
Fortifying Macros ∗

Ryan Culpepper † Matthias Felleisen
Northeastern University

{ryanc,matthias}@ccs.neu.edu

Abstract
Existing macro systems force programmers to make a choice be-
tween clarity of specification and robustness. If they choose clarity,
they must forgo validating significant parts of the specification and
thus produce low-quality language extensions. If they choose ro-
bustness, they must write in a style that mingles the implementation
with the specification and therefore obscures the latter.

This paper introduces a new language for writing macros.
With the new macro system, programmers naturally write robust
language extensions using easy-to-understand specifications. The
system translates these specifications into validators that detect
misuses—including violations of context-sensitive constraints—
and automatically synthesize appropriate feedback, eliminating the
need for ad hoc validation code.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

1. What is a macro?
Every functional programmer knows that a let expression can be
expressed as the immediate application of a λ abstraction [Landin
1965]. The let expression’s variables become the formal parame-
ters of the λ expression, the initialization expressions become the
application’s arguments, and the body becomes the body of the λ
expression. Here is a quasi-formal expression of the idea:

(let ([var rhs] . . .) body) = ((λ (var . . .) body) rhs . . .)

It is understood that each var is an identifier and each rhs and
body is an expression; the variables also must be distinct. These
constraints might be stated as an aside to the above equation, and
some might even be a consequence of metavariable conventions.

New language elements such as let can be implemented via
macros, which automate the translation of new language forms
into simpler ones. Essentially, macros are an API for extending the
front end of the compiler. Unlike many language extension tools,
however, a macro is part of the program whose syntax it extends;
no separate pre-processor is used.

∗ The research was partially supported by NSF infrastructure grants.
†New address: School of Computing, 50 Central Campus Drive (Rm 3190),
Salt Lake City, UT 84112-9205

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

A macro definition associates a name with a compile-time func-
tion, i.e., a syntax transformer. When the compiler encounters a
use of the macro name, it calls the associated macro transformer to
rewrite the expression. Because macros are defined by translation,
they are often called derived syntactic forms. In the example above,
the derived form let is expanded into the primitive forms λ and
function application. Due to the restricted syntax of macro uses—
the macro name must occur in operator position—extensions to the
language easily compose. Since extensions are anchored to names,
extensions can be managed by controlling the scope of their names.
This allows the construction of a tower of languages in layers.

Introducing new language elements, dubbed macros, has long
been a standard element of every Lisper’s and Schemer’s reper-
toire. Racket [Flatt and PLT 2010], formerly PLT Scheme, is a de-
scendent of Lisp and Scheme that uses macros pervasively in its
standard libraries. Due in part to its pedagogical uses, Racket has
high standards for error behavior. Languages built with macros are
held to the same standards as Racket itself. In particular, syntactic
mistakes should be reported in terms of the programmer’s error, not
an error discovered after several rounds of rewriting; and further-
more, the mistake should be reported in terms documented by the
language extension.

Sadly, existing systems make it surprisingly difficult to pro-
duce easy-to-understand macros that properly validate their syn-
tax. These systems force the programmer to mingle the declarative
specification of syntax and semantics with highly detailed valida-
tion code. Without validation, however, macros aren’t true abstrac-
tions. Instead, erroneous terms flow through the parsing process
until they eventually trip over constraint checks at a low level in the
language tower. Low-level checking, in turn, yields incoherent er-
ror messages and leaves programmers searching for explanations.
In short, such macros do not create seamless linguistic abstractions
but sources of confusion and distraction.

In this paper, we present a novel macro system for Racket that
enables the creation of true syntactic abstractions. Programmers
define modular, reusable specifications of syntax and use them to
validate uses of macros. The specifications consist of grammars
extended with context-sensitive constraints. When a macro is used
improperly, the macro system uses the specifications to synthesize
an error message at the proper level of abstraction.

2. Expressing macros
To illustrate the problems with existing macro systems, let us ex-
amine them in the context of the ubiquitous let example:

(let ([var rhs] . . .) body) = ((λ (var . . .) body) rhs . . .)
the vars are distinct identifiers

body and the rhss are expressions

A macro’s syntax transformer is essentially a function from syntax
to syntax. Many Lisp dialects take that as the entirety of the in-
terface: macros are just distinguished functions, introduced with

define-macro instead of define, that consume and produce S-
expressions representing terms. Macros in such systems typically
use standard S-expression functions to “parse” syntax, and they use
quasiquotation to build up the desugared expression:

(define-macro (let bindings body)
‘((λ ,(map first bindings) ,body)

,@(map second bindings)))

A well-organized implementation would extract and name the sub-
terms before assembling the result, separating parsing from code
generation:

(define-macro (let bindings body)
(define vars (map first bindings))
(define rhss (map second bindings))
‘((λ ,vars ,body) ,@rhss))

These definitions do not resemble the specification, however,
and they do not even properly implement it. The parsing code does
not validate the basic syntax of let. For example, the macro simply
ignores extra terms in a binding pair:

(let ([x 1] [y 3 "what about me?"]) (+ x y))

Macro writers, eager to move on as soon as “it works,” will continue
to write sloppy macros like these unless their tools make it easy to
write robust ones.

One such tool is the so-called Macro-By-Example (MBE) no-
tation by Kohlbecker and Wand [1987]. In MBE, macros are spec-
ified in a notation close to the initial informal equation, and the
parsing and transformation code is produced automatically. The
generated parsing code enforces the declared syntax, rejecting mal-
formed uses such as the one above.

MBE replaces the procedural code with a sequence of clauses,
each consisting of a pattern and a template. The patterns describe
the macro’s syntax. A pattern contains syntax pattern variables,
and when a pattern matches, the pattern variables are bound to the
corresponding sub-terms of the macro occurrence. These sub-terms
are substituted into the template where the pattern variables occur
to produce the macro’s expansion result.

Here is let expressed with syntax-rules [Sperber et al. 2009],
one of many implementations of MBE:

(define-syntax let
(syntax-rules ()

[(let ([var rhs] . . .) body)
((λ (var . . .) body) rhs . . .)]))

The pattern variables are var, rhs, and body.
The crucial innovation of MBE is the use of ellipses (. . .)

to describe sequences of sub-terms with homogeneous structure.
Such sequences occur frequently in S-expression syntax. Some
sequences have simple elements, such as the parameters of a λ
expression, but often the sequences have non-trivial structure, such
as binding pairs associating let-bound variables with their values.

Every pattern variable has an associated ellipsis depth. A depth
of 0 means the variable contains a single term, a depth of 1 indicates
a list of terms, and so on. Syntax templates are statically checked
to make sure the ellipsis depths are consistent. We do not address
template checking and transcription in this work; see Kohlbecker
and Wand [1987] for details.

Ellipses do not add expressive power to the macro system but
do add expressiveness to patterns. Without ellipses, the let macro
can still be expressed via explicit recursion, but in a way that
obscures the nature of valid let expressions; instead of residing in
a single pattern, it would be distributed across multiple clauses of
a recursive macro. In short, ellipses help close the gap between
specification and implementation.

Yet MBE lacks the power to express all of the information in the
informal description of let above. The example macros presented so
far neglect to validate two critical aspects of the let syntax: the first
term of each binding pair must be an identifier, and those identifiers
must be distinct.

Consider these two misuses of let:
(let ([x 1] [x 2]) (+ x x))
(let ([(x y) (f 7)]) (g x y))

In neither case does the let macro report that it has been used incor-
rectly. Both times it inspects the syntax, approves it, and produces
an invalid λ expression. Then λ, implemented by a careful com-
piler writer, signals an error, such as “λ: duplicate identifier in: x”
in Racket for the first term and “invalid parameter list in (λ ((x y))
(g x y))” in Chez Scheme [Cadence Research Systems 1994] for
the second. Source location tracking [Dybvig et al. 1993] improves
the situation somewhat in macro systems that offer it. For exam-
ple, the DrRacket [Findler et al. 2002] programming environment
highlights the duplicate identifier. But this is not a good solution.
Macros should report errors on their own terms.

Worse, a macro might pass through syntax that has an unin-
tended meaning. In Racket, the second example above produces
the surprising error “unbound variable in: y.” The pair (x y) is ac-
cepted as an optional parameter with a default expression, a feature
of Racket’s λ syntax, and the error refers to the free variable y in
the latter portion. If y were bound in this context, the second ex-
ample would be silently accepted. A slight variation demonstrates
another pitfall:

(let ([(x) (f 7)]) (g x x))

This time, Racket reports the following error: “λ: not an identifier,
identifier with default, or keyword at: (x).” The error message not
only leaks the implementation of let, it implicitly obscures the legal
syntax of let.

(define-syntax (let stx)
(syntax-case stx ()

[(let ([var rhs] . . .) body)
;; Guard expression
(and (andmap identifier? (syntax→list #’(var . . .)))

(not (check-duplicate #’(var . . .))))
;; Transformation expression
#’((λ (var . . .) body) rhs . . .)]))

Figure 1. let with guards

The traditional solution to this problem is to include a guard
expression, sometimes called a fender, that is run after the pattern
matches but before the transformation expression is evaluated. The
guard expression produces true or false to indicate whether its
constraints are satisfied. If the guard expression fails, the pattern
is rejected and the next pattern is tried. If all of the patterns fail, the
macro raises a generic syntax error, such as “bad syntax.”

Figure 1 shows the implementation of let in syntax-case [Dy-
bvig et al. 1993; Sperber et al. 2009], an implementation of MBE
that provides guard expressions. A syntax-case clause consists of a
pattern, an optional guard, and a transformation expression. Syntax
templates within expressions are marked with a #’ prefix.

Guard expressions suffice to prevent macros from accepting
invalid syntax, but they suffer from two flaws. First, since guard
expressions are separated from transformation expressions, work
needed both for validation and transformation must be performed
twice and code is often duplicated. Second and more important,
guards do not explain why the syntax was invalid. That is, they
only control matching; they do not track causes of failure.

(define-syntax (let stx)
(syntax-case stx ()

[(let ([var rhs] . . .) body)
(begin
;; Error-checking code
(for-each (λ (var)

(unless (identifier? var)
(syntax-error "expected identifier" stx var)))

(syntax→list #’(var . . .)))
(let ([dup (check-duplicate #’(var . . .))])

(when dup
(syntax-error "duplicate variable name" stx dup)))

;; Result term
#’((λ (var . . .) body) rhs . . .))]))

Figure 2. let with hand-coded error checking

To provide precise error explanations, explicit error checking is
necessary, as shown in figure 2. Of the ten non-comment lines of
the macro’s clause, one is the pattern, one is the template, and eight
are dedicated to validation. Furthermore, this macro only reports
errors that match the shape of the pattern. If it is given a malformed
binding pair with extra terms after the right-hand side expression,
the clause fails to match, and syntax-case produces a generic error.
Detecting and reporting those sorts of errors would require even
more code. Only the most conscientious macro writers are likely to
take the time to enumerate all the ways the syntax could be invalid
and to issue appropriate error reports.

Certainly, the code for let could be simplified. Macro writers
could build libraries of common error-checking routines. Such an
approach, however, would still obscure the natural two-line speci-
fication of let by mixing the error-checking code with the transfor-
mation code. Furthermore, abstractions that focus on raising syntax
errors would not address the other purpose of guards, the selection
among multiple valid alternatives.

Even ignoring the nuances of error reporting, some syntax is
simply difficult to parse with MBE patterns. Macro writers cope in
two ways: either they compromise on the user’s convenience with
simplified syntax or they hand-code the parser.

(define-struct struct (field . . .) option . . .)

where struct, field are identifiers
option ::= #:mutable

| #:super super-struct-expr
| #:inspector inspector-expr
| #:property property-expr value-expr
| #:transparent

Figure 3. The syntax of define-struct

Keyword arguments are one kind of syntax difficult to parse
using MBE patterns. An example of a keyword-enhanced macro
is Racket’s define-struct form, whose grammar is specified in
figure 3. It has several keyword options, which can occur in any
order. The #:transparent and #:inspector keywords control when
structure values can be inspected via reflection. The #:mutable
option makes the fields mutable; the #:property option allows
structure types to override behavior such as how they are printed;
and so on. Different keywords come with different numbers of
arguments, e.g., #:mutable has none and #:property takes two.

Parsing a define-struct form gracefully is simply beyond the
capabilities of MBE’s pattern language, which focuses on homo-
geneous sequences. A single optional keyword argument can be
supported by simply writing two clauses—one with the argument
and one without. At two arguments, calculating out the patterns

becomes onerous, and the macro writer is likely to make odd, ex-
pedient compromises—arguments must appear in some order, or if
one argument is given, both must be. Beyond two arguments, the
approach is unworkable. The alternative is, again, to move part of
the parsing into the transformer code. The macro writer sketches
the rough structure of the syntax in broad strokes with a pattern,
then fills in the details with procedural parsing code:

(define-syntax (define-struct stx)
(syntax-case stx ()

[(define-struct name (field . . .) kw-options . . .)
—— #’(kw-options . . .) ——]))

In the actual implementation of define-struct, the parsing of key-
word options alone takes over one hundred lines of code. In com-
parison, when formulated in our new system this code is shortened
by an order of magnitude.

In summary, MBE offers weak syntax patterns, forcing the
programmer to move the work of validation and error-reporting into
guards and transformers. Furthermore, guard expressions accept
or reject entire clauses, and rejection comes without information
as to why the guard failed. Finally, MBE lacks the vocabulary to
describe a broad range of important syntaxes. Our new domain-
specific language for macros eliminates these problems.

3. The design of syntax-parse
Our system, dubbed syntax-parse, uses a domain-specific lan-
guage to support parsing, validation, and error reporting. It features
three significant improvements over MBE:

• an expressive language of syntax patterns, including pattern
variables annotated with the classes of syntax they can match;
• a facility for defining new syntax classes as abstractions over

syntax patterns; and
• a matching algorithm that tracks progress to rank and report

failures and a notion of failure that carries error information.

Furthermore, guard expressions are replaced with side conditions,
which provide rejection messages.

The syntax classes of our new system serve a role similar to
that of non-terminals in traditional grammars. Their addition allows
the disciplined interleaving of declarative specifications and hand-
coded checks.

This section illustrates the design of syntax-parse with a series
of examples based on the let example.

(syntax-parse stx-expr [pattern side-clause . . . expr] . . .)

where side-clause ::= #:fail-when cond-expr msg-expr
| #:with pattern stx-expr

Figure 4. Syntax of syntax-parse

3.1 Validating syntax
The syntax of syntax-parse—specified in figure 4—is similar to
syntax-case. As a starting point, here is the let macro transliterated
from the syntax-rules version:

(define-syntax (let stx)
(syntax-parse stx

[(let ([var rhs] . . .) body)
#’((λ (var . . .) body) rhs . . .)]))

It enforces only the two side conditions in the original specification.
To this skeleton we add the constraint that every term labeled

var must be an identifier. Likewise, rhs and body are annotated to

indicate that they are expressions. For our purposes, an expression
is any term other than a keyword. The final constraint, that the
identifiers are unique, is expressed as a side condition using a
#:fail-when clause. Here is the revised macro:

(define-syntax (let stx)
(syntax-parse stx

[(let ([var:identifier rhs:expr] . . .) body:expr)
#:fail-when (check-duplicate #’(var . . .))

"duplicate variable name"
#’((λ (var . . .) body) rhs . . .)]))

Note that a syntax class annotation such as expr is not part of the
pattern variable name, and it does not appear in the template.

The call to check-duplicate acts as a condition; if it is false,
failure is averted and control flows to the template expression.
But if it returns any other value, parsing fails with a “duplicate
variable name” message; furthermore, if the condition value is a
syntax object—that is, the representation of a term—that syntax is
included as the specific site of the failure. In short, side conditions
differ from guard expressions in that the failures they generate carry
information describing the reasons for the failure.

At this point, our let macro properly validates its syntax. It
catches the misuses earlier and reports the following errors:

> (let ([x 1] [x 2]) (h x))
let: duplicate variable name in: x
> (let ([(x y) (f 7)]) (g x y))
let: expected identifier in: (x y)

The boxes indicates the specific location of the problem; the Dr-
Racket programming environment highlights these terms in red in
addition to printing the error message.

For some misuses, let still doesn’t provide good error messages.
Here is an example that is missing a pair of parentheses:

> (let (x 5) (add1 x))
let: bad syntax

Our let macro rejects this misuse with a generic error message. To
get better error messages, the macro writer must supply syntax-
parse with additional information.

3.2 Defining syntax classes
Syntax classes form the basis of syntax-parse’s error-reporting
mechanism. Defining a syntax class for binding pairs gives syntax-
parse the vocabulary to explain a new class of errors. The syntax
of binding pairs is defined as a syntax class thus:

(define-syntax-class binding
#:description "binding pair"
(pattern [var:identifier rhs:expr]))

The syntax class is named binding, but for the purposes of error
reporting it is known as “binding pair.” Since the pattern variables
var and rhs have moved out of the main pattern into the syntax
class, they must be exported as attributes of the syntax class so that
their bindings are available to the main pattern. The name of the
binding-annotated pattern variable, b, is combined with the names
of the attributes to form the nested attributes b.var and b.rhs:

(define-syntax (let stx)
(syntax-parse stx

[(let (b:binding . . .) body:expr)
#:fail-when (check-duplicate #’(b.var . . .))

"duplicate variable name"
#’((λ (b.var . . .) body) b.rhs . . .)]))

Macros tend to share common syntactic structure. For example,
the binding pair syntax, consisting of an identifier for the variable

name and an expression for its value, occurs in other variants of let,
such as let∗ and letrec.

In addition to patterns, syntax classes may contain side condi-
tions. For example, both the let and letrec forms require that their
variable bindings be distinct. Here is an appropriate syntax class:

(define-syntax-class distinct-bindings
#:description "sequence of binding pairs"
(pattern (b:binding . . .)

#:fail-when (check-duplicate #’(var . . .))
"duplicate variable name"

#:with (var . . .) #’(b.var . . .)
#:with (rhs . . .) #’(b.rhs . . .)))

The attributes of distinct-bindings are var and rhs. They are bound
by the #:with clauses, each of which consists of a pattern followed
by an expression, which may refer to previously bound attributes
such as b.var. The expression’s result is matched against the pat-
tern, and the pattern’s attributes are available for export or for use
by subsequent side clauses. Unlike the var and rhs attributes of
binding, the var and rhs attributes of distinct-bindings have an el-
lipsis depth of 1, so bs.var and bs.rhs can be used within ellipses
in the macro’s template, even if bs does not occur within ellipses in
the macro’s pattern:

(define-syntax (let stx)
(syntax-parse stx

[(let bs:distinct-bindings body:expr)
#’((λ (bs.var . . .) body) bs.rhs . . .)]))

Now that we have specified the syntax of binding and distinct-
bindings, syntax-parse can use them to generate good error mes-
sage for additional misuses of let:

> (let (x 5) (add1 x))
let: expected binding pair in: x
> (let 17)
let: expected sequence of binding pairs in: 17

The next section explains how syntax-parse generates error mes-
sages and how defining syntax classes affects error reporting.

4. Reporting errors
The syntax-parse system uses the declarative specification of a
macro’s syntax to report errors in macro uses. The task of reporting
errors is factored into two steps. First, the matching algorithm
selects the most appropriate error to report. Second, it reports the
error by pinpointing the faulty term and describing the fault or
stating the expected class of syntax.

4.1 Error selection
Pattern variable annotations and side conditions serve a dual role in
our system. As seen, pattern variable annotations and side condi-
tions allow syntax-parse to validate syntax. When validation fails,
syntax-parse reports the specific site and cause of the failure. But
annotations and side conditions do not simply behave like the error
checks of figure 2. A macro can have multiple clauses, and a syntax
class can have multiple variants. If there are multiple choices, all of
them must be attempted before an error is raised and explained.

To illustrate this process, we must introduce choice into our
running example. Serendipitously, Racket inherits Scheme’s let
syntax, which has another variant—a so-called “named let”—that
specifies a name for the implicit procedure. This notation provides
a handy loop-like syntax. For example, the following program
determines whether the majority of numbers in a list are positive:

(define (mostly-positive? nums)
(let loop ([nums nums] [pos 0] [non 0])

(cond [(empty? nums) (> pos non)]
[(positive? (first nums))
(loop (rest nums) (+ 1 pos) non)]

[else (loop (rest nums) pos (+ 1 non))])))

Implementing the new variant of let is as simple as adding
another clause to the macro:

(define-syntax (let stx)
(syntax-parse stx

[(let loop:identifier bs:distinct-bindings body:expr)
#’(letrec ([Lp (λ (bs.var . . .) body)]) (Lp bs.rhs . . .))]

[(let bs:distinct-bindings body:expr)
#’((λ (bs.var . . .) body) bs.rhs . . .)]))

The macro uses the annotations to pick the applicable pattern; it
chooses named-let if the first argument is an identifier and normal-
let if it is a binding list. It happens that the two patterns are mutually
exclusive, so the order of the clauses is irrelevant.

The use of annotations to select the matching clause must be
reconciled with the role of annotations in error reporting. An an-
notation rejection during pattern-matching clearly cannot immedi-
ately signal an error. But the annotations must retain their error-
reporting capacity; if the whole parsing process fails, the annota-
tions must be used to generate a specific error.

The dual role of failure is supported using the following ap-
proach. When there are multiple alternatives, such as multiple
syntax-parse clauses or multiple variants of a syntax class defini-
tion, they are tried in order. When an alternative fails, syntax-parse
records the failure and backtracks to the next alternative. As alter-
natives are tried, syntax-parse accumulates a list of failures, and
each failure contains a measure of the matching progress made.
If the whole matching process fails, the attempts that made the
most progress are chosen to explain the syntax error. Usually, but
not always, there is a unique maximum, resulting in a single error
explanation. Otherwise, the maximal failures are combined.

Progress π ::= ps∗

Progress Step ps ::= FIRST | REST | LATE

FIRST < REST < LATE

ε < ps · π
π1 < π2

ps · π1 < ps · π2

ps1 < ps2

ps1 · π1 < ps2 · π2

Figure 5. Progress

Figure 5 defines our notion of progress as sequences of progress
steps. The progress steps FIRST and REST indicate the first and
rest of a compound term, respectively. Parsing is performed left to
right; if the parser is looking at the rest of a compound term, the
first part must have been parsed successfully. Progress is ordered
lexicographically. Steps are recorded left to right, so for example
the second term in a sequence is written REST · FIRST; that is, take
the rest of the full term and then the first part of that.

Consider the following erroneous let term:

(let ([a 1] [2 b]) (∗ a b))

The named-let clause fails at the second sub-term with the progress
string REST · FIRST:

(let ([a 1] [2 b]) (∗ a b))

The normal-let clause, however, fails deeper within the second
argument, at REST · FIRST · REST · FIRST · FIRST:

(let ([a 1] [2 b]) (∗ a b))

This second sequence denotes strictly more progress than REST ·
FIRST. Thus, the second failure is selected, and the macro reports
that it expected an identifier in place of 2.

Matching progress is not only a measure of position in a term.
Consider the following example:

(let ([x 1] [x 2]) (+ x x))

Both clauses agree on the faulty subterm. But this example is
clearly closer to a use of normal-let rather than named-let. The
faulty term matches the structure of distinct-bindings, just not the
side condition.

Pragmatically, we consider a check for side conditions—in con-
trast to an annotation check—to occur after traversal of the term.
A progress step dubbed LATE signals the failure of a side condi-
tion. Thus, while the named-let clause fails with the progress string
REST ·FIRST in the example above, the normal-let clause fails with
REST · FIRST · LATE, which is greater progress than the first.

Sometimes multiple alternatives fail at the same place, e.g.,

> (let 5)
let: expected identifier or sequence of binding pairs in: 5

Both clauses make the same amount of progress with this term:
REST · FIRST. As a result, both failures are selected, and the error
message includes both descriptions.

4.2 Error messages
In addition to progress, a failure contains a message that indicates
the nature of the error and the term where the failure occurred. A
typical error message is

let: expected binding pair in: x

This message consists of the macro’s expectations (a binding pair)
and the specific term where parsing failed (x).

A syntax error should identify the faulty term and concisely
explain what was expected. It should not recapitulate the macro’s
documentation; rather, the error message should make locating
the appropriate documentation easy, e.g., via links and references.
Consequently, syntax-parse produces messages from a limited set
of ingredients. It automatically synthesizes messages for literal
and datum patterns; for example, the pattern 5 yields the message
“expected the literal 5.” As a special case, it also knows how to
report when a compound term has too many sub-terms. The only
other ingredients it uses are provided by the macro developer:
descriptions and side-condition messages.

In particular, syntax-parse does not synthesize messages to
describe compound patterns. We call such patterns and the failures
they cause “ineffable”; our system cannot generate explanations for
them. An example is the following pattern:

(var:identifier rhs:expr)

If a term such as 5 is matched against this pattern, it fails to match
the compound structure of the pattern. The matching process does
not reach the identifier or expression check. One possible error
message is “expected a compound term consisting of an identifier
and an expression.” Another is “expected (identifier expr).” In prac-
tice, macro writers occasionally write error messages of both forms.
We have chosen not to generate such messages automatically for
two reasons: first, they do not scale well to large or sophisticated
patterns; and second, we consider such messages misguided.

Generating messages from patterns is feasible when the patterns
are simple, such as the example above. For patterns with deeper
nesting and patterns using advanced features, however, generating
an accurate message is tantamount to simply displaying the pattern

itself. While showing patterns in failures is a useful debugging aid
for macro developers, it is a bad way to construct robust linguis-
tic abstractions. Error reporting should be based on documented
concepts, not implementation details.

When a compound pattern such as the one above fails, the
pattern’s context is searched and the nearest enclosing description
is used to report the error. Consider the following misuse of let:

(let (x 1) (add1 x))

The error selection algorithm from section 4.1 determines that the
most specific failure arose trying to match x against the pattern
(var:identifier rhs:expr). Here is the full context of the failure:

• matching x against (var:identifier rhs:expr) failed
• while matching x against b:binding
• while matching (x 1) against bs:distinct-bindings
• while matching (let (x 1) (add1 x)) against the complex pattern

(let bs:distinct-bindings body:expr)

The first and fourth frames contain ineffable patterns. Discarding
them and rephrasing the expected syntax gives us the following
context:

• expected binding pair, given x
• expected sequence of binding pairs, given (x 1)

The message and term of the first frame are used to formulate the
error message “let: expected binding pair in: x” because it is the
closest one.

5. Syntax patterns
The power of syntax-parse is due to its expressive pattern lan-
guage, an extension of the syntax patterns of MBE. Sections 3 and
4 have introduced some features of our pattern language. This sec-
tion describes additional pattern forms that, in our experience, in-
crease the expressive power of our system to the level necessary for
developing real syntax specifications.

Patterns S ::= x
| x :class
| (S . S)
| (S S)
| datum
| (˜literal x)
| (˜var x (class e∗))
| (˜and S+)
| (˜or S+)
| (˜describe expr S)

Figure 6. Single-term patterns

5.1 Single-term patterns
Figure 6 describes the syntax of syntax patterns, specifically single-
term patterns, the kind of pattern that specifies sets of single terms.
The first four—pattern variables, annotated pattern variables, pair
patterns, and ellipsis patterns—appear in section 3. So do datum
patterns, in the form of (), which ends compound patterns.1 In gen-
eral, data like numbers, booleans, and strings can be used as pat-
terns that match themselves. The ˜literal pattern form2 recognizes
identifiers that have the same binding as the enclosed identifier; this

1 The notation (a b) is shorthand for (a . (b . ())).
2 All pattern keywords start with a tilde (˜).

(define-syntax-class distinct-bindings
#:description "sequence of binding pairs"
(pattern (˜var bs (bindings-excluding ’()))

#:with (var . . .) (bs.var . . .)
#:with (rhs . . .) (bs.rhs . . .)))

;; seen is a list of identifiers
(define-syntax-class (bindings-excluding seen)

(pattern ()
#:with (var . . .) ’()
#:with (rhs . . .) ’())

(pattern ([(˜var var0 (id-excluding seen)) rhs0]
. (˜var rest (bindings-excluding (cons #’var0 seen))))

#:with (var . . .) #’(var0 rest.var . . .)
#:with (rhs . . .) #’(rhs0 rest.rhs . . .)))

;; seen is a list of identifiers
(define-syntax-class (id-excluding seen)

(pattern x:identifier
#:fail-when (for/or ([id seen])

(bound-identifier=? #’x id))
"duplicate variable name"))

Figure 7. Parameterized syntax classes

is the standard notion of identifier equality in hygienic macro sys-
tems [Dybvig et al. 1993].

A ˜var pattern constrains a pattern variable to a syntax class.
The colon notation is a shorthand for parameterless syntax classes;
e.g., x:identifier is short for (˜var x (identifier)). When the syntax
class takes parameters, the explicit ˜var notation is required.

A syntax class’s parameters may be used in its sub-expressions,
including its description and any of its side conditions. For exam-
ple, here is a syntax class that recognizes literal natural numbers
less than some upper bound:

;; ex.: the pattern (˜var n (nat< 10)) matches
;; any literal natural number less than 10
(define-syntax-class (nat< bound)

#:description (format "natural number < ˜s" bound)
(pattern n:nat

#:fail-when (not (< (syntax→datum #’n) bound))
(format "got a number ˜s or greater" bound)))

Notice how the upper bound is inserted into both the description
and the check message using the format procedure.

We can use parameterized syntax classes to give an alternative
definition of distinct-bindings, via a syntax class parameterized
over the identifiers that have already been seen. Figure 7 shows
the alternative definition and the auxiliaries bindings-excluding and
id-excluding. The pattern bindings-excluding syntax class accepts
sequences of distinct bindings but also requires that the bound
names not occur in seen. Consider bindings-excluding’s second
pattern; var0 must be an identifier not in seen, and the identifier
bound to var0 is added to the blacklisted identifiers for the rest of
the binding sequence. Note that var0 is in scope in the argument to
bindings-excluding. Since patterns are matched left to right, pattern
variable binding also runs left to right, following the principle of
scope being determined by control dominance [Shivers 2005].

While it accepts the same terms, this alternative definition of
distinct-bindings reports errors differently from the one in sec-
tion 3.2. The first definition verifies the structure of the binding
pairs first, then checks for a duplicate name. The second checks the
structure and checks duplicates in the same pass. They thus report
different errors for the following term:

(let ([a 1] [a 2] [x y z]) a)

In such cases, the macro writer must decide the most suitable order
of validation.

The ˜and pattern form provides a way of analyzing a term
multiple ways. Matching order and binding go left to right within
an ˜and pattern, so later sub-patterns can rely on earlier ones.

The ˜or form matches if any of its sub-patterns match. Unlike
in many pattern matching systems, where disjunction, if it is sup-
ported at all, requires that the disjuncts bind the same pattern vari-
ables, ˜or patterns are more flexible. An ˜or pattern binds the union
of its disjuncts’ attributes, and those attributes that do not occur in
the matching disjunct are marked “absent.”

It is illegal to use an absent attribute in a syntax template, so
syntax-parse provides the attribute form, which accesses the value
of the attribute, returning false for absent attributes. Using attribute,
a programmer can check whether it is safe to use an attribute in a
template. Here is an auxiliary function for parsing field declarations
for a class macro, where a field declaration contains either a single
name or distinct internal and external names:

(define (parse-field-declaration stx)
(syntax-parse stx

[(˜or field:identifier [internal:identifier field:identifier])
(make-field (if (attribute internal) #’internal #’field)

#’field)]))

Some uses of ˜or patterns are better expressed as syntax classes,
not least because a syntax class can use a #:with clause to bind
missing attributes:

(define-syntax-class field-declaration
(pattern field:id

#:with internal #’field)
(pattern [internal:id field:id]))

The final pattern form, ˜describe, pushes a new description d
onto the matching context of its sub-pattern. Hence, if a failure
occurs and if there is no other description closer to the source of
the error, the description d is used to explain the failure.

There is no difference between a description attached to a syntax
class and one given via ˜describe. Recall the binding and distinct-
bindings syntax class definitions from section 3.2; the binding
syntax class could be inlined into distinct-bindings as follows:

(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern ((˜describe "binding pair"

[var:identifier rhs:expr]) . . .)
#:fail-when ——))

In fact, distinct-bindings could be inlined into the let macro itself
using ˜describe and action patterns.

Action patterns A ::= (˜parse S expr)
| (˜fail condition message)
| (˜late A)

Patterns S ::= · · ·
| (˜and S {S |A}∗)

Figure 8. Action patterns

5.2 Action patterns
The action patterns of figure 8 do not describe syntax; instead, they
affect the parsing process without consuming input. The ˜parse
form allows the programmer to divert matching from the current
input to a computed term; ˜fail provides a way of explicitly causing
a match failure; and ˜late affects the ordering of failures.

The ˜parse form evaluates its sub-expression and matches it
against the given pattern. One use for the ˜parse form is to bind
default values within an ˜or pattern, avoiding the need for explicit
attribute checks later. Recall parse-field-declaration. Here internal
is bound in both alternatives, simplifying the result template:

(define (parse-field-declaration stx)
(syntax-parse stx

[(˜or (˜and field:identifier (˜parse internal #’field))
[internal:identifier field:identifier])

(make-field #’internal #’field)]))

This example also shows the use of ˜and to sequence an action
pattern after a single-term pattern. Since ˜and propagates attributes
bound in each of its sub-patterns to subsequent sub-patterns, ˜and
can be used to parse a term and then perform actions depending on
the contents of the term.

The ˜fail patterns allow programmers to perform side-constraint
checks. Additionally, if the condition evaluates to a syntax value, it
is added to the failure as the specific term that caused the error.

By default, ˜fail performs early checks. For example, the iden-
tifier syntax class performs its test as an early check:

(define-syntax-class identifier
(pattern (˜and x (˜fail (not (identifier? #’x)) no-msg))))

The ˜late form turns enclosed checks into late checks. In fact,
the #:fail-when keyword option used in distinct-bindings is just
shorthand for a combination of ˜late and ˜fail:

(define-syntax-class distinct-bindings
#:description "sequence of distinct bindings"
(pattern (˜and (b:binding . . .)

(˜late (˜fail (check-duplicate #’(b.var . . .))
"duplicate variable name")))))

5.3 Head patterns
The patterns of Sections 5.1 and 5.2 do not provide the power
needed to parse macros like define-struct from figure 3. There are
elements of define-struct’s syntax that comprise multiple consecu-
tive terms, but single-term patterns describe only single terms, and
action patterns do not describe terms at all. An occurrence of the
super option, for example, consists of two adjacent terms: the key-
word #:super followed by an expression, e.g.,

(define-struct point (x y) #:super geometry #:mutable)

No single-term pattern describes the inspector option. In particular,
the pattern (#:super sup:expr) does not, because #:super and its
argument do not appear as a separate parenthesized term, such as
(#:super geometry).

Head patterns H ::= (˜seq . L)
| (˜and H {H |A}∗)
| (˜or H +)
| (˜describe expr H)
| S

List pattern L ::= ()
| (S . L)
| (H . L)
| (H L)

Patterns S ::= · · ·
| (H . S)
| (H S)

Figure 9. Head patterns

Our solution is to introduce the head patterns of figure 9, which
describe sequences of terms. The primary head pattern constructor

is ˜seq, which is followed by a proper list pattern (L). For example,
(˜seq x:identifier . . . y:expr) matches a sequence of any number of
identifiers followed by one expression. Contrast that pattern with
(x:identifier . . . y:expr), which matches a single compound term
containing a sequence of identifiers followed by an expression.

A head pattern may be combined with a normal single-term pat-
tern to form a single-term pattern. The combined pattern matches
a term by attempting to split it into a prefix sequence of terms that
matches the head pattern and a suffix term that matches the tail. The
term need not be a compound term if the prefix can be empty. For
example, the pattern ((˜seq x y z) w:identifier . . .) matches the term
(1 2 3 a b) because the term can be split into the prefix of three
terms 1 2 3 matching (˜seq x y z) and the suffix (a b) matching
(w:identifier . . .). Of course, ((˜seq x y z) w:identifier . . .) is equiv-
alent to (x y z w:identifier . . .). The ˜seq pattern is useful primarily
when combined with other pattern forms, such as ˜and and ˜or, as
in macros with optional keyword arguments:

(define-syntax (test-case stx)
(syntax-parse stx

[(test-case (˜or (˜seq #:around proc) (˜seq)) e:expr)
—— (attribute proc) ——]))

Head patterns are not intrinsically tied to keywords, of course. We
could describe the syntax of let, accommodating both normal-let
and named-let syntax, with the following pattern:

(let (˜or (˜seq loop:identifier) (˜seq)) bs:distinct-bindings
body:expr)

Splicing syntax classes encapsulate head patterns. Each of its
variants is a head pattern (H), most often a ˜seq pattern, although
other kinds of head pattern are possible. The optional #:around
keyword argument could be extracted thus:

(define-splicing-syntax-class optional-around
(pattern (˜seq #:around proc))
(pattern (˜seq)

#:with proc #’(λ (p) (p))))

A pattern variable annotated with a splicing syntax class can repre-
sent multiple terms. In this example, ka matches two terms:

(define-syntax (test-case stx)
(syntax-parse stx

[(test-case ka:optional-around e) —— #’ka.proc ——]))
(test-case #:around call-with-connection ——)

Head patterns can also occur in front of ellipses. In those cases,
a few additional variants are available that enable macro writers to
support multiple optional arguments occurring in any order.

Ellipsis patterns EH ::= (˜or EH +)
| (˜once H #:name expr)
| (˜optional H #:name expr)
| H

Patterns S ::= · · ·
| (EH S)

List patterns L ::= · · ·
| (EH L)

Figure 10. Ellipsis-head patterns

5.4 Ellipsis-head patterns
Ellipsis-head patterns—specified in figure 5.4 are the final ingredi-
ent necessary to specify syntax like the keyword options of define-
struct. An ellipsis-head pattern may have multiple alternatives
combined with ˜or; each alternative is a head pattern. It specifies

(define-struct name:identifier (field:identifier . . .)
(˜or (˜optional (˜seq #:mutable) #:name "mutable clause")

(˜optional (˜seq #:super super-expr) #:name "super clause")
(˜optional (˜or (˜seq #:inspector inspector-expr)

(˜seq #:transparent))
#:name "inspector or transparent clause")

(˜seq #:property pkey:expr pval:expr))
. . .)))

Figure 11. syntax-parse pattern for define-struct

sequences consisting of some number of instances of the alterna-
tives joined together. An alternative may be annotated with one of
two repetition constraint forms, ˜optional and ˜once, that restrict
the number of times that alternative may appear in the sequence.

The meaning of an ˜or-pattern changes slightly when it occurs
immediately before ellipses. Instead of “absent” values accruing
for every alternative that is not chosen, only the chosen alternative
accrues attribute values. Consequently, when the term (1 a 2 b c)
is matched against the pattern ((˜or x:identifier y:number) . . .), x
matches (a b c) and y matches (1 2).

These extensions to ellipses and head patterns provide enough
power to specify define-struct’s syntax. Figure 11 shows the com-
plete pattern. After the fields come the keyword options, in any or-
der. Keywords and their arguments are grouped together with ˜seq
patterns. Many of the options can occur at most once, so they are
wrapped with ˜optional patterns. The exception is the #:property
option, which can occur any number of times. The #:inspector and
#:transparent options are mutually exclusive, so they are grouped
together under one ˜optional disjunct.

6. Semantics
The syntax-parse matching algorithm is based on two principles:

• Errors are selected from all failures based on progress.
• Errors are described using explicitly-provided descriptions.

This section presents the semantics of pattern matching in syntax-
parse and explains how it implements the two principles. The error
selection algorithm is represented by a backtracking monad with
a notion of failure that incorporates matching progress. The error
description principle is implemented by the semantic functions,
which propagate error descriptions as an inherited attribute.

6.1 Tracking failure
We model backtracking with failure information with a “single-
elimination” monad, a variant of well-known backtracking mon-
ads [Hughes 1995]. A single-elimination (SE) sequence consists of
a finite list of successes (ai) terminated by at most one failure (φ):

〈a1, · · · , an;φ〉
The monad is parameterized by the type of success elements; see
below. The sequences of successes may be empty. For simplicity
we always include the failure and use • to represent “no failure.”

The important aspect of this monad is its handling of failures,
which models our macro system’s error selection algorithm. A
failure (other than •) consists of a progress (π) together with a set
of reasons (`). Each reason consists of a term and a message. When
sequences are combined, their failures are joined: (1) the failure
with the greatest progress (see figure 5) is selected; (2) if they have
the same progress, their message sets are combined. The identity
element is •; it is considered to have less progress than any other
failure. Failure is a bounded join-semilattice with least element •.

Figure 12 defines the monad’s operations, including unit, bind
(written ?), and disjoin (written ˆ). The unit operation creates a

SE(A) se ::= 〈a1, · · · , an;φ〉 where ai ∈ A
Failure φ ::= • | FAIL(π, {`1, · · · , `n})
Progress π ::= ε | π · FIRST | π · REST | π · LATE
Reason ` ::= (z,msg)
Message msg

unit(a) = 〈a; •〉
fail(π, `) = 〈 ; FAIL(π, {`})〉

〈a1, · · · , an;φ〉 ? f = f(a1) ˆ · · · ˆ f(an) ˆ 〈 ;φ〉

〈a1, · · · , ak;φ1〉 ˆ 〈ak+1, · · · , an;φ2〉
= 〈a1, · · · , ak, ak+1, · · · , an;φ1 ∨ φ2〉

Figure 12. Single-elimination sequences and operations

sequence of one success and no failure. Disjoin (ˆ) concatenates
successes and joins (∨) the failures, and bind (?) applies a function
to all successes in a sequence and combines the resulting sequences
with the original failure. This monad is similar to the standard list
monad except for the way it handles failures.

One might expect to use the simpler model of a list of suc-
cesses or a failure. After all, if a pattern succeeds, backtracking typ-
ically occurs only when triggered by a failure of greater progress,
which would make any failure in the prior pattern irrelevant. This
is not always the case, however. Furthermore, our choice has two
advantages over the seemingly simpler model. First, ranking fail-
ures purely by progress is compelling and easy for programmers
to understand. Second, this monad corresponds neatly to a two-
continuation implementation [Wand and Vaillancourt 2004].

6.2 Domains and signatures
We explain pattern matching on a core version of the pattern
language. The colon shorthand for annotated pattern variables is
desugared into the ˜var form. Similarly, all datum patterns are
given as explicit ˜datum patterns. All ˜and and ˜or patterns are
converted to have exactly two sub-patterns; ˜and patterns must be
left-associated so that any action patterns in the original ˜and pat-
tern occur as second sub-patterns of the desugared ˜and patterns.
The disjuncts of core ˜or patterns all bind the same attributes; addi-
tional bindings via ˜and and ˜parse are added as necessary to make
“absent” attributes explicit.

We generalize the repetition constraint forms ˜optional and
˜once to a ˜between form. An unconstrained ellipsis head pattern is
modeled as a ˜between pattern with Nmin = 0 and Nmax =∞. Each
repetition disjunct has a distinct label (R) used to track repetitions
and two message expressions, one to report too few repetitions and
one for too many. We omit the ellipsis nesting depth of attributes;
it is a static property and as such easy to compute separately.

Syntax classes take a single parameter and references to syn-
tax classes are updated accordingly. The syntax class’s variants
are combined into a single ˜or pattern, which is wrapped with a
˜describe pattern holding the syntax class’s description.

Finally, we assume an eval function for evaluating expressions.
The environment of evaluation is a substitution with mappings for
attributes encountered previously in the pattern matching process.
For simplicity, we do not model the environment corresponding to
the program context. It would be easy but tedious to add.

Figure 13 defines the additional domains and operations used by
the semantics as well as the signatures of the denotation functions.
Terms consist of atoms and “dotted pairs” of terms. Parsing success
is represented by a substitution σ mapping names to terms. Substi-
tutions are combined by the t operator, which produces a substi-
tution with the union of the two arguments’ attribute bindings. We

Term z ::= x | datum | () | (z1 . z2)
Substitution σ, ρ ::= {x1 7→ zn, · · · , xn 7→ zn}

σ t 〈σ1, · · · , σn;φ〉 = 〈σ t σ1, · · · , σ t σn;φ〉
S[[S]]ρ∆zπ` : SE(Substitution)

A[[A]]ρ∆π` : SE(Substitution)

H[[H]]ρ∆zπ` : SE(Substitution,Term,Progress)

Figure 13. Domains, operations, signatures for pattern semantics

overload the combination operator notation; when the right-hand
side is a SE-sequence, it indicates that the left-hand substitution is
combined with every substitution in the sequence.

The pattern denotation functions are parameterized over a set
of syntax definitions ∆ and a substitution ρ from patterns already
matched. In addition to the appropriate patterns, the denotation
functions take up to three additional arguments: a term (z) to parse,
a progress string (π), and a failure reason (`). The term and progress
arguments change as the matching algorithm descends into the
term. The term argument is not needed, however, for action pat-
terns. The reason argument represents the closest enclosing de-
scription; it changes when matching passes into a ˜describe form.

Each of the pattern denotation function returns a SE-sequence
representing successes and failure. The S and A functions return
sequences whose success elements are substitutions. The H func-
tion additionally includes terms and progress strings, which indi-
cate where to resume matching.

S[[(˜var x)]]ρ∆zπ`
= unit({x 7→ z})
S[[(˜var x (cS e))]]

ρ
∆zπ`

= S[[S]]
{y 7→eval(e,ρ)}
∆ zπ` ? λσ. pfx(x, σ) t unit({x 7→ z})

where {cS(y) = S} ∈ ∆
S[[(˜datum d)]]ρ∆zπ`

=

(
unit(∅) when z = d

fail(π, (z, “expected d”)) otherwise
S[[(S1 . S2)]]ρ∆zπ`

=

8>>><>>>:
S[[S1]]ρ∆z1(π·FIRST)`

? λσ. σtS[[S2]]ρtσ∆ z2(π ·REST)`

when z = (z1 . z2)

fail(π, `) otherwise
S[[(˜and S1 S2)]]ρ∆zπ`
= S[[S1]]ρ∆zπ` ? λσ. σ t S[[S2]]ρtσ∆ zπ`
S[[(˜and S1 A2)]]ρ∆zπ`
= S[[S1]]ρ∆zπ` ? λσ. σ t A[[A2]]ρtσ∆ π`
S[[(˜or S1 S2)]]ρ∆zπ`
= S[[S1]]ρ∆zπ`ˆS[[S2]]ρ∆zπ`
S[[(˜describe e S)]]ρ∆zπ`
= S[[S]]ρ∆zπ(z, eval(ρ, e))
S[[(H1 . S2)]]ρ∆zπ`
= H[[H1]]ρ∆zπ` ? λ(σ, z′, π′). σ t S[[S2]]ρtσ∆ z′π′`

Figure 14. Semantics of S-patterns

6.3 Meaning
A syntax-parse expression has the following form:

(syntax-parse stx [S1 rhs1] . . . [Sn rhsn])

The meaning of the syntax-parse expression is defined via the
following denotation:

S[[S]]∅∆zε`
where result is fresh with respect to S , ∆

S = (˜or (˜and S1 (˜parse result rhs1)) · · ·
(˜and Sn (˜parse result rhsn)))

z = eval(stx, ∅)
` = (z, “bad syntax”)

If the sequence contains at least one substitution, the result of the
syntax-parse expression is the result attribute of the first substitu-
tion in the sequence. Otherwise, the syntax-parse expression fails
with an error message derived from the SE-sequence’s failure.

Figure 14 shows the denotations of single-term patterns. A vari-
able pattern always matches, and it produces a substitution mapping
the pattern variable to the input term. A class pattern matches ac-
cording to the pattern recorded in the syntax class environment ∆.
The resulting substitutions’ attributes are prefixed (pfx) with the
pattern variable, and the pattern variable binding itself is added.

When a ˜datum pattern fails, it synthesizes an error message
based on the expected datum. The other pattern variants use the
inherited error reason (`), which represents the closest enclosing
description around the pattern. That is, it represents the nearest
“explainable” frame in the matching context.

The pair, head, and ˜and patterns propagate the success sub-
stitutions from their first sub-patterns to their second sub-patterns.
This allows expressions within patterns to refer to attributes bound
by previous patterns. Head patterns also produce a term and
progress string in addition to each success substitution; the term
and progress indicate where to resume matching.

A[[(˜parse S e)]]ρ∆π`
= S[[S]]ρ∆(eval(e, ρ))(π · LATE)`
A[[(˜fail econd emsg)]]ρ∆π`

=

8><>:
fail(π, (v, eval(emsg , ρ)))

if v is a true value, where v = eval(econd , ρ)

unit(∅) otherwise
A[[(˜late A)]]ρ∆π`
= A[[A]]ρ∆(π · LATE)`

Figure 15. Semantics of A-patterns

Action patterns, unlike other kinds of patterns, do not depend
on the term being matched. Like single-term patterns, however,
they produce records. Figure 15 displays the denotations of action
patterns. The ˜parse pattern evaluates its sub-expression to a term
and matches that term against the sub-pattern. The ˜fail pattern
evaluates its condition expression in the context of the previous
attributes. Depending on the result, it either succeeds with an empty
record or fails with the associated label. The ˜late form extends the
progress string, marking the enclosed pattern as a late check.

A ˜seq pattern matches a sequence of terms if the embedded list
pattern would match the compound term consisting of those terms.
Rather than duplicating and modifying the denotation function for
single-term patterns to work with list patterns, we reuse S and add a
new variant of single-term pattern, (˜end-of-head), that sneaks the
additional information into the substitution. For head ˜and patterns,
we perform the opposite transformation; after the first conjunct
matches a sequence of terms, we convert that sequence into a term
(take). We convert the second conjunct from a head pattern to a
single-term pattern and use it to match the new term.

We omit the semantics of ellipsis patterns. It is similar to the
semantics of head patterns, but an ellipsis-head pattern additionally

H[[(˜seq . L)]]ρ∆zπ`
= S[[S]]ρ∆zπ` ? λσ. (σ − {pr, term}, σ(pr), σ(term))

where S = rewrite-L(L)
S[[(˜end-of-head)]]ρ∆zπ`
= unit({pr = π, term = z})
H[[(˜and H1 H2)]]ρ∆zπ`
= H[[H1]]ρ∆zπ` ? λ(σ, z′, π′). σ t S[[S2]]ρ∆(take(z, π, π′))π`

where S2 = (H2 . ())
H[[(˜or H1 H2)]]ρ∆zπ`
= H[[H1]]ρ∆zπ`ˆH[[H2]]ρ∆zπ`
H[[(˜var x (cH e))]]ρ∆zπ`

= H[[H]]
{y 7→eval(e,ρ)}
∆ zπ` ? f

where {cH(y) = H } ∈ ∆
f(σ, z′, π′) = unit(g(σ, π′), z′, π′)
g(σ, π′) = {x 7→ take(z, π, π′)} t pfx(x, σ)

pr, term do not appear in the pattern

rewrite-L(()) = (˜end-of-head)

rewrite-L((S1 . L2)) = (S1 . rewrite-L(L2))

rewrite-L((H1 . L2)) = (H1 . rewrite-L(L2))

rewrite-L((EH 1 L2)) = (EH 1 rewrite-L(L2))

Figure 16. Semantics of H-patterns

yields a repetition environment mapping a ˜between form to the
number of times it has occurred in the sequence so far. A ˜between
form’s lower bound is checked when matching proceeds to the tail;
its upper bound is checked on every iteration of the head pattern.

6.4 Implementation
The implementation of syntax-parse uses a two-continuation rep-
resentation of the backtracking monad. The success continuation
is represented as an expression where possible, so that substitu-
tions are represented in Racket’s environment rather than as a data
structure. Thus, the code is similar to the backtracking-automaton
method of compiling pattern matching. We have not yet attempted
to add known pattern-matching optimizations to our implementa-
tion but plan on doing so. Optimizations must be adapted to accom-
modate progress tracking. For example, exit optimization [Fessant
and Maranget 2001] may not skip a clause that cannot succeed if
the clause may fail with greater progress than the exiting clause.

7. Case studies
Racket has included syntax-parse for one year. Reformulating
existing macros with syntax-parse can cut parsing code by several
factors without loss in quality in error reporting. Users confirm that
syntax-parse makes it easy to write macros for complex syntax.
The primary benefit, however, is increased clarity and robustness.

This section presents two case studies illustrating applications
of syntax-parse. The case studies are chosen from a large series
to span the spectrum of robustness; the first case study initially
performed almost no error checking, whereas the second case study
checked errors aggressively. Each case study starts with a purpose
statement, followed by an analysis of the difference in behavior and
a comparison of the two pieces of code.

7.1 Case: loop
The loop macro [Shivers 2005] allows programmers to express a
wide range of iteration constructs via loop clauses. The loop macro

is an ideal case study because the existing implementation performs
almost no error-checking, and its author makes the following claim:

It is frequently the case with robust, industrial-strength soft-
ware systems for error-handling code to dominate the line
counts; the loop package is no different. Adding the code to
provide careful syntax checking and clear error messages is
tedious but straightforward implementation work.

Olin Shivers, 2005

In other words, adding error-checking to the loop macro is expected
to double the size of the code. Using syntax-parse we can do better.

The original loop macro performs little error checking; in thirty-
two exported macros there are only three syntax validation checks
plus a handful of internal sanity checks. The exported macros con-
sist of the loop macro itself plus thirty-one CPS macros [Hilsdale
and Friedman 2000] for loop clauses such as for and do.

CPS macros pose challenges for generating good error mes-
sages because the macro’s syntax differs from the syntax apparent
to the user due to the CPS protocol. When the programmer writes
(for x in xs), the loop macro rewrites it as (for (x in xs) k kargs) to
accommodate the macro’s continuation. Errors in the programmer’s
use of for should be reported in terms of the original syntax, not the
rewritten syntax. We accomplish this by parsing the syntax in two
passes. We parse the CPS-level syntax and reconstruct the origi-
nal term, and then we parse that term. Twenty of the CPS macros
are expressed using define-simple-syntax, a simplified version of
define-syntax. We changed define-simple-syntax to automatically
rewrite these macros’ patterns to perform two-stage parsing; we
also changed them to use syntax-parse internally so that the simple
macros could use annotations and the other features of our system.
The other eleven CPS macros were transformed by hand.

Another hazard of CPS macros is inadvertent transfer of control
to a macro that does not use the CPS protocol, resulting in incoher-
ent errors or unexpected behavior. In Racket, this problem can be
prevented by registering CPS macros and checking their applica-
tions. We use a syntax class to recognize registered CPS macros.

Once the concrete syntax is separated from the CPS-introduced
syntax, validating it is fairly simple. Many of the loop forms take
only expressions, so validation is trivial. Some of the loop forms
require identifier annotations or simple side conditions. The initial
and bind loop forms have more structured syntax, so we define
syntax classes for their sub-terms, including a shared syntax class
var/vars; it represents a single variable or a group of variables.

A loop-clause keyword such as for is implemented by a macro
named loop-keyword/for; the name is chosen to reduce contention
for short names. The loop macro rewrites the loop-clause key-
words, except that programmers can write the long form in paren-
theses, e.g., ((loop-keyword/for) x in xs), to avoid the rewriting.
The code to recognize and rewrite both cases and is duplicated,
since for enforces the same protocol for its auxiliaries: in becomes
for-clause/in. In the syntax-parse version, we define a loopkw syn-
tax class that does the rewriting automatically. The syntax class is
parameterized so it can handle both loop and for keywords.

The original version of the loop macro consists of 1840 lines of
code, not counting comments and empty lines. The implementation
of the loop keyword macros takes 387 lines; the rest includes the
implementation of its various intermediate languages and scope
inference for loop-bound variables. The syntax-parse version is
1887 lines, an increase of forty-seven lines. The increase is due to
the new version of define-simple-syntax. Overall, the increase is
12% of the size of the main body of the macros and merely 2.6%
of entire code, which falls far short of the 100% increase predicted
by the package’s highly experienced author. Aside from the new

helper macro, the parsing code shrank, despite much improved
error handling, due to simplifications enabled by syntax-parse.

7.2 Case: parser
The parser macro [Owens et al. 2004] implements a parser genera-
tor for LALR(1) grammars. The macro a grammar description and
a few configuration options, and it generates a table-driven parser or
a list of parsers, if multiple start symbols are given. The parser case
study represents macros with aggressive, hand-coded error report-
ing. The macro checks both shallow properties as well as context-
dependent constraints.

The parser macro takes a sequence of clauses specifying differ-
ent aspects of the parser. Some clauses are mandatory, such as the
grammar clause, which contains the list of productions, and the
tokens clause, which imports terminal descriptions. Others are op-
tional, such as the debug clause, which specifies a file name where
the table descriptions should be printed. In all, there are ten clauses,
five mandatory and five optional, and they can occur in any order.

The original version used a loop and mutable state to recog-
nize clauses; different clauses were parsed at various points later
in the macro’s processing. The new version uses our improved el-
lipses patterns in two well-defined passes to resolve dependencies
between clauses. For example, the productions in the grammar
clause depend on the terminals imported by the tokens clause. The
second pass involves syntax classes parameterized over the results
gathered from the first pass.

The original version of parser explicitly detects thirty-nine dif-
ferent syntax errors beyond those caught by MBE-style patterns.
Repetition constraints (˜once and ˜optional) on the different clause
variants cover thirteen of the original errors plus a few that the
original macro failed to check. Pattern variable annotations cover
eleven of the original errors, including simple checks such as “De-
bugging filename must be a string” as well as context-dependent
errors such as “Start symbol not defined as a non-terminal.” The
latter kind of error is handled by a syntax class that is parameter-
ized over the declared non-terminals. Side-condition checks cover
eight errors—such as “duplicate non-terminal definition”— with
the use of #:fail-when.

The remaining seven checks performed by the original macro
belong to catch-all clauses that explain what valid syntax looks like
for the given clause or sub-form. Five of the catch-all checks cover
specific kinds of sub-forms, such as “Grammar must be of the form
(grammar (non-terminal productions . . .) . . .).” In a few cases the
message is outdated; programmers who revised the parser macro
failed to update the error message. In the syntax-parse version
each of these sub-forms is represented as a syntax class, which au-
tomatically acts as a local catch-all according to our error message
generation algorithm (section 4.2); syntax-parse reports the syntax
class’s description rather than reciting the macro’s documentation.
(A macro writer could put the same information in the syntax class
description, if they wanted to.) The final two checks are catch-alls
for parser clauses and the parser form itself. These are implemented
using ˜fail and patterns crafted to catch clauses that do not match
other clause keywords.

In most cases the error messages are rephrased according to
syntax-parse conventions. For example, where the original macro
reported “Multiple grammar declarations,” the new macro uses “too
many occurrences of grammar clause”; and where the original
macro reported “End token must be a symbol,” the new macro
produces the terser message “expected declared terminal name.”

The original version devoted 570 lines to parsing and process-
ing, counting the macro and its auxiliary functions. The line count
leaves out separate modules such as the one that implements the
LALR(1) algorithm. In the original code, parsing and processing
are tightly intertwined, and it is impossible to directly count the

lines of code dedicated to each. In the new version, parsing and
processing took a total of 378 lines of code, consisting of 124 lines
for parsing (25 for the main macro pattern and 99 for syntax class
definitions) and 254 lines for processing.

By reasoning that the lines dedicated to processing should be
roughly equivalent in both versions, we estimate 300 lines for
processing in the original version, leaving 270 for parsing. Thus
the syntax-parse version requires less than half the number of
lines of code for parsing, and the new parsing code consists of
modular, declarative specifications. The error reporting remains of
comparable quality.

8. Related work
Other backtracking parsers, such as packrat parsers [Ford 2002],
also employ the technique of tracking and ordering failures. Unlike
shift/reduce parsers, which enjoy the viable-prefix property, pack-
rat parsers cannot immediately recognize when an input stream
becomes nonviable—that is, where the error occurs. Instead, they
maintain a high-water mark, the failure that occurs furthest into the
input along all branches explored so far. While these string parsers
can represent progress as the number of characters or tokens con-
sumed, syntax-parse uses a notion of progress based on syntax tree
traversal.

Our ordering of parse failures is also similar to the work of
Despeyroux [1995] on partial proofs in logic programming. In that
work, a set of inference rules is extended with “recovery” rules
that prove any proposition. The partial proofs are ordered so that
use of a recovery rule has less progress than any real rule and
uses of different original rules are incomparable; only the maximal
proofs are returned. In contrast to the order of that system, which is
indifferent to the system’s rules and propositions, our system uses
the pragmatics of parsing syntax to define the order.

Another line of research in macro specifications began with
static checking of syntactic structure [Culpepper and Felleisen
2004] and evolved to encompass binding information and hygienic
expansion [Herman and Wand 2008]. These systems, however, are
incapable of fortifying a broad range of widely used macro pro-
gramming idioms, and they do not address the issues of error feed-
back or of modular syntax specification addressed by our system.

9. Conclusion
Our case studies, our other experiences, and reports from other pro-
grammers confirm that syntax-parse makes it easy to write easy-
to-understand, robust macros. Overall syntax-parse macros take
less effort to formulate than comparable macros in MBE-based sys-
tems such as syntax-case and syntax-rules or even plain Lisp-style
macros. Also in contrast to other macro systems, the syntax-parse
style is distinctively declarative, closely resembling grammatical
specification with side conditions. Best of all, these language ex-
tensions are translated into implementations that comprehensively
validate all the constraints and that report errors at the proper level

of abstraction. Even though syntax-parse has been available for
less than a year, it has become clear that it improves on MBE-style
macros to the same degree—or perhaps a larger one—that MBE
improved over Lisp-style macros.

Acknowledgments We are grateful to Matthew Flatt, Guy Steele,
Sam Tobin-Hochstadt, and Jon Rafkind for feedback on the design
and implementation of syntax-parse.

References
Cadence Research Systems. Chez Scheme Reference Manual, 1994.
R. Culpepper and M. Felleisen. Taming macros. In International Confer-

ence on Generative Programming and Component Engineering, pages
225–243, 2004.

T. Despeyroux. Logical programming and error recovery. In Industrial
Applications of Prolog, Oct. 1995.

R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in Scheme.
Lisp and Symbolic Computation, 5(4):295–326, Dec. 1993.

F. L. Fessant and L. Maranget. Optimizing pattern matching. In Interna-
tional Conference on Functional Programming, pages 26–37, 2001.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

M. Flatt and PLT. Reference: Racket. Technical report, PLT Inc., January
2010. http://racket-lang.org/tr1/.

B. Ford. Packrat parsing: a practical linear-time algorithm with backtrack-
ing. Master’s thesis, Massachusetts Institute of Technology, Sept. 2002.

D. Herman and M. Wand. A theory of hygienic macros. In European
Symposium on Programming, pages 48–62, Mar. 2008.

E. Hilsdale and D. P. Friedman. Writing macros in continuation-passing
style. In Workshop on Scheme and Functional Programming, pages 53–
59, 2000.

J. Hughes. The design of a pretty-printing library. In Advanced Func-
tional Programming, First International Spring School on Advanced
Functional Programming Techniques-Tutorial Text, pages 53–96, Lon-
don, UK, 1995. Springer-Verlag.

E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving syntactic
transformations from their specifications. In Symposium on Principles
of Programming Languages, pages 77–84, 1987.

P. J. Landin. Correspondence between ALGOL 60 and Church’s lambda-
notation: part i. Commun. ACM, 8(2):89–101, 1965.

S. Owens, M. Flatt, O. Shivers, and B. McMullan. Lexer and parser gener-
ators in Scheme. In Workshop on Scheme and Functional Programming,
pages 41–52, Sept. 2004.

O. Shivers. The anatomy of a loop: a story of scope and control. In Inter-
national Conference on Functional Programming, pages 2–14, 2005.

M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Findler, and
J. Matthews. Revised6 report of the algorithmic language Scheme.
Journal of Functional Programming, 19(S1):1–301, Aug. 2009.

M. Wand and D. Vaillancourt. Relating models of backtracking. In
International Conference on Functional Programming, pages 54–65,
2004.

