in the signa-
ture forxcons. In retrospect, the omission of lexically scoped type
variables was a mistake, because polymorphic recursioiraoce
recently) higher-rank types absolutely require type digres. In-
terestingly, though, scoped type variables were not ochidtfter
fierce debate; on the contrary, they were barely discussedjm-
ply never realised how important type signatures would @rimv
be.

There are no great technical difficulties here, althoughetlie an
interesting space of design choices (Milner et al., 1997jeMand
Claessen, 1997; Shields and Peyton Jones, 2002; Sulzn@08), 2

Generic programming A genericfunction behaves in a uniform
way on arguments of any data types, while having a few type-
specific cases. An example might be a function that capésisl

the strings that are in a big data structure: the genericvialnais

to traverse the structure, while the type-specific caseristfings.

In another unforeseen development, Haskell has servea dost
language for a remarkable variety of experiments in gerpnoe
gramming, including: approaches that use pure Haskell 9&¢l
2004); ones that require higher-rank types (Lammel anddpey
Jones, 2003; Lammel and Peyton Jones, 2005); ones thataequ
a more specific language extension, such as PolyP (Jansdon an
Jeuring, 1997), and derivable type classes (Hinze and Pdpites,
2000); and whole new language designs, such as Generic IHaske
(Loh et al., 2003). See (Hinze et al., 2006) for a recenteyuf

this active research area.

Template meta-programming Inspired by the template meta-
programming of C++ and the staged type system of MetaML
(Taha and Sheard, 1997), GHC supports a form of type-safe-met
programming (Sheard and Peyton Jones, 2002).

6.8 Summary

Haskell's type system has developed extremely anarchiddfiny

of the new features described above were sketched, imptedhen
and applied well before they were formalised. This anaralinich
would be unthinkable in the Standard ML community, has both
strengths and weaknesses. The strength is that the desige isp
explored much more quickly, and tricky corners are oftert (imi
always!) exposed. The weakness is that the end result isregty
complex, and programs are sometimes reduced to experirteents
see what will and will not be acceptable to the compiler.

Some notable attempts have been made to bring order to tisch
Karl-Filip Faxen wrote a static semantics for the whole okl
98 (Faxen, 2002). Mark Jones, who played a prominent rolevn s
eral of these developments, developed a theoguefified typesof
which type classes, implicit parameters, and extensilderds are
all instances (Jones, 1994; Jones, 1995). More recentlyrbog

a paper giving the complete code for a Haskell 98 type infexen we first defined 1/O in terms of streams, but also included a-com
engine, which is a different way to formalise the system €3pn pletely equivalent design based on continuations.

1999). Martin Sulzmann and his colleagues have appliedhie t
ory of constraint-handling rulesgo give a rich framework to rea-
son about type classes (Sulzmann, 2006), including theesigist

ggtf)l;r)]ctlonal dependencies (Glynn et al., 2000; Sulzmanal.et pure functional language. This “world-passing” model wager a
: serious contender for Haskell, however, because we saw sy ea
These works do indeed nail down some of the details, but fdtre way to ensure “single-threaded” access to the world stdtee (

It is worth mentioning that a third model for I/O was also dissed,
in which the state of the world is passed around and updatech m
as one would pass around and update any other data structare i

is still dauntingly complicated. The authors of the presesper Clean designers eventually solved this problem throughuge
have the sense that we are still awaiting a unifying insilgat will of “uniqueness types” (Achten and Plasmeijer, 1995; Basend
not only explain but also simplify the chaotic world of typasses, and Smetsers, 1996).) In any case, all three designs wesideon
without throwing the baby out with the bath water. ered, and Hudak and his student Sundaresh wrote a reporttdesc

ing them, comparing their expressiveness, and giving latioas
between them during these deliberations (Hudak and Suwsidare
1989). In this section we give a detailed account of the sirea
based and continuation-based models of 1/0O, and follow i+ Se
e The purity of the language removed a significant technical ob tion 7.2 with the monadic model of I/0 that was adopted forkets
stacle to many type-system innovations, namely dealing wit 1.3 in 1996.
mutable state.

Meanwhile, it is worth askingvhy Haskell has proved so friendly
a host language for type-system innovation. The followemsons
seem to us to have been important. On the technical side:

. L " Stream-based I/0 Using the stream-based model of purely func-
* Type classes, and their generalisation to qualified typmse] tional 1/0, used by both Ponder and Miranda, a program iserepr
1994), provided a rich (albeit rather complex) frameworoin ganied as a value of type:

which a number of innovations fitted neatly; examples inelud
extensible records and implicit parameters. type Behaviour = [Response] -> [Request]

e Polymorphic recursion was in the language, so the idea that The idea is that a program generateBeguest to the operating
every legal program should typecheck without type annmtati system, and the operating system reacts with s@emponse.
(a tenet of ML) had already been abandoned. This opens theLazy evaluation allows a program to generate a request fior
door to features for which unaided inference is infeasible. processing any responses. A suitably rich seRefuests and
Responses yields a suitably expressive /O system. Here is a partial
definition of theRequest andResponse data types as defined in
e The Haskell Committee encouraged innovation right from the Haskell 1.0:
beginning and, far from exercising control over the langyag

But there were also nontechnical factors at work:

disbanded itself in 1999 (Section 3.7). data Request Se?gF;?i game Sers
riterile ame rlng

I
¢ The two most widely used implementations (GHC, Hugs) both | AppendFile Name String
had teams that encouraged experimentation. | DeleteFile Name
|

e Haskell has a smallish, and rather geeky, user base. New fea-

tures are welcomed, and even breaking changes are accepted.
Success

Str String

data Response =
|
| Failure IOError
|

7. Monads and input/output

Aside from type classes (discussed in Sectiom@&)nadsare one
of the most distinctive language design features in Haskkdhads
were not in the original Haskell design, because when Hbglesl type Name = String
born a “monad” was an obscure feature of category theory &vhos
implications for programming were largely unrecognisedtHis
section we describe the symbiotic evolution of Haskell’pmart

for input/output on the one hand, and monads on the other.

As an example, Figure 3 presents a program, taken from thieeiias
1.0 Report, that prompts the user for the name of a file, ectiges
filename as typed by the user, and then looks up and displays th
contents of the file on the standard output. Note the reliandazy

7.1 Streams and continuations patterns (indicated by) to assure that the response is not “looked

))) . at” prior to the generation of the request.
The story begins with I/O. The Haskell Committee was resoiut

its decision to keep the language pure—meaning no sideteffec With this treatment of I/O there was no need for any special-
so the design of the 1/O system was an important issue. We did Purpose I/O syntax or I/O constructs. The I/O system was eefin
not want to lose expressive power just because we were "pure, entirely interms of how the operating system interpretecbgiam
since interfacing to the real world was an important pragenat having the above type—that is, it was defined in terms of wéat r
concern. Our greatest fear was that Haskell would be vievged a Sponse the OS generated for each request. An abstract speoifi
atoy |anguage because we did a poor JOb addressing thisﬁamor of this behaviour was defined in the Appendlx of the Haskell 1.

capability. Report, by gi_/ing a defin_i;ion of the operating system as ation
.))) that took as input an initial state and a collection of Hasked-
At the time, the two leading contenders for a solution to pisb- grams and used a single nondeterministic merge operataptare

lem werestreamsand continuations Both were understood well e parallel evaluation of the multiple Haskell programs.

enough theoretically, both seemed to offer consideratjesssive-

ness, and both were certainly pure. In working out the detafil Continuation-based I/O Using the continuation-based model of
these approaches, we realised that in fact they were funadtyo 1/0, a program was still represented as a value of Bgisviour,
equivalent—that is, it was possible to completely model stream I/O but instead of having the user manipulate the requests and re
with continuations, and vice versa. Thus in the Haskell le@dt, sponses directly, a collection thnsactionswvere defined that cap-

tured the effect of each request/response pair in a cotiimia
passing style. Transactions were just functions. For eaghast
(a constructor, such &sadFile) there corresponded a transaction
(a function, such ageadFile).

The requesReadFile name induced either a failure response
“Failure msg” Or success respons8tr contents” (see above).
So the corresponding transactieeadFile name accepted two
continuations, one for failure and one for success.

[Response] -> [Request]
IOError -> Behaviour
String -> Behaviour

type Behaviour
type FailCont
type StrCont

One can define this transaction in terms of streams as fallows

readFile :: Name -> FailCont -> StrCont -> Behaviour
readFile name fail succ ~(resp:resps) =
= ReadFile name :
case resp of
Str val -> succ val resps

Failure msg -> fail msg resps

If the transaction failed, the failure continuation woulel &pplied
to the error message; if it succeeded, the success continuat
would be applied to the contents of the file. In a similar way, i
is straightforward to define each of the continuation-bdsmusac-
tions in terms of the stream-based model of I/O.

Using this style of 1/0, the example given earlier in strebased

/O can be rewritten as shown in Figure 4. The code uses the

standard failure continuatiorgbort, and an auxiliary function
let. The use of a function calletlet reflects the fact thatet
expressions were not in Haskell 1.0! (They appeared in Hlaske
1.1)

Although the two examples look somewhat similar, the carstin
tion style was preferred by most programmers, since the fliow o
control was more localised. In particular, the pattern mmiatg re-
quired by stream-based 1/O forces the reader’s focus to jomog
and forth between the patterns (representing the respoaseshe
requests.

Above we take streams as primitive and define continuations i
terms of them. Conversely, with some cleverness it is alssipo
ble to take continuations as primitive and define streamsrimg

of them (see (Hudak and Sundaresh, 1989), where the ddfinitio
of streams in terms of continuations is attributed to Peyimmes).
However, the definition of streams in terms of continuatiozs
inefficient, requiring linear space and quadratic time inme of
the number of requests issued, as opposed to the expectsdmon
space and linear time. For this reason, Haskell 1.0 defimedrat
as primitive, and continuations in terms of them, even thocon-
tinuations were considered easier to use for most purposes.

7.2 Monads

We now pause the story of I/O while we brimgonadsonto the
scene. In 1989, Eugenio Moggi published at LICS a paper on
the use of monads from category theory to describe features o
programming languages, which immediately attracted at gheal

of attention (Moggi, 1989; Moggi, 1991). Moggi used monaals t
modularise the structure of a denotational semanticses)aising

the treatment of diverse features such as state and excepBat

a denotational semantics can be viewed as an interpretiemvin

a functional language. Wadler recognised that the tecleridpggi

had used to structure semantics could be fruitfully appiestruc-
ture other functional programs (Wadler, 1992a; Wadler2b99In
effect, Wadler used monads ézpresgshe same programming lan-
guage features that Moggi used monaddéecribe

For example, say that you want to write a program to renamey eve
occurrence of a bound variable in a data structure repriegeat
lambda expression. This requires some way to generate la fres
name every time a bound variable is encountered. In ML, you
would probably introduce a reference cell that contains unto
and increment this count each time a fresh name is required. |
Haskell, lacking reference cells, you would probably agethat
each function that must generate fresh names accepts aalakl v
of the counter and returns an updated value of the countés. Th
is straightforward but tedious, and errors are easily thtoed by
misspelling one of the names used to pass the current codat in
or out of a function application. Usingstate transformemonad
would let you hide all the “plumbing.” The monad itself would
be responsible for passing counter values, so there is noceha
to misspell the associated names.

A monad consists of a type constructoand a pair of functions,
return and >>= (sometimes pronounced “hind”). Here are their

types:

return :: a -> M a
(>>=) :Ma->(@->Mb) ->Mb

One should readM' a” as the type of a&omputationthat returns a
value of typea (and perhaps performs some side effects). Say that
m is an expression of typ a andn is an expression of type b

with a free variable of type a. Then the expression

m >>= (\x -> n)

has typeM b. This performs the computation indicateddnybinds
the value returned te, and performs the computation indicated by
n. It is analogous to the expression

let x m in n

in a language with side effects such as ML, except that thestyp
do not indicate the presence of the effects: in the ML version
m has typea instead ofM a, andn has typeb instead ofM b.
Further, monads give quite a bit of freedom in how one defines t
operatorgeturn and>>=, while ML fixes a single built-in notion

of computation and sequencing.

Here are a few examples of the notions of side effects thatane
define with monads:

e A state transformeis used to thread state through a program.
HereM aisST s a, where s is the state type.

type ST s a s -> (a,s)

A state transformer is a function that takes the old statéy(mf

s) and returns a value (of typg and the new state (of typs).

For instance, to thread a counter through a program we might
takes to be integer.

A state readeis a simplified state transformer. It accepts a state
that the computation may depend upon, but the computation
never changes the state. Hérea is SR s a, where s is the
state type.

type SR s a= s -> a

An exceptionmonad either returns a value or raises an excep-
tion. HereM a is Exc e a, wheree is the type of the error
message.

data Exc e a Exception e | OK a

e A continuationmonad accepts a continuation. Hetea is
Cont r a, wherer is the result type of the continuation.

type Cont ra = (a->r) >r

main :: Behaviour
main ~(Success : “((Str userInput) : ~“(Success : “(r4 : _.))))
= [AppendChan stdout "enter filename\n",
ReadChan stdin,
AppendChan stdout name,
ReadFile name,
AppendChan stdout
(case r4 of

Str contents -> contents
Failure ioerr -> "can’t open file")
] where (name : _) = lines userInput

Figure 3. Stream-based I/0

main :: Behaviour

main = appendChan stdout "enter filename\n" abort (
readChan stdin abort (\userInput ->
letE (lines userInput) (\(name : _) ->
appendChan stdout name abort (
readFile name fail (\contents ->
appendChan stdout contents abort done)))))

where

fail ioerr = appendChan stdout "can’t open file" abort done

abort :: FailCont
abort err resps = []

letE :: a->(a->b) >b
letE x k = k x

Figure 4. Continuation 1/0O

main :: I0 Q)
main = appendChan stdout "enter filename\n" >>

readChan stdin >>= \userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>

catch (readFile name >>= \contents ->
appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 5. Monadic 1/0

main :: I0 O

main = do appendChan stdout "enter filename\n"
userInput <- readChan stdin
let (name : _) = lines userInput
appendChan stdout name
catch (do contents <- readFile name

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 6. Monadic 1/0O usinglo notation

¢ A list monad can be used to model nondeterministic computa- tranformer library. Despite the utility of monad transfars, mon-

tions, which return a sequence of values. Hére isList a,
which is just the type of lists of values of type

type List a = [a]

ads do not compose in a nice, modular way, a research problm t
is still open (Jones and Duponcheel, 1994; Luth and Gh&di2R

Two different forms of syntactic sugar for monads appeared

e A parsermonad can be used to model parsers. The input is in Haskell at different times. Haskell 1.3 adopted Joness-

the string to be parsed, and the result is list of possiblegzr
each consisting of the value parsed and the remaining wegbars

string. It can be viewed as a combination of the state trans-

notation,” which was itself derived from John Launchburpa-
per on lazy imperative programming (Launchbury, 1993).s8ub
quently, Haskell 1.4 supported “monad comprehensions” el w

former monad (where the state is the string being parsed) and@Sdo-notation (Wadler, 1990a)—an interesting reversal, sthee

the list monad (to return each possible parse in turn). Mese

isParser a.
type Parser a = String -> [(a,String)]

Each of the above monads has corresponding definitionstafrn

and>>=. There are three laws that these definitions should satisfy
in order to be a true monad in the sense defined by category

theory. These laws guarantee that composition of functieitis
side effects imssociativeand has aidentity (Wadler, 1992b). For
example, the latter law is this:

fx

Each of the monads above has definitiong@furn and>>= that
satisfy these laws, although Haskell provides no mechargm
ensure this. Indeed, in practice some Haskell programnssrshe
monadic types and programming patterns in situations wtere
monad laws do not hold.

returnz >>=f =

A monad is a kind of “programming pattern”. It turned out ttzs
pattern can be directly expressed in Haskell, using a typeschs
we saw earlier in Section 6.4:

class Monad m where
return :: a ->m a
(>>=) ::ma->(@->mb) ->mbd

comprehension notation was proposed bef@wenotation! Most
users preferred theéo-notation, and generalising comprehensions
to monads meant that errors in ordinary list comprehenstonfd

be difficult for novices to understand, so monad comprelo@ssi
were removed in Haskell 98.

7.3 Monadic I/O

Although Wadler's development of Moggi’s ideas was not clied
towards the question of input/output, he and others at Glasgon
realised that monads provided an ideal framework for 1/0Ge Th
key idea is to treat a value of tyd® a as a “computation” that,
when performed, might perform input and output before eeihg

a value of typea. For examplereadFile can be given the type

readFile :: Name -> I0 String

SoreadFile is a function that takes ¥ame and returns a compu-
tation that, when performed, reads the file and returns it¢ecds
as aString.

Figure 5 shows our example program rewritten using monads in
two forms. It makes use of the monad operaters, return, >>,
andcatch, which we discuss next. The first two are exactly as de-
scribed in the previous section, but specialised forienonad.
Soreturn x is the trivial computation of typ&0 a (wherex: :a)
that performs no input or output and returns the vatueSimi-

The Monad class gives concrete expression to the mathematical larly, (>>=) is sequential compositiontm >>= k) is a compu-

idea that any type constructor that has suitably typed unditand
operators is a monad. That concrete expression has digetiqal
utility, because we can now write useful monadic combirsatbat
will work for anymonad. For example:

sequence :: Monad m => [m a] -> m [al
sequence [] = return []
sequence (m:ms) = m >>= \x ->

sequence ms >>= \ xs ->
return (x:xs)

The intellectual reuse of the idea of a monad is directly céfie

in actual code reuse in Haskell. Indeed, there are whole éflask
libraries of monadic functions that work fanymonad. This happy
conjunction of monads and type classes gave the two a syimbiot
relationship: each made the other much more attractive.

Monads turned out to be very helpful in structuring quite & fe

tation that, when performed, performsappliesk to the result to
yield a computation, which it then performs. The operdter) is
sequential composition when we want to discard the resuthef
first computation:

(>>) :: I0a->1I0b ->1I0Db
m>n = m>=\ _->n

The HaskellI0 monad also supporesxceptionsoffering two new
primitives:

ioError :: IOError -> I0 a

catch :: I0 a => (I0Error -> I0 a) -> I0 a

The computation(ioError e) fails, throwing exceptiore. The
computation(catch m h) runs computation; if it succeeds, then
its result is the result of theatch; but if it fails, the exception is
caught and passed ko

functional programs. For example, GHC'’s type checker uses a The same example program is shown once more, rewritten us-

monad that combines a state transformer (representingutinent
substitution used by the unifier), an exception monad (tecatd

an error if some type failed to unify), and a state reader mona
(to pass around the current program location, used whemthego
an error). Monads are often used in combination, as this pkeam
suggests, and by abstracting one level further one can imgttad
transformerdn Haskell (Steele, 1993; Liang et al., 1995; Harrison
and Kamin, 1998). The Liang, Hudak, and Jones paper was ste fir
to show that a modular interpreter could be written in Haskel

ing monad transformers, but it required type class extesssoip-
ported only in Gofer (an early Haskell interpreter—see isac).
This was one of the examples that motivated a flurry of exterssi
to type classes (see Section 6) and to the development ofdhadn

ing Haskell'sdo-notation, in Figure 6. This notation makes (the
monadic parts of) Haskell programs appear much more impetat

Haskell's input/output interface specifiedmonadically. It can be
implementedising continuations, thus:

type I0 a = FailCont -> SuccCont a -> Behaviour

(The reader may like to write implementationsrefturn, (>>=),
catch and so on, using this definition ab.) However, it is also
possible to implement thEd monad in a completely different style,
without any recourse to a stream of requests and responkes. T
implementation in GHC uses the following one:

type I0 a = World -> (a, World)

An I0 computation is a function that (logically) takes the stéfte o 7.4 Subsequent developments
the world, and returns a modified world as well as the retuhneva
Of course, GHC does not actually pass the world around;adste
it passes a dummy “token,” to ensure proper sequencing iofnact
in the presence of lazy evaluation, and performs input amgubu
as actual side effects! Peyton Jones and Wadler dubbedghk re

Once theI0 monad was established, it was rapidly developed in
various ways that were not part of Haskell 98 (Peyton Jor] 2
Some of the main ones are listed below.

Mutable state. From the very beginning it was clear that the

“imperative functional programming” (Peyton Jones and \&ad
1993).

The monadic approach rapidly dominated earlier modelstyires

are more compact, and more informative. For example, in the

continuation model we had

readFile :: Name -> FailCont -> StrCont -> Behaviour

The type is cluttered with success and failure continuat{@vhich
must be passed by the programmer) and fails to show thatsb# re
is aString. Furthermore, the types ab computations could be
polymorphic:

readIORef
writeIORef ::

:: IORef a -> I0 a
IORef a -> a -> I0 ()

These types cannot be written with a fixeghuest andResponse
type. However, the big advantage is conceptual. It is musieea
to think abstractly in terms of computations than concyetal
terms of the details of failure and success continuatiohs.ronad

abstracts away from these details, and makes it easy to ehang

them in future. The reader may find a tutorial introductiorthe
I0 monad, together with various further developments in (&eyt
Jones, 2001).

Syntax matters An interesting syntactic issue is worth pointing
out in the context of the development of Haskell’s I/O systhiote
in the continuation example in Figure 4 the plethora of ptreses
that tend to pile up as lambda expressions become nesteg.t8ia

monad could also support mutable locations and arrays (Pey-
ton Jones and Wadler, 1993), using these monadic operations

newIORef :: a -> I0 (IORef a)
readIORef :: IORef a -> I0 a
writeIORef :: IORef a -> a -> I0 ()

An exciting and entirely unexpected development was Launch
bury and Peyton Jones’s discovery that imperative computa-
tions could be securely encapsulated inside a pure fundiioe

idea was to parameterise a state monad with a type parameter
s that “infected” the references that could be generatedan th
monad:

newSTRef :: a -> ST s (STRef s a)
readSTRef : STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

The encapsulation was performed by a single constan§T,
with a rank-2 type (Section 6.7):

(forall s. ST s a) -> a

A proof based on parametricity ensures that no referenaes ca
“leak” from one encapsulated computation to another (Launc
bury and Peyton Jones, 1995). For the first time this offered
the ability to implement a function using an imperative algo
rithm, with a solid guarantee that no side effects coulddati

tally leak. The idea was subsequently extended to accommo-
date block-structured regions (Launchbury and Sabry, 1997
and reused to support encapsulated continuations (Dybuig e
2005).

runST ::

style of programming was probably going to be fairly common, Random numbers need a seed, and the HaskellRR&dom library
the Haskell Committee decided quite late in the design m®ce uses thelo monad as a source of such seeds.
to change the precedence rules for lambda in the contextfigf in Concurrent Haskell (Peyton Jones et al., 1996) extends e

operators, so that the continuation example could be write
follows:

main :: Behaviour

main = appendChan stdout "enter filename\n" >>>
readChan stdin >>> \ userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>>
readFile name fail (\ contents ->
appendChan stdout contents abort done)

where
fail ioerr = appendChan stdout "can’t open file"
abort done

wheref >>> x = f abort x. Note the striking similarity of this

monad with the ability to fork lightweight threads, each of
which can perform 1/O by itself (so that the language seman-
tics becomes, by design, nondeterministic). Threads cam co
municate with each other using synchronised, mutable loca-
tions called MVars, which were themselves inspired by the M-
structures of Id (Barth et al., 1991).

Transactional memory. The trouble with MVars is that programs

built using them are notomposablgthat is, it is difficult

to build big, correct programs by gluing small correct sub-
programs together, a problem that is endemic to all conatirre
programming technologySoftware transactional memorig

a recent and apparently very promising new approach to this
problem, and one that fits particularly beautifully into Kelé
(Harris et al., 2005).

code to the monadic code in Figure 5. It can be made even moreExceptions were built into theI0 monad from the start—see the

similar by defining a suitableatch function, although doing so
would be somewhat pedantic.

Although these two code fragments have a somewhat imperativ

feel because of the way they are laid out, it was really theeatlv

of do-notation—not monads themselves—that made Haskell pro-

grams look more like conventional imperative programs [ffetter
or worse). This syntax seriously blurred the line betweerelgu
functional programs and imperative programs, yet was ieart
adopted by the Haskell Committee. In retrospect it is wosk-a
ing whether this same (or similar) syntactic device couleetzeen
used to make stream or continuation-based I/O look morealatu

use ofcatch above—but Haskell originally only supported a
single exception mechanism in purely functional code, ngame
the functionerror, which was specified as bringing the entire
program to a halt. This behaviour is rather inflexible forlrea
applications, which might want to catch, and recover froatisc
to error, as well as pattern-match failures (which also call
error). The I0 monad provides a way to achieve this goal
without giving up the simple, deterministic semantics afghy
functional code (Peyton Jones et al., 1999).

UnsafePerformlO Almost everyone who starts using Haskell

eventually asks “how do | getut of the I0 monad?” Alas,

unlike runST, which safely encapsulates an imperative compu-
tation, there is no safe way to escape frombenonad. That
does not stop programmers from wanting to do it, and occasion

ally with some good reason, such as printing debug messages,

whose order and interleaving is immaterial. All Haskell Ieyp
mentations, blushing slightly, therefore provide:

unsafePerformI0 :: I0 a -> a

As its name implies, it is not safe, and its use amounts to a
promise by the programmer that it does not matter whether the
1/0 is performed once, many times, or never; and that itsivela
order with other 1/O is immaterial. Somewhat less obviopisly

is possible to usensafePerformI0 to completely subvert the
type system:

cast :: a -> b
cast x = unsafePerformIO
(do writeIORef r x
readIORef r)
where r :: IORef a
r = unsafePerformIO

(newIORef (error "urk"))

It should probably have an even longer name, to discourage it
use by beginners, who often use it unnecessarily.

Arrows are an abstract view of computation with the same flavour
as monads, but in a more general setting. Originally pragpose
by Hughes in 1998 (Hughes, 2000; Paterson, 2003), arrows
have found a string of applications in graphical user iaiegt
(Courtney and Elliott, 2001), reactive programming (Hudak
et al., 2003), and polytypic programming (Jansson and dguri
1999). As in the case of monads (only more so), arrow pro-
gramming is very much easier if syntactic support is progide
(Paterson, 2001), and this syntax is treated directly byyhe
checker.

Underlying all these developments is the realisation iledtig ex-
plicit about effects is extremely usefahd this is something that we
believe may ultimately be seen as one of Haskell's main itspac
mainstream programmifigA good example is the development of
transactional memory. In an implementation of transaetiomem-
ory, every read and write to a mutable location must be logged
some way. Haskell’s crude effect system (flienonad) means that
almost all memory operations belong to purely functionahpa-
tations, and hence, by construction, do not need to be logget
makes Haskell a very natural setting for experiments wihgac-
tional memory. And so it proved: although transactional magm
had a ten-year history in imperative settings, when Halter]ow,
Herlilhy and Peyton Jones transposed it into the Haskelingget
they immediately stumbled on two powerful new compositipa o
erators tetry and orElse) that had lain hidden until then (see
(Harris et al., 2005) for details).

8. Haskellin middle age

As Haskell has become more widely used for real applications
more and more attention has been paid to areas that recéiged s
shrift from the original designers of the language. Thessasr
are of enormous practical importance, but they have evaivert
recently and are still in flux, so we have less historical pective

on them. We therefore content ourselves with a brief overtiere,

in very rough order of first appearance.

6«Effects” is shorthand for “side effects”.

8.1 The Foreign Function Interface

One feature that very many applications need is the abitity t
call procedures written in some other language from Has&atl
preferably vice versa. Once tlhe monad was established, a variety
of ad hocmechanisms rapidly appeared; for example, GHC's very
first release allowed the inclusion of literal C code in maoad
procedures, and Hugs had an extensibility mechanism thaé iba
possible to expose C functions as Haskell primitives. Tfecdity
was that these mechanisms tended to be implementatioifispec

An effort gradually emerged to specify an implementatiodeipendent
way for Haskell to call C procedures, and vice versa. Thisalted
Foreign Function Interface (FFI) treats C as a lowest comden
nominator: once you can call C you can call practically amgh
else. This exercise was seen as so valuable that the idedest]
Addenda” emerged, a well-specified Appendix to the Hask@ll 9
Report that contained precise advice regarding the impiéatien

of a variety of language extensions. The FFI Addendum effiat
led by Manuel Chakravarty in the period 2001-2003, and fimaH
sulted in the 30-page publication of Version 1.0 in 2003.drgilel
with, and symbiotic with, this standardisation effort wareumber
of pre-processing tools designed to ease the labour ofngriil
theforeign import declarations required for a large binding; ex-
amples include Green Card (Nordin et al., 1997), H/Direatrtg

et al., 1998), and C2Hs (Chakravarty, 1999a) among others.

We have used passive verbs in describing this process (fart ef
emerged,” “the exercise was seen as valuable”) becausesitlifva
ferent in kind to the original development of the Haskellgaage.
The exercise was open to all, but depended critically on title w
ingness of one person (in this case Manuel Chakravarty)ive dr
the process and act as Editor for the specification.

8.2 Modules and packages

Haskell's module system emerged with surprisingly littebédte.

At the time, the sophisticated ML module system was becoming
well established, and one might have anticipated a vigodetsite
about whether to adopt it for Haskell. In fact, this debateene
really happened. Perhaps no member of the committee was suffi
ciently familiar with ML's module system to advocate it, @rpaps
there was a tacit agreement that the combination of typesetas
and ML modules was a bridge too far. In any case, we eventually
converged on a very simple design: the module system is a-name
space control mechanism, nothing more and nothing less.higd

the great merit of simplicity and clarity—for example, thedule
system is specified completely separately from the typeesyst

but, even so, some tricky corners remained unexplored farak
years (Diatchki et al., 2002).

In versions 1.0-1.3 of the language, every module was sedcifi
by aninterfaceas well as anmplementationA great deal of dis-
cussion took place about the syntax and semantics of iotsfa
issues such as the duplication of information between fextes
and implementations, especially when a module re-expatises
defined in one of its imports; whether one can deduce fromten-in
face which module ultimately defines an entity; a tensionvbet
what a compiler might want in an interface and what a programm
might want to write; and so on. In the end, Haskell 1.4 congiyet
abandoned interfaces as a formal part of the language aohéte
terface files were regarded as a possible artifact of sepeoatpi-
lation. As a result, Haskell sadly lacks a formally checlamuage
in which a programmer can advertise the interface that théuheo
supports.

8.2.1 Hierarchical module names

As Haskell became more widely used, the fact that the module
name space was completely flat became increasingly irksfame;
example, if there are two collection libraries, they canpath use

the module nam#ap.

This motivated an effort led by Malcolm Wallace to specifyean
tension to Haskell that would allow multi-component hiefacal
module names (e.gData.Map), using a design largely borrowed
from Java. This design constituted the second “Blessed idde
dum,” consisting of a single page that never moved beyond ver
sion 0.0 and “Candidate” statusNevertheless, it was swiftly im-

Part Il
Implementations and Tools

9. Implementations

Haskell is a big language, and it is quite a lot of work to imple
ment. Nevertheless, several implementations are avajlabd we
discuss their development in this section.

plemented by GHC, Hugs, and nhc, and has survived unchanged9.1 The Glasgow Haskell Compiler

since.

8.2.2 Packaging and distribution

Modules form a reasonable unit of programnstruction but not

of distribution Developers want to distribute a related group of
modules as a “package,” including its documentation, kamm
information, details about dependencies on other packaysgsde
files, build information, and much more besides. None of was
part of the Haskell language design.

In 2004, Isaac Jones took up the challenge of leading anteffor
to specify and implement a system called Cabal that suppioets
construction and distribution of Haskell packateSubsequently,
David Himmelstrup implemented Hackage, a Cabal packageiser
that enables people to find and download Cabal packagesisThis
not the place to describe these tools, but the historicapeetive

is interesting: it has taken more than fifteen years for Haske
to gain enough momentum that these distribution and disgove
mechanisms have become important.

8.2.3 Summary

The result of all this evolution is a module system distiisted by
its modesty. It does about as little as it is possible for @jlmye
to do and still call itself a practical programming tool. Raps this
was a good choice; it certainly avoids a technically congbéd
area, as a glance at the literature on ML modules will confirm.

8.3 Libraries

It did not take long for the importance of well-specified anellw
implemented libraries to become apparent. The initial ldhske-
port included an Appendix defining the Standard Prelude biut
Haskell 1.3 (May 1996) the volume of standard library codd ha
grown to the extent that it was given a separate companioraityib
Report, alongside the language definition.

The libraries defined as part of Haskell 98 were still fairlyaast in
scope. Of the 240 pages of the Haskell 98 Language and Léisrari
Report, 140 are language definition while only 100 define the
libraries. But real applications need much richer libreriand an
informal library evolution mechanism began, based arouasklll
language implementations. Initially, GHC began to distigba
bundle of libraries callethslibs but, driven by user desire for
cross-implementation compatibility, the Hugs, GHC ahd teams
began in 2001 to work together on a common, open-source set 0
libraries that could be shipped with each of their compjlens
effort that continues to this day.

"http://haskell.org/definition
8http://haskell.org/cabal

Probably the most fully featured Haskell compiler today he t
Glasgow Haskell Compiler (GHC), an open-source projech it
liberal BSD-style licence.

GHC was begun in January 1989 at the University of Glasgow, as
soon as the initial language design was fixed. The first versfo
GHC was written in LML by Kevin Hammond, and was essentially
a new front end to the Chalmers LML compiler. This prototype
started to work in June 1989, just as Peyton Jones arrivedaisr G
gow to join the burgeoning functional programming groupréhe
The prototype compiler implemented essentially all of Hdisk.0
including views (later removed), type classes, the degivirecha-
nism, the full module system, and binary I/O as well as batreshs
and continuations. It was reasonably robust (with occasispec-
tacular failures), but the larger Haskell prelude stresked. ML
prelude mechanism quite badly, and the added complexitypef t
classes meant the compiler was quite a lot bigger and sldveer t
the base LML compiler. There were quite a few grumbles about
this: most people had 4-8Mbyte workstations at that time, an
the compiler used a reasonable amount of that memory (upward
of 2Mbytes!). Partly through experience with this compilére
Haskell Committee introduced the monomorphism restmigtie-
moved views, and made various other changes to the language.

GHC proper was begun in the autumn of 1989, by a team consist-
ing initially of Cordelia Hall, Will Partain, and Peyton Jes It
was designed from the ground up as a complete implementattion
Haskell in Haskell, bootstrapped via the prototype compilée
only part that was shared with the prototype was the pardgchw

at that stage was still written in Yacc and C. The first betaasé
was on 1 April 1991 (the date was no accident), but it was amoth
18 months before the first full release (version 0.10) wasamad
December 1992. This version of GHC already supported skevera
extensions to Haskell: monadic I/O (which only made it offilyi

into Haskell in 1996), mutable arrays, unboxed data typey-(P
ton Jones and Launchbury, 1991), and a novel system for spalce
time profiling (Sansom and Peyton Jones, 1995). A subsegeent
lease (July 1993) added a strictness analyser.

A big difference from the prototype is that GHC uses a vergéar
data type in its front end that accurately reflects the fudirglof
Haskell's syntax. All processing that can generate errcssages
(notably resolving lexical scopes, and type inferencekisggmed

on this data type. This approach contrasts with the more lpopu
method of first removing syntactic sugar, and only then ssicey

a much smaller language. The GHC approach required us te writ

fa great deal of code (broad, but not deep) to process the many

constructors of the syntax tree, but has the huge advartiagée
error messages could report exactly what the programmeewro

After type checking, the program is desugared into an eiiylic
typed intermediate language called simply “Core” and them p
cessed by a long sequence of Core-to-Core analyses and opti-
mising transformations. The final Core program is transéatrim

the Spineless Tagless G-machine (STG) language (Peyt@s,Jon also several extensions, many of which are now in Haskele3g (
1992), before being translated into C or machine code. operator sections).

The Core language is extremely small — its data type has only “The testing of the compiler at the time of release was reaily-
a dozen constructors in total — which makes it easy to write a imal, but it could compile the Standard Prelude—and theuelee!

Core-to-Core transformation or analysis pass. We injtiblsed
Core on the lambda calculus but then, wondering how to dezora
it with types, we realised in 1992 that a ready-made basigday
hand, namely Girard’s Systefw (Girard, 1990); all we needed to
do was to add data typeset-expressions, andase expressions.

uses dot of Haskell features. Speaking of the Prelude | think it's
worth pointing out that Joe Fasel’s prelude code must betaheu
oldest Haskell code in existence, and large parts of it alteust
changed! The prelude code was also remarkably un-buggyéta c
that had never been compiled (or even type checked) batare

GHC appears to be the first compiler to use System F as a typedcame along.

intermediate language, although at the time we thoughtstsuah
a simple idea that we did not think it worth publishing, excapa
small section in (Peyton Jones et al., 1993). Shortly atieds; the
same idea was used independently by Morrisett, Harper andiitiTa
at Carnegie Mellon in their TIL compiler (Tarditi et al., 189 They
understood its significance much better than the GHC teadthen
whole approach of type-directed compilation subsequdigbame
extremely influential.

Several years later, we added a “Core Lint" typechecker that

checked that the output of each pass remained well-typetielf
compiler is correct, this check will always succeed, butavides
a surprisingly strong consistency check—many, perhaps bugs
in the optimiser produce type-incorrect code. Furthermoagch-
ing compiler bugs this way is vastly cheaper than generating
correct code, running it, getting a segmentation fault,udging
it with gdb, and gradually tracing the problem back to its original
cause. Core Lint often nails the errorimmediately. Thissistency
checking turned out to be one of the biggest benefits of a typed
termediate language, although it took us a remarkably long to
recognise this fact.

Over the fifteen years of its life so far, GHC has grown a huga-nu
ber of features. It supports dozens of language extensimtakly

in the type system), an interactive read/eval/print iteef(GHCI),
concurrency (Peyton Jones et al., 1996; Marlow et al., 2Q6a)s-
actional memory (Harris et al., 2005), Template Haskelle¢ggt
and Peyton Jones, 2002), support for packages, and muchoeore
sides. This makes GHC a dauntingly complex beast to unaetsta
and modify and, mainly for that reason, development of the co
GHC functionality remains with Peyton Jones and Simon Mayrlo
who both moved to Microsoft Research in 1997.

9.2 hbc

“Concerning the implementation, | only remember two praid¢éc
areas: modules and type checking. The export/import of same
modules were different in those days (renaming) and there we
many conditions to check to make sure a module was valid. But
the big stumbling block was the type checking. It viwsd to do.

This was way before there were any good papers about how it was
supposed to be done.

“After the first release hbc became a test bed for varioussidas
and new features and it lived an active life for over five yeBig
since the compiler was written in LML it was more or less dodme
to dwindle.”

9.3 Gofer and Hug$

GHC and hbc were both fully fledged compilers, themselves im-
plemented in a functional language, and requiring a good afea
memory and disk space. In August 1991, Mark Jones, then alD.Ph
student at the University of Oxford, released an entireffecint
implementation called Gofer (short for “GOod For EquatidrRea-
soning”). Gofer was an interpreter, implemented in C, dgved on

an 8MHz 8086 PC with 640KB of memory, and small enough to fit
on a single (360KB) floppy disk.

Jones wrote Gofer as a side project to his D.Phil. studiegledd,
he reports that he did not dare tell his thesis adviser abottrG
until it was essentially finished—to learn more about thelenp
mentation of functional programming languages. Over tihosy-
ever, understanding type classes became a central theroaex'J
dissertation work (Jones, 1994), and he began to use Gofer as
testbed for his experiments. For example, Gofer includedfitist
implementation of multi-parameter type classes, as albjirsug-
gested by Wadler and Blott (Wadler and Blott, 1989) and alezgu
topic of both conversation and speculation on the Haskeilimga
list at the time. Gofer also adopted an interesting varidiadler

Thehbe compiler was written by Lennart Augustsson, a researcher and Blott's dictionary-passing translation (Section 8ttt was de-

at Chalmers University whose programming productivity dsrg
belief. Augustsson writes:

“During the spring of 1990 | was eagerly awaiting the first kigb

signed to minimise the construction of dictionaries at riamet to
work with multiple parameter type classes, and to provideemo
accurate principal types. At the same time, however, ttdslted
in small but significant differences between the Haskell Goder

compiler, it was supposed to come from Glasgow and be basedy e systems, so that some Haskell programs would not work in

on the LML compiler. And | waited and waited. After talking to
Glasgow people atthe LISP & Functional Programming comfegze
in Nice in late June of 1990 Staffan Truvé and | decided thsteiad
of waiting even longer we would write our own Haskell compile
based on the LML compiler.

“For various reasons Truvé couldn’t help in the coding of th

Gofer, and vice versa.

Moving to take a post-doctoral post at Yale in 1992, Jonesiicon
ued to develop and maintain Gofer, adding support for caostr
tor classes (Section 6.4) in 1992-93 and producing the finsks-
mentation of thelo-notation in 1994. Both of these features were
subsequently adopted in Haskell 98. By modifying the intetgr's

compiler, so | ended up spending most of July and August cod- pack end, Jones also developed a Gofer-to-C compiler, andd

ing, sometimes in an almost trance-like state; my head filleld
Haskell to the brim. At the end of August | had a mostly com-
plete implementation of Haskell. | decided thaic would be a
cool name for the compiler since it is Haskell Curry’s irlgia(l
later learnt that this is the name the Glasgow people warded f
their compiler too. But first come, first served.)

“The first release, 0.99, was on August 21, 1990. The impléaen
tion had everything from the report (except for File openasg) and

this as a basis for the first “dictionary-free” implementatof type
classes, using techniques from partial evaluation to afigeiaway
the results of the dictionary-passing translation.

After he left Yale in the summer of 1994, Jones undertook amaj
rewrite of the Gofer code base, to more closely track the elask

9The material in this section was largely written by Mark Jarthe author
of Gofer and Hugs.

standard. Briefly christened “Hg” (short for Haskell-ggfehe new
system soon acquired the name “Hugs” (for “the Haskell Wser’
Gofer System”). The main development work was mostly coteple
by the time Jones started work at the University of Nottingha
October 1994, and he hoped that Hugs would not only appease th
critics but also help to put his newly founded research grioup
Nottingham onto the functional programming map. Alwayognj
ing the opportunity for a pun, Jones worked to complete ths fir
release of the system so that he could announce it on Fehtdary
1995 with the greeting “Hugs on Valentine’s Day!” The first re
lease of Hugs supported almost all of the features of Hagka]l
including Haskell-style type classes, stream-based |/Dll gore-
lude, derived instances, defaults, overloaded numegcals, and
bignum arithmetic. The most prominent missing feature vies t
Haskell module system; Hugs 1.0 would parse but otherwiseréy
module headers and import declarations.

Meanwhile, at Yale, working from Hugs 1.0 and striving tothar
close the gap with Haskell, Alastair Reid began modifyinggbiu
to support the Haskell module system. The results of Reidkw
appeared for the first time in the Yale HugsO release in Ju@é.19
Meanwhile, Jones had continued his own independent davelop
of Hugs, leading to an independent release of Hugs 1.3 in gtugu
1996 that provided support for new Haskell 1.3 features sasch
monadic /O, the labelled field syntax, newtype declaratiand
strictness annotations, as well as adding user interfabanee-
ments such as import chasing.

Even before the release of these two different versions afstHu
Jones and Reid had started to talk about combining theirtefftto
a single system. The first joint release, Hugs 1.4, was cdetla
January 1998, its name reflecting the fact that the Haslaidsird

9.4 nhc

The originalnhc was developed by Niklas Rdjemo when he was
a PhD student at Chalmers (Rojemo, 1995a). His motivatiom fr
the start was to have a space-efficient compiler (Rojemo5HQ9
that could be bootstrapped in a much smaller memory space tha
required by systems such aisc and GHC. Specifically he wanted
to bootstrap it on his personal machine which had around 2&4by
main memory.

To help achieve this space-efficiency he made use durindateve
ment of the first-generation heap-profiling tools—which fpae-
viously been developed at York and used to reveal space-leak
in hbc (Runciman and Wakeling, 1992; Runciman and Wakeling,
1993). Because of this link, Rdjemo came to York as a postedal
researcher where, in collaboration with Colin Runciman,dee
vised more advanced heap-profiling methods, and used thiéndto
residual space-inefficiencies ithc, leading to a still more space-
efficient version (Rjemo and Runciman, 1996a).

When Rojemo left York around 1996 he handgat over to Runci-
man'’s group, for development and free distribution (witte dic-
knowledgements). Malcolm Wallace, a post-doc at York wagki

on functional programming for embedded systems, became the
principal keeper and developermic—he has since released a se-
ries of distributed versions, tracking Haskell 98, additendard
foreign-function interface and libraries, and making @as im-
provements (Wallace, 1998).

Thenhc system has been host to various further experiments. For
example, a continuing strand of work relates to space afiigie
(Wallace and Runciman, 1998), and more recently the dexedop

of the Hat tools for tracing programs (Wallace et al., 20012006,

had also moved on to a new version by that time. Jones, however the York Haskell Compiler projecthc, was started to re-engineer

had also been working on a significant overhaul of the Hugs typ
checker to include experimental support for advanced typtem
features including rank-2 polymorphism, polymorphic msoon,
scoped type variables, existentials, and extensible dscand also
to restore the support for multi-parameter type classastthbeen
eliminated in the transition from Gofer to Hugs. These fezgu
were considered too experimental for Hugs 1.4 and weregetkta
independently as Hugs 1.3c, which was the last version oEHaig
be released without support for Haskell modules.

It had been a confusing time for Hugs users (and developstsle
there were multiple versions of Hugs under development at th
same time. This problem was finally addressed with the relefs
Hugs 98 in March 1999, which merged the features of the poavio
Yale and Nottingham releases into a single system. Moreager
the name suggests, this was the first version of Hugs to stuppor
the Haskell 98 standard. In fact Hugs 98 was also the lasteof th

nhc.

9.5 Yale Haskell

In the 1980s, prior to the development of Haskell, there was a
active research project at Yale involving Scheme and a ciae
Scheme called. Several MS and PhD theses grew out of this work,
supervised mostly by Hudak. THerbit compiler, an optimising
compiler for T, was one of the key results of this effort (Kzaa al.,
2004; Kranz et al., 1986).

So once Hudak became actively involved in the design of Haske

it was only natural to apply Scheme compilation techniqueani
implementation of Haskell. However, rather than port treaglto a
stand-alone Haskell compiler, it seemed easier to compalekel|

into Scheme or T, and then use a Scheme compiler as a back end.
Unfortunately, the T compiler was no longer being maintdiaad

Nottingham and Yale releases of Hugs, as both Jones and Reidhad problems with compilation speed. T was then abandoned in

moved on to other universities at around that time (JonesGb O
and Reid to Utah).

favour of Common Lispto address performance and portability
issues. This resulted in what became knowivals Haskell

Hugs development has proceeded at a more gentle pace since thJohn Peterson and Sandra Loosemore, both Research Ssiantis

first release of Hugs 98, benefiting in part from the stabjity-
vided by the standardisation of Haskell 98. But Hugs devalemt
has certainly not stood still, with roughly one new formdkese
each year. Various maintainers and contributors have wlodke
Hugs during this period, including Jones and Reid, albe#t g-
duced level, as well as Peterson, Andy Gill, Johan Nordlgridf
Lewis, Sigbjorn Finne, Ross Paterson, and Dimitry Golukgvs
In addition to fixing bugs, these developers have added stippo
for new features including implicit parameters, functibdapen-
dencies, Microsoft's .NET, an enhanced foreign functideriface,
hierarchical module names, Unicode characters, and alygmat
panded collection of libraries.

Yale, were the primary implementers of Yale Haskell. To echi
reasonable performance, Yale Haskell used strictnesgsasiand
type information to compile the strict part of Haskell intery ef-
ficient Lisp code. The CMU lisp compiler was able to generate
very good numeric code from Lisp with appropriate type aanot
tions. The compiler used a dual-entry point approach taallery
efficient first-order function calls. Aggressive in-liningas able

to generate code competitive with other languages (Hattel.e
1996). In addition, Yale Haskell performed various optiatisns
intended to reduce the overhead of lazy evaluation (Hudak an
Young, 1986; Bloss et al., 1988b; Bloss et al., 1988a; Yo8§8;
Bloss, 1988).

Although performance was an important aspect of the Yale-com
piler, the underlying Lisp system allowed the Yale efforfdous at-
tention on the the Haskell programming environment. Yaleked
was the first implementation to support both compiled andrint
preted code in the same program (straightforward, singe $ys-
tems had been doing that for years). It also had a very nicegma
based programming environment in which simple two-keystro
commands could be used to evaluate expressions, run dépgu
compile modules, turn specific compiler diagnostics on dhan-
able and disable various optimisers, and run a tutorial oskela
Commands could even be queued, thus allowing, for example, a
compilation to run in the background as the editing of a sefite
continued in emacs in the foreground.

Another nice feature of Yale Haskell was a “scratch pad” toatid
be automatically created for any module. A scratch pad wag-a |
ical extension of a module in which additional function aradue
definitions could be added, but whose evaluation did notlr@su
recompilation of the module. Yale Haskell also supporteciyna
Haskell language extensions at the time, and thus served &s a
cellent test bed for new ideas. These extensions includethds
dynamic types, polymorphic recursion, strictness anrataf in-
lining pragmas, specialising over-loaded functions, ralljuecur-
sive modules, and a flexible foreign function interface fothbC
and Common Lisp.

Ultimately, the limitations of basing a Haskell compiler aCom-
mon Lisp back-end caught up with the project. Although early
on Yale Haskell was competitive with GHC and other compijlers
GHC programs were soon running two to three times faster than
Yale Haskell programs. Worse, there was no real hope of mgakin
Yale Haskell run any faster without replacing the back-emdiran-
time system. Optimisations such as reusing the storagehinrikt

to hold the result after evaluation were impossible with @wen-
mon Lisp runtime system. The imperative nature of Lisp pnéze
many other optimisations that could be done in a Haskeltifipe
garbage collector and memory manager. Every thunk intredian
extra level of indirection (a Lisp cons cell) that was unrssegy in

the other Haskell implementations. While performance withe
strict subset of Haskell was comparable with other systéhese
was a factor of 3 to 5 in lazy code that could not be overcome due
to the limitations of the Lisp back end. For this reason, iditon

to the lack of funding to pursue further research in thisdiom,

the Yale Haskell implementation was abandoned circa 1995.

9.6 Other Haskell compilers

One of the original inspirations for Haskell was the MIT dita
project, led by Arvind, whose programming language wasedall
Id. In 1993 Arvind and his colleagues decided to adopt Héiskel
syntax and type system, while retaining Id’s eager, pdralialu-
ation order, I-structures, and M-structures. The resglamguage
was calledpH (short for “parallel Haskell”), and formed the ba-
sis of Nikhil and Arvind’s textbook on implicit parallel pgoam-
ming (Nikhil and Arvind, 2001). The idea of evaluating Hakke
eagerly rather than lazily (while retaining non-strict samics), but
on a uniprocessor, was also explored by Maessen’s Eageelask
(Maessen, 2002) and Ennals’s optimistic evaluation (Enaald
Peyton Jones, 2003).

All the compilers described so far were projects begun in the
early or mid '90s, and it had begun to seem that Haskell was
such a dauntingly large language that no further implentiems:
would emerge. However, in the last five years several new éllask
implementation projects have been started.

Helium. The Helium compiler, based at Utrecht, is focused espe-
cially on teaching, and on giving high-quality type errorsne
sages (Heeren et al., 2003b; Heeren et al., 2003a).

UHC and EHC. Utrecht is also host to two other Haskell com-
piler projects, UHC and EHGhftp: //www.cs.uu.nl/wiki/
Center/ResearchProjects).

jhc is a new compiler, developed by John Meacham. It is fo-

cused on aggressive optimisation using whole-program- anal
ysis. This whole-program approach allows a completely dif-
ferent approach to implementing type classes, withoutgusin
dictionary-passing. Based on early work by Johnsson and Bo-
quist (Boquist, 1999)jhc uses flow analysis to support a de-
functionalised representation of thunks, which can besexély
efficient.

The York Haskell Compiler, yhc, is a new compiler for Haskell
98, based omhc but with an entirely new back end.

9.7 Programming Environments

Until recently, with the notable exception of Yale Haskdittle
attention has been paid by Haskell implementers to the pnogr
ming environment. That is now beginning to change. Notakle e
amples include the Haskell Refactorer (Li et al., 2003); @&dC
Visual Studio plug-in (Visual Haskell), developed by Kragi An-
gelov and Simon Marlow (Angelov and Marlow, 2005); and the
EclipseFP plug-in for Haskell, developed by Leif Frenzefjaigo
Arrais, and Andrei de A Formid4.

10. Profiling and debugging

One of the disadvantages of lazy evaluation is that operailtio
aspects such as evaluation order, or the contents of a stapsh
of memory at any particular time, are not easily predictdiden

the source code—and indeed, can vary between executiohe of t
same code, depending on the demands the context makes on its
result. As a result, conventional profiling and debugginghods
are hard to apply. We have aflied adding side-effecting print
calls to record a trace of execution, or printing a backtraicthe
stack on errors, only to discover that the information oi#diwas
too hard to interpret to be useful. Developing successfolilprg
and debugging tools for Haskell has taken considerablearelse
beginning in the early 1990s.

10.1 Time profiling

At the beginning of the 1990s, Patrick Sansom and PeytonsJone
began working on profiling Haskell. The major difficulty wasd#

ing a sensible way to assign costs. The conventional approac
of assigning costs to functions and procedures, works pdorl
higher-order functions such amp. Haskell provides many such
functions, which are designed to be reusable in many diftere
contexts and for many different tasks—so these functioatufe
prominently in time profiles. But knowing thatp consumes 20%

of execution time is little help to the programmer—we need to
know insteadwhich occurrence ofhap stands for a large fraction
of the time. Likewise, when one logical task is implementgd b
a combination of higher-order functions, then the time desido
the task is divided among these functions in a way that ds&gui
the time spent on the task itself. Thus a new approach torasgig
costs was needed.

The new idea Sansom and Peyton Jones introduced was to label
the source code witkost centreseither manually (to reflect the
programmer’s intuitive decomposition into tasks) or audtioally.

Onttp://eclipsefp.sourceforge.net

The profiling tool they built then assigned time and spacescos
to one of these cost centres, thus aggregating all the casté
logical task into one count (Sansom and Peyton Jones, 1995).

Assigning costs to explicitly labelled cost centres is muotre
subtle than it sounds. Programmers expect that costs shauld
assigned to the closest enclosing cost centre—but shoisldbéh
the closestexically enclosing or the closedynamicallyenclosing
cost centre? (Surprisingly, the best answer is the closzitdlly
enclosing one (Sansom and Peyton Jones, 1995).) In a lamguag
with first-class functions, should the costefaluatinga function
necessarily be assigned to the same cost centre as the €osts
calling the function? In a call-by-need implementation, where the
cost of using a value the first time can be much greater thacoste

of using it subsequently, how can one ensure that cost assius
are independent of evaluation order (which the programimeuld

not need to be aware of)? These questions are hard enough to
answer that Sansom and Peyton Jones felt the need to develop

a formal cost semantics, making the assignment of costsgb co
centres precise. This semantics was published at POPL b b89

a prototype profiling tool was already in use with GHC in 1992.
Not surprisingly, the availability of a profiler led rapidtp faster
Haskell programs, in particular speeding up GHC itself bgcdr

of two.

10.2 Space profiling

Sansom and Peyton Jones focused on profifimg costs, but at
the same time Colin Runciman and David Wakeling were work-
ing on space by profiling the contents of the heap. It had been
known for some time that lazy programs could sometimes éxhib
astonishingly poor space behaviour—so-cafipdce leakdndeed,
the problem was discussed in Hughes's dissertation in 188dg
with the selective introduction of strictness to partidity them,

but there was no practical way findingthe causes of space leaks
in large programs. Runciman and Wakeling developed a profile
that could display a graph of heap contents over time, diedsi
by the function that allocated the data, the top-level qosbr of

the data, or even combinations of the two (for example, “stiev
allocating functions of all the cons cells in the heap over ¢hn-
tire program run”). The detailed information now availabtebled
lazy programmers to make dramatic improvements to space effi
ciency: as the first case study, Runciman and Wakeling redihee
peak space requirements of a clausification program forgsiep
tional logic by two orders of magnitude, from 1.3 megabytes t
only 10K (Runciman and Wakeling, 1993). Runciman and Wakel-
ing’s original profiler worked for LML, but it was rapidly aged

by Haskell compilers, and the visualisation tool they witntelis-
play heap profiles is still in use to this day.

By abstracting away fronevaluation order lazy evaluation also
abstracts away frorobject lifetimesand that is why lazy evalua-
tion contributes to space leaks. Programmers who canndicpre

and indeed do not think about—evaluation order also canrest p
dict which data structures will live for a long time. Sincedkall
programs allocate objects very fast, if large numbers atlead

up with long lifetimes, then the peak space requirementsbean
very high indeed. The next step was thus to extend the hedifepro
to provide direct information about object lifetimes. Thigep was
taken by Runciman and Rojemo (the authombt), who had by
this time joined Runciman at the University of York. The nesap
filer could show how much of the heap contained data that was no
yet neededlég), would never be used agaidrag), or, indeed, was
never used at alivpid) (Rjemo and Runciman, 1996a). A further
extension introducedetainer profiling which could explainvhy
data was not garbage collected by showing which objectsguabin
at the data of interest (Rjemo and Runciman, 1996b). Combina

tions of these forms made it possible for programmers to get a
swers to very specific questions about space use, such ag “wha
kind of objects point at cons cells allocated by function, fafter

their last use?” With information at this level of detail, fiman

and Rdjemo were able to improve the peak space requirernénts
their clausify program to less than 1K—three orders of miagiei
better than the original version. They also achieved a faafttwo
improvement in theahc compiler itself, which had already been
optimised using their earlier tools.

10.3 Controlling evaluation order

(o]

In 1996, Haskell 1.3 introduced two features that give thogmm-
mer better control over evaluation order:

¢ the standard functioseq, which evaluates its first argument,
and then returns its second:

seq:ry—{

e strictness annotations data definitions, as in:
SNil | SCons 'a !(SList a)

where the exclamation points denote strict fields, and tleus h
define a type of strict lists, whose elements are evaluatiiéde
the list is constructed.

if x =L
otherwise

L,
Y,

data SList a

Using these constructs, a programmer can move selectedueomp
tations earlier, sometimes dramatically shortening tfetithes of
data structures. Botheq and strict components of data structures
were already present in Miranda for the same reasons (Turner
1985), and indeedeq had been used to fix space leaks in lazy
programs since the early 1980s (Scheevel, 1984; Hughes8).198

Today, introducing @&eq at a carefully chosen point is a very com-
mon way of fixing a space leak, but interestingly, this was not
the main reason for introducing it into Haskell. On the canyr
seq was primarily introduced to improve tlepeedf Haskell pro-
grams! By 1996, we understood the importance of using serag
analysis to recognise strict functions, in order to invaken us-
ing call-by-value rather than the more expensive call-bgeh but
the results of strictness analysis were not always as goageas
hoped. The reason was that many functions were “nearly,hout
quite, strict, and so the strictness analyser was forcedatelfy)
classify them as non-strict. By introducing calls s3fq, the pro-
grammer could help the strictness analyser deliver betisults.
Strictness analysers were particularly poor at analysatg types,
hence the introduction of strictness annotations in daia tlecla-
rations, which not only made many more functions strict, dab
allowed the compiler to optimise the representation of #ita type

in some cases.

Although seq was not introduced into Haskell primarily to fix
space leaks, Hughes and Runciman were by this time well aware
of its importance for this purpose. Runciman had spent aztiaiath

at Chalmers in 1993, when he was working on his heap profikér an
Hughes had a program with particularly stubborn space ledlks

two spent much time working together to track them down. This
program was in LML, which already hatkq, and time and again

a carefully placedseq proved critical to plugging a leak. Hughes
was very concerned that Haskell’s versionsek should support
space debugging well.

But addingseq to Haskell was controversial because of its neg-
ative effect on semantic properties. In particukssq is not de-
finable in the lambda calculus, and is the only way to distin-
guish\x -> | from L (sinceseq L 0 goes into a loop, while
seq (\x -> 1) 0 does not)—a distinction that Jon Fairbairn, in

particular, was dead set against making. Moreoseg, weakens
the parametricity property that polymorphic functionsosnjbe-
causeseq does not satisfy the parametricity property for its type
Va,b.a -> b -> b, and neither do polymorphic functions that
use it. This would weaken Wadler’s “free theorems” in Hakkel
(Wadler, 1989) in a way that has recently been precisely-char
acterised by Patricia Johann and Janis \Voigtlander (Jolaeual
Voigtlander, 2004).

Unfortunately, parametricity was by this time not just aaionus,
but the justification for an important compiler optimisatjmamely
deforestatior-the transformation of programs to eliminate inter-
mediate data structures. Deforestation is an importaminigztion
for programs written in the “listful” style that Haskell emarages,
but Wadler’s original transformation algorithm (Wadle©9Db)
had proven too expensive for daily use. Instead, GHC sbedt-
cut deforestation which depends on two combinatorsoldr,
which consumes a list, and

build g = g (:) []
which constructs one, with the property that
foldr k z (build g) = g k z

(the “foldr/build rule”) (Gill et al., 1993). Applying this rewrite
rule from left to right eliminates an intermediate list vetyeaply. It
turns out that th€oldr/build rule is not true foranyfunctiong;

it holds only if g has a sufficiently polymorphic type, and that can
in turn be guaranteed by givingrild a rank-2 type (Section 6.7).
The proof relies on the parametrictity propertiegsftype.

This elegant use of parametricity to guarantee a sophistigaro-
gram transformation was cast into doubt d8q. Launchbury ar-
gued forcefully that parametricity was too important toegiup,

for this very reason. Hughes, on the other hand, was very con-
cerned thakeq should be applicable to values afly type—even
type variables—so that space leaks could be fixed even imaolty
phic code. These two goals are virtually incompatible. Taiation
adopted for Haskell 1.3 was to makeq an overloadedfunction,
rather than a polymorphic one, thus weakening the paracitgtri
property that it should satisfy. Haskell 1.3 introducedassl

class Eval a where
strict :: (a->b) -> a -> b
seq a->b->b
strict £ x = x ‘seq‘ f x

with the suspect operations as its members. However, progess
were not allowed to define their own instances of this classiefv
might not have been strict (!)—instead its instances weraeld
automatically. The point of théval class was to record uses of
seq in the typesof polymorphic functions, as contexts of the form
Eval a =>, thus warning the programmer and the compiler that
parametricity properties in that type variable were regtd. Thus
short-cut deforestation remained sound, while space leakis be
fixed at any type.

However, the limitations of this solution soon became appiain-
spired by the Fox project at CMU, two of Hughes’s studentdémp
mented a TCP/IP stack in Haskell, making heavy use of polymor
phism in the different layers. Their code turned out to cionseri-
ous space leaks, which they attempted to fix usieg But when-
ever they inserted a call afeq on a type variable, the type signa-
ture of the enclosing function changed to requireEaal instance
for that variable—just as the designers of Haskell 1.3 idéeh
But often, the type signatures of very many functions chdrag
a consequence of a singéeq. This would not have mattered if
the type signatures were inferred by the compiler—but thedesits
had written them explicitly in their code. Moreover, theydrdone

so not from choice, but because Haskell’s monomorphismmicest
tion requiredtype signatures on these particular definitions (Sec-
tion 6.2). As a result, each insertion okaq became a nightmare,
requiring repeated compilations to find affected type sigimess and
manual correction of each one. Since space debugging istie so
extent a question of trial and error, the students neededskrti
and remove calls adeq time and time again. In the end they were
forced to conclude that fixing their space leaks was simptyew
sible in the time available to complete the project—not bisea
they were hard to find, but because making the necessaryceorre
tions was simply too heavyweight. This experience provided
munition for the eventual removal of claBgal in Haskell 98.

Thus, today,seq is a simple polymorphic function that can be
inserted or removed freely to fix space leaks, without chamngi
the types of enclosing functions. We have sacrificed pandnet
ity in the interests of programming agility and (sometimea-d

matic) optimisations. GHC still uses short-cut deforéstgtbut it

is unsound—for example, this equation doeshold

#

Haskell's designers love semantics, but even semantidtshagce.

foldr L 0 (build seq) seq L0

It's worth noting that making programs stricter is not théyomay

to fix space leaks in Haskell. Object lifetimes can be sheddy
moving their last use earlie—or by creating them later.Hairt
famous case study, the first optimisation Runciman and Wakel
made was to make the programore lazy delaying the construction
of a long list until just before it was needed. Hearing Rurarim
describe the first heap profiler at a meeting of Working Group
2.8, Peter Lee decided to translate the code into ML to discov
the effect of introducing strictness everywhere. Sure ghphis
translation used only one third as much space as the lazypakig

but Runciman and Wakeling’s first optimisation made the now-
lazier program twice as efficient as Peter Lee’s version.

The extreme sensitivity of Haskell's space use to evalonatiaer

is a two-edged sword. Tiny changes—the addition or remokal o
aseq in one place—can dramatically change space requirements.
On the one hand, it is very hard for programmersatticipate
their program’s space behaviour and place calls&f correctly
when the program is first written. On the other hand, giveffi-suf
ciently good profiling information, space performance carirh-
proved dramatically by very small changes in just the rigahtp—
without changing the overall structure of the program. As design-
ers who believe in reasoning, we are a little ashamed thabnirag
about space use in Haskell is so intractable. Yet Haskebbuwnc
ages programmers—even forces them—to forget space optimis
tion until after the code is written, profiled, and the major space
leaks found, and at that point puts powerful tools at the nog
mer’s disposal to fix them. Maybe this is nothing to be ashaafed
after all.

10.4 Debugging and tracing

Haskell's rather unpredictable evaluation order also nween-
tional approaches to tracing and debugging difficult to ppybst
Haskell implementations provide a “function”

trace :: String -> a -> a

that prints its first argument as a side-effect, then retutas
second—but it is not at all uncommon for the printing of thetfir
argument to triggeanothercall of trace before the printing is com-
plete, leading to very garbled output. To avoid such proklemore
sophisticated debuggers aimdbstract awayfrom the evaluation
order.

10.4.1 Algorithmic debugging

One way to do so is vialgorithmic debuggingShapiro, 1983),

an approach in which the debugger, rather than the users take
the initiative to explore the program’s behaviour. The dgfar
presents function calls from a faulty run to the user, togethith
their arguments and results, and asks whether the resutrisct.

If not, the debugger proceeds to the calls made from theyfaui¢

(its “children”), finally identifying a call with an incorie result,

all of whose children behaved correctly. This is then regbris

the location of the bug.

Since algorithmic debugging just depends on the inputwdubp-
haviour of functions, it seems well suited to lazy programBst
there is a difficulty—the values of function arguments anart®
of their) results are often not computed until loafter the func-
tion call is complete, because they are not needed until lataey
were computed early by an algorithmic debugger, in orderige d
play them in questions to the user, then this itself miglgger
faults or loops that would otherwise not have been a probteatila
Henrik Nilsson solved this problem in 1993 (Nilsson and £S5,
1994), in an algorithmic debugger for a small lazy languaaik=d
Freja, by waiting until execution was complete before sigral-
gorithmic debugging. At the end of program execution, itris\n
whether or not each value was required—if it was, then itaeval
is now known and can be used in a question, and if it wasn't the
the value was irrelevant to the bug anyway. This “post mottapa
proach abstracts nicely from evaluation order, and has bsethby
all Haskell debuggers since.

Although Nilsson’s debugger did not handle Haskell, Janr&pa
was meanwhile developing one that did, by transforming sk
program source code to collect debugging information wilen-
puting its result. Nilsson and Sparud then collaborated aim-c
bine and scale up their work, developing efficient methodsuitd
“evaluation dependence trees” (Nilsson and Sparud, 19%#a
structures that provided all the necessary information pgfost-
mortem algorithmic debugging. Nilsson and Sparud’s tootsre
longer extant, but the ideas are being pursued by Bernie iRdpg
algorithmic debugger Buddha for Haskell 98 (Pope, 2005, an
the Hat tools described next.

10.4.2 Debugging via redex trails

In 1996, Sparud joined Colin Runciman’s group at the Unitgers

of York to begin working orredex trails another form of program
trace which supports stepping backwards through the ewacut
(Sparud and Runciman, 1997). Programmers can thus/skidid

we call £ with these arguments?” as well as inspect the evaluation
of the call itself.

Runciman realised that, with a little generalisation, shenetrace
could be used to support several different kinds of debugiveal-
lace et al., 2001). This was the origin of the new Hat project,
which has developed a new tracer for Haskell 98 and a variety
of trace browsing tools. Initially usable only witthc, in 2002 Hat
became a separate tool, working by source-to-source tmanaf
tion, and usable with any Haskell 98 compiler. Today, thee a
trace browsers supporting redex-trail debugging, algonic de-
bugging, observational debugging, single-stepping, asgh ¢est
coverage measurement, together with several more spemifi€ t
for tracking down particular kinds of problem in the traceces
http://www.haskell.org/hat/. Since 2001, Runciman has
regularly invited colleagues to send him their bugs, or ewven
sert bugs into his own code while his back was turned, for tlees
joy of tracking them down with Hat!

The Hat suite are currently the most widely used debuggintsto
for Haskell, but despite their power and flexibility, thewhanot

become a regular part of programming for most uerhis is
probably because Haskell, as it is used in practice, hasimecha

a moving target: new extensions appear frequently, and & it
hard for a language-aware tool such as Hat to keep up. Indeed,
Hat was long restricted to Haskell 98 programs only—a sutuset
which few serious users restrict themselves. Furtherntioeeey to
Hat's implementation is an ingenious, systematic sounesstrce
transformation of the entire program. This transformatiaudes

the libraries (which are often large and use language exies)s
and imposes a substantial performance penalty on the mnnin
program.

10.4.3 Observational debugging

A more lightweight idea was pursued by Andy Gill, who develdp
HOOD, the Haskell Object Observation Debugger, in 19996200
(Gill, 2000). HOOD is also a post-mortem debugger, but users
dicate explicitly which information should be collectedibgerting
calls of

observe :: String -> a -> a

in the program to be debugged. In contrasttitace, observe
prints nothing when it is called—it just collects the valdéte sec-
ond argument, tagged with the first. When execution is coraple
all the collected values are printed, with values with thesadag
gathered together. Thus the programmer can observe tieetoli
of values that appeared at a program point, which is oftemigmo
to find bugs.

As in Nilsson and Sparud’s work, values that were collectetd b
never evaluated are displayed as a dummy valtieFor example,

[0..1)

Observe> take 2 (observe "nats"
[0,1]

>>>>>>> (Observations <<<<<<
nats

0 :)

This actually provides useful information about lazy ewdilon,
showing ushow muctlof the input was needed to produce the given
result.

1:

HOOD can even observe function values, displaying themaisla t

of observed arguments and results—the same informatidratha
algorithmic debugger would use to track down the bug locatio
However, HOOD leaves locating the bug to the programmer.

10.5 Testing tools

While debugging tools have not yet really reached the Héaskel
mainstream, testing tools have been more successful. T mo
widely used is QuickCheck, developed by Koen Claessen and
Hughes. QuickCheck is based on a cool idea that turned oudrio w
very well in practice, namely that programs can be testeéthaga
specifications by formulating specifications as boolearctions

that should always returfirue, and then invoking these functions
on random data. For example, the function definition

prop_reverse :: [Integer] -> [Integer] -> Bool
prop_reverse xs ys =
reverse (xs++ys) == reverse ys+treverse Xxs

expresses a relationship betweesverse and++ that should al-
ways hold. The QuickCheck user can test that it does just lpev
atingquickCheck prop_reverse in a Haskell interpreter. In this

111n a web survey we conducted, only 3% of respondents nameds-ate
of the “most useful tools and libraries.”

case testing succeeds, but when properties fail then QbetC
displays a counter example. Thus, for the effort of writirgjraple
property, programmers can test a very large number of cases,
find counter examples very quickly.

To make this work for larger-than-toy examples, progransneed
to be able to control the random generation. QuickCheck@tpp
this via an abstract data type of “generators,” which conesly
represent sets of values (together with a probability ithistion).
For example, to test that insertion into an ordered list gmess
ordering, the programmer could write

prop_insert ::
prop_insert x

= forAll orderedList
(\xs -> ordered (insert x xs))

Integer -> Bool

We read the first line as quantification over the set of ordésts
but in realityorderedList is a test data generator, whichrAll
invokes to generate a value fog. QuickCheck provides a library
of combinators to make such generators easy to define.

dedicated following. HUnit supports more traditional westing: it
does not generate test cases, but rather provides waysne tiesi
cases, structure them into a hierarchy, and run tests atitaiha
with a summary of the results.

Part IV
Applications and Impact

A language does not have to have a direct impact on the re&d wor
to hold a prominent place in the history of programming |laaggs.
For example, Algol was never used substantially in the realdy
but its impact was huge. On the other hand, impact on the redw
was an important goal of the Haskell Committee, so it is wattie

to consider how well we have achieved this goal.

The good news is that there are far too many interesting @gpli

QuickCheck was first released in 1999 and was included in the tions of Haskell to enumerate in this paper. The bad newsais th

GHC and Hugs distributions from July 2000, making it easily
accessible to most users. A first paper appeared in 20005%&lae
and Hughes, 2000), with a follow-up article on testing mooad

Haskell is still not a mainstream language used by the mblNses
ertheless, there are certain niches where Haskell hasiakdn
this section we discuss some of the more interesting apiaita

code in 2002 (Claessen and Hughes, 2002). Some early succesand real-world impacts, with an emphasis on successelswtthile
stories came from the annual ICFP programming contests: Tom to specific language characteristics.

Moertel (“Team Functional Beer”) wrote an accotfraf his entry
in 2001, with quotable quotes such as “QuickCheck to theuedsc
and “Not so fast, QuickCheck spotted a corner case. . . ,"lodimgy

QuickCheck found these problems and more, many that |
wouldn’t have found without a massive investment in test
cases, and it did so quickly and easily. From now on, I'm a
QuickCheck man!

Today, QuickCheck is widely used in the Haskell community an
is one of the tools that has been adopted by Haskell prograsnme
in industry, even appearing in job ads from Galois Connestio
and Aetion Technologies. Perhaps QuickCheck has succéeded
part because of who Haskell programmers are: given theiqoest
“What is more fun, testing code or writing formal specificai$?”
many Haskell users would choose the latter—if you can ted co
by writing formal specifications, then so much the better!

QuickCheck is not only a useful tool, but also a good example o
applying some of Haskell’s unique features. It defines a dioma
specific language of testable properties, in the classi&éllasadi-
tion. The class system is used to associate a test data geneita
each type, and to overload theickCheck function so that it can
test properties with any number of arguments, of any typée. T
abstract data type of generators is a monad, and Haskelkactic
sugar for monads is exploited to make generators easy te.Wiie
Haskell language thus had a profound influence on QuickChieck
design.

11. Applications

Some of the most important applications of Haskell wereiorig
nally developed as libraries. The Haskell standard indumod-
est selection of libraries, but many more are available. Haskell
web site (haskell.org) lists more than a score of categovih
the average category itself containing a score of entries.ek-
ample, the Edison library of efficient data structures, iaated by
Okasaki (Okasaki, 1998a) and maintained by Robert Dockirs,
vides multiple implementations of sequences and collestior-
ganised using type classes. The HSQL library interfacesvaria
ety of databases, including MySQL, Postgres, ODBC, SQAhite,
Oracle; it is maintained by Angelov.

Haskell also has the usual complement of parser and lexergen
tors. Marlow'sHappywas designed to be similar to yacc and gen-
erated LALR parsers. (“Happy” is a “dyslexic acronym” fortYe
Another Haskell Parser.) Paul Callaghan recently extemtigpy

to produce Generalised LR parsers, which work with ambiguou
grammars, returning all possible parses. Parser combilitataries
are discussed later in this section. Documentation of Hbagka
grams is supported by several systems, including Marloves-H
dock tool.

11.1 Combinator libraries

One of the earliest success stories of Haskell was the dawelot
of so-calledcombinator libraries What is a combinator library?

This design has been emulated in many other languages. One ofThe reader will search in vain for a definition of this heavised

the most interesting examples is due to Christian Lindigpwh
found bugs in production-quality C compilers’ calling cenv

term, but the key idea is this: a combinator library offensdiions
(the combinators) that combirfenctionstogether to make bigger

tions by generating random C programs in a manner inspired by functions.

QuickCheck (Lindig, 2005). A port to Erlang has been usedd fi
unexpected errors in a pre-release version of an EricssafiaMe
Gateway (Arts et al., 2006).

QuickCheck is not the only testing tool for Haskell. In 200&an
Herington released HUnit (Herington, 2002), a test franmévin-
spired by the JUnit framework for Java, which has also aequir

12Seenttp: //www.kurobhin. org/story/2001/7/31/0102/11014.

For example, an early paper that made the design of combinato
libraries a central theme was Hughes's paper “The design of a
pretty-printing library” (Hughes, 1995). In this paper arart
document” was an abstract type that can be thought of lilee thi

type Doc =

That is, a document takes ant, being the available width of the
paper, and lays itself out in a suitable fashion, returniisg®sing

Int -> String

that can be printed. Now a library of combinators can be ddfine
such as:

above : Doc -> Doc -> Doc
beside :: Doc -> Doc -> Doc
sep [Doc] -> Doc

The functionsep lays the subdocuments out beside each other if
there is room, or above each other if not.

While aDoc can bethought ofas a function, it may not bienple-
mentedas a function; indeed, this trade-off is a theme of Hughes’s
paper. Another productive way to think of a combinator lilgria as

a domain-specific languagSL) for describing values of a par-
ticular type (for example, document layout in the case oftpre
printing). DSLs in Haskell are described in more detail irc-Se
tion 11.2.

11.1.1 Parser combinators

One of the most fertile applications for combinator libesrihas
undoubtedly beeparser combinatorsLike many ingenious pro-
gramming techniques, this one goes back to Burge's asiogish
bookRecursive Programming Techniqu@irge, 1975), but it was
probably Wadler's paper “How to replace failure by a list ats
cesses” (Wadler, 1985) that brought it wider attentiorhalgh he
did not use the word “combinator” and described the work akk“f
lore”.

A parser may be thought of as a function:

type Parser = String -> [String]

That is, aParser takes a string and attempts to parse it, returning
zero or more depleted input strings, depending on how mamyg wa
the parse could succeed. Failure is represented by the distyif/
results. Now it is easy to define a library of combinators ttwah-
bine parsers together to make bigger parsers, and doindosesal
an extraordinarily direct transcription of BNF into exealbie code.
For example, the BNF

float sign” digit™ (. digit™)”
might translate to this Haskell code:

float :: Parser
float = optional sign <*> oneOrMore digit <*>
optional (1lit ’.’ <*> oneOrMore digit)

The combinatorsoptional, oneOrMore, and (<*>) combine
parsers to make bigger parsers:

optional, oneOrMore :: Parser -> Parser
(<*>) :: Parser -> Parser -> Parser

It is easy for the programmer to make new parser combinators b
combining existing ones.

A parser of this kind is only aecogniserthat succeeds or fails.
Usually, however, one wants a parser to return a value asavedt
quirement that dovetails precisely with Haskell’s notidaononad
(Section 7). The type of parsers is parameterise@atser t,
wheret is the type of value returned by the parser. Now we can
write thefloat parser usingo-notation, like this:

float ::
float
= do mb_sgn <- optional sign
digs <- oneOrMore digit
mb_frac <- optional (do lit ’.’
oneOrMore digit)
return (mkFloat mb_sgn digs mb_frac)

Parser Float

where optional :: Parser a -> Parser (Maybe a), and
one0OrMore :: Parser a -> Parser [a].

The interested reader may find the short tutorial by Huttodh an
Meijer helpful (Hutton and Meijer, 1998). There are dozeifis o
papers about cunning variants of parser combinators, divgju
error-correcting parsers (Swierstra and Duponcheel, 1§@6al-

lel parsing (Claessen, 2004), parsing permutation phri3aars
et al., 2004), packrat parsing (Ford, 2002), and lexicalysis
(Chakravarty, 1999b). In practice, the most complete ardklyi
used library is probably Parsec, written by Daan Leijen.

11.1.2 Other combinator libraries

In a way, combinator libraries do not embody anything funeam
tally new. Nevertheless, the idea has been extremely irtfalen
with dozens of combinator libraries appearing in widelyfetiént
areas. Examples include pretty printing (Hughes, 1995; lgv¥ad
2003), generic programming (Lammel and Peyton Jones,)2003
embedding Prolog in Haskell (Spivey and Seres, 2003), finhnc
contracts (Peyton Jones et al., 2000), XML processing @bell
and Runciman, 1999), synchronous programming (Scholz3)199
database queries (Leijen and Meijer, 1999), and many others

What makes Haskell such a natural fit for combinator libs#tie
Aside from higher-order functions and data abstractioeretseem
to be two main factors, both concerning laziness. First, care
write recursive combinators without fuss, such as this nevee
parser for terms:

term :: Parser Term
term = choice [float, integer,
variable, parens term, ...]

In call-by-value languages, recursive definitions likesthie gen-
erally not allowed. Instead, one would have to eta-expaadi#i-

inition, thereby cluttering the code and (much more impaiia

wrecking the abstraction (Syme, 2005).

Second, laziness makes it extremely easy to write combitiato
braries with unusual control flow. Even in Wadler’s origitiat-
of-successes paper, laziness plays a central role, anis tihaé of
many other libraries mentioned above, such as embeddirigdPro
and parallel parsing.

11.2 Domain-specific embedded languages

A common theme among many successful Haskell applications
is the idea of writing a library that turns Haskell intodamain-
specific embedded languagPSEL), a term first coined by Hu-
dak (Hudak, 1996a; Hudak, 1998). Such DSELSs have appeared in
a diverse set of application areas, including graphicspation,
vision, control, GUIs, scripting, music, XML processingbotics,
hardware design, and more.

By “embedded language” we mean that the domain-specific lan-
guage is simply an extension of Haskell itself, sharing yistax,
function definition mechanism, type system, modules andrso o
The “domain-specific” part is just the new data types andtions
offered by a library. The phrase “embedded language” is confyn
used in the Lisp community, where Lisp macros are used tgudesi
“new” languages; in Haskell, thanks to lazy evaluation, m(al-
though emphatically not all) of the power of macros is avdda
through ordinary function definitions. Typically, a datgéyis de-
fined whose essential nature is often, at least conceptaaliync-
tion, and operators are defined that combine these abstnact f
tions into larger ones of the same kind. The final programés th
“executed” by decomposing these larger pieces and appthieg
embedded functions in a suitable manner.

In contrast, a non-embedded DSL can be implemented by writ-
ing a conventional parser, type checker, and interpretecdm-
piler) for the language. Haskell is very well suited to sugh a

proaches as well. However, Haskell has been particuladgess-
ful for domain-specific embedded languages. Below is a cidtie
of examples.

11.2.1 Functional Reactive Programming

In the early 1990s, Conal Elliott, then working at Sun Mig®s
tems, developed a DSL callelBAG for constraint-based, semi-
declarative modelling of 3D animations (Elliott et al., #99
Schechter et al., 1994). Although largely declarative, TBfas
implemented entirely in C++. The success of his work reslitie
Microsoft hiring Elliot and a few of his colleagues into theagh-
ics group at Microsoft Research. Once at Microsoft, Efsajtoup
released in 1995 a DSL calléittiveVRMLthat was more declar-
ative than TBAG, and was in fact based on an ML-like syntax
(Elliott, 1996). It was about that time that Elliott also bete in-
terested in Haskell, and began collaborating with sevezapfe in
the Haskell community on implementing ActiveVRML in Haskel
Collaborations with Hudak at Yale on design issues, forreaian-
tics, and implementation techniques led in 1998 to a langtlagt
they calledFran, which stood for “functional reactive animation”
(Elliott and Hudak, 1997; Elliott, 1997).

The key idea in Fran is the notion ob@haviour a first-class data
type that represents tame-varyingvalue. For example, consider
this Fran expression:

pulse ::
pulse =

Behavior Image
circle (sin time)

In Fran,pulse is a time-varying image value, describing a circle
whose radius is the sine of the time, in seconds, since trgramo
began executing. A good way to understand behaviours isheia t
following data type definition:

newtype Behavior a = Beh (Time -> a)

type Time = Float

That is, a behaviour in Fran is really just a function fromdito
values. Using this representation, the vattiee used in theulse
example would be defined as:

time :: Behaviour Time
time = Beh (\t -> t)

i.e., the identity function. Since many Fran behaviourshareeric,
Haskell'sNum andFloating classes (for example) allow one to
specify how to add two behaviours or take the sine of a bebavio
respectively:

instance Num (Behavior a) where
Beh f + Beh g = Beh (\t -> £ t + g t)

instance Floating (Behaviour a) where
sin (Beh f) = Beh (\t -> sin (f t))

Thinking of behaviours as functions is perhaps the easiagtte
reason about Fran programs, but of course behaviours aractbs
and thus can be implemented in other ways, just as with caatdin
libraries described earlier.

Another key idea in Fran is the notion of an infinite stream of
events Various “switching” combinators provide the connection
between behaviours and events—i.e. between the contirarulis
the discrete—thus making Fran-like languages suitablestsr
called “hybrid systems.”

This work, a classic DSEL, was extremely influential. In mart
lar, Hudak’s research group and others began a flurry of relsea
strands which they collectively referred to famctional reactive
programming or FRP. These efforts included: the application of

FRP to real-world physical systems, including both mobild hu-
manoid robots (Peterson et al., 1999a; Peterson et al. b]99@
formal semantics of FRP, both denotational and operatianalthe
connection between them (Wan and Hudak, 2000); real-time va
ants of FRP targeted for real-time embedded systems (Wdn et a
2002; Wan et al., 2001; Wan, 2002); the development of amarro
based version of FRP call&hmpain 2002, that improves both the
modularity and performance of previous implementationsd#k

et al., 2003); the use of FRP and Yampa in the design of graphic
user interfaces (Courtney and Elliott, 2001; Courtney,£2@&nge,
2000) (discussed further in Section 11.3); and the use ofpdam
the design of a 3D first-person shooter game cafiedy in 2005
(Cheong, 2005). Researchers at Brown have more recentigdoor
the basic ideas of FRP into a Scheme environment called &Fath
Time” (Cooper and Krishnamurthi, 2006).

11.2.2 XML and web-scripting languages

Demonstrating the ease with which Haskell can support domai
specific languages, Wallace and Runciman were one of thedirst
extend an existing programming language with features fdi. X
programming, with a library and toolset called HaXml (Wa#a
and Runciman, 1999). They actually provided two approatbes
XML processing. One was a small combinator library for manip
ulating XML, that captured in a uniform way much of the same
functionality provided by the XPath language at the core 8£X
(and later XQuery). The other was a data-binding approach (i
plemented as a pre-processor) that mapped XML data ontceHlask
data structures, and vice versa. The two approaches hayadesom
mentary strengths: the combinator library is flexible blitxiL
data has the same type; the data-binding approach captames m
precise types but is less flexible. Both approaches arestiimon

in many other languages that process XML, and most of these la
guages still face the same trade-offs.

Haskell was also one of the first languages to support what has
become one of the standard approaches to implementing web ap
plications. The traditional approach to implementing a \appli-
cation requires breaking the logic into one separate proda
each interaction between the client and the web server. fiach
gram writes an HTML form, and the responses to this form becom
the input to the next program in the series. Arguably, it igdreo
invert this view, and instead to write a single program cioing

calls to a primitive that takes an HTML form as argument and re
turns the responses as the result, and this approach wasiiest

by the domain-specific language MAWL (Atkins et al., 1999).

However, one does not need to invent a completely new larguag
for the purpose; instead, this idea can be supported usimeepts
available in functional languages, either continuationsnmmn-
ads (the two approaches are quite similar). Paul Graham aised
continuation-based approach as the basis for one of thecdinst
mercial applications for building web stores, which latechme
Yahoo Stores (Graham, 2004). The same approach was indepen-
dently discovered by Christian Queinnec (Queinnec, 2008)ar-

ther developed by Matthias Felleisen and others in PLT Sehem
(Graunke et al., 2001). Independently, an approach basadyen-
eralisation of monads called arrows was discovered by Hughe
(Hughes, 2000) (Section 6.7). Hughes'’s approach was fudée
veloped by Peter Thiemann in the WASH system for Haskell, who
revised it to use monads in place of arrows (Thiemann, 2002b)
turns out that the approach using arrows or monads is closely
lated to the continuation approach (since continuatiorseas a
special case of monads or arrows). The continuation approas
since been adopted in a number of web frameworks widely uged b
developers, such as Seaside and RIFE.

Most of this work has been done in languages (Scheme, Sikallta
Ruby) without static typing. Thiemann’s work has shown et
same approach works with a static type system that can gearan
that the type of information returned by the form matches the
type of information that the application expects. Thiematso
introduced a sophisticated use of type classes to ensurd ThaL

or XML used in such applications satisfies the regular exgioes
types imposed by the document type declarations (DTD) used i
XML (Thiemann, 2002a).

11.2.3 Hardware design languages

Lazy functional languages have a long history of use for idesc
ing and modelling synchronous hardware, for two fundameeta
sons: first, because lazy streams provide a natural modelier
crete time-varying signals, making simulation of funcabmod-
els very easy; and second, because higher-order functiendeal
for expressing the regular structure of many circuits. gdamy
streams dates to Steve Johnson’s work in the early eigtities,
which he won the ACM Distinguished Dissertation award in4.98
(Johnson, 1984). Higher-order functions for capturingutegcir-
cuit structure were pioneered by Mary Sheeran in her langugg
(Sheeran, 1983; Sheeran, 1984), inspired by Backus’ FFk(Bac
1978b).

It was not long before Haskell too was applied to this dom@ine

of the first to do so was John O’Donnell, whose Hydra hardware
description language is embedded in Haskell (O’'Donnelf5)9
Another was Dave Barton at Intermetrics, who proposed MHDL
(Microwave Hardware Description Language) based on Hhskel
1.2 (Barton, 1995). This was one of the earliest signs ofsirial
interest in Haskell, and Dave Barton was later invited to jibie
Haskell Committee as a result.

A little later, Launchbury and his group used Haskell to diesc
microprocessor architectures in the Hawk system (Mattredvas.,
1998), and Mary Sheeran et al. developed Lava (Bjesse et al.
1998), a system for describing regular circuits in paricuivhich

can simulate, verify, and generate net-lists for the ciscuie-
scribed. Both Hawk and Lava are examples of domain-specific
languages embedded in Haskell.

When Satnam Singh moved to Xilinx in California, he took Lava
with him and added the ability to generate FPGA layouts fdinXi
chips from Lava descriptions. This was one of the first sugces
ful industrial applications of Haskell: Singh was able tmgete
highly efficient and reconfigurable cores for acceleratippliaa-
tions such as Adobe Photoshop (Singh and Slous, 1998). Bos ye
thereafter, Singh used Lava to develop specialised corergtanrs,
delivered to Xilinx customers as compiled programs thatemi
appropriate parameters, generated important parts of &AFP
design—in most cases without anyone outside Xilinx beingraw
that Haskell was involved! Singh tells an amusing anecdat f

let x
y

in ...

nand a b
nand a b

Here it seems clear that the designer intends to model twaraep
NAND-gates. But what about

let x

y
in ...

nand a b
X

Now, clearly, the designer intends to model a single NANEega
whose output signal is shared byandy. Net-lists generated from
these two descriptions should thereforedifeerent—yet according
to Haskell's intended semantics, these two fragments dhbel
indistinguishable. For a while, Lava used a “circuit monsmfake
the difference observable:

do x <- nand a b
y <- nand a b

versus

do x <- nand a b
y <- return x

which are perfectly distinguishable in Haskell. This is tkeom-
mended “Haskellish” approach—yet adopting a monadic synta
uniformly imposes quite a heavy cost on Lava users, whictus f
trating given that the only reason for the monad is to distisig
sharing from duplication! Lava has been used to teach VLSite
to electrical engineering students, and in the end, thgglkeuto
teach monadic Lava syntax to non-Haskell users became tob.mu
Claessen usethsafePerformI0 to implement “observable shar-
ing”, allowing Lava to use the first syntax above, but stiltistin-
guish sharing from duplication when generating net-listsprem-
'prover input, and so on. Despite its unsafe implementatibserv-
able sharing turns out to have a rather tractable theorye@Skn
and Sands, 1999), and thus Lava has both tested Haskelity &dbi
embed other languages to the limit, and contributed a nevhaaec
nism to extend its power.

Via this and other work, lazy functional programming has had
an important impact on industrial hardware design. Intielfge-
scale formal verification work is based on a lazy language, in
both the earlier Forté and current IDV systems. Sandbuest w
founded by Arvind to exploit Bluespec, a proprietary hardwa
description language closely based on Haskell (see Set2idn?).
The language is now being marketed (with a System Verilogtfro
end) by a spin-off company called Bluespec, but the toolstile
implemented in Haskell.

A retrospective on the development of the field, and Lava itiga

these years: on one occasion, a bug in GHC prevented hig latesular, can be found in Sheeran’s JUCS paper (Sheeran, 2005).

core generator from compiling. Singh mailed his code to &reyt
Jones at Microsoft Research, who was able to compile it vhigh t
development version of GHC, and sent the result back to Sirgh

11.2.4 Computer music

Haskoreis a computer music library written in Haskell that allows

next day. When Singh told his manager, the manager exclaimed gxpressing high-level musical concepts in a purely detil@raay

incredulously, “You mean to say you got 24-hour support from
Microsoft?”

Lava in particular exercised Haskell's ability to embed dimspe-
cific languages to the limit. Clever use of the class systeables

signals-of-lists and lists-of-signals, for example, toused almost
interchangeably, without a profusion of zips and unzipspt@a

ing sharing proved to be particularly tricky, though. Calesithe

following code fragment:

(Hudak et al., 1996; Hudak, 1996b; Hudak, 2003). Primitiakies
corresponding to notes and rests are combined using cotaksna
for sequential and parallel composition to form larger roakval-
ues. In addition, musical ornamentation and embellishrflegato,
crescendo, etc.) are treated by an object-oriented agptoanu-
sical instruments to provide flexible degrees of interpirata

The first version of Haskore was written in the mid '90s by Huda
and his students at Yale. Over the years it has matured in &etum
of different ways, and aside from the standard distributibiale,

Henning Thielemann maintains an open-source Darcs repgsit
(Section 12.3) to support further development. Haskoreheazn
used as the basis of a number of computer music projects, and
is actively used for computer music composition and edanati
One of the more recent additions to the system is the abiity t
specify musical sounds—i.e. instruments—in a declaratiag, in
which oscillators, filters, envelope generators, etc. amlined in

a signal-processing-like manner.

Haskore is based on a very simple declarative model of music
with nice algebraic properties that can, in fact, be germdlto
other forms of time-varying media (Hudak, 2004). Althougarm
other computer music languages preceded Haskore, nonerof th
perhaps surprisingly, reflects this simple structure. idiiskpurity,

lazy evaluation, and higher-order functions are the kejufes that
make possible this elegant design.

11.2.5 Summary

Why has Haskell been so successful in the DSEL arena? After
all, many languages provide the ability to define new datagyp
together with operations over them, and a DSEL is little nbesn

that! No single feature seems dominant, but we may identiéy t
following ways in which Haskell is a particularly friendlyokt
language for a DSEL:

1. Type classepermit overloading of many standard operations
(such as those for arithmetic) on many nonstandard types (su
as theBehaviour type above).

. Higher-order functionsllow encoding nonstandard behaviours
and also provide the glue to combine operations.

. Infix syntaxallows one to emulate infix operators that are com-
mon in other domains.

. Over-loaded numeric literalallow one to use numbers in new
domains without tagging or coercing them in awkward ways.

. Monads and arrows are flexible mechanisms for combining
operations in ways that reflect the semantics of the intended
domain.

. Lazy evaluatiorallows writing recursive definitions in the new
language that are well defined in the DSEL, but would not
terminate in a strict language.

The reader will also note that there is not much difference in
concept between the combinator libraries described eaatiel
DSELs. For example, a parser combinator library can be \dewe
as a DSEL for BNF, which is just a meta-language for context-
free grammars. And Haskell libraries for XML processingreha

lot in common with parsing and layout, and thus with comlonat
libraries. It is probably only for historical reasons thaegroject
might use the term “combinator library” and another the term
“DSL” (or “DSEL").

11.3 Graphical user interfaces

Once Haskell had a sensible I/O system (Section 7), the riext o
vious question was how to drive a graphical user interfadglG
People interested in this area rapidly split into two grodipside-
alistsand thepragmatists

The idealists took a radical approach. Rather than adopirtper-
ative, event-loop-based interaction model of mainstreesgnam-
ming languages, they sought to answer the question, “Whheis
right way to interact with a GUI in a purely declarative sagt?”
This question led to several quite unusual GUI systems:

¢ The Fudgetssystem was developed by Magnus Carlsson and
Thomas Hallgren, at Chalmers University in Sweden. They
treated the GUI as a network tftream processors,’or stream

transformers (Carlsson and Hallgren, 1993). Each processo
had a visual appearance, as well as being connected to other
stream processors, and the shape of the network could change
dynamically. There was no central event loop: instead each
stream processor processed its own individual stream otgve

Sigbjorn Finne, then a research student at Glasgow, devel-
oped Haggis which replaced the event loop with extremely
lightweight concurrency; for example, each button mighteha

a thread dedicated to listening for clicks on that buttone Th
stress was on widgetomposition so that complex widgets
could be made by composing together simpler ones (Finne and
Peyton Jones, 1995). The requirements of Haggis direalyedr
the development of Concurrent Haskell (Peyton Jones et al.,
1996).

Based on ideas in Fran (see section 11.2.1), Meurig Sagé deve
opedFranTk (Sage, 2000), which combined the best ideas in
Fran with those of the GUI toolkit Tk, including an imperativ
model of call-backs.

¢ Antony Courtney took a more declarative approach based en-
tirely on FRP and Yampa, but with many similarities to Fudget
in a system that he calleruit (Courtney and Elliott, 2001;
Courtney, 2004). Fruit is purely declarative, and usesms1o
“wire together” GUI components in a data-flow-like style.

Despite the elegance and innovative nature of these GUg no
of them broke through to become the GUI toolkit of choice for a
critical mass of Haskell programmers, and they all remasiegle-
site implementations with a handful of users. It is easy towhy.
First, developing a fully featured GUI is a huge task, andheac
system lacked the full range of widgets, and snazzy appeeran
that programmers have come to expect. Second, the quesirfyr p
always led to programming inconvenience in one form or agroth
The search for an elegant, usable, declarative GUI toatkitains
open.

Meanwhile, the pragmatists were not idle. They just wanbeget

the job done, by the direct route of interfacing to some widel
available GUI toolkit library, a so-called “binding.” Egrefforts
included an interface to Tcl/Tk called swish (Sinclair, 2B%nd

an interface to X windows (the Yale Haskell project), butréhe
were many subsequent variants (e.g., TkGofer, TclHaskdlk)

and bindings to other tool kits such as OpenGL (HOpenGL), GTK
(e.g., Gtk2Hs, Gtk+Hs) and WxWidgets (WxHaskell). These ef
forts were hampered by the absence of a well defined foreign-
function interface for Haskell, especially as the librarievolved
have huge interfaces. As a direct result, early bindingevaéen
somewhat compiler specific, and implemented only part ofuhe
interface. More recent bindings, such as Gtk2Hs and WxHlaske
are generated automatically by transforming the macteadable
descriptions of the library API into the Haskell 98 stand&Fd.

These bindings all necessarily adopt the interaction motighe
underlying toolkit, invariably based on imperative widge¢ation
and modification, together with an event loop and call-bakley-
ertheless, their authors often developed quite sophistiddaskell
wrapper libraries that present a somewhat higher-levetfimte to
the programmer. A notable example is the Clean graphicali{/O
brary, which formed an integral part of the Clean system fieom
very early stage (Achten et al., 1992) (unlike the fragmératp-
proach to GUIs taken by Haskell). The underlying GUI toolkit
for Clean was the Macintosh, but Clean allows the user to-spec
ify the interface by means of a data structure containinglzedk
functions. Much later, the Clean I/O library was ported tcskél
(Achten and Peyton Jones, 2000).

To this day, the Haskell community periodically agonisesrane
absence of a single standard Haskell GUI. Lacking such @ateln
is undoubtedly an inhibiting factor on Haskell's developmeéret
no one approach has garnered enough support to bettanake-
sign, despite various putative standardisation effoltispagh Wx-
Haskell (another side project of the indefatigable Daajeln@ihas
perhaps captured the majority of the pragmatist market.

11.4 Operating Systems

An early operating system for Haskell was hOp, a micro-Kerne

based on the runtime system of GHC, implemented by Sebastian

Carlier and Jeremy Bobbio (Carlier and Bobbio, 2004). Bogdd

precise abstract syntax together with one or more concsete s
taxes; the same description specifies both how to parse etencr
syntax into abstract syntax, and how to linearise the atistyantax
into concrete syntax. An editing mode allows incrementabktaic-
tion of well formed texts, even using multiple languagesustaz
neously. The GF system has many applications, including-hig
quality translation, multi-lingual authoring, verifyingiathemati-
cal proof texts and software specifications, communicaticon-
trolled language, and interactive dialogue systems. Mangable
“resource grammars” are available, easing the constructimew
applications.

The main GF system is written in Haskell and the whole sysem i

on hOp, a later project, House, implemented a system in which open-source software (under a GPL licence). Haskell waserho

the kernel, window system, and all device drivers are wrifte
Haskell (Hallgren et al., 2005). It uses a monad to providess to
the Intel IA32 architecture, including virtual memory mgeanent,
protected execution of user binaries, and low-level 10 afpens.

11.5 Natural language processiny

Haskell has been used successfully in the development of a va

riety of natural language processing systems and toolshaRic
Frost (Frost, 2006) gives a comprehensive review of retewank
in Haskell and related languages, and discusses new todli-an
braries that are emerging, written in Haskell and relataduages.
We highlight two substantial applications that make sigaifit use
of Haskell.

Durham’sLOLITA system [arge-scale, Object-based, Linguistic
Interactor, Translator and Analyzewas developed by Garigliano

as a suitable language for this kind of system, particultmiythe
compilation and partial evaluation aspects (of grammafghads
and type classes are extensively used in the implementation

12. The impact of Haskell

Haskell has been used in education, by the open-source coitymu
and by companies. The language is the focal point of an aatide
still-growing user community. In this section we survey soof
these groups of users and briefly assess Haskell's impacthen o
programming languages.

12.1 Education

One of the explicit goals of Haskell's designers was to eredan-
guage suitable for teaching. Indeed, almost as soon asrthedge
was defined, it was being taught to undergraduates at Oxfaid a

and colleagues at the University of Durham (UK) between 1986 Yale, but initially there was a dearth both of textbooks afbbust

and 2000. It was designed as a general-purpose tool for $since
unrestricted text that could be the basis of a wide variegppiica-
tions. At its core was a semantic network containing soméCD,
interlinked concepts. Text could be parsed and analysed ithe
corporated into the semantic net, where it could be reasahedt
(Long and Garigliano, 1993). Fragments of semantic nettalsio
be rendered back to English or Spanish. Several applicatiane
built using the system, including financial information bysars
and information extraction tools for Darpa’s “Message Ustind-
ing Conference Competitions” (MUC-6 and MUC-7). The latter
involved processing original Wall Street Journal articles per-
form tasks such as identifying key job changes in busineasds
summarising articles. LOLITA was one of a small number of sys
tems worldwide to compete in all sections of the tasks. Aesyst
description and an analysis of the MUC-6 results were writig
Callaghan (Callaghan, 1998).

LOLITA was an early example of a substantial applicationtwri
ten in a functional language: it consisted of around 50,006sl
of Haskell (with around 6000 lines of C). It is also a complexia
demanding application, in which many aspects of Haskelbvirer
valuable in development. LOLITA was designed to handle unre
stricted text, so that ambiguity at various levels was uitakle
and significant. Laziness was essential in handling theosiqh
of syntactic ambiguity resulting from a large grammar, anads
much used with semantic ambiguity too. The system used pheilti
DSELs (Section 11.2) for semantic and pragmatic procesairng
for generation of natural language text from the semanticAiso
important was the ability to work with complex abstracti@amsl to
prototype new analysis algorithms quickly.

TheGrammatical FrameworkGF) (Ranta, 2004) is a language for

implementations suitable for teaching. Both problems wseren
addressed. The first Haskell book—Tony Davi&is Introduction

to Functional Programming Systems Using Haskedppeared in
1992. The release of Gofer in 1991 made an “almost Haskedl” sy
tem available with a fast, interactive interface, good éacthing. In
1995, when Hugs was released, Haskell finally had an implemen
tation perfect for teaching—which students could alsoalhsind
use on their PCs at home. In 1996, Simon Thompson published a
Haskell version of hi€raft of Functional Programmingextbook,
which had first appeared as a Miranda textbook a year edrhés.
book (revised in 1998) has become the top-selling book okélias
far ahead of its closest competitor in Amazon’s sales ragin

The arrival of Haskell 98 gave textbooks another boost. Bird
vised Introduction to Functional Programmingising Haskell, in
1998, and in the same year Okasaki published the first tektboo
to use Haskell to teach another subje€turely Functional Data
Structures This was followed the next year by Fethi Rabhi and
Guy Lapalme’s algorithms textlgorithms: A functional program-
ming approachand new texts continue to appear, such as Graham
Hutton’s 2006 bookProgramming in Haskell

The first Haskell texts were quite introductory in naturéended
for teaching functional programming to first-year studentsthe
turn of the millennium, textbooks teaching more advanceth-te
nigues began to appear. Hudaaskell School of Expressighiu-
dak, 2000) uses multimedia applications (such as graphiis)a-
tion, and music) to teach Haskell idioms in novel ways thaived
beyond earlier books. A unique aspect of this book is its Use o
DSELs (for animation, music, and robotics) as an underlstiegne
(see Section 11.2). Although often suggested for first-yeach-
ing, it is widely regarded as being more suitable for an adedn

defining grammars based on type theory, developed by Radta an course. In 2002, Gibbons and de Moor editétk Fun of Program-

colleagues at Chalmers University. GF allows users to deser

13This section is based on material contributed by Paul Cadlag

ming an advanced book on Haskell programming with contribu-
tions by many authors, dedicated to Richard Bird and intdradea
follow-up to his text.

Another trend is to teach discrete mathematics and logingusi
Haskell as a medium of instruction, exploiting Haskell'stheanat-
ical look and feel. Cordelia Hall and John O’Donnell pubdédithe
first textbook taking this approach in 200@iscrete Mathemat-
ics Using a ComputerRex Page carried out a careful three-year
study, in which students were randomly assigned to a grawghta
discrete mathematics in the conventional way, or a groughtiau
using Hall and O’Donnell’s text, and found that studentsia kat-
ter group became significantly more effective programmeeg€,
2003). Recently (in 2004) Doets and van Eijck have publishred
other textbook in this veinThe Haskell Road to Logic, Maths and
Programming which has rapidly become popular.

For the more advanced students, there has been an excelent s
ries of International Summer Schools on Advanced Functiera
gramming, at which projects involving Haskell have alwagsl fa
significant presence. There have been five such summer sdieool
date, held in 1995, 1996, 1998, 2002, and 2004.

12.1.1 A survey of Haskell in higher education

To try to form an impression of the use of Haskell in universit
education today, we carried out a web survey of courses tangh
the 2005-2006 academic year. We make no claim that our survey
is complete, but it was quite extensive: 126 teachers rafmhn
from 89 universities in 22 countries; together they teachkdl to
5,000-10,000 students every y¥a25% of these courses began
using Haskell only in the last two years (since 2004), whig-s
gests that the use of Haskell in teaching is currently sespgd
growth.

Enthusiasts have long argued that functional languagesdere
ally suited to teaching introductory programming, and ealenost
textbooks on Haskell programming are intended for that @sep
Surprisingly, only 28 of the courses in our survey were airaed
beginners (i.e. taught in the first year, or assuming no previ
programming experience). We also asked respondents which p
gramming languages students learn first and second at tieir U
versities, on the assumption that basic programming wikle

at least two languages. We found that—even at Universitiats t
teach Haskell—Java was the first language taught in 47% efcas
and also the most commonly taught second language (in 22% of
cases). Haskell was among the first two programming language
only in 35% of cases (15% as first language, 20% as second lan-
guage). However, beginners’ courses did account for thgesir
single group of students to study Haskell, 2—4,000 every, y&s
cause each such course is taken by more students on aveaage th
later courses are.

The most common courses taught using Haskell are explicitly
intended to teach functional programmipgr se(or sometimes
declarative programming). We received responses from d6es

of this type, with total student numbers of 1,300-2,900 peary

A typical comment from respondees was that the course was in-
tended to teach “a different style of programming” from theat-
oriented paradigm that otherwise predominates. Four otiwe
advanced programming courses (with 3—700 students) caaithe s
to have a similar aim.

The third large group of courses we found were programming
language courses—ranging from comparative programming la
guages through formal semantics. There were 25 such courses
with 800-1,700 students annually. Surprisingly, therevigently

no Haskell-based textbook aimed at this market—an oppitytun
perhaps?

14We asked only for approximate student numbers, hence the raitge
of possibilities.

Haskell is used to teach nine compilers courses, with 3—-#@0 s
dents. It is also used to teach six courses in theoreticapaten
science (2-400 students). Both take advantage of well-know
strengths of the language—symbolic computation and ithedat
matical flavour. Finally, there are two courses in hardwascdp-
tion (50-100 students), and one course in each of domaiifipe
languages, computer music, quantum computing, and digdb
and parallel programming—revealing a surprising varigtythe
subjects where Haskell appears.

Most Haskell courses are aimed at experienced programreers s
ing the language for the first time: 85% of respondents tastyht
dents with prior programming experience, but only 23% taugh
students who already knew Haskell. The years in which Haskel
courses are taught are shown in this table:

Year %ge
1st undergrad 20%
2nd undergrad | 23%
3rd undergrad | 25%
4-5th undergrad 16%
Postgrad 12%

This illustrates once again that the majority of coursesaurght at
more advanced levels.

The countries from which we received most responses were the
USA (22%), the UK (19%), Germany (11%), Sweden (8%), Aus-
tralia (7%), and Portugal (5%).

How does Haskell measure up in teaching? Some observatiens w
received were:

e Both respondents and their students are generally hapfy wit
the choice of language—“Even though | am not a FL researcher,
| enjoy teaching the course more than most of my other courses
and students also seem to like the course.”

Haskell attracts good students—“The students who take the
Haskell track are invariably among the best computer seienc
students | have taught.”

e Fundamental concepts such as types and recursion are ham-

mered home early.

e Students can tackle more ambitious and interesting prablem
earlier than they could using a language like Java.

Simple loop programs can be harder for students to grasp when
expressed using recursion.

The class system causes minor irritations, sometimesigadi
puzzling error messages for students.

Array processing and algorithms using in-place update are
messier in Haskell.

Haskell input/output is not well covered by current textkao
“my impression was that students are mostly interestedrigsh
which Simon Peyton Jones addressed in his paper ‘Tackling
the Awkward Squad’ (Peyton Jones, 2001). | think, for the
purpose of teaching FP, we are in dire need of a book on FP
that not only presents the purely functional aspects, ksad al
comprehensively covers issues discussed in that paper.”

As mentioned earlier, a simplified version of Haskéflelium,
is being developed at Utrecht specifically for teaching—first
release was in 2002. Helium lacks classes, which enablegivé
clearer error messages, but then it also lacks textbookstrend
ability to “tackle the awkward squad.” It remains to be seewh
successful it will be.

12.2 Haskell and software productivity

Occasionally we hear anecdotes about Haskell providingadet-
of-magnitude” reduction in code size, program developntiem,
software maintenance costs, or whatever. However, it i afifi-
cult to conduct a rigorous study to substantiate such cldonsiny
language.

same challenges as the well-established incumbents sUCW @&s
and Subversion, but its data model is very different. Rathan
thinking in terms of a master repository of which users takges,
Darcs considers each user to have a fully fledged reposikaity,
repositories exchanging updates by means of patches. dthisrr
democratic architecture (similar to that of Arch) seemy atrac-
tive to the open-source community, and has numerous tegltatde

One attempt at such a study was an exercise sponsored by Darpaantages as well (Roundy, 2005). It is impossible to say hamym
(the U.S. Defense Advanced Research Projects Agency) in thepeople use Darcs, but the user-group mailing list has 350baesn

early 1990s. About ten years earlier, Darpa had christerdadas
the standard programming language to be used for futurevait
development contracts with the U.S. government. Ridingha t
wave of wisdom, they then commissioned a program cdfes
toTechto develop software prototyping technology, including the
development of a “common prototyping language,” to helphia t
design phase of large software systems. Potential probéesss-
ciated with standardisation efforts notwithstanding, [izés Pro-
toTech program funded lots of interesting programming Uexuge
research, including Hudak’s effort at Yale.

Toward the end of the ProtoTech Program, the Naval Surfage Wa
fare Center (NSWC) conducted an experiment to see which of

many languages—some new (such as Haskell) and some old (suchl-

as Ada and C++)—could best be used to prototype a “geometric
region server.” Ten different programmers, using nineedéht pro-
gramming languages, built prototypes for this software ponent.
Mark Jones, then a Research Scientist at Yale, was the primar
Haskell programmer in the experiment. The results, desdrib
(Carlson et al., 1993), although informal and partly sutbjecand

too lengthy to describe in detail here, indicate fairly doningly

the superiority of Haskell in this particular experiment.

Sadly, nothing of substance ever came from this experiniént.
recommendations were made to use Haskell in any kind of gever
ment software development, not even in the context of pyptog,

an area where Haskell could have had significant impact. dtre ¢
munity was simply not ready to adopt such a radical programgmi
language.

In recent years there have been a few other informal efforsma
ning experiments of this sort. Most notably, the functigmalgram-
ming community, through ICFP, developed its very own Progra
ming Contest, a three-day programming sprint that has bekh h
every year since 1998. These contests have been open toeanyon
and it is common to receive entries written in C and other irape
tive languages, in addition to pretty much every functidaaguage

in common use. The first ICFP Programming Contest, run by Olin
Shivers in 1998, attracted 48 entries. The contest has gsolvn
stantially since then, with a peak of 230 entries in 2004—emor
teams (let alone team members) than conference partisipbmt
every year only a minority of the entries are in functionai-la
guages; for example in 2004, of the 230 entries, only 67 were-f
tional (24 OCaml, 20 Haskell, 12 Lisp, 9 Scheme, 2 SML, 1 Mer-
cury, 1 Erlang). Nevertheless, functional languages dataithe
winners: of the first prizes awarded in the eight years of thet€st

so far, three have gone to OCaml, three to Haskell, one to énd,
one to Cilk (Blumofe et al., 1996).

12.3 Open source: Darcs and Pugs

One of the turning points in a language’s evolution is wheopte
start to learn it because of the applications that are wariiteit
rather than because they are interested in the languadg litse
the last few years two open-source projects, Darcs and Rags,
started to have that effect for Haskell.

Darcs is an open-source revision-control system writteriaakell
by the physicist David Roundy (Roundy, 2005). It addreskes t

and the Darcs home page lists nearly 60 projects that usesDarc

Darcs was originally written in C++ but, as Roundy puts itf-“a
ter working on it for a while | had an essentially solid mass of
bugs” (Stosberg, 2005). He came across Haskell and, aftewva f
experiments in 2002, rewrote Darcs in Haskell. Four yeaes,la
the source code is still a relatively compact 28,000 linettef-

ate Haskell (thus including the source for the 100-page miqnu
Roundy reports that some developers now are learning Haskel
specifically in order to contribute to Darcs.

One of these programmers was Audrey Tang. She came across
Darcs, spent a month learning Haskell, and jumped from tteere
Pierce’s bookTypes and Programming Languag@&erce, 2002).
he book suggests implementing a toy language as an exesoise
Tang picked Perl 6. At the time there were no implementatafns
Perl 6, at least partly because it is a ferociously difficattiduage
to implement. Tang started her project on 1 February 2005 y
later there were 200 developers contributing to it; perreapaz-
ingly (considering this number) the compiler is only 18,00@s

of Haskell (including comments) (Tang, 2005). Pugs makesye
use of parser combinators (to support a dynamically chdiigea
parser) and several more sophisticated Haskell idiom&)dimg
GADTSs (Section 6.7) and delimited continuations (Dybvigakt
2005).

12.4 Companies using Haskell

In the commercial world, Haskell still plays only a minor eol
While many Haskell programmers work for companies, they usu
ally have an uphill battle to persuade their managementke ta
Haskell seriously. Much of this reluctance is associateth fuinc-
tional programming in general, rather than Haskell in paittr,
although the climate is beginning to change; witness, fangxe,
the workshops for Commercial Users of Functional Programgmi
held annually at ICFP since 2004. We invited four compariies t
use Haskell regularly to write about their experience. Theghtly
edited responses constitute the rest of this section.

12.4.1 Galois Connections

The late '90s were the heady days of Internet companies diudifi
lous valuations. At just this time Launchbury, then a pregesn the
functional programming research group at the Oregon Gtadoa
stitute, began to wonder: can wle something with functional lan-
guages, and with Haskell in particular? He founded Galoiseo-
tions Inc, a company that began with the idea of finding ctiéot
whom they could build great solutions simply by using the pow
of Haskell. The company tagline reflected this: Galois Catinas,
Purely Functional

Things started well for Galois. Initial contracts came frtora U.S.
government for building a domain-specific language for tygpa-
phy, soon to be followed by contracts with local industry.eGof
these involved building a code translator for test progranchip
testing equipment. Because this was a C-based problem alloésG
engineers shifted to ML, to leverage the power of the ML C-Kit

15This section is based on material contributed by John Lawmghof
Galois Connections.

library. In a few months, a comprehensive code translatohwas
built and kept so precisely to a compressed code-delivérgdide
that the client was amazed.

From a language perspective, there were no surprises rare: ¢
pilers and other code translation are natural applicationfunc-
tional languages, and the abstraction and non-interferpnaper-
ties of functional languages meant that productivity way wégh,
even with minimal project management overhead. There wesie b
ness challenges, however: a “can do anything” businessiges
known for doing anything. It has to resell its capabilitiesmh the
ground up on every sale. Market focus is needed.

Galois selected a focus area of high-confidence softwatk,spe-
cial emphasis on information assurance. This was seen asvégr
area and one in which the U.S. government already had majer co
cerns, both for its own networks and for the public Interitedlso
appeared to present significant opportunity for introdgdiighly
innovative approaches. In this environment Haskell predisome-
thing more than simple productivity. Because of referéntens-
parency, Haskell programs can be viewed as executable mathe
ics, as equations over the category of complete partialrsrde
principle, at least, the specificatil@comeshe program.

Examples of Haskell projects at Galois include: developrawis
for Cryptol, a domain-specific language for specifying ¢oyp
graphic algorithms; a debugging environment for a governtme
grade programmable crypto-coprocessor; tools for geingrBPGA
layouts from Cryptol; a high-assurance compiler for the ABN
data-description language; a non-blocking cross-doméansfis-
tem suitable for fielding in systems with multiple indepemidev-
els of security (MILS); a WebDAV server with audit trails aludj-
ging; and a wiki for providing collaboration across distisecurity
levels.

12.4.2 Bluespel

Founded in June, 2003 by Arvind (MIT), Bluespec, Inc. manu-
factures an industry standards-based electronic desigmation
(EDA) toolset that is intended to raise the level of abstoactor
hardware design while retaining the ability to automatjcaln-
thesise high-quality register-transfer code without campsing
speed, power or area.

The name Bluespec comes from a hardware description larguag
by the same name, which is a key enabling technology for the
company. Bluespec’s design was heavily influenced by Haskel
It is basically Haskell with some extra syntactic constsufzir
the term rewriting system (TRS) that describes what thewiarel

12.4.3 Aetiort’

Aetion Technologies LLC is a company with some nine employ-
ees, based in Columbus, Ohio, USA. The company specialises i
artificial intelligence software for decision support.

In 2001 Aetion was about to begin a significant new softwaveke
opment project. They chose Haskell, because of its ricicsigte
system, open-source compilers, and its active researchoaoity.

At the time, no one at Aetion was an experienced Haskell progr
mer, though some employees had some experience with ML and
Lisp.

Overall, their experience was extremely positive, and thew

use Haskell for all their software development except forl&SU
(where they use Java). They found that Haskell allows thenrite
succinct but readable code for rapid prototypes. As Hagkalery
high-level language, they find they can concentrate on tblelem

at hand without being distracted by all the attendant prognang
boilerplate and housekeeping. Aetion does a lot of reseanch
invention, so efficiency in prototyping is very importantseJof
Haskell has also helped the company to hire good programmers
it takes some intelligence to learn and use Haskell, andoA'sti
rare use of such an agreeable programming language promotes
employee retention.

The main difficulty that Aetion encountered concerns efficie
how to construct software that uses both strict and lazyueval
tion well. Also, there is an initial period of difficulty whel one
learns what sorts of bugs evoke which incomprehensible eres-
sages. And, although Aetion has been able to hire largelynwhe
they needed to, the pool of candidates with good Haskellrprog
ming skills is certainly small. A problem that Aetion has yet
encountered, but fears, is that a customer may object toshefu
Haskell because of its unfamiliarity. (Customers somesiask the
company to place source code in escrow, so that they are @ble t
maintain the product if Aetion is no longer willing or able do
S0.)

12.4.4 Linspire'®

Linspire makes a Linux distribution targeted for the consumar-

ket. The core OS team settled in 2006 on Haskell as the peeferr
choice for systems programming. This is an unusual chaiceni
domain, it is much more common to use a combination of several
shells and script languages (suctbash, awk, sed, Perl, Python).
However, the results are often fragile and fraught vaithhoccon-
ventions. Problems that are not solved directly by the sl
handed off to a bewildering array of tools, each with its oymtax,
capabilities and shortcomings.

does. The type system has been extended with types of numericwhile not as specialised, Haskell has comparable vetyatilit

kind. Using the class system, arithmetic can be performetiese
numeric types. Their purpose is to give accurate types ngthike
bit vectors (instead of using lists where the sizes cannohbeked
by the type checker). For example:
bundle :: Bit[n] -> Bit[m] -> Bit[n+m]

Here,n andm are type variables, but they have kinat, and (lim-
ited) arithmetic is allowed (and statically checked) attthpe level.
Bluespec is really a two-level language. The full power okl
is available at compile time, but almost all Haskell langeiagn-

structs are eliminated by a partial evaluator to get dowhédoasic
TRS that the hardware can execute.

186 This section was contributed by Rishiyur Nikhil of Bluespec

promotes much greater uniformity. Haskell's interpretersvide
sufficient interactivity for constructing programs quigklits li-
braries are expanding to cover the necessary diversity tiiti
reusable algorithms; and it has the added benefit that timms$d
compiled programs is trivial. The idioms for expressingtegs
programming are not quite as compact as in languages sudhlas P
but this is an active area of research and the other languagsits
outweigh this lack.

Static type-checking has proved invaluable, catching nemngrs
that might have otherwise occurred in the field, especialigmthe
cycle of development and testing is spread thin in spaceiama t
For example, detecting and configuring hardware is imp@ssib
test fully in the lab. Even if it were possible to collect alfiet

17This section was contributed by Mark Carroll of Aetion.
18This section was contributed by Clifford Beshers of Linepir

600

the language and the research ideas it had begun to spawn. Sub
sequent workshops were held in 1997 and 1999, after which it
became an annual institution. It now has a refereed procgedi
500] published by ACM and a steady attendance of 60-90 partici-
pants. Since there is no Haskell Committee (Section 3.€), th
Haskell workshop is the only forum at which corporate deci-
sions can be, and occasionally are, taken.

400 The Haskell Communities and Activities Report (HCAR). In
November 2001 Claus Reinke edited the first edition of the
Haskell Communities and Activities Repbita biannual news-
letter that reports on what projects are going on in the Haske
community. The idea really caught on: the first edition liste

300 19 authors and consisted of 20 pages; but the November 2005
| edition (edited by Andres Loh) lists 96 authors and runsver o
60 pages.
] The #haskell IRC channel first appeared in the late 1990s, but
200 really got going in early 2001 with the help of Shae Erisson

(akashapr)®. It has grown extremely rapidly; at the time of
] writing, there are typically 200 people logged into the afeln

at any moment, with upward of 2,000 participants over a full
year. The#haskell channel has spawned a particularly suc-
cessful software client callethmbdabot (written in Haskell,

of course) whose many plugins include language translation
dictionary lookup, searching for Haskell functions, a tlezo

W prover, Darcs patch tracking, and more besides.

The Haskell Weekly News.In 2005, John Goerzen decided to

1990 - 1995 ” 2009 200? help people cope with the rising volume of mailing list ac-
Figure 7. Growth of the “hard-core” Haskell community tivity by distributing a weekly summary of the most importan
points—theHaskell Weekly Newéirst published on the 2nd of

various components, the time to assemble and test all trsjpes August”. The HWN covers new releases, resources and tools,
combinations is prohibitive. Another example is that Liinsjs discussion, papers, a “Darcs comer,” and quotes-of-thekw-
tools must handle legacy data formats. Explicitly segiegahese the latter typically being “in” jokes such as “Haskell seqias
formats into separate data types prevented the mysterioos e Church and state.

that always seem to propagate through shell programs when th The Monad Reader. Another recent initiative to help a wider
format changes. audience learn about Haskell is Shae Erissdriti® Monad
Readef?, a web publication that first appeared in March 2005.
The first issue declaredThere are plenty of academic pa-
pers about Haskell, and plenty of informative pages on the
Haskell Wiki. But there’s not much between the two extremes.
The Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal articleFive issues
have already appeared, with many articles by practitignkrs
Learning Haskell is not a trivial task, but the economy ofresgion lustrated with useful code fragments.

and the resulting readability seem to provide a calm inskde t
storm. The language, libraries and culture lead to solstibat feel
like minimal surfaces: simple expressions that comprigeificant

100

Runtime efficiency can be a problem, but the Haskell communit
has been addressing this aggressively. In particular,abent de-
velopment of thébata.ByteString library fills the most impor-
tant gap. Linspire recently converted a parser to use thiduheo
reducing memory requirements by a factor of ten and inangasi
speed to be comparable with the standard comnearnd

Planet Haskell is a site for Haskell blogget§ started by Antti-
Juhani Kaijanaho in 2006.

complexity, with forms that seem natural, recurring in peob The Google Summer of Coderan for the first time in 2005, and
after problem. Open source software remains somewhatebritt included just one Haskell project, carried out by Paolo Mar-
relying on the fact that most users are developers awaresof it tini. Fired by his experience, Martini spearheaded a mudfela
weak points. At Linspire, Haskell offers the promise of aalirgy a Haskell participation in the 2006 Summer of Code. He organ-
stronger whole. ised a panel of 20 mentors, establishedkell.org as a men-

) toring organisation, and attracted an astonishing 114eptoj
12.5 The Haskell community proposals, of which nine were ultimately fundéd

A language that is over 15 years old might be expected to be
entering its twilight years. Perhaps surprisingly, thoubllaskell
appears to be in a particularly vibrant phase at the time @fngr

Its use is growing strongly and appears for the first time tmash
signs of breaking out of its specialist-geeky niche. nttp://haskell.org/communities/

. . . C . 20 . P
The last five years have seen a variety of new community initia = bttp://haskell.org/haskellwiki/IRC_channel
tives, led by a broad range of people including some outside t 2'http://sequence.complete.org/hwn
academic/research community. For example: 22http://wuw.haskell.org/hawiki/TheMonadReader

The Haskell Workshops. The first Haskell Workshop was held in ~ ?*http://planet.haskell.org
conjunction with ICFP in 1995, as a one-day forum to discuss 2*nttp://hackage.haskell.org/trac/summer-of-code

It seems clear from all this that the last five years has seritpa
ularly rapid growth. To substantiate our gut feel, we caroet an

informal survey of the Haskell community via the Haskell fimaj
list, and obtained almost 600 responses from 40 countriesuig,
our respondees belong to a self-selected group who areisnffic
enthusiastic about the language itself to follow discussin the
list, and so are not representative of Haskell users in génker
particular, it is clear from the responses that the majarftyptu-
dents currently being taught Haskell did not reply. Newelghs, as
a survey of the “hard core” of the community, the results ateri
esting.

We asked respondees when they first learnt Haskell, so wel coul
estimate how the size of the community has changed over the
year€®. The results are shown in Figure 7, where the bars show the
total number of respondees who had learnt Haskell by theigear
question. Clearly the community has been enjoying muchhgao
growth since 1999. This is the year that the Haskell 98 stahdas
published—the year that Haskell took the step from a fretiyen
changing vehicle for research to a language with a guarasftee
long-term stability. It is tempting to conclude that thicause and
effect.

Further indications of rapid growth come from mailing listigity.
While the “official” Haskell mailing list has seen relatiyeflat
traffic, the “Haskell Café” list, started explicitly in Gaer 2000

as a forum for beginners’ questions and informal discussibas
seen traffic grow by a factor of six between 2002 and 2005. The
Haskell Café is most active in the winters: warm weathemse®
discourage discussion of functional programmifihg

the UK is in fourth place (49), and Sweden in sixth (29). Other
countries with 20 or more respondees were the Netherlart)s (4
and Australia (25). It is curious that France has only sixerelas
Germany has 85—perhaps French functional programmersrpref
OCaml.

The picture changes, though, when we consider the propoofio
Haskell enthusiasts in the general population. Now the Gayis-
lands top the chart, with one Haskell enthusiast per 44,@0plg.
Portugal comes second, with one in 116,000, then Scandiravi
Iceland, Finland, and Sweden all have around one Haskedler p
300,000 inhabitants. In the UK, and many other countrieskieih
enthusiasts are truly “one in a million.” The United StateBsf
between Bulgaria and Belgium, with one Haskeller for every
2,500,000 inhabitants.

If we look instead at the density of Haskell enthusiasts pet u
of land mass, then the Cayman Islands are positively crowded
each Haskeller has only 262 square kilometres to program in.
In Singapore, Haskellers have a little more room, at 346 requa
kilometres, while in the Netherlands and Portugal they Ha080
square kilometres each. Other countries offer signifigamtbre
space—oaver a million square kilometres each in India, Russid
Brazil.

12.6

Haskell has influenced several other programming langudges
many cases it is hard to ascertain whether theredausalrela-

Influence on other languages

Our survey also revealed a great deal about who the hard-coretionship between the features of a particular language lzogktof

Haskell programmers are. One lesson is that Haskell is aqmog
ming language for the whole family—the oldest responders 8
years old, and the youngest just 16! It is sobering to redlise
Haskell was conceived before its youngest users. Younges a®
predominate, though: respondents’ median age was 27, sb¥e 2
were 35 or over, and 25% were 23 or younger.

Surprisingly, given the importance we usually attach to/ersity
teaching for technology transfer, only 48% of respondeamkd
Haskell as part of a university course. The majority of owpan-
dents discovered the language by other means. Only 10% of re-
spondents learnt Haskell as their first programming langagd

7% as their second), despite the efforts that have been roamie-t
mote Haskell for teaching introductory programnfihgFour out

of five hard-core Haskell users were already experiencegrano-
mers by the time they learnt the language.

Haskell is still most firmly established in academia. Halfoofr
respondents were students, and a further quarter employedrii-
versity. 50% were using Haskell as part of their studies 0t 4
for research projects, so our goals of designing a languaitphte
for teaching and research have certainly been fulfilled. 2%
of respondents work in industry (evenly divided betweegédaand
small companies), and 10% of respondents are using Haskell f
product development, so our goal of designing a languagdatsei
for applications has also been fulfilled. Interestingly%®2are us-
ing Haskell for open-source projects, which are also appibos.
Perhaps open-source projects are less constrained in die abf
programming language than industrial projects are.

The country with the most Haskell enthusiasts is the UniteadeS
(115), closely followed by Portugal (91) and Germany (85p-T
ditional “hotbeds of functional programming” come lowendo

250f course, this omits users who learnt Haskell but then stdpysing it
before our survey.

26This may explain its relative popularity in Scandinavia.
27Most Haskell textbooks are aimed at introductory prograngourses.

Haskell, so we content ourselves with mentioning similesit

Cleanis a lazy functional programming language, like Miranda
and Haskell, and it bears a strong resemblance to both oé thes
(Brus et al., 1987). Clean has adopted type classes fromeHask
but instead of using monads for input-output it uses an amtro
based on uniqueness (or linear) types (Achten et al., 1992).

Mercuryis a language for logic programming with declared types
and modes (Somogyi et al., 1996). It is influenced by Haskell i
a number of ways, especially its adoption of type claskies, a
language for constraint programming built on top of Mercuises
type classes in innovative ways to permit use of multiplest@int
solvers (de la Banda et al., 2002).

Curryis alanguage for functional-logic programming (Hanus gt al
1995). As its name indicates, it is intended as a sort of sstre

to Haskell, bringing together researchers working on fionet-
logic languages in the same way that Haskell brought togethe
researchers working on lazy languagéscheris another language
for functional-logic programming (Lloyd, 1999). Both lamages
have a syntax influenced by Haskell and use monads for input-
output.

Cayenneis a functional language with fully fledged dependent
types, designed and implemented by Lennart Augustssonu@sg
son, 1998). Cayenne is explicitly based on Haskell, althoitsg
type system differs in fundamental ways. It is significantheesfirst
example of integrating the full power of dependent types &pro-
gramming language.

Isabelleis a theorem-proving system that makes extensive use of
type classes to structure proofs (Paulson, 2004). Wheneactgss

is declared one associates with it the laws obeyed by thatipes

in a class (for example, that plus, times, and negation forimgg,

and when an instance is declared one must prove that thedesta
satisfies those properties (for example, that the integera &ng).

Pythonis a dynamically typed language for scripting (van Rossum,
1995). Layout is significant in Python, and it has also adbpie

list comprehension notation. In turdavascript another dynami-
cally typed language for scripting, is planned to adoptd@hpre-
hensions from Python, but called array comprehensionsadst

Java The generic type system introduced in Java 5 is based on the

Hindley-Milner type system (introduced in ML, and promoteyl
Miranda and Haskell). The use of bounded types in that sysem
closely related to type classes in Haskell. The type syssdmsed
on GJ, of which Wadler is a codesigner (Bracha et al., 1998).

C# and Visual BasicThe LINQ (Language INtegrated Query) fea-

tures of C# 3.0 and Visual Basic 9.0 are based on monad compre-

hensions from Haskell. Their inclusion is due largely to ¢ffferts
of Erik Meijer, a member of the Haskell Committee, and theyeve
inspired by his previous attempts to apply Haskell to buibvap-
plications (Meijer, 2000).

so that loop fusion is performed when bytestring functiarescam-
posed. The correctness of the rewrite rules is crucial, satésted
by QuickCheck properties, as is agreement between comdspp
bytestring andstring operations. This is a great example of us-
ing Haskell's advanced features to achieve good performmand
reliability without compromising elegance.

We interpret these as signs that, eighteen years after ichis
tened, Haskell is maturing. It is becoming more and moreabiét
for real-world applications, and the Haskell community;leistill
small in absolute terms, is growing strongly. We hope andeexp
to see this continue.

13. Conclusion

Functional programming, particularly in its purely furartal form,

Scala Scala is a statically typed programming language that at- is a radical and principled attack on the challenge of wgifimo-

tempts to integrate features of functional and objectrieie pro-
gramming (Odersky et al., 2004; Odersky, 2006). It incluftes
comprehensions that are similar to monad comprehensioms, a
view bounds and implicit parameters that are similar to type
classes.

We believe the most important legacy of Haskell will be how it
influences the languages that succeed it.

12.7 Current developments

Haskell is currently undergoing a new revision. At the 20@skell
Workshop, Launchbury called for the definition of “Induatri
Haskell” to succeed Haskell 98. So many extensions haveaagge
since the latter was defined that few real programs adhereeto t
standard nowadays. As a result, it is awkward for users tezay
actly what language their application is written in, difficior tool
builders to know which extensions they should support, and i
possible for teachers to know which extensions they shaadht.

A new standard, covering the extensions that are heavilgl irse
industry, will solve these problems—for the time being aiske A

grams that work. It was precisely this quirky elegance ttteaeted
many of us to the field. Back in the early '80s, purely funcéibn
languages might have been radical and elegant, but theyalsere
laughably impractical: they were slow, took lots of memamgd
had no input/output. Things are very different now! We hadighat
Haskell has contributed to that progress, by sticking reselessly
to the discipline of purity, and by building a critical madsrgerest
and research effort behind a single language.

Purely functional programming is not necessarily the Riglay

to write programs. Nevertheless, beyond our instinctiaetion

to the discipline, many of us were consciously making a long-
term bet that principled control of effects would ultimgtéurn

out to be important, despite the dominance of effects-bgtdein
mainstream languages.

Whether that bet will truly pay off remains to be seen. But we
can already see convergence. At one end, the purely fumttion
community has learnt both the merit of effects, and at leasteay

to tame them. At the other end, mainstream languages ardiaglop
more and more declarative constructs: comprehensionajats,

new committee has been formed to design the new language, apdatabase query expressions, first-class functions, anel lnesides.

propriately named Haskél{Haskell-prime), and the Haskell com-
munity is heavily engaged in public debate on the featurdseto

included or excluded. When the new standard is completeillit w
give Haskell a form that is tempered by real-world use.

Much energy has been spent recently on performance. Onte ligh
hearted sign of that is Haskell’s ranking in the Great Corapuan-
guage Shoototft. The shootout is a benchmarking web site where
over thirty language implementations compete on eightéféer-d
ent benchmarks, with points awarded for speed, memoryesfiigi

We expect this trend to continue, driven especially by thedgof
parallelism, which punishes unrestricted effects cruelly

One day, Haskell will be no more than a distant memory. But we
believe that, when that day comes, the ideas and technifaes t
nurtured will prove to have been of enduring value througgirth
influence on languages of the future.

14. Acknowledgements

and concise code. Anyone can upload new versions of the bench The Haskell community is open and vibrant, and many, many peo

mark programs to improve their favourite language’s ragkand
early in 2006 the Haskell community began doing just thateWo
eryone’s amazement, despite a rather poor initial placgroarthe
10th of February 2006 Haskell and GHC occupied the first pbece
the list! Although the shootout makes no pretence to be asfice
comparison, this does show that competitive performance\is
achievable in Haskell—the inferiority complex over perfance
that Haskell users have suffered for so long seems now roesgla

Part of the reason for this lies in the efficient new librattest the
growing community is developing. For exam@eta.ByteString
(by Coultts, Stewart and Leshchinskiy) represents strisgbyte
vectors rather than lists of characters, providing the siaeeface
but running between one and two orders of magnitude fagdter. |
achieves this partly thanks to an efficient representation,also
by using GHC'’s rewrite rules to program the compiler’s ofisien,

28Seehttp://shootout.alioth.debian.org

ple have contributed to the language design beyond those men
tioned in our paper.

The members of the Haskell Committee played a particulanly i
portant role, however. Here they are, with their affiliaodur-
ing the lifetime of the committee, and identifying those who
served as Editor for some iteration of the language: Arviitiy,
Lennart Augustsson (Chalmers University), Dave Bartonti@i
Corp), Richard Bird (University of Oxford), Brian Boutel i3foria
University of Wellington), Warren Burton (Simon Fraser Ui
sity), Jon Fairbairn (University of Cambridge), Josephdrélsos
Alamos National Laboratory), Andy Gordon (University of i@a
bridge), Maria Guzman (Yale University), Kevin Hammondifed
tor] (University of Glasgow), Ralf Hinze (University of Baj, Paul
Hudak [editor] (Yale University), John Hughes [editor] (Mersity

of Glasgow, Chalmers University), Thomas Johnsson (Chame
University), Mark Jones (Yale University, University of Ning-
ham, Oregon Graduate Institute), Dick Kieburtz (Oregondede

Institute), John Launchbury (University of Glasgow, Oned@érad-
uate Institute), Erik Meijer (Utrecht University), Rishiy Nikhil
(MIT), John Peterson [editor] (Yale University), Simon Ray
Jones [editor] (University of Glasgow, Microsoft Reseatdh),
Mike Reeve (Imperial College), Alastair Reid (Universitiy®las-
gow, Yale University), Colin Runciman (University of Yorkhilip
Wadler [editor] (University of Glasgow), David Wise (India Uni-
versity), and Jonathan Young (Yale University).

lel Languages and Architectures, Europe) Conference, Eind
hoven Springer Verlag LNCS.

Atkins, D., Ball, T., Bruns, G., and Cox, K. (1999). Mawl: A
domain-specific language for form-based serviceleEE
Transactions on Software Engineerjr$H(3):334—346.

Augustsson, L. (1984). A compiler for lazy ML. In (LFP84, 198
pages 218-227.

We also thank those who commented on a draft of this paper, Augustsson, L. (1998). Cayenne — a language with dependent

or contributed their recollections: Thiaggo Arrais, LennAu-
gustsson, Dave Bayer, Alistair Bayley, Richard Bird, JaBes
stock, Warren Burton, Paul Callahan, Michael Cartmell, &bb
Dockins, Susan Eisenbach, Jon Fairbairn, Tony Field, Jerem
Gibbons, Kevin Glynn, Kevin Hammond, Graham Hutton, Jo-

han Jeuring, Thomas Johnsson, Mark Jones, Jevgeni Kabanov,

John Kraemer, Ralf Lammel, Jan-Willem Maessen, Michael Ma
honey, Ketil Malde, Evan Martin, Paolo Martini, Conor McB8ei,
Greg Michaelson, Neil Mitchell, Ben Moseley, Denis Moskvin
Russell O’Connor, Chris Okasaki, Rex Page, Andre Pang, Will
Partain, John Peterson, Benjamin Pierce, Bernie Pope, Beeg
stall, Alberto Ruiz, Colin Runciman, Kostis Sagonas, Amsdre
Sicard, Christian Sievers, Ganesh Sittampalam, Don Stedee
Stoy, Peter Stuckey, Martin Sulzmann, Josef SvenningsSen,
mon Thompson, David Turner, Jared Updike, Michael Vaniar, J
nis Voigtlander, Johannes Waldmann, Malcolm Wallace ch&tl
Wand, Eric Willigers, and Marc van Woerkom.

Some sections of this paper are based directly on material co
tributed by Lennart Augustsson, Clifford Beshers, Pauldggian,
Mark Carroll, Mark Jones, John Launchbury, Rishiyur Nikhil
David Roundy, Audrey Tang, and David Turner. We thank them
very much for their input. We would also like to give our peniiar
thanks to Bernie Pope and Don Stewart, who prepared theitime |
given in Figure 2.

Finally, we thank the program committee and referees of HOIPL

References

Achten, P. and Peyton Jones, S. (2000). Porting the CleaecObj
1/0 library to Haskell. In Mohnen, M. and Koopman, P., ed-
itors, Proceedings of the 12th International Workshop on the
Implementation of Functional Languages, Aachen (IFL'00),
selected papersiumber 2011 in Lecture Notes in Computer
Science, pages 194-213. Springer.

Achten, P. and Plasmeijer, R. (1995). The ins and outs ohdl€a
Journal of Functional Programming(1):81-110.

Achten, P., van Groningen, J., and Plasmeijer, M. (1992)ghHi
level specification of I/O in functional languages. In (Labn
bury and Sansom, 1992), pages 1-17.

Angelov, K. and Marlow, S. (2005). Visual Haskell: a fullafeired
Haskell development environment. Rroceedings of ACM
Workshop on Haskell, TallinrTallinn, Estonia. ACM.

Appel, A. and MacQueen, D. (1987). A standard ML compiler.
In Kahn, G., editorProceedings of the Conference on Func-
tional Programming and Computer Architecture, Portland
LNCS 274, Springer Verlag.

Arts, T., Hughes, J., Johansson, J., and Wiger, U. (20063tinge
telecoms software with quviq quickcheck. In Trinder, P.,

editor, ACM SIGPLAN Erlang WorkshgPortland, Oregon.
ACM SIGPLAN.

Arvind and Nikhil, R. (1987). Executing a program on the MIT
tagged-token dataflow architecture. Pnmoc PARLE (Paral-

types. In (ICFP98, 1998), pages 239-250.

Baars, A., Lh, A., and Swierstra, D. (2004). Parsing penmnat
phrasesJournal of Functional Programmindl4:635-646.

Baars, A. L. and Swierstra, S. D. (2002). Typing dynamic rgpi
In (ICFP02, 2002), pages 157-166.

Backus, J. (1978a). Can programming be liberated from time vo
Neumann styleZ€ommunications of the ACN1(8).

Backus, J. (1978b). Can programming be liberated from the vo
Neumann style? A functional style and its algebra of pro-
grams.Communications of the ACN1(8):613—41.

Barendsen, E. and Smetsers, S. (1996). Uniqueness typifupfo
tional languages with graph rewriting semantibtathemati-
cal Structures in Computer Sciend@579-612.

Barron, D., Buxton, J., Hartley, D., Nixon, E., and Strach@y
(1963). The main features of cplThe Computer Journal
6(2):134-143.

Barth, P., Nikhil, R., and Arvind (1991). M-structures: estling a
parallel, non-strict functional language with state. IrgHes,
R., editor ACM Conference on Functional Programming and
Computer Architecture (FPCA'91yolume 523 ofLecture
Notes in Computer Sciengeages 538-568. Springer Verlag,
Boston.

Barton, D. (1995). Advanced modeling features of MHDL Plro-
ceedings of International Conference on Electronic Harcwa
Description Languages

Bird, R. and Paterson, R. (1999). De Bruijn notation as aetkest
datatype Journal of Functional Programming(1):77-91.

Bird, R. and Wadler, P. (1988)Introduction to Functional Pro-
gramming Prentice Hall.

Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (12883:
Hardware design in haskell. International Conference on
Functional Programmingpages 174-184.

Bloss, A. (1988).Path Analysis: Using Order-of-Evaluation Infor-
mation to Optimize Lazy Functional LanguagéhD thesis,
Yale University, Department of Computer Science.

Bloss, A., Hudak, P., and Young, J. (1988a). Code optinonati
for lazy evaluation. Lisp and Symbolic Computation: An
International Journal 1(2):147-164.

Bloss, A., Hudak, P., and Young, J. (1988b). An optimizingneo
piler for a modern functional languag&he Computer Jour-
nal, 31(6):152-161.

Blott, S. (1991). Type ClassesPhD thesis, Department of Com-
puting Science, Glasgow University.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E
Randall, K. H., and Zhou, Y. (1996). Cilk: An efficient multi-
threaded runtime systerdournal of Parallel and Distributed
Computing 37(1):55-69.

Boquist, U. (1999).Code Optimisation Techniques for Lazy Func-
tional Languages PhD thesis, Chalmers University of Tech-

nology, Sweden.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. §.99
Making the future safe for the past: Adding genericity to the
Java programming language. In Chambers, C., edkGiV
Symposium on Object Oriented Programming: Systems, Lan-
guages, and Applications (OOPSL.Arges 183-200, Van-
couver, BC.

Brus, T., van Eckelen, M., van Leer, M., and Plasmeijer, M8(2).
Clean — a language for functional graph rewriting. In Kahn,
G., editor, Functional Programming Languages and Com-
puter Architecturepages 364—384. LNCS 274, Springer Ver-
lag.

Burge, W. (1975).Recursive Programming Techniqueaddison
Wesley.

Burstall, R. (1969). Proving properties of programs by cttrtal
induction. The Computer Journapages 41-48.

Burstall, R. (1977). Design considerations for a functloma-
gramming language. Ifhe Software Revolutioinfotech.

Burstall, R. and Darlington, J. (1977). A transformatiostsyn for
developing recursive program3ACM 24(1):44-67.

Burstall, R. M., MacQueen, D. B., and Sannella, D. T. (1980).

HOPE: An experimental applicative language Gonference
Record of the 1980 LISP Conferenpages 136-143.

Burton, W., Meijer, E., Sansom, P., Thompson, S., and WaBler
(1996). Views: An extension to Haskell pattern matching,
http://haskell.org/development/views.html.

Callaghan, P. (1998)An Evaluation of LOLITA and Related Nat-
ural Language Processing SystenihD thesis, Department
of Computer Science, University of Durham.

Carlier, S. and Bobbio, J. (2004). hop.

Carlson, W., Hudak, P., and Jones, M. (1993). An experimsingu
Haskell to prototype “geometric region servers” for Navy

command and control. Research Report 1031, Department

of Computer Science, Yale University.

Carlsson, M. and Hallgren, T. (1993). Fudgets — a graphisaf u
interface in a lazy functional language. In (FPCA93, 1993),
pages 321-330.

Chakravarty, M. (1999a). G> Haskell: yet another interfacing
tool. In Koopman, P. and Clack, C., editoisfernational
Workshop on Implementing Functional Languages (IFL/99)
number 1868 in Lecture Notes in Computer Science, Lochem,
The Netherlands. Springer Verlag.

Chakravarty, M. (1999b). Lazy lexing is fast. In Middeldp#a.
and Sato, T., editorourth Fuji International Symposium
on Functional and Logic Programmind.ecture Notes in
Computer Science. Springer Verlag.

Chakravarty, M., editor (2002)Proceedings of the 2002 Haskell
Workshop, Pittsburgh

Chakravarty, M., Keller, G., and Peyton Jones, S. (2005a&s0A
ciated type synonyms. IACM SIGPLAN International Con-
ference on Functional Programming (ICFP’QSallinn, Es-
tonia.

Chakravarty, M., Keller, G., Peyton Jones, S., and Marlow, S
(2005b). Associated types with class. ACM Symposium
on Principles of Programming Languages (POPL'0OBLCM
Press.

Chen, K., Hudak, P., and Odersky, M. (1992). Parametric type
classes. IrProceedings of ACM Conference on Lisp and

Functional Programmingpages 170-181. ACM.

Cheney, J. and Hinze, R. (2003). First-class phantom typd€1S
TR2003-1901, Cornell University.

Cheong, M. H. (2005) Functional Programming and 3D Games
Undergraduate thesis, University of New South Wales.

Church, A. (1941). The calculi of lambda-conversionnals of
Mathematics Studie$.

Claessen, K. (2004). Parallel parsing processesirnal of Func-
tional Programming 14:741-757.

Claessen, K. and Hughes, J. (2000). QuickCheck: a lightwéagl
for random testing of Haskell programs. In (ICFP00, 2000),
pages 268-279.

Claessen, K. and Hughes, J. (2002). Testing monadic code wit
QuickCheck. In (Chakravarty, 2002).

Claessen, K. and Sands, D. (1999). Observable sharing fiar fu
tional circuit description. In Thiagarajan, P. and Yap, &li-
tors, Advances in Computing Science (ASIAN’99); 5th Asian
Computing Science Conferendeecture Notes in Computer
Science, pages 62—73. Springer Verlag.

Cooper, G. and Krishnamurthi, S. (2006). Embedding dynamic
dataflow in a call-by-value language. 16th European Sym-
posium on Programmingvolume 3924 ofLNCS Springer-
Verlag.

Courtney, A. (2004). Modelling User Interfaces in a Functional
Language PhD thesis, Department of Computer Science,
Yale University.

Courtney, A. and Elliott, C. (2001). Genuinely functionalen
interfaces. IrProc. of the 2001 Haskell Workshgpages 41—
69.

Curry, H. and Feys, R. (1958Combinatory Logic, Vol. 1North-
Holland, Amsterdam.

Damas, L. and Milner, R. (1982). Principal type-schemes for
functional programs. I€onference Record of the 9th Annual
ACM Symposium on Principles of Programming Languages
pages 207-12, New York. ACM Press.

Danielsson, N. A., Hughes, J., Jansson, P., and Gibbor0@6).
Fast and loose reasoning is morally correstGPLAN Not.
41(1):206-217.

Darlington, J., Henderson, P., and Turner, D. (1982dvanced
Course on Functional Programming and its Applications
Cambridge University Press.

Darlington, J. and Reeve, M. (1981). ALICE — a multiproces-
sor reduction machine for the parallel evaluation of agplic
tive languages. IfProc Conference on Functional Program-
ming Languages and Computer Architecture, Portsmouth,
New Hampshirgpages 66-76. ACM.

Davis, A. (1977). The architecture of ddml: a recursivelyict
tured data driven machine. Technical Report UUCS-77-113,
University of Utah.

de la Banda, M. G., Demoen, B., Marriott, K., and Stuckey, P.
(2002). To the gates of HAL: a HAL tutorial. IRroceed-
ings of the Sixth International Symposium on Functional and
Logic ProgrammingSpringer Verlag LNCS 2441.

Diatchki, 1., Jones, M., and Hallgren, T. (2002). A formaksp
fication of the Haskell 98 module system. In (Chakravarty,
2002).

Dijkstra, E. (1981). Trip report E.W. Dijkstra, NewcastlE9-25
July 1981. Dijkstra working note EWD798.

Dybjer, P. (1991). Inductive sets and families in Martiofls”
type theory. In Huet, G. and Plotkin, G., editotsygical
Frameworks Cambridge University Press.

Dybvig, K., Peyton Jones, S., and Sabry, A. (2005). A monadic
framework for delimited continuations. To appear in the
Journal of Functional Programming

Elliott, C. (1996). A brief introduction to activevrml. Thnical
Report MSR-TR-96-05, Microsoft Research.

Elliott, C. (1997). Modeling interactive 3D and multime@iaima-
tion with an embedded language. Pnoceedings of the first
conference on Domain-Specific Languagesges 285—296.
USENIX.

Elliott, C. and Hudak, P. (1997). Functional reactive artiora In
International Conference on Functional Programmipages
263-273.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (4RI bag:
A high level framework for interactive, animated 3d grahic
applications. IrProceedings of SIGGRAPH '9pages 421—
434. ACM SIGGRAPH.

Ennals, R. and Peyton Jones, S. (2003). Optimistic evaluati
an adaptive evaluation strategy for non-strict programs. |
(ICFP03, 2003).

Evans, A. (1968). Pal—a language designed for teaching gnog
ming linguistics. InProceedings ACM National Conference

Fairbairn, J. (1982). Ponder and its type system. TechRiepbrt
TR-31, Cambridge University Computer Lab.

Fairbairn, J. (1985). Design and implementation of a sinyped

language based on the lambda-calculus. Technical Report 75

University of Cambridge Computer Laboratory.

Faxen, K.-F. (2002). A static semantics for Haskelournal of
Functional Programming12(4&5).

Field, A., Hunt, L., and While, R. (1992). The semantics and
implementation of various best-fit pattern matching scheeme
for functional languages. Technical Report Doc 92/13, Dept
of Computing, Imperial College.

Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S. (1998
H/Direct: a binary foreign language interface for Haskell.
In ACM SIGPLAN International Conference on Functional
Programming (ICFP’98) volume 34(1) ofACM SIGPLAN
Notices pages 153-162. ACM Press, Baltimore.

Finne, S. and Peyton Jones, S. (1995). Composing Haggryom
5th Eurographics Workshop on Programming Paradigms in
Graphics, Maastricht

Ford, B. (2002). Packrat parsing: simple, powerful, laayear
time. In (ICFP02, 2002), pages 36—47.

FPCA93 (1993). ACM Conference on Functional Programming
and Computer Architecture (FPCA'93Jophenhagen. ACM.

FPCA95 (1995). ACM Conference on Functional Programming
and Computer Architecture (FPCA'95)a Jolla, California.
ACM.

Friedman, D. and Wise, D. (1976). CONS should not evaluate it
arguments.Automata, Languages, and Programmipgges
257-281.

Frost, R. (2006). Realization of natural-language int=$aus-

ing lazy functional programmingACM Computing Surveys
38(4). Article No. 11.

Gaster, B. (1998).Records, Variants, and Qualified TypeBPhD
thesis, Department of Computer Science, University of Not-

tingham.

Gaster, B. R. and Jones, M. P. (1996). A polymorphic typeesyst
for extensible records and variants. Technical Report R-9
3, Department of Computer Science, University of Notting-
ham.

Gill, A. (2000). Debugging Haskell by observing intermedidata
structures. IrHaskell WorkshopACM SIGPLAN.

Gill, A., Launchbury, J., and Peyton Jones, S. (1993). Atstidrto
deforestation. IPACM Conference on Functional Program-
ming and Computer Architecture (FPCA'9®Rages 223232,
Cophenhagen. ACM Press. ISBN 0-89791-595-X.

Girard, J.-Y. (1990). The system F of variable types: fiftgears
later. In Huet, G., editod_ogical Foundations of Functional
Programming Addison-Wesley.

Glynn, K., Stuckey, P., and Sulzmann, M. (2000). Type classel
constraint handling rules. IRirst Workshop on Rule-Based
Constraint Reasoning and Programming

Godel, K. (1931).Uber formal unentscheidbare satze der principia
mathematica und verwandter Systeme Monatshefte fir
Mathematik und Physjld8:173-198. Pages 596-616 of (van
Heijenoort, 1967).

Gordon, M., Milner, R., and Wadsworth, C. (1979Edinburgh
LCF. Springer Verlag LNCS 78.

Graham, P. (2004). Beating the averagedd&tkers and Painters
O'Reilly.

Graunke, P., Krishnamurthi, S., Hoeven, S. V. D., and Fsglei M.
(2001). Programming the web with high-level programming
languages. IrProceedings 10th European Symposium on
Programming pages 122-136. Springer Verlag LNCS 2028.

Hall, C. and O’Donnell, J. (1985). Debugging in a side-effec
free programming environment. [Rroc ACM Symposium
on Language Issues and Programming Environmeh@M,
Seattle.

Hallgren, T. (2001). Fun with functional dependencies.Phoc
Joint CS/CE Winter Meeting, Chalmers Univerity, Varberg,
Sweden

Hallgren, T., Jones, M. P., Leslie, R., and Tolmach, A. (9005
A principled approach to operating system construction in
Haskell. InICFP '05: Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming
pages 116-128, New York, NY, USA. ACM Press.

Hanus, M., Kuchen, H., and Moreno-Navarro, J. (1995). Cukry
truly functional logic language. IRroceedings of the ILPS
'95 Postconference Workshop on Visions for the Future of
Logic Programming

Harris, T., Marlow, S., Peyton Jones, S., and Herlihy, M.
(2005). Composable memory transactions. A@GM Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’05)

Harrison, W. and Kamin, S. (1998). Modular compilers based o
monad transformers. IRroc International Conference on
Computer Languagepages 122—-131.

Hartel, P., Feeley, M., Alt, M., Augustsson, L., Bauman \Weis,
P., and Wentworth, P. (1996). Pseudoknot: a float-intensive
benchmark for functional compilersJournal of Functional
Programming 6(4).

Haskell01 (2001). Proceedings of the 2001 Haskell Workshop,
Florence

Haskell04 (2004). Proceedings of ACM Workshop on Haskell,
Snowbird Snowbird, Utah. ACM.

Heeren, B., Hage, J., and Swierstra, S. (2003a). Scriptiadype
inference process. In (ICFP03, 2003), pages 3-14.

Heeren, B., Leijen, D., and van I1Jzendoorn, A. (2003b). tielifor
learning Haskell. INPACM Sigplan 2003 Haskell Workshop
pages 62 — 71, New York. ACM Press.

Henderson, P. (1982). Functional geometryPmc ACM Sympo-
sium on Lisp and Functional Programmingages 179-187.
ACM.

Henderson, P. and Morris, J. (1976). A lazy evaluator. Inn
Proceedings of 3rd International Conference on Principlés
Programming Languages (POPL'7&)ages 95-103.

Herington, D. (2002).
sourceforge.net.

Hinze, R. (2000). A new approach to generic functional progr
ming. In (POPLOO, 2000), pages 119-132.

Hinze, R. (2001). Manufacturing datatypeeurnal of Functional
Programming 1.

Hinze, R. (2003). Fun with phantom types. In Gibbons, J. and
de Moor, O., editorsThe Fun of Programmingpages 245—
262. Palgrave.

Hinze, R. (2004). Generics for the massesAGCM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’04)
Snowbird, Utah. ACM.

Hinze, R., Jeuring, J., and Lh, A. (2006). Comparing apgreato
generic programming in Haskell. @eneric Programming,
Advanced Lectured NCS. Springer-Verlag.

Hinze, R. and Peyton Jones, S. (2000). Derivable type dasse
In Hutton, G., editorProceedings of the 2000 Haskell Work-
shop, Montreal Nottingham University Department of Com-
puter Science Technical Report NOTTCS-TR-00-1.

Hudak, P. (1984a). ALFL Reference Manual and Programmer’s
Guide. Research Report YALEU/DCS/RR-322, Second Edi-
tion, Yale University, Dept. of Computer Science.

Hunit home page.http://hunit.

Hudak, P. (1984b). Distributed applicative processingesys —
project goals, motivation and status report. Research iRepo
YALEU/DCS/RR-317, Yale University, Dept. of Computer
Science.

Hudak, P. (1989). Conception, evolution, and applicatibfunc-
tional programming languagesACM Computing Surveys
21(3):359-411.

Hudak, P. (1996a). Building domain-specific embedded laggs.
ACM Computing Survey28A.

Hudak, P. (1996b). Haskore music tutorial acond International
School on Advanced Functional Programmipgges 38-68.
Springer Verlag, LNCS 1129.

Hudak, P. (1998). Modular domain specific languages andtool
In Proceedings of Fifth International Conference on Software
Reusepages 134-142. IEEE Computer Society.

Hudak, P. (2000).The Haskell School of Expression — Learning
Functional Programming Through MultimediaCambridge
University Press, New York.

Hudak, P. (2003). Describing and interpreting music in H#iskn
Gibbons, J. and de Moor, O., editoBhe Fun of Program-
ming chapter 4. Palgrave.

Hudak, P. (2004). Polymorphic temporal mediaPioceedings of
PADL'04: 6th International Workshop on Practical Aspects
of Declarative Languagespringer Verlag LNCS.

Hudak, P., Courtney, A., Nilsson, H., and Peterson, J. (ROA8
rows, robots, and functional reactive programming. InJeur
ing, J. and Jones, S. P., editofslvanced Functional Pro-
gramming, 4th International Schqalolume 2638 of_ecture
Notes in Computer Scienc8pringer-Verlag.

Hudak, P., Makucevich, T., Gadde, S., and Whong, B. (1996).
Haskore music notation — an algebra of musitournal of
Functional Programming6(3):465—483.

Hudak, P. and Sundaresh, R. (1989). On the expressive-
ness of purely-functional I/O systems. Research Report
YALEU/DCS/RR-665, Department of Computer Science,
Yale University.

Hudak, P. and Young, J. (1986). Higher-order strictnesbyaisan
untyped lambda calculus. 'WCM Symposium on Principles
of Programming Languagepages 97-109.

Huet, G. (1975). A unification algorithm for typed lambda-
calculus.Theoretical Computer Scienck22-58.

Huet, G. and Levy, J. (1979). Call by need computations in non
ambiguous linear term-rewriting systems. Report 359, IN-
RIA.

Hughes, J. (1989). Why functional programming mattefihe
Computer Journal32(2):98-107.

Hughes, J. (1995). The design of a pretty-printing libranyJeur-
ing, J. and Meijer, E., editorg\dvanced Functional Program-
ming, pages 53-96. Springer Verlag, LNCS 925.

Hughes, J. (2000). Generalising monads to arro@ience of
Computer Programming37:67-111.

Hughes, R. (1983). The Design and Implementation of Pro-
gramming LanguagesPh.D. thesis, Programming Research
Group, Oxford University.

Hutton, G. and Meijer, E. (1998). Monadic parsing in Haskell
Journal of Functional Programming3:437—-444.

ICFP0OO (2000). ACM SIGPLAN International Conference on
Functional Programming (ICFP’0QMontreal. ACM.

ICFP02 (2002). ACM SIGPLAN International Conference on
Functional Programming (ICFP’02)Pittsburgh. ACM.

ICFP0O3 (2003). ACM SIGPLAN International Conference
on Functional Programming (ICFP’03)Uppsala, Sweden.
ACM.

ICFP97 (1997). ACM SIGPLAN International Conference on
Functional Programming (ICFP’97)Amsterdam. ACM.

ICFP98 (1998). ACM SIGPLAN International Conference on
Functional Programming (ICFP’98)volume 34(1) ofACM
SIGPLAN NoticesBaltimore. ACM.

ICFP99 (1999). ACM SIGPLAN International Conference on
Functional Programming (ICFP’99)Paris. ACM.

Jansson, P. and Jeuring, J. (1997). PolyP — a polytypic anogr
ming language extension. f#th ACM Symposium on Princi-
ples of Programming Languages (POPL'9@ages 470482,
Paris. ACM.

Jansson, P. and Jeuring, J. (1999). Polytypic compactpyiand
parsing. InEuropean Symposium on Programminglume
1576 ofLecture Notes in Computer Scienpages 273-287.
Springer-Verlag.

Johann, P. and Voigtlander, J. (2004). Free theorems jorésence
of seq. INACM Symposium on Principles of Programming
Languages (POPL'04pages 99-110, Charleston. ACM.

Johnson, S. (1984)Synthesis of Digital Designs from Recursive
Equations ACM Distinguished Dissertation. MIT Press.

Johnsson, T. (1984). Efficient compilation of lazy evaloati
In Proc SIGPLAN Symposium on Compiler Construction,
Montreal ACM.

Jones, M. (1991). Type inference for qualified types. PRG-
TR-10-91, Programming Research Group, Oxford, Oxford
University.

Jones, M. (1992). A theory of qualified types. European Sym-
posium on Programming (ESOP’92jumber 582 in Lecture

Notes in Computer Science, Rennes, France. Springer Verlag

Jones, M. (1993). A system of constructor classes: overigaahd
implicit higher-order polymorphism. In (FPCA93, 1993).

Jones, M. (1994).Qualified Types: Theory and PracticeCam-
bridge University Press.

Jones, M. (1995). Simplifying and improving qualified typda
(FPCA95, 1995).

Jones, M. (1999). Typing Haskell in Haskell. In (Meijer,
1999). Available atftp://ftp.cs.uu.nl/pub/RUU/CS/
techreps/CS-1999/1999-28.pdf.

Jones, M. (2000). Type classes with functional dependsndie
European Symposium on Programming (ESOP,’@@mber
1782 in Lecture Notes in Computer Science, Berlin, Ger-
many. Springer Verlag.

Jones, M. and Duponcheel, L. (1994). Composing monads.-Tech
nical Report YALEU/DCS/RR-1004, Yale Univesrity.

Jouannaud, J.-P., editor (1985ACM Conference on Functional
Programming and Computer Architecture (FPCA'85pI-
ume 201 oflLecture Notes in Computer Scienddancy,
France. Springer-Verlag.

Kaes, S. (1988). Parametric overloading in polymorphigpam-
ming languages. IRroceedings of the 2nd European Sympo-
sium on Programming

Keller, R., Lindstrom, G., and Patil, S. (1979). A looselyupted
applicative multiprocessing system. AFIPS Conference
Proceedingspages 613-622.

Kelsey, R., Clinger, W., and Rees, J. (1998). Revisegort on the
algorithmic language Schem&IGPLAN Notices33(9):26—
76.

Kiselyov, O., Lmmel, R., and Schupke, K. (2004). Stronglyest
heterogeneous collections. In (Haskell04, 2004), pages 96
107.

Kiselyov, O. and Shan, K. (2004). Implicit configurations, type
classes reflect the values of types. In (Haskell04, 2004 pa
33-44.

Knuth, D. (1984).
27(2):97-111.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., addms,
N. (1986). Orbit: an optimizing compiler for Scheme.
SIGPLAN '86 Symposium on Compiler Constructipages
219-233. ACM. Published as SIGPLAN Notices Vol. 21, No.
7, July 1986.

Kranz, D., Kesley, R., Rees, J., Hudak, P., Philbin, J., addms,
N. (2004). Retrospective on: Orbit: an optimizing com-

Literate programming.Computer Journal

In

piler for Scheme.ACM SIGPLAN Notices, 20 Years of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (1979-1999): A Selecti8®(4).

Lammel, R. and Peyton Jones, S. (2003). Scrap your baalerpl
a practical approach to generic programming.AlBM SIG-
PLAN International Workshop on Types in Language Design
and Implementation (TLDI'03)pages 26—37, New Orleans.
ACM Press.

Lammel, R. and Peyton Jones, S. (2005). Scrap your boiler-
plate with class: Extensible generic functions.ABM SIG-
PLAN International Conference on Functional Programming
(ICFP’05), Tallinn, Estonia.

Landin, P. (1966). The next 700 programming langua@snmu-
nications of the ACM9(3):157-166.

Landin, P. J. (1964). The mechanical evaluation of expoessi
Computer Journal6(4):308-320.

Laufer, K. (1996). Type classes with existential typdsurnal of
Functional Programming6(3):485-517.

Laufer, K. and Odersky, M. (1994). Polymorphic type infere
and abstract data typeACM Transactions on Programming
Languages and Systeni$(5):1411-1430.

Launchbury, J. (1993). Lazy imperative programming. Pioc
ACM Sigplan Workshop on State in Programming Languages,
Copenhagen (available as YALEU/DCS/RR-968, Yale Uni-
versity) pages pp46-56.

Launchbury, J. and Peyton Jones, S. (1995). State in Haskei
and Symbolic Computatio®(4):293-342.

Launchbury, J. and Sabry, A. (1997). Monadic state: Axioraat
tion and type safety. In (ICFP97, 1997), pages 227-238.

Launchbury, J. and Sansom, P., editors (1992Functional
Programming, Glasgow 1992Workshops in Computing.
Springer Verlag.

Leijen, D. and Meijer, E. (1999). Domain-specific embeddewh-c
pilers. InProc 2nd Conference on Domain-Specific Lan-
guages (DSL'99)pages 109-122.

Lewis, J., Shields, M., Meijer, E., and Launchbury, J. (200én-
plicit parameters: dynamic scoping with static types.
(POPLOO, 2000).

LFP84 (1984) ACM Symposium on Lisp and Functional Program-
ming (LFP’84) ACM.

Li, H., Reinke, C., and Thompson, S. (2003). Tool support for
refactoring functional programs. In Jeuring, J., editng-
ceedings of the 2003 Haskell Workshop, Uppsala

Liang, S., Hudak, P., and Jones, M. (1995). Monad transftgme
and modular interpreters. 22nd ACM Symposium on Princi-
ples of Programming Languages (POPL'9pages 333—343.
ACM.

Lindig, C. (2005). Random testing of C calling conventioris.
AADEBUG pages 3-12.

Lloyd, J. W. (1999). Programming in an integrated functicarad
logic language. Journal of Functional and Logic Program-
ming

Loh, A., Clarke, D., and Jeuring, J. (2003). Dependengiest
Generic Haskell. In (ICFP03, 2003), pages 141-152.

Long, D. and Garigliano, R. (1993)Reasoning by Analogy and
Causality (A Model and ApplicationEllis Horwood.

In

Luth, C. and Ghani, N. (2002). Composing monads using abpro
ucts. In (ICFP02, 2002), pages 133-144.

Maessen, J.-W. (2002). Eager Haskell: Resource-boundszliex
tion yields efficient iteration. 1The Haskell Workshop, Pitts-
burgh

Major, F. and Turcotte, M. (1991). The combination of symbol
and numerical computation for three-dimensional modgllin
of RNA. SCIENCE 253:1255-1260.

Marlow, S., Peyton Jones, S., and Thaller, W. (2004). BEtend
the Haskell Foreign Function Interface with concurrenay. |
Proceedings of Haskell Workshop, Snowbird, Uzdges 57—
68.

Matthews, J., Cook, B., and Launchbury, J. (1998). Microps
sor specification in Hawk. Iinternational Conference on
Computer Languagepages 90-101.

McBride, C. (2002). Faking it: Simulating dependent types i
Haskell. Journal of Functional Programmindl2(4&5):375—
392.

McCarthy, J. L. (1960). Recursive functions of symbolic e
sions and their computation by machine, Pa€@bdmmunica-
tions of the ACM3(4):184-195. The original Lisp paper.

Meijer, E., editor (1999).Proceedings of the 1999 Haskell Work-
shop number UU-CS-1999-28 in Technical Reports. Avail-
able at ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/
CS-1999/1999-28 . pdf.

Meijer, E. (2000). Server side web scripting in Haskdburnal of
Functional Programming10(1):1-18.

Meijer, E. and Claessen, K. (1997). The design and impleatient
of Mondrian. In Launchbury, J., editoHaskell Workshop
Amsterdam, Netherlands.

Milner, R. (1978). A theory of type polymorphism in progranmgn
JCSS$13(3).

Milner, R. (1984). A proposal for Standard ML. &CM Sympo-
sium on LISP and Functional Programminuages 184—197.

Milner, R. and Tofte, M. (1990).The Definition of Standard ML
MIT Press.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (199The
Definition of Standard ML (RevisedJlIT Press, Cambridge,
Massachusetts.

Mitchell, J. and Plotkin, G. (1985). Abstract types haveseitial
type. InTwelfth Annual ACM Symposium on Principles of
Programming Languages (POPL'8§ages 37-51.

Moggi, E. (1989). Computational lambda calculus and monkds
Logic in Computer Science, CalifornitEEEE.

Moggi, E. (1991). Notions of computation and monatigforma-
tion and Computation93:55-92.

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber, M.
(2001). A functional notation for functional dependencies
In (Haskell01, 2001).

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber, M.
(2002). Functional logic overloading. KWCM Symposium
on Principles of Programming Languages (POPL'0@ages
233-244, Portland. ACM.

Nikhil, R. S. and Arvind (2001)Implicit Parallel Programming in
pH. Morgan Kaufman.

Nilsson, H. and Fritzson, P. (1994). Algorithmic debugdioglazy
functional languages.Journal of Functional Programming

4(3):337-370.

Nilsson, H. and Sparud, J. (1997). The evaluation deperdiae
as a basis for lazy functional debuggirgutomated Software
Engineering 4(2):121-150.

Nordin, T., Peyton Jones, S., and Reid, A. (1997). Green:Card
a foreign-language interface for Haskell. In Launchbury, J
editor,Haskell WorkshopAmsterdam.

Odersky, M. (2006). Changes between Scala version 1.0 @nd 2.
Technical report, EPFL Lausanne.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, Siche-
loud, S., Mihaylov, N., Schinz, M., Stenman, E., and Zenger,
M. (2004). An overview of the Scala programming language.
Technical Report IC/2004/640, EPFL Lausanne.

O’Donnell, J. (1995). From transistors to computer araitee:
teaching functional circuit specification in Hydra. iympo-
sium on Functional Programming Languages in Education
volume 1022 oLLNCS Springer-Verlag.

Ohori, A. (1995). A polymorphic record calculus and its camp
lation. ACM Transactions on Programming Languages and
Systemsl7:844—-895.

Okasaki, C. (1998aPurely functional data structure€Cambridge
University Press.

Okasaki, C. (1998b). Views for Standard ML. ACM SIGPLAN
Workshop on MLBaltimore, Maryland.

Okasaki, C. (1999). From fast exponentiation to squareioestr
an adventure in types. In (ICFP99, 1999), pages 28-35.

Page, R. (2003). Software is discrete mathematics. In (0GFP
2003), pages 79-86.

Page, R. and Moe, B. (1993). Experience with a large scientifi
application in a functional language. In (FPCA93, 1993).

Paterson, R. (2001). A new notation for arrows. literna-
tional Conference on Functional Programmingages 229—
240. ACM Press.

Paterson, R. (2003). Arrows and computation. In Gibbonand.
de Moor, O., editorsThe Fun of Programmingpages 201—
222. Palgrave.

Paulson, L. (2004). Organizing numerical theories usirigragtic
type classesJournal of Automated Reasonirg3(1):29—49.

Perry, N. (1991a). An extended type system supporting potym
phism, abstract data types, overloading and inferenderda
15th Australian Computer Science Conference

Perry, N. (1991b). The Implementation of Practical Functional
Programming Languages Ph.D. thesis, Imperial College,
London.

Peterson, J., Hager, G., and Hudak, P. (1999a). A language fo
declarative robotic programming. limternational Confer-
ence on Robotics and Automation

Peterson, J., Hudak, P., and Elliott, C. (1999b). Lambdadtion:
Controlling robots with Haskell. Ifrirst International Work-
shop on Practical Aspects of Declarative LanguagBis-
PLAN.

Peyton Jones, S. (1987)he Implementation of Functional Pro-
gramming Language<Prentice Hall.

Peyton Jones, S. (2001). Tackling the awkward squad: monadi
input/output, concurrency, exceptions, and foreign-leaugp
calls in Haskell. In Hoare, C., Broy, M., and Steinbrueggen,
R., editors,Engineering Theories of Software Construction,

Marktoberdorf Summer School 2Q00IATO ASI Series,
pages 47-96. 10S Press.

Peyton Jones, S., Eber, J.-M., and Seward, J. (2000). Camngpos
contracts: an adventure in financial engineeringA@M SIG-
PLAN International Conference on Functional Programming
(ICFP’00), pages 280292, Montreal. ACM Press.

Peyton Jones, S., Gordon, A., and Finne, S. (1996). Conturre
Haskell. In23rd ACM Symposium on Principles of Program-
ming Languages (POPL'96pages 295-308, St Petersburg
Beach, Florida. ACM Press.

Peyton Jones, S., Hall, C., Hammond, K., Partain, W., andé&¥ad
P. (1993). The Glasgow Haskell Compiler: a technical
overview. InProceedings of Joint Framework for Informa-
tion Technology Technical Conference, Kepkeges 249-257.
DTI/SERC.

Peyton Jones, S., Jones, M., and Meijer, E. (1997). Typsetas
an exploration of the design space. In Launchbury, J., edito
Haskell workshopAmsterdam.

Peyton Jones, S. and Launchbury, J. (1991).
as first class citizens. In Hughes, R., edita€&M Confer-

ence on Functional Programming and Computer Architecture

(FPCA'91), volume 523 ofLecture Notes in Computer Sci-
ence pages 636—666, Boston. Springer.

Peyton Jones, S., Reid, A., Hoare, C., Marlow, S., and Hesoder
F. (1999). A semantics for imprecise exceptions. AGM

Unboxed values

Rojemo, N. (1995a).Garbage Collection and Memory Efficiency
in Lazy Functional LanguagesPh.D. thesis, Department of
Computing Science, Chalmers University.

Rojemo, N. (1995b). Highlights from nhc: a space-efficieaskell
compiler. In (FPCA95, 1995).

Roundy, D. (2005). Darcs home pagg.tp://wuw.darcs.net.

Runciman, C. and Wakeling, D. (1992).
functional compiler.
pages 203-214.

Runciman, C. and Wakeling, D. (1993). Heap profiling of lazy
functional programs.Journal of Functional Programming
3(2):217-246.

Rjemo, N. and Runciman, C. (1996a). Lag, drag, void, and use:
heap profiling and space-efficient compilation revisited. |
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’96) pages 34-41. ACM, Philadelphia.

Rjemo, N. and Runciman, C. (1996b). New dimensions in heap
profiling. Journal of Functional Programming(4).

Heap profiling a lazy
In (Launchbury and Sansom, 1992),

Sage, M. (2000). FranTk: a declarative GUI language for Hihsk

In (ICFP0O, 2000).

Sansom, P. and Peyton Jones, S. (1995). Time and spacengrofili

for non-strict, higher-order functional languages. 22nd
ACM Symposium on Principles of Programming Languages
(POPL'95), pages 355-366. ACM Press.

Conference on Programming Languages Design and Imple- Schechter, G., Elliott, C., Yeung, R., and Abi-Ezzi, S. @p9

mentation (PLDI'99) pages 25-36, Atlanta. ACM Press.

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Shielils,
(2007). Practical type inference for arbitrary-rank types
Journal of Functional Programming.7:1-82.

Peyton Jones, S. and Wadler, P. (1993). Imperative furaitiomo-
gramming. In20th ACM Symposium on Principles of Pro-
gramming Languages (POPL'93)ages 71-84. ACM Press.

Peyton Jones, S., Washburn, G., and Weirich, S. (2004). Wobb

types: type inference for generalised algebraic data types

Microsoft Research.

Peyton Jones, S. L. (1992). Implementing lazy functionat la

Scholz, E. (1998).

Functional 3D graphics in C++ — with an object-oriented,
multiple dispatching implementation. Proceedings of the
1994 Eurographics Object-Oriented Graphics WorksHhep-
rographics, Springer Verlag.

Scheevel, M. (1984). NORMA SASL manual. Technical report,

Burroughs Corporation Austin Research Center.

Scheevel, M. (1986). NORMA — a graph reduction processor. In

Proc ACM Conference on Lisp and Functional Programming
pages 212-2109.

Imperative streams — a monadic comhinato
library for synchronous programming. In (ICFP98, 1998).

guages on stock hardware: The spineless tagless G-machinescott, D. (1976). Data types as lattic&AM Journal on Comput-

Journal of Functional Programming(2):127—-202.
Pierce, B. (2002)Types and Programming Languagd8IT Press.

Pope, B. (2005). Declarative debugging with Buddha. In Y&he
and Uustalu, T., editorgydvanced Functional Programming,

ing, 5(3):522-587.

Scott, D. and Strachey, C. (1971). Towards a mathematioshise

tics for computer languages. PRG-6, Programming Research
Group, Oxford University.

5th International School, AFP 2004, Tartu, Estonia, August Shapiro, E. (1983)Algorithmic DebuggingMIT Press.

14-21, 2004, Revised Lectureslume 3622 of_ecture Notes
in Computer Scienceépringer.

POPLOO0 (2000)27th ACM Symposium on Principles of Program-
ming Languages (POPL'0pBoston. ACM.

Pottier, F. and Régis-Gianas, Y. (2006). Stratified tyfereance for
generalized algebraic data typesAGM Symposium on Prin-
ciples of Programming Languages (POPL'Q&}harleston.
ACM.

Queinnec, C. (2000).
or, continuations to program web servers. Ifiternational
Conference on Functional Programming

Ranta, A. (2004). Grammatical framewordournal of Functional
Programming 14(2):145-189.

Rees, J. and Clinger, W. (1986). Revised report on the ahgoit
language schem@&CM SIGPLAN Notice1:37-79.

) Sheard, T. and Peyton Jones, S. (2002).
The influence of browsers on evaluators

Sheard, T. (2004). Languages of the future.ABM Conference

on Object Oriented Programming Systems, Languages and
Applicatioons (OOPSLA'04)

Sheard, T. and Pasalic, E. (2004). Meta-programming with-bu

in type equality. InProceedings of the Fourth Interna-
tional Workshop on Logical Frameworks and Meta-languages
(LFM’04), Cork

Template meta-
programming for Haskell. In Chakravarty, M., editéo-
ceedings of the 2002 Haskell Workshop, Pittsburgh

Sheeran, M. (1983).FP — An Algebraic VLSI Design Language

PhD thesis, Programming Research Group, Oxford Univer-
sity.

Sheeran, M. (1984)uFP, a language for VLSI design. Bymp.

on LISP and Functional ProgrammingCM.

Sheeran, M. (2005). Hardware design and functional program
ming: a perfect matchJournal of Universal Computer Sci-
ence 11(7):1135-1158&ttp: //www. jucs.org/jucs_11_
7/hardware_design_and_functional.

Shields, M. and Peyton Jones, S. (2001). Object-orientgd st
overloading for Haskell. IWorkshop on Multi-Language In-
frastructure and Interoperability (BABEL'Olrlorence, Italy.

Shields, M. and Peyton Jones, S. (2002). Lexically scoppd ty
variables. Microsoft Research.

Sinclair, D. (1992). Graphical user intefaces for Haskeln
(Launchbury and Sansom, 1992), pages 252-257.

Singh, S. and Slous, R. (1998). Accelerating Adobe Phofosho
with reconfigurable logic. INEEE Symposium on Field-
Programmable Custom Computing MachinéEEE Com-
puter Society Press.

Somogyi, Z., Henderson, F., and Conway, T. (1996). The di@tu
algorithm of Mercury, an efficient purely declarative logic
programming languagelournal of Logic Programming

Sparud, J. and Runciman, C. (1997). Tracing lazy functioogd-
putations using redex trails. limternational Symposium on
Programming Languages Implementations, Logics, and Pro-
grams (PLILP’97) volume 1292 ofLecture Notes in Com-
puter Sciencepages 291-308. Springer Verlag.

Spivey, M. and Seres, S. (2003). Combinators for logic @ogr
ming. In Gibbons, J. and de Moor, O., editof$)e Fun of
Programming pages 177-200. Palgrave.

Steele, G. (1993). Building interpreters by composing ndsndn
21st ACM Symposium on Principles of Programming Lan-
guages (POPL'94)pages 472-492, Charleston. ACM.

Steele, Jr., G. L. (1978). Rabbit: A compiler for Scheme Hhical
Report Al-TR-474, Artificial Intelligence Laboratory, MJT
Cambridge, MA.

Stosberg, M. (2005). Interview with David Roundy of Darcs on
source controlOSDir News

Stoye, W., Clarke, T., and Norman, A. (1984). Some practical
methods for rapid combinator reduction. In (LFP84, 1984),
pages 159-166.

Strachey, C. (1964). Towards a formal semanticskdnmal Lan-
guage Description Languages for Computer Programming
pages 198-220. North Holland. IFIP Working Conference.

Sulzmann, M. (2003). A Haskell programmer’s guide to
Chameleon. Available aittp://www.comp.nus.edu.sg/
“sulzmann/chameleon/download/haskell.html.

Sulzmann, M. (2006). Extracting programs from type class
proofs. Ininternational Symposium on Principles and Prac-
tice of Declarative Programming (PPDP’0&)ages 97-108,
Venice. ACM.

Sulzmann, M., Duck, G., Peyton Jones, S., and Stuckey, B7J20
Understanding functional dependencies via constraint han
dling rules.Journal of Functional ProgrammingdL.7:83-130.

Sussman, G. and Steele, G. (1975). Scheme — an interpreter fo

extended lambda calculus. Al Memo 349, MIT.

Swierstra, S. and Duponcheel, L. (1996Deterministic, Error-
Correcting Combinator Parserspages 184-207. Number
1129 in Lecture Notes in Computer Science. Springer Verlag,
Olympia, Washington.

Syme, D. (2005). Initialising mutually-referential alzstt objects:
the value recursion challenge. In Benton, N. and Leroy, X.,

editors,Proc ACM Workshop on ML (ML'2005jpages 526,
Tallinn, Estonia.

Taha, W. and Sheard, T. (1997). Multi-stage programmindp wit
explicit annotations. IIACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM '97), volume 32 ofSIGPLAN Noticespages 203—
217. ACM, Amsterdam.

Tang, A. (2005). Pugs home pagectp: //www.pugscode . org.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper,dRd Lee,
P. (1996). TIL: A type-directed optimizing compiler for ML.
In ACM Conference on Programming Languages Design and
Implementation (PLDI'96)pages 181-192. ACM, Philadel-
phia.

Thiemann, P. (2002a). A typed representation for HTML andLXM
documents in HaskellJournal of Functional Programming
12(5):435-468.

Thiemann, P. (2002b). Wash/cgi: Server-side web scripaiiig
sessions and typed, compositional formsPhactical Appli-
cations of Declarative Languagepages 192-208. Springer
Verlag LNCS 2257.

Turner, D. A. (1976). The SASL language manual.
report, University of St Andrews.

Turner, D. A. (1979a). Another algorithm for bracket abstian.
Journal of Symbolic Logic44(2):267—-270.

Turner, D. A. (1979b). A new implementation technique for ap
plicative languagesSoftware Practice and Experienc&31—
49,

Turner, D. A. (1981). The semantic elegance of applicatare |
guages. IfProceedings of the 1981 Conference on Functional
Programming Languages and Computer Architectyrages
85-92. ACM.

Turner, D. A. (1982). Recursion equations as a programming
language. In Darlington, J., Henderson, P., and Turner, D.,
editors,Functional Programming and its ApplicationSUP.

Technical

Turner, D. A. (1985). Miranda: A non-strict functional larape
with polymorphic types. In (Jouannaud, 1985), pages 1-—
16. This and other materials on Miranda are available at
http://miranda.org.uk.

Turner, D. A. (1986). An overview of Mirand&IGPLAN Notices
21(12):158-166.

van Heijenoort, J. (1967)From Frege to Godel, A Sourcebook in
Mathematical Logic Harvard University Press.

van Rossum, G. (1995). Python reference manual.
Report Report CS-R9525, CWI, Amsterdam.

Vuillemin, J. (1974). Correct and optimal placement of mstn
in a simple programming languag#urnal of Computer and
System Sciences.

Wadler, P. (1985). How to replace failure by a list of sucesssn
(Jouannaud, 1985), pages 113-128.

Wadler, P. (1987). Views: a way for pattern matching to cahab
with data abstraction. I1b4th ACM Symposium on Principles
of Programming Language#unich.

Wadler, P. (1989). Theorems for free! In MacQueen, ediourth

International Conference on Functional Programming and
Computer Architecture, LondoAddison Wesley.

Wadler, P. (1990a). Comprehending monadsPtac ACM Con-
ference on Lisp and Functional Programming, Nig€M.

Technical

Wadler, P. (1990b). Deforestation: transforming programmslim-
inate treesTheoretical Computer Sciencg3:231-248.

Wadler, P. (1992a). Comprehending monddsthematical Struc-
tures in Computer Scienc@:461-493.

Wadler, P. (1992b). The essence of functional programmiing.
20th ACM Symposium on Principles of Programming Lan-
guages (POPL'92)pages 1-14. ACM, Albuquerque.

Wadler, P. (2003). A prettier printer. In Gibbons, J. and daok
0., editors,The Fun of ProgrammingPalgrave.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymismh
less ad hoc. IfProc 16th ACM Symposium on Principles of
Programming Languages, Austin, TexA€M.

Wadler, P., Taha, W., and MacQueen, D. (1988). How to add
laziness to a strict language, without even being odd. In
Workshop on Standard ML, Baltimore

Wadsworth, C. (1971)Semantics and Pragmatics of the Lambda
Calculus PhD thesis, Oxford University.

Wallace, M. (1998). The nhc98 web pages. Availablévatp:
//www.cs.york.ac.uk/fp/nhc98.

Wallace, M., Chitil, Brehm, T., and Runciman, C. (2001). kfle-
view tracing for Haskell: a new Hat. In (Haskell01, 2001).

Wallace, M. and Runciman, C. (1998). The bits between thé{am
das: binary data in a lazy functional language. Interna-
tional Symposium on Memory Management

Wallace, M. and Runciman, C. (1999). Haskell and XML: Generi
combinators or type-based translation. In (ICFP99, 1999),
pages 148-159.

Wan, Z. (December 2002)-unctional Reactive Programming for
Real-Time Embedded SystemBhD thesis, Department of
Computer Science, Yale University.

Wan, Z. and Hudak, P. (2000). Functional reactive program-
ming from first principles. IrProceedings of the ACM SIG-
PLAN '00 Conference on Programming Language Design
and Implementation (PLDJpages 242-252, Vancouver, BC,
Canada. ACM.

Wan, Z., Taha, W., and Hudak, P. (2001). Real-time FRFPrbx
ceedings of Sixth ACM SIGPLAN International Conference
on Functional Programming~lorence, Italy. ACM.

Wan, Z., Taha, W., and Hudak, P. (2002). Event-driven FRP. In
Proceedings of Fourth International Symposium on Pradética
Aspects of Declarative LanguagesCM.

Watson, I. and Gurd, J. (1982). A practical data flow computer
IEEE Computerpages 51-57.

Wile, D. (1973). A Generative, Nested-Sequential Basis for Gen-
eral Purpose Programming LanguageBhD thesis, Dept. of
Computer Science, Carnegie-Mellon University. First use o
sections, on page 30.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursivetyjata
constructors. InProceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages pages 224—-235. ACM Press.

Young, J. (1988).The Semantic Analysis of Functional Programs:
Theory and Practice PhD thesis, Yale University, Depart-
ment of Computer Science.

