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Abstract—Today’s HPC applications are producing ex-
tremely large amounts of data, thus it is necessary to use
an efficient compression before storing them to parallel file
systems. In this paper, we optimize the error-bounded HPC
data compression, by proposing a novel HPC data compression
method that works very effectively on compressing large-scale
HPC data sets. The compression method starts by linearizing
multi-dimensional snapshot data. The key idea is to fit/predict
the successive data points with the bestfit selection of curve
fitting models. The data that can be predicted precisely will
be replaced by the code of the corresponding curve-fitting
model. As for the unpredictable data that cannot be approxi-
mated by curve-fitting models, we perform an optimized lossy
compression via a binary representation analysis. We evaluate
our proposed solution using 13 real-world HPC applications
across different scientific domains, and compare it to many
other state-of-the-art compression methods (including Gzip,
FPC, ISABELA, NUMARCK, ZFP, FPZIP, etc.). Experiments
show that the compression ratio of our compressor ranges in
3.3/1 - 436/1, which is higher than the second-best solution
ZFP by as little as 2x and as much as an order of magnitude
for most cases. The compression time of SZ is comparable to
other solutions’, while its decompression time is less than the
second best one by 50%-90%. On an extreme-scale use case,
experiments show that the compression ratio of SZ exceeds
that of ZFP by 80%.

I. INTRODUCTION

With increasing scales of scientific simulations, today’s

HPC applications are producing extremely large amounts of

data (in the order of terabytes or even petabytes) during the

execution, such that data processing has become a significant

bottleneck for extreme-scale HPC applications. As indicated

in [1], the CESM climate simulation [2] is able to produce

terabytes of data per day for post-processing. As reported

in [3], XGC1 simulation can launch a series of simulations

with up to 100 PB of data to write out on Titan system.

Such a large amounts of data are usually stored in a parallel

file system (PFS) such as Lustre [4] for convenience of

management. However, the storage bandwidth becomes a

serious bottleneck compared to other types of resources

(such as high-speed processors, memories, and caches).

In order to save disk space and improve runtime perfor-

mance as well as post-processing efficiency for exa-scale

HPC applications, it is necessary to significantly reduce the

size of the data to be dumped during the execution with

fairly low computation cost and required compression error

bounds. Although lossless compression such as Gzip [5]

can guarantee no compression errors, it suffers from low

compression ratio when dealing with extremely large amount

of dynamic HPC data. To this end, error-bounded lossy

compression methods are considered an acceptable trade-

off solution, as indicated by recent studies [1], [6] based on

production scientific simulations.

It is fairly challenging to design a generic error-bounded

lossy compressor with a very high compression ratio for

HPC applications. The key reason is that HPC snapshot

data have diverse features (such as various dimensions,

different scales, and data dynamics in both space and time)

with different applications. The data variables used in an

application, for example, are usually of high dimensions

(such as 5 dimensions) and the data values may change

largely in a short period. To this end, existing studies

usually ignored the locality of data points in the snapshot.

ISABELA [7], for instance, converted the multi-dimensional

snapshot data to a sequence of sorted data before performing

the compression by B-spline interpolation. Due to the loss

of the data location information in the sorted data-series,

ISABELA has to use an extra index array to record the

original index of each point, suffering from low compression

ratio especially for a large number of data points.

In this work, we propose a novel HPC data compression

scheme (namely Squeeze or SZ for short) with strictly

bounded errors and low overheads.

There are three significant novelties/contributions to be

addressed in this paper, as summarized below:

• Fast Data Encoding with Bestfit Curve-fitting Model.

To the best of our knowledge, this is the first attempt

to leverage multiple curve-fitting models to encode the

data stream. This is inspired by the fact that the adjacent

data in the converted data-series are likely adjacent

in the original multi-dimensional snapshot, such that

the generated data-series may exhibit significant ex-

ploitable smoothness. The key step is to check the

sequence of data point-by-point, verifying whether they

can be predicted within the user-required error bounds

by the bestfit curve-fitting models (such as linear curve

fitting and quadratic curve fitting). Each predictable

data will be replaced by a two-bit code that denotes

the corresponding bestfit curve-fitting model. The time

complexity of this process is only O(N ).

• Effective Error-bounded Lossy Compression for Un-



predictable Data. We optimize (also with O(N ) time

complexity) the error-bounded lossy compression for

compressing the unpredictable data, by elaborately an-

alyzing the binary data representation based on desired

precision and data value ranges.

• We implement the compressor rigorously and it is

available to download from [13] under BSD license,

supporting C, Fortran, and Java. We evaluate it by

running 13 real-world HPC applications across different

scientific domains on the Argonne FUSION cluster [8].

We compare it to many other state-of-the-art compres-

sion methods (including Gzip [5], FPC [9], ISABELA

[7], NUMARCK [10], ZFP [11], Sasaki et al.’s work

[6], and FPZIP [12]). To the best of our knowledge, our

evaluation covers the most compression methods and

the most types of scientific applications in comparison

with other existing compression research. Experiments

show that the compression ratio of our error-bounded

compressor are in the range 3.3:1-436:1, which is

higher than the second best solution twice or even by

an order of magnitude1.

The rest of the paper is organized as follows. In Section II,

we formulate the HPC data compression issue. In Section III,

we propose a novel HPC data compression approach, based

on bestfit curve-fitting models. We describe our optimization

strategies on how to compress the unpredictable data in Sec-

tion III-C. In Section IV, we present the experimental setup

and evaluation results with different compression methods.

We analyze the related work in Section V, and conclude

with a presentation of the future work in Section VI.

II. PROBLEM FORMULATION

In this paper, we focus on the design and implementation

of a data compression method for HPC applications with

guaranteed error bounds. In particular, we investigate how

to compress every application snapshot to be used for data

analytic and visualization. In general, during the execution,

the application generates multiple snapshots, each containing

multiple variables with specific data types such as multi-

dimensional floating-point array, string data and constant

values. Since the large majority of disk space for a snapshot

is occupied by the floating-point array data, we will mainly

focus on how to compress such a portion of data with user-

specified compression error bound.

In our work, the compression is controlled using an error

bound (denoted by ∆), which is typically specified with user

demand. Specifically, the compression errors (defined as the

difference between the data points’ original values and their

corresponding decompressed values) of all data points must

be strictly limited in an error bound, i.e., D′

i must be in

[Di−∆,Di+∆], where D′

i and Di refer to a decompressed

value and the corresponding original value respectively.

1SZ always exhibits the highest compression ratio, except for one case
in which the compression ratio of SZ is still very close to the best one.

There are two types of error bounds, absolute error bound

and relative error bound, which are both widely used in HPC

data compression. The absolute error bound (denoted δ) will

be set to a constant. Such a bound has been widely used to

evaluate the HPC data compression such as [10], [7], [11].

As for the relative error bound, it is a linear function of the

global data value range size, i.e., ∆=λr, where λ(∈(0,1))

and r refer to error bound ratio and range size respectively.

For example, given a set of data (D1, D2, · · · , DM ), the

range size r is equal to max
i=1...M

(Di)− min
i=1...M

(Di), so relative

error bound can be written as λ( max
i=1...M

(Di)− min
i=1...M

(Di)).

The relative error bound allows to make sure that the

compression error for any data point must be no greater than

λ×100 percentage of the global data value range size. Such

a bound was also used to evaluate some data compression

methods such as [6]. Both of the above two types of bounds

are provided in our compressor for suiting different user

demands. If the data range size r changes largely over time,

the compression errors have to be limited by taking value

range into account, in that the evolved data are to be plotted

based on value range.

The compression ratio (denoted by ρ) is defined as the

ratio of the original total data size to the compressed data

size. Suppose the original data size So is reduced to Sc after

the compression, then the compression ratio can be written

as ρ=So/Sc. With the same compression error bound, higher

compression ratio with lower compression/decompression

time implies better results.

The objective of this research is to design an efficient

data compression approach that can compress run-time HPC

snapshots, such that the compression errors are bounded

within absolute error bound, relative error bound, or both

of them, based on user’s demand.

The applications evaluated in this paper belong to seven

different scientific domains, including hybrodynamics (HD),

magneto hydrodynamics (MHD), gravity study (GRAV),

particles simulation (PAR), shock simulation (SH), diffusion

simulation (DIFF), and climate simulation (CLI), across

from three HPC code packages, including FLASH [14],

Nek5000 [20], and CESM [2], as shown in Table I.

III. BESTFIT CURVE-FITTING MODEL BASED HPC DATA

COMPRESSION

In this section, we present a novel effective HPC data

compression method, by mainly focusing on how to com-

press multi-dimensional floating-point arrays. Given a d-

dimensional floating-point array, the overall compression

procedure can be split into three steps: (1) convert the d-

dimensional floating-point array to a 1-dimensional array,

(2) compress the 1-D array by using a bit-array to record

the data points whether they can be predicted by the dynamic

bestfit curve-fitting models, (3) compress the unpredictable

data by analyzing their binary representations. We describe

the three steps in the following text.



Table I
APPLICATIONS USED IN THIS WORK

Domain Name Code Description

Blast2 [15] Flash Strong shocks and narrow features

Sedov [16] Flash Hydrodynamical test code involving strong shocks and non-planar symmetry

HD BlastBS [17] Flash 3D version of the MHD spherical blast wave problem

Eddy [19] Nek5k 2D solution to Navier-Stokes equations with an additional translational velocity

Vortex [20] Nek5k Inviscid Vortex Propagation: tests the problem in earlier studies of finite volume methods

MHD BrioWu [18] Flash Coplanar magneto-hydrodynamic counterpart of hydrodynamic Sod problem

GALLEX [21] Nek5k Simulation of gallium experiment (a radiochemical neutrino detection experiment)

GRAV MacLaurin [14] Flash MacLaurin spheroid (gravitational potential at the surface/inside a spheroid)

PAR Orbit [14] Flash testing the mapping of particle positions to gridded density fields, mapping of gridded potentials

onto particle positions to obtain particle forces, and time integration of particle motion

SH ShafranovShock [22] Flash a problem that provides a good verification for structure of 1D shock waves in a

two-temperature plasma with separate ion and electron temperatures

DIFF ConductionDelta [14] Flash Delta-function heat conduction problem: examining the effects of Viscosity

CLI CICE [23] CESM Community sea-ice simulation based on Community Earth System Model

ATM [2] CESM CAM-SE cubed sphere atmosphere simulation with very large data size (1.5TB) produced

A. Converting Multi-dimensional Array to 1-D Array

In the beginning, the multi-dimensional array needs to be

converted to a 1-D array (a.k.a., linearization). There are

many ways to linearize the multi-dimensional data, such as

leveraging space-filling curve methods [28] that can keep

the data locality information to a certain extent. The most

well-known space-filling curves include Peano curve [31],

Moore curve [29], Hilbert curve [30], and Lebesque curve

(or Z-order curve) [32].

Based on our experiments, we observe that the compu-

tation cost in constructing the simplest space-filling curve

is still very significant compared to other portion of time

cost in the data compression, especially when the data size

to process is very huge. In particular, our experiments show

that even though we adopt the simplest Z-order scanning

strategy to linearize the multi-dimensional data, the time

cost is twice longer than that of the compression without

the linearization step because of many costly multiplication

operations. As such, we propose to use the intrinsic memory

sequence of the data array to construct the 1-D data sequence

for compression. The key advantages are two-fold:

• extremely low conversion cost: We just need to copy the

address of the multi-dimensional array, which can save

a lot of time especially when the data size is extremely

huge as projected for exascale execution.

• good locality preservation: It is worth noting that the

data compression could be performed by extremely

large number of ranks in parallel, hence the whole data

set is actually split into a large number of small tiles to

compress, such that the locality of data can be preserved

very well.

B. Compressing 1-D Array by Bestfit Curve-Fitting Models

In what follows, we discuss how to compress the 1-D

array {V1,V2,· · · ,VM}. The basic idea is checking each data

point in the 1-D array one by one, to see if it can be

predicted (within user-required error bounds) based on a

few of its preceding values by some curve-fitting model

(such as linear-curve or quadratic curve). If yes, we will

record the corresponding curve-fitting model for that point

in a bit-array. The data that cannot be predicted are called

unpredictable data and they will be compressed by analyz-

ing the IEEE 754 binary representation before being stored

separately (to be discussed in next subsection).

For the data prediction, we adopt three curve-fitting

models, preceding neighbor fitting, linear-curve fitting, and

quadratic-curve fitting, which are described as follows:

• Preceding Neighbor Fitting (PNF): This is the simplest

prediction model, which just uses the preceding value

to fit the current value. Suppose the current value is

Vi, then its predicted value (denoted by X
(N)
i ) will be

estimated as X
(N)
i =Xi−1. Note that the preceding data

used in the decompression are not original values, so

the PNF prediction here is supposed to be Xi−1 instead

of Vi−1. More details will be discussed later.

• Linear-Curve Fitting (LCF): This fitting model assumes

that the current value Vi can be estimated by the linear

line constructed using its previous two consecutive

values. Specifically, the predicted value X
(L)
i is derived

as X
(L)
i =Xi−1+(Xi−1−Xi−2)=2Xi−1−Xi−2.

• Quadratic-Curve Fitting (QCF): Quadratic-curve fitting

model assumes that the current value Vi can be pre-

dicted precisely by a quadratic curve that is constructed

by the previous three consecutive values. Specifically,

a quadratic curve (denoted by f(x) = ax2 + bx + c)

can be denoted as (0, X(i − 3)), (1, X(i − 2)), and

(2, X(i − 1)), respectively. Then, the predicted value

at i can be computed by f(3)=9a + 3b + c, where a,

b, and c are computed by the three preceding points

(0, X(i − 3)), (1, X(i − 2)), and (2, X(i − 1)).

Hence, the predicted value X
(Q)
i can be derived as

X
(Q)
i =f(3)=3Xi−1−3Xi−2+Xi−3.

We give an example to further illustrate the above three

fitting models, as shown in Figure 1. In the figure, three

predicted values for the current data value Vi are denoted by

the black cross, blue cross and red cross respectively. They

are all predicted by the previous consecutive decompressed

value(s), which are either predicted values generated in the

compression or the unpredictable values stored separately.

Note that it is critical that one should not directly use
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original preceding data values {Vi−3,Vi−2,Vi−1} to perform

the prediction for the data value Vi, since the preceding data

that are to be used in the decompression are not the original

preceding data values but the decompressed values with a

certain errors. Such a design guarantees the decompressed

value Xi to meet user-required error bounds.
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Figure 1. Illustration of Fitting Models

The pseudo-code of compressing the 1-D array by bestfit

curve-fitting models is presented in Algorithm 1. In the

beginning, the program allocates 2M bits of memory for

recording the predictability of each value as well as the

bestfit fitting prediction model, where M is the number of

data points. And then, the algorithm computes the value

range size r (i.e., max (Vi)−min (Vi)), which will be used

for comparing the prediction errors to the error bounds. If

the compression is performed by each rank in parallel, the

max (Vi) and min (Vi) can be aggregated by the collective

operation MPI Allreduce. In fact, such a collective operation

has to be performed anyway if the user demands the relative

error bound. Such a collective operation, however, can

be performed periodically for reducing the communication

overheads in that the data value range usually does not

change largely in short periods. Moreover, users are also

allowed to specify the compression precision using only

absolute error bound for completely avoiding the communi-

cation overheads. The algorithm’s remaining procedure (line

3-24) checks each value in the 1-D array one by one. Specif-

ically, it will first determine the bestfit curve-fitting model

(line 4-7), and check if its prediction error is within the

user-required error bounds. As for the example illustrated in

Figure 1, the bestfit model is QCF. As mentioned previously,

there are two types of error bounds, and users are allowed

to set either of them or both of them on demand (to be

discussed in more details later). If the prediction error meets

the user-required error bounds, the corresponding bestfit

curve-fitting model will be recorded via a bit-array υ (line

9-17), otherwise, the current data value will be compressed

by a binary-representation analysis (to be discussed in next

subsection) and stored approximately in a separate array

(denoted by ρ) (line 19-22).

Remarks:

• At most three preceding consecutive values (Xi−3,

Xi−2, Xi−1) are required for checking the predictabil-

ity of the value Vi, hence, the algorithm only needs to

keep three extra preceding decompressed values at run-

Algorithm 1 BESTFIT CURVE-FITTING COMPRESSION

Input: 1-D array data {V1, V2, · · · , VM}, user-required error bound
information (error bound mode, absolute error bound δ, and/or relative
error bound λ)
Output: Compressed byte data {υ,ρ}, where υ and ρ are used to record
the values’ predictability and store the unpredictable data respectively.

1: Create a bit-array (denoted υ) with M elements, each occupying 2 bits.
2: Compute the value range size r (= max (Vi)−min (Vi)).
3: for (Vi, i=1,2,· · · ,M ) do

4: X
(N)
i ← Xi−1 /*Preceding Neighbor Fitting*/

5: X
(L)
i ← 2Xi−1 −Xi−2 /*Linear-Curve Fitting*/

6: X
(Q)
i ← 3Xi−1 − 3Xi−2 +Xi−3 /*Quadratic-Curve Fitting*/

7: bestfit sol = argmin
Y ={(N),(L),(Q)}

(
∣

∣XY
i − Vi

∣

∣).

8: if (|Xbestfit sol
i − Vi| meets error bounds) then

9: switch (bestfit sol)
10: case (N ):
11: υ[i] = 01(2) /*denote Preceding Neighbor Fitting*/
12: case (L):
13: υ[i] = 10(2) /*denote Linear-Curve Fitting*/
14: case (Q):
15: υ[i] = 11(2) /*denote Quadratic-Curve Fitting*/
16: end switch
17: Xi←X

bestfit sol
i /*record the predicted value for next prediction*/

18: else
19: υ[i] = 00(2) /*denote unpredictable data*/
20: Compress Vi by binary-representation analysis.
21: ρ[j++] ← V ′

i /*V ′
i is the binary decompressed value of Vi*/

22: Xi ← V ′
i

23: end if
24: end for

time instead of all of the decompressed values, which

means a very low memory overhead. Suppose there are

N data points to compress, the total memory overhead

is only 2N+64M
64N = 1

32+M
N

of the original memory size,

where M refers to the amount of unpredictable data.

• The time complexity of the algorithm is O(N ), where

N here refers to the amount of floating-point data.

Moreover, the major part of the algorithm involves only

bitwise operations (such as line 9-16 and line 19-20),

so the processing speed is supposed to be very fast.

• As defined in Section II, the user-required precision

in our compressor is confined based on two types of

error bounds, namely absolute error bound (δ) and

relative bound bound (λr), where r is the data value

range size. There are four modes/options for users

to choose: (1) using only absolute error bound (i.e.,

each data point’s compression error ǫi=D
′

i−Di≤δ), (2)

using only relative error bound (ǫi=D
′

i−Di≤λr), (3)

the minimum value of the two bounds (i.e., satisfying

ǫi≤δ and ǫi≤λr), and (4) the maximum value of the

two bounds (i.e., satisfying ǫi≤δ or ǫi≤λr).

• The decompression is just a reverse procedure of

the above compression algorithm. Specifically, it first

parses the bit-array υ to retrieve the predictability

and bestfit model information. If the current value is

predictable, it will be recovered by the corresponding

curve-fitting model, or else, it can be found in a

separate data array ρ and it will be recovered by the
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binary-representation analysis. It is worth noting that

the compression algorithm predicts each value by using

the preceding decompressed values instead of original

values, such that the decompression errors can always

be guaranteed within user-required bounds.

• Unlike the compression algorithm, the decompression

algorithm does not require users to provide the error

bound information as the input, because in the com-

pression step, such information can be stored in the

compressed stream together with the compressed data.

• One important feature of the above algorithm is that

the bit-array υ may exhibit a high consistency on

most of the consecutive bits, which can be confirmed

by Figure 2. This figure shows bestfit curve-fitting

model types (00(2), 01(2), 10(2), or 11(2)) determined

by the above algorithm for various applications (vari-

able:density, time step:100). Such a consistent bit value

feature will lead to a very high compression ratio when

using Gzip [5] to further compress the bit-arrays thanks

to the LZ77 algorithm [24] used by Gzip. Specifically,

LZ77 algorithm searches the same repeated sequences

of the data and replace them with references to only

one single copy existing earlier in the data stream.
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Figure 2. Consistency of Consecutive Bits in The Bit-array ρ

C. Optimization of Lossy Compression for Unpredictable

Data by Binary Representation Analysis

In this subsection, we optimize the lossy compression

method by analyzing the IEEE 754 binary representation of

the unpredictable data, as well as its relationship to the user-

required error bounds and the value range size. Specifically,

we derive the smallest number of mantissa bits required

based on the user-specified error bounds and data value

range, such that the insignificant bits can be truncated.

There are three key steps to process.

First, we map all of the unpredictable data to a

smaller range by letting all the values minus the

median value of the range (denoted by med, i.e.,

med=(mini (ρ[i]) + maxi (ρ[i]))/2). The newly generated

data after the transformation are called normalized data,

which will be closer to zero than the original ones. Such

a step is motivated by the fact that the closer the number

is to zero, the less mantissa bits are required to meet the

specified precision. We further illustrate it in Figure 3,

by comparing the binary representations of two numbers,

100.001 and 0.001. We can see that these two numbers

are stored in binary format as 1.10010000...(2)×26 and

1.00001100...(2)×2−10 respectively. If the user-required ab-

solute error bound is set to 1.22×10−4(i.e., 2−12), then the

leading mantissa bits for the two numbers are supposed to

be no less than 6−(−12)=18 bits and −10−(−12)=2 bits

respectively. Obviously, the latter requires much less bits to

meet the required precision.

0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0…...

63 62 52 51 012…... …... …...

0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0…...

63 62 52 51 012…... …... …...

26

2
-10

1.10010000…(2)

1.00001100…(2)

100.001

0.001

Decimal 

number
64-bit IEEE 754 binary representation

bit #

bit #

Figure 3. Illustration that a number closer to zero requires less bits

Second, we truncate the value by disregarding the insignif-

icant mantissa part based on the user-required error bounds.

For instance, suppose the absolute error bound δ and relative

error bound λ provided by the user are both required to be

met, then, we can use min {δ, λr} to serve as an integrated

error bound (denoted by ∆), where r is the value range

size. Similarly, if the user just requires that either of the two

types of error bounds are met, the integrated error bound ∆
can be represented as max {δ, λr}. As such, we just need

to focus on the integrated error bound ∆ in the following

analysis. Given any one normalized data value (denoted by

vi, i.e., vi=ρ[i]−med), the minimum number of the required

mantissa bits (denoted by RQ MBits(vi)) can be computed

by Equation (1):

RQ MBits=







0, Exp(radius)− Exp(∆) < 0
MLen, Exp(radius)−Exp(∆)>MLen

Exp(radius)− Exp(∆), otherwise

(1)

where radius refers to the radius of the value range (i.e.,

maxi(vi) which is equal to
maxi(ρ[i])−mini(ρ[i])

2 ), Exp(x)
refers to the value of the exponent binary part of the floating-

point number x, and MLen is the length of the mantissa

(=23 for single-precision data and =52 for double-precision

data). There are two points which are worth being noted, as

addressed below.

• We use Exp(radius) instead of Exp(vi) to compute the

required mantissa bits. The reason is that although using

Exp(vi) can obtain more accurate minimum number

of required mantissa bits, the final sequence of the

compressed bits for different normalized values (vi)

will likely have different lengths, such that we cannot

recover the normalized values based on the mixed

sequence of bits. As such, we fix the number of bits

required by using Exp(radius) to compute the required

mantissa bits for every normalized data value.

• In our implementation, byte is the smallest operation

unit (the reason will be described later), so the real

number of maintained bits (a multiple of 8) can be

computed by the following equation, where ⌈·⌉ is the



ceiling function.

REAL RQ Bits=

⌈

1+Exp(vi)+RQ MBits

8

⌉

· 8 (2)

At the last step, we perform the leading-zero based

floating-point compression method to further reduce the

storage size. In particular, we perform the XOR operation

for the consecutive normalized values and compress each

by using a leading zero count followed by the remaining

significant bits. This may significantly reduce the storage

size due to the fact that the leading bits of the IEEE 754

binary representations for the similar values are expected

to be very similar to each other. In order to limit the

number of bits required to store the leading zero count,

byte serves as the operation unit. As such, we need only

2 bits to record the number of leading-zero bits, which can

cover at most 3×8=24 bits. This is fairly enough for vast

majority of the data based on our experience. Accordingly,

when compressing ρ[i], the first three bytes of its binary

representation are compared to that of its preceding value

ρ[i−1]. The number of leading-zero bytes will be stored

using 2 bits if the leading-zero length is no less 1 byte (8

bits), which will thus reduce the storage size.

IV. PERFORMANCE EVALUATION

We first describe the experimental setup used in the eval-

uation and then present the evaluation results by comparing

our solution to 7 other state-of-the-art compression methods.

A. Experimental Setup

In our experiments, we carefully compare our approach

to as many state-of-the-art compression methods as possible,

including lossless compressors such as Gzip and FPC, and

lossy compressors such as ZFP, ISABELA, NUMARCK,

and Sasaki et al.’s approach (namely SSEM in our evaluation

based on the authors’ last names). Gzip, FPC, ZFP and IS-

ABELA are all off-the-shelf compressors that can be down-

loaded for free. We implemented NUMARCK rigorously

and confirmed the correctness of the implementation by

comparing the compression results to that of the published

paper [10]. We also improve NUMARCK to get a higher

compression ratio than its original version. Specifically, the

original NUMARCK has to store the data values exactly

when the data values are 0 or all of data points in a snapshot

have the same values, while our improved NUMARCK

will store only one data value and the number of data

points instead. We also optimized the number of clusters

split in the Kmeans clustering for NUMARCK. In addi-

tion, NUMARCK requires to periodically save the original

non-compressed snapshots. The longer periodic intervals,

the higher compression ratios yet the larger compression

errors. In our evaluation, the interval is set to 5 because

this setting leads to relatively small compression errors.

We implemented SSEM strictly based on the published

paper [6], and also further devised an error-bounded version

for SSEM, namely SSEM(eb) in the following evaluation.

The difference between SSEM(eb) and SSEM is that the

former compares the decompressed data value to the original

value during the compression and store original data if the

deviation is beyond the error bound. All experiments are

conducted on the Argonne FUSION cluster server, which

has 16 cores and 64 GB memory.

We carefully evaluate the compression ratios and com-

pression error for all of the 8 compression methods, by using

the real-world HPC applications. For the first 12 applications

(listed in Table I), each is run through 1000 iterations (time

steps), so there are 1000 snapshots generated after each run.

Every snapshot for FLASH application has 10 variables with

82k-655k data points in total, which is comparative to the

data size used in the evaluation of other related research such

as ISABELA [7] and NUMARCK [10]. The last application

ATM (as shown in Table I) is a very good case to evaluate the

compressor’s ability in dealing with extremely large data set,

because its data size is about 1.5TB in total (63 snapshots

each of which is about 24GB in data size).

We use different compressors to compress and decom-

press each snapshot for each application, and compare the

compression results across different compression methods.

Since SSEM splits all data into high-frequency part and low-

frequency part half-by-half along each dimension, it cannot

be used to compress the data array with odd dimension sizes.

In particular, SSEM cannot deal with Eddy’s application

data because its array is 128×32×5×5 in shape. In our

evaluation, we adopt the absolute error bound mode and set

the error bound to 10−6, which is accurate enough for most

of research as indicated by the scientific research teams at

Argonne. In practice, we suggest to set the error bounds by

combining the absolute bound and relative bound, in order

to fit the value ranges.

The compression effect is evaluated by using compression

ratio and compression error. The compression ratio is defined

as the ratio of the original data size to the compressed data

size, and the compression error is defined as the deviation

of the original data value and the decompressed data value.

There are several metrics regarding compression error, such

as maximum compression error and mean compression error.

Due to the space limit, we mainly present the distribution

(CDF) of the maximum compression errors, because we find

in our experiments that the maximum compression error

distribution is always consistent with other types of error

metrics such as mean compression error.

B. Experimental Results

In what follows, we first show the compression results

for the first 12 real-world applications, and then evaluate the

compression ability with extremely large data set by using

the last production application ATM.
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Figure 4. CDF of Compression Ratios (note that SSEM, NUMARCK and ISABELA do not respect specified error bound as shown in Figure 5)

Figure 4 presents the cumulative distribution function

(CDF) of the compression errors for all of the 8 com-

pression methods working on the 12 HPC applications.

Each distribution curve is plotted based on the separate

compression of the 1000 snapshots for each application.

It is clearly observed that the compression ratio of SZ

is significantly higher than that of other compressors. In

absolute terms, the overall average compression ratios are

in the range [3.3,436] for the 12 applications, which is

higher than the second best solution twice or even by an

order of magnitude in general. The compression ratios of

ZFP and Gzip are in [2.1,10.2] and [1.8,160] respectively.

There are only three exceptions (Sedov, BlastBS, and CICE)

in which some other compressors look better than SZ with

respect to the compression ratio. For instance, SSEM looks

better than SZ in Sedov and CICE, but note that SSEM

is actually not error-bounded compressor. From among all

error-bounded compressors, the only exception where SZ’s

compression ratio is lower appears in BlastBS, where ZFP’s

compression ratio is slightly higher than SZ’s.

In what follows, we analyze the key reasons why our

solution leads to much higher compression ratios than oth-

ers. We mainly discuss the lossy compressors here, and

the discussion about lossless compressors can be found in

Section V. SSEM transforms (by using Haar wavelets) all

data to a new data set such that most of data are close

to zero, and then approximates the transformed data by

vector quantization. Its compression ratio highly depends

on the Haar wavelet transform: at least 1
2D

×100% of data

cannot be close to zero (where D is the number of dimen-

sions) after the Haar transform, such that the compression

ratios will be degraded accordingly. Since SSEM is not

an error-bounded compressor, we extend SSEM to be an

error-bounded version (namely SSEM(eb) in the figure)

by storing exactly the data whose decompressed values

are against the error bounds. The compression ratio thus

degrades significantly (as shown in the figure). NUMARCK

computes the relative differences for each data point between

adjacent time steps and performs the vector quantization

over them. The key reason for its low compression ratio

is that it has to periodically save the original snapshots to

avoid the large compression errors, significantly degrading

the overall compression ratios. ISABELA sorts all of the

data for generating a sequence of relatively smooth data,

but sorting data shuffles the data locations such that it has

to store the data indices additionally, which will limit the

compression ratio significantly. The limitation of ZFP is that

its current release supports only up to 3 dimensions, while

most of applications here (such as FLASH and Nek5000)

are using 4+ dimensions. That is, we have to merge some

dimensions (such as treating the 5D array {128,70,4,4,4} as

3D array {128,70,64}) before using the ZFP. On the other

hand, similar to JPEG compression principle, ZFP converts

the original data values (actually the ones after the exponent
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Figure 5. Distribution (CDF) of Maximum Compression Errors

alignment) to a series of data whose values are very close

to zero, by making use of the similarity of the neighboring

data points. In comparison to their strategy, we approximate

each data point based on not only its neighboring data values

but also the curve-fitting predictions with three preceding

values in the data stream, such that the data values will have

more opportunities to be approximated by curve fitting. The

reason SZ leads to relatively low compression errors on the

BlastBS simulation is that its data are not very smooth such

that most of them cannot be predicted precisely by curve-

fitting. How to improve SZ’s compression ratio for BlastBS

will be studied in our future work.

In Figure 5, we present the maximum error distribution of

different compressors in compressing the 1000 snapshots1.

It is clearly observed that SZ can always guarantee the com-

pression errors strictly within user-specified bound 10−6.

ZFP can also guarantee the compression error bounds, but it

over-preserves the compression errors to be around 10−9 in

most of cases, compared to the user-specified error bound.

We present the compression time and decompression time

in Table II and Table III respectively. Due to the space

limit, we present the cost for four typical compressors,

including ISABELA, ZFP, SZ w/o Gzip, and SZ with Gzip.

The compression/decompression times of other compres-

sors usually range in between SZ w/o Gzip and ISABELA.

1Some curves cannot be seen in Figure 5(b) due to too large values.

Through Table II, we can see that ISABELA’s compres-

sion time is significantly more than others’, because of its

costly sorting operation. ZFP’s compression time ranges in

[0.7,90.2] seconds, while that of the SZ with Gzip ranges

in [0.95,84.3] seconds. It is worth noting that without Gzip,

the compression time of SZ is in [0.56,39.8], which is only

50%-80% of ZFP’s compression time in most cases. The

key reason why SZ runs much faster than others is that

its time complexity is O(N) and the whole compression

procedure is composed of fast operations such as bitwise

operations. Moreover, we observe that the decompression

time is also much less than that of other compressors. The

decompression time of SZ is only 10%-50% of others’ in

most of cases. The decompression time of SZ is observed

much less than its compression time, because unlike the

compression, the decompression just computes the data

using the corresponding best-fitting model and recover the

unpredictable data using bitwise operations.
Table II

TOTAL COMPRESSION TIME ON 1000 SNAPSHOTS (IN SECONDS)

Application DataSize ISA. ZFP SZ w/o Gzip SZ with Gzip

Blast2 787MB 129 8 6.4 9.4

Sedov 660MB 115 9.3 6.3 11.9

BlastBS 984MB 73.2 17 11.9 23.1

Eddy 820MB 143 17.4 8 14.2

Vortex 580MB 108 8.6 5.5 8.7

BrioWu 1.1GB 132 9.6 8.7 9.8

GALLEX 270MB 31 1 1.9 2.5

MacLaurin 6.3GB 1285 55 22.8 28.5

Orbit 152MB 19 0.7 0.56 0.95

Shaf.Shock 246MB 38.3 4.9 1.7 2.9

Cond.Delta 787MB 84 6.2 3.8 6.2

CICE 3.7GB 790 90.2 39.8 84.3

Table III
TOTAL DECOMPRESSION TIME ON 1000 SNAPSHOTS (IN SECONDS)

Application DataSize ISA. ZFP SZ w/o Gzip SZ with Gzip

Blast2 787MB 35 9.3 1.3 2.5

Sedov 660MB 29.3 9.3 1.3 3

BlastBS 984MB 44 5.8 1.1 2.1

Eddy 820MB 35.6 17.5 1.2 2.8

Vortex 580MB 24.9 9.6 0.9 2

BrioWu 1.1GB 45.8 10.7 1.9 3.2

GALLEX 270MB 11.2 1.1 0.24 0.75

MacLaurin 6.3GB 277 52.5 3.8 5.6

Orbit 152MB 6.6 0.7 0.1 0.44

Shaf.Shock 246MB 12.7 5.6 0.26 1.27

Cond.Delta 787MB 34.3 7.1 0.92 2

CICE 3.7GB 162 86.4 7.6 14.7

Lastly, we present in Table IV the compression results for

SZ and ZFP by using the application ATM with extremely

large data size (totally 1.5TB). We mainly evaluate SZ

and ZFP because ZFP is the most competitive one based

on the above-shown evaluation results. The compression

errors are not presented because the two solutions both lead

to satisfactory compression errors based on user demands

(either δ=10−4 or δ=10−6), similar to Figure 5 (d) and

(f). Through Table IV, we observe that SZ’s compression

ratio is 4.02-5.4, significantly higher than that of ZFP by

about 80%. For comparison, the compression ratio of using

Gzip to compress the ATM’s snapshot data is only 1.33,

which is much worse than ZFP and SZ. SZ’s compression



is slower than that of ZFP by about 40%. Note that the

compression time of SZ includes the time cost of Gzip.

If we exclude the Gzip time, the compression times of

SZ for δ=10−4 and δ=10−6 are only 22396 seconds and

25464 seconds respectively, which are less than that of ZFP

by 18% and 20% respectively. It is also worth noting that

scientific simulation data are produced only once but could

be used many times later on for the post-analysis. That

is, the decompression performance is more significant than

compression performance for users. As shown in Table IV,

SZ’s decompression is faster than that of ZFP by about 4

times, clearly indicating that SZ outperforms ZFP.
Table IV

EVALUATION USING ATM WITH FAIRLY LARGE DATA SIZE (1.5TB)

error bound δ=10−4 error bound δ=10−6

CR Cmpr time Decmpr time CR Cmpr time Decmpr time

ZFP 3 27166 sec 30395 sec 2.3 31627 sec 36254 sec

SZ 5.4 43980 sec 6598 sec 4.02 51951 sec 7788 sec

V. RELATED WORK

Existing HPC data compression strategies can be split

into two categories, lossless compression [5], [33], [12] and

lossy compression [7], [10], [11], [6], which we will discuss

respectively as below.

Typical lossless compressors include Gzip [5], LZ77 [24],

Huffman encoding [33], FPC [9] and Fpzip [12]. Gzip [5]

is a generic compression tool that can compress any type

of data stream, such as video stream and graph file. It

integrates the LZ77 [24] algorithm and Huffman encoding

[33] to perform the compression. LZ77 algorithm makes use

of a sliding window to search the same repeated sequences

of the data and replace them with references to only one

single copy existing earlier in the data stream. Huffman

encoding [33] is an Entropy-based lossless compression

scheme which assigns each symbol in the data stream a

unique prefix-free code. FPC [9] is a lossless floating-point

data array compressor, by analyzing the IEEE 754 binary

representations and leveraging finite context model. Fpzip

[12] was proposed to compress the HPC data compression by

particularly focusing on the floating-point data compression.

Fpzip can obtain higher compression ratio because of its

more elaborate analysis on the HPC floating data, such as

predictive coding of floating-point data. The common issue

of such lossless compression methods is the relatively low

compression ratio, which will significantly limit the perfor-

mance of the runtime data processing or post-processing

especially for exascale scientific simulation.

To improve the compression ratio, many lossy data com-

pressors have been proposed in the recent years. Various

compressors adopt different strategies, such as Bspline in-

terpolation and vector quantization. A typical example using

Bspline interpolation is ISABELA [7], which converted

the multi-dimensional floating-point arrays in snapshots to

sorted data-series before performing the data compression

by B-spline interpolation. Due to the loss of the data location

information in the sorted data-series, ISABELA has to use

an extra index array to record the original index/location

for each point in the data-series, significantly suffering

from low compression ratio especially for the snapshot with

extremely large number of data points. Vector quantization

is a very common lossy compression scheme and a typical

example is NUMARCK which has three steps to compress

a snapshot: (1) periodically compute relative differences of

values between adjacent time-steps for each data point, (2)

approximate the differences by using vector quantization,

and (3) replace the original data by quantized data. The key

limitation of NUMARCK is its limited compression ratio.

Due to the huge challenge of HPC data compression,

many recent lossy compressors combine different strategies.

For example, four steps are performed in SSEM [6]: (1)

split the data into low-frequency set and high-frequency

set by wavelet transform, (2) perform vector quantization

based on the distribution of high-frequency data set, (3)

encode and record the data by bitmap, and (4) compress the

output by Gzip. There are two drawbacks in the compression

method: (1) it cannot guarantee the compression error bound

and (2) it cannot work with the array with odd dimension

sizes (such as 5X5). ZFP [11] is a lossy data compressor

involving fixed-point integer conversion, block transform,

bit-plane encoding, etc. Our experiments show that ZFP

often compares favorably with other solutions except SZ.

We present in the previous section the evaluation results

by comparing our proposed lossy compressor to all of the

above solutions by using 13 applications across from 7

different scientific domains. Our solution leads to the overall

highest compression ratio with satisfied compression errors,

and lowest decompression times. It is also worth noting that

our data compressor has a fairly high usability because it is

suitable for any shape of the data array.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel error-bounded HPC

floating-point data compressor with a state-of-the-art design.

The key idea is to check each data point to see if it can

be approximated by some bestfit curve fitting model and

replace it by using a two-bit code indicating the model type

if the approximation is within user-specified error bound.

We evaluate our solution by using 13 applications across

7 different scientific fields and compare it to 7 other state-

of-the-art compressors. Our compressor supports C, Fortran,

and Java, and it is available to download under BSD license.

The key findings are summarized below:

• SZ’s compression ratio ranges in [3.3,436], which is

higher than the second best solution twice or even by

an order of magnitude in most of cases.

• The compression errors under SZ are always strictly

limited in the user-specified error bound.

• The compression time of SZ is comparative to those

of other solutions, while its decompression time is less



than the second best one by 50%-90% in most cases.

In the future work, we plan to further improve the com-

pression ratio for some application cases (such as BlastBS)

in which ZFP exhibits a slightly higher compression ratio.

We also plan to enable our compressor to support common

HPC data formats such as netCDF and HDF5.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Sci-

ence, Advanced Scientific Computing Research Program, under Contract DE-AC02-

06CH11357; and by ANR RESCUE, INRIA-Illinois-ANL-BSC Joint Laboratory on

Extreme Scale Computing, and Center for Exascale Simulation of Advanced Reactors

(CESAR) at Argonne.

REFERENCES

[1] A.H. Baker, H. Xu, J.M. Dennis, M.N. Levy, D. Nychka, and
S.A. Mickelson, “A Methodology for Evaluating the Impact
of Data Compression on Climate Simulation Data, ” in The
ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC14), pp. 203-214, 2014.

[2] Community Earth Simulation Model (CESM). Available at
https://www2.cesm.ucar.edu/.

[3] Storage Systems and Input/Output for Extreme
Scale Science (Report of The DOE Workshops on
Storage Systems and Input/Output). Available at
http://science.energy.gov/∼/media/ascr/pdf/programdocuments
/docs/ssio-report-2015.pdf.

[4] Lustre File System. Available at lustre.org.

[5] Gzip compression. Available at http://www.gzip.org.

[6] N. Sasaki , K. Sato, T. Endo, and S. Matsuoka, “Explo-
ration of Lossy Compression for Application-level Check-
point/Restart, ” in 2015 IEEE 29th International Parallel and
Distributed Processing Symposium, pp. 914–922, 2015.

[7] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R.
Latham, R. Ross, and N.F. Samatova, “Compressing the
Incompressible with ISABELA: In-situ Reduction of Spatio-
temporal Data, ” in 17th International Conference on Parallel
and Distributed Computing (Euro-Par), pp. 366–379, 2011.

[8] Fusion Cluster. [online]. Available at :
http://www.lcrc.anl.gov/

[9] M. Burtscher and P. Ratanaworabhan, “High Throughput
Compression of Double-Precision Floating-Point Data, ” in
Data Compression Conference (DCC’07), pp.293–302, 2007.

[10] Z. Chen, S.W. Son, , W. Hendrix, A. Agrawal, W. Liao, and
A. Choudhary, “NUMARCK: machine learning algorithm for
resiliency and checkpointing, ” in IEEE/ACM Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC14), pp. 733–744,
2014.

[11] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Ar-
rays, ” in IEEE Transactions on Visualization and Computer
Graphics, 20(12):2674–2683, 2014.

[12] p. Lindstrom and M. Isenburg, “Fast and Efficient Compres-
sion of Floating-Point Data, ” in EEE Transactions on Visu-
alizatoin and Computer Graphics, 12(5):1245–1250, 2006.

[13] SZ compression library. [online]. Available at:
https://collab.mcs.anl.gov/display/ESR/SZ.

[14] ASCF Center. FLASH User’s Guide
(Version 4.2). [online] Available at
http://flash.uchicago.edu/site/flashcode/user support/
flash2 users guide/docs/FLASH2.5/flash2 ug.pdf

[15] p. Colella and P.R. Woodward, “The Piecewise Parabolic
Method (PPM) for Gas-Dynamical Simulations,” in Journal
of Computational Physics (JCP), 54:174–201, 1984.

[16] L.I. Sedov, “Similarity and Dimensional Methods in Mechan-
ics (10th Edition),” New York: Academic, 1959.

[17] A.L. Zachary, A. Malagoli, and P. Colella, “A Higher-Order
Godunov Method for Multidimensional Ideal Magnetohy-
drodynamics,” in SIAM Journal of Scientific Computing,
15(2):263–284, 1994.

[18] M. Brio and C.C. Wu, “An Upwind Differencing Scheme for
the Equations of Ideal Magnetohydrodynamics,” in Journal
of Computational Physics, 75:400–422, 1988.

[19] O. Walsh, “Eddy Solutions of the Navier-Stokes Equations,”
in Proceedings of The Navier-Stokes Equations II - Theory
and Numerical Methods, 306–309, Oberwolfach 1991.

[20] P. Fisher, “Nek5000 User Guide,” [online] Available at
http://www.mcs.anl.gov/f̃ischer/nek5000/examples.pdf.

[21] A. Obabko. Simulation of Gallium Experiment.
[online] Available at: http://www.cmso.info/
cmsopdf/princeton5oct05/talks/Obabko-05.ppt

[22] V.D. Shafranov. The structure of shock waves in a plasma. in
Sov. Phys. JETP, 5:1183, 1957.

[23] D. Bailey, M. Holland, E. Hunke, B. Lipscomb, B.
Briegleb, C. Bits, and J. Schramm. Community Ice CodE
(CICE) User’s Guide (Version 4.0). [online]. Available:
http://www.cesm.ucar.edu/models/ccsm4.0/cice/ice usrdoc.pdf.

[24] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression, ”, in IEEE Transactions on Information
Theory, 23(3): 337-343, 1977.

[25] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
and N. Maruyama, S. Matsuoka. FTI: High Performance Fault
Tolerance Interface for Hybrid Systems. in Proceedings of
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’11), pages 32:1–32:32,
2011.

[26] S. Di, M.-Slim Bouguerra, L.A. Bautista-Gomez, and F.
Cappello. Optimization of Multi-level Checkpoint Model for
Large Scale HPC Applications. in Proceedings of 28th In-
ternational Parallel and Distributed Processing Symposium
(IPDSP’14), pages 1181-1190, 2014.

[27] S. Di, L.A. Bautista-Gomez, and F. Cappello. Optimization
of a Multilevel Checkpoint Model with Uncertain Execution
Scales. in Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC’14), pages 907-918, 2014.

[28] K. Buchin, “Organizing Point Sets: Space-Filling Curves,
Delaunay Tessellations of Random Point Sets, and Flow
Complexes,” Ph.D Dissertation, Department of Mathematics
and computer science, Freien Universitat Berlin.

[29] E. H. Moore, “On certain crinkly curves, ” Trans. Amer.
Math. Soc., 1: 72-90, 1900.
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