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Abstract
Concurrent data structures that have fast and predictable perfor-
mance are of critical importance for harnessing the power of multi-
core processors, which are now ubiquitous. Although wait-free ob-
jects, whose operations complete in a bounded number of steps,
were devised more than two decades ago, wait-free objects that can
deliver scalable high performance are still rare.

In this paper, we present the first wait-free FIFO queue based on
fetch-and-add (FAA). While compare-and-swap (CAS) based
non-blocking algorithms may perform poorly due to work wasted
by CAS failures, algorithms that coordinate using FAA, which is
guaranteed to succeed, can in principle perform better under high
contention. Along with FAA, our queue uses a custom epoch-based
scheme to reclaim memory; on x86 architectures, it requires no
extra memory fences on our algorithm’s typical execution path. An
empirical study of our new FAA-based wait-free FIFO queue under
high contention on four different architectures with many hardware
threads shows that it outperforms prior queue designs that lack a
wait-free progress guarantee. Surprisingly, at the highest level of
contention, the throughput of our queue is often as high as that of a
microbenchmark that only performs FAA. As a result, our fast wait-
free queue implementation is useful in practice on most multi-core
systems today. We believe that our design can serve as an example
of how to construct other fast wait-free objects.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Lists,
stacks, and queues

Keywords non-blocking queue, wait-free, fast-path-slow-path

1. Introduction
Over the last decade, multi-core processors have become ubiqui-
tous; they are employed in a spectrum of computer systems that
range from low-end microcontrollers to supercomputers. Further-
more, computer systems in which two or more multi-core proces-
sors share memory are common. Finally, modern processors often
employ multiple hardware threads per core to hide latency. As a
result, concurrent data structures that can deliver high performance
while being manipulated by multiple threads are essential for pro-
gramming such systems efficiently. Besides high performance, an-
other important characteristic of a concurrent data structure is its
progress guarantee. Concurrent data structures can be classified as
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either blocking or non-blocking. Blocking data structures include
at least one operation where a thread may need to wait for an op-
eration by another thread to complete. Blocking operations can in-
troduce a variety of subtle problems, including deadlock, livelock,
and priority inversion; for that reason, non-blocking data structures
are preferred.

There are three levels of progress guarantees for non-blocking
data structures. A concurrent object is:

- obstruction-free if a thread can perform an arbitrary operation
on the object in a finite number of steps when it executes in
isolation,

- lock-free if some thread performing an arbitrary operation on
the object will complete in a finite number of steps, or

- wait-free if every thread can perform an arbitrary operation on
the object in a finite number of steps.

Wait-freedom is the strongest progress guarantee; it rules out the
possibility of starvation for all threads. Wait-free data structures
are particularly desirable for mission critical applications that have
real-time constraints, such as those used by cyber-physical systems.

Although universal constructions for wait-free objects have ex-
isted for more than two decades [11], practical wait-free algorithms
are hard to design and considered inefficient with good reason. For
example, the fastest wait-free concurrent queue to date, designed
by Fatourouto and Kallimanis [7], is orders of magnitude slower
than the best performing lock-free queue, LCRQ, by Morrison and
Afek [19]. General methods to transform lock-free objects into
wait-free objects, such as the fast-path-slow-path methodology by
Kogan and Petrank [14], are only suitable for lock-free data struc-
tures that are updated using a series of compare-and-swap (CAS)
operations. CAS-based data structures, as Morrison and Afek have
pointed out [19], may perform poorly under high contention due
to work wasted by CAS failures. It remains an open question how
to transform lock-free data structures that use read-modify-write
primitives other than CAS into wait-free forms.

This paper presents the first design of a concurrent FIFO queue
based on fetch-and-add (FAA) that is linearizable, wait-free, and
fast. An empirical study of our queue under high contention on
four different architectures with many hardware threads shows that
it outperforms prior queue designs that lack wait-free semantics.
Surprisingly, at the highest level of contention, throughput of our
queue is often as high as that of a microbenchmark that only per-
forms FAA. This disproves the myth that ensuring wait-freedom
and linearizability together is too expensive to be efficient. Our de-
sign employs the fast-path-slow-path methodology [14] to trans-
form a simple yet efficient FAA-based obstruction-free queue into a
wait-free queue. Our queue employs a custom epoch-based scheme
to reclaim memory. On x86 architectures, our memory reclamation
scheme has lower overhead than other schemes since it adds no
memory fence along common execution paths in queue operations.
We believe that our design can serve as an example of how to con-
struct other fast wait-free objects.



The rest of this paper is organized as follows. Section 2 de-
scribes previous work on concurrent queues and wait-free objects.
Section 3 presents our new wait-free queue and its memory recla-
mation scheme. Section 4 proves its correctness and wait-freedom.
Section 5 presents a statistically rigorous study of our queue’s per-
formance on various platforms. Section 6 presents our conclusions.

2. Related Work
Concurrent FIFO queues have been a topic of active research for
decades. Michael and Scott’s lock-free queue [17], known as MS-
Queue, is considered a classic non-blocking queue. MS-Queue is
a singly-linked list that maintains pointers to the head and tail of
the list. Its enqueue and dequeue methods manipulate the head and
tail pointers using CAS operations in a retry loop. Under heavy
contention, most CAS operations will fail, causing a dramatic drop
in performance. Morrison and Afek dub this the CAS retry prob-
lem [19]. For this reason, the performance of MS-Queue does not
scale well beyond a modest number of threads.

The first practical implementation of a wait-free queue was pro-
posed by Kogan and Petrank [13]. Their queue is based on MS-
Queue. To achieve wait-freedom, it employs a priority-based help-
ing scheme in which faster threads help slower threads complete
their pending operations. In most cases, this queue does not per-
form as well as the MS-Queue due to the overhead of its helping
mechanism.

Many universal constructions have been proposed to create
wait-free objects. These constructions can transform any sequen-
tial object into a lock-free or wait-free object. Herlihy proposed the
first such universal construction in 1991 [11]. Since then, several
faster universal constructions for wait-free objects have been de-
vised [1, 2, 4, 18]; however, universal constructions are hardly con-
sidered practical in general. The first practical wait-free universal
construction, called P-Sim, was proposed by Fatourou and Kalli-
manis in 2011 [7]. P-Sim uses FAA in addition to CAS to achieve
wait-freedom. The wait-free queue constructed using P-Sim out-
performed all prior designs for wait-free queues and MS-Queue.

In 2012, Fatourou and Kallimanis proposed a blocking queue,
called CC-Queue [8], which delivers better performance than their
prior design for a wait-free queue. CC-Queue uses combining,
where all threads with a pending operation form a queue and the
thread at the head of the queue performs operations for all other
threads in the queue. Although this combining strategy has lower
synchronization overhead, CC-Queue is not non-blocking, and it
sacrifices parallelism which limits its performance.

In 2013, Morrison and Afek proposed LCRQ [19], a lock-free
queue. This queue is a linked-list of segments, where each segment
is a circular ring queue (CRQ). LCRQ uses FAA to acquire an
index on a CRQ and then uses a double-width compare-and-swap
(CAS2) to enqueue to and dequeue from the cell at the obtained
index. The list of CRQs in LCRQ is managed like the linked-list
in the MS-Queue. Because the head and tail hot spots in LCRQ
are updated using FAA, LCRQ avoids the CAS retry problem and
outperforms CC-Queue and all other non-blocking queues to date.
However, LCRQ is a lock-free queue and its application is limited
by its use of CAS2, which is not universally available.

In 2012, Kogan and Petrank proposed a fast-path-slow-path
methodology for creating practical wait-free objects [14]. The fast-
path, usually a lock-free algorithm, provides good performance; the
slow-path ensures wait-freedom. Each operation attempts the fast-
path several times; if all attempts fail, it switches to the slow-path.
Their wait-free queue design using this methodology employs an
MS-Queue as its fast-path; as a result, its performance is only as
good as MS-Queue. In 2014, Timnat and Petrank showed that, us-
ing fast-path-slow-path, a lock-free object expressed in a normal-
ized form can be automatically transformed into a practical wait-

free object that is as fast as the lock-free one [21]. Their normalized
form requires that the lock-free object be updated using a series
of CAS operations. Hence, this automatic transformation cannot
be applied to LCRQ to construct a wait-free version. It is unclear
how the fast-path-slow-path methodology can be applied to non-
blocking algorithms that perform updates using primitives such as
FAA, which always succeed.

3. A Fast Wait-Free Queue
This section presents our design for a wait-free FIFO queue. Sec-
tion 3.1 introduces concepts that provide a foundation for our de-
sign. Section 3.2 presents the high-level design of our wait-free
queue. Sections 3.3–3.5 present our queue data structure, its oper-
ations, and their properties in detail. Section 3.6 describes a novel
memory reclamation scheme used by our queue.

3.1 Preliminaries
We design our queue for an asynchronous shared memory sys-
tem [12]. On such a system, a program is executed by p determinis-
tic threads, where p may exceed the number of physical processors.
Threads communicate via atomic operations on a predefined set of
shared memory locations. A scheduler decides which threads to run
and the mapping between threads and processors. We assume the
scheduler may suspend execution of any thread at any time for ar-
bitrarily long.

Memory model When writing code for concurrent data struc-
tures, one must mark shared variables as volatile to ensure that vari-
able reads and writes access memory rather than just a thread’s reg-
isters. To simplify the presentation of pseudo-code for our queue,
we assume a sequentially consistent1 memory model. However,
today’s programming languages and architectures provide weaker
ordering guarantees and allow accesses to be reordered for perfor-
mance. To prevent any undesired reorderings by a compiler or hard-
ware, atomic operations or memory fences are necessary to guar-
antee the order of accesses to different shared memory locations.

We omit volatile declarations and memory fences in this paper
and present them in the source code provided as supplemental
material for the paper.2

Atomic primitives We model memory as an array of 64-bit val-
ues. We use the notation m[a] for the value stored in address a
of the memory. Algorithms in this paper use the following 64-bit
atomic primitives:

- read, denoted as x := m[a], which returns m[a];
- write, denoted as m[a] := x, which stores x into m[a];
- FAA(a, v), which returns m[a] and stores m[a] + v at a;
- CAS(a, t, v), denoted as (a : t 7! v), which stores v into
m[a] and returns true if m[a] = t; otherwise, it returns false.
64-bit architectures from AMD and Intel support FAA

and CAS natively. IBM Power architectures lack native sup-
port for FAA and CAS, but one can emulate them using
load-linked/store-conditional (LL/SC). Although emulating
FAA and CAS with LL/SC retry loops sacrifices the wait free-
dom of our queue on Power7, our algorithm still performs well on
Power7 in practice.

1 Sequential consistency [15] means that the result of any execution is the
same as if all memory accesses by threads were executed in some sequential
order, and the accesses of each individual thread appear in this sequence in
the order specified by the program.
2 In addition to the supplemental material in the ACM Digital Library,
source code for our queue is also available at https://github.com/
chaoran/fast-wait-free-queue.

https://github.com/chaoran/fast-wait-free-queue
https://github.com/chaoran/fast-wait-free-queue


1 enqueue(x: var) {
2 do t := FAA(&T, 1);
3 while (!CAS(&Q[t], ?, x));
4 }

5 dequeue (): var {
6 do h := FAA(&H, 1);
7 while (CAS(&Q[h], ?, >) and T > h);
8 return (Q[h] = > ? EMPTY : Q[h]);
9 }

Listing 1. An obstruction-free queue using an infinite array.

Linearizability Stated informally, a FIFO queue is an object
whose state Q is a sequence of zero or more values. It supports
an enqueue(x) operation that appends x to Q and a dequeue()
operation that removes the first value in Q and returns it, or returns
EMPTY if Q is an empty sequence. The correctness condition we
use for our concurrent queue design is linearizability [12], which
means that each operation on our queue must appear to “take ef-
fect” instantaneously at a point in time within the interval during
which the operation executes. A linearizable FIFO queue is a queue
for which any concurrent operation history has a linearization that
conforms to a correct sequential operation history of a FIFO queue.

3.2 High-level Design of the Queue
Our queue can be viewed as a wait-free realization of the non-
blocking queue shown in Listing 1. This is similar to the base
algorithm used for LCRQ [19]. Listing 1 represents a queue using
an infinite array, Q, with unbounded head and tail indices, H and
T , which mark the boundaries of the interval in Q that may contain
values. We reserve two special values, ? (bottom) and > (top),
which may not be enqueued. Initially, each cell Q[i] contains a ?.
A dequeue may update a cell’s value to > to mark it unusable,
which prevents enqueues from putting a value into that cell.

An enqueue(x) obtains a cell index t by performing a FAA on
T . Then it attempt to perform (Q[t] : ? 7! x). If the CAS suc-
ceeds, the enqueue operation completes. Otherwise, it tries again.

Similarly, a dequeue obtains a cell index h by performing a
FAA on H . The dequeue repeats the FAA until either (1) (Q[h] :
? 7! >) fails, or (2) it sees T  h. If (1), it means that an
enqueued value is available in Q[h] and the dequeue can return it;
if (2), it means the queue is empty, the dequeue can return EMPTY.

This simple queue is non-blocking because neither a suspended
enqueue or dequeue will block other operations. More precisely, the
queue is obstruction-free because it is susceptible to livelock. For
example, given an enqueuer E, a dequeuer D, and a queue with
state T = H , if E and D interleave repeatedly in the following
order, neither will make progress: (1) E performs a FAA on T, (2)
D performs a FAA on H, (3) D performs a CAS, (4) E performs a
CAS, and (5) D reads T .

We adopt Kogan and Petrank’s fast-path-slow-path methodol-
ogy to construct our wait-free queue. Our wait-free queue uses
operations like those in Listing 1 as the fast-path. We designed
compatible slow-path implementations of these operations to en-
sure wait-freedom. An operation on the queue first tries its fast-
path implementation until it succeeds or the number of failures ex-
ceeds a threshold. If necessary, it falls back to its slow-path, which
guarantees completion within a finite number of attempts. We now
describe the high-level design of our wait-free queue’s implemen-
tation.

Emulate an infinite array We emulate an infinite array using
a singly-linked list of equal-sized array segments. Each thread
maintains two local pointers, head and tail, to segments in the list.
A thread uses its head pointer for dequeues and its tail pointer

for enqueues. To find a cell Q[i] in the queue, a thread traverses
the list starting with the segment at head or tail until it reaches
the segment containing Q[i]. The traversing thread appends new
segments if it reaches the end of the list before it finds Q[i].
Segments that are no longer in use are removed from the front of
the list. To support memory reclamation, each thread maintains a
hazard pointer. A thread publishes its head or tail pointer in the
hazard pointer at the start of a dequeue or an enqueue and clears
it after an operation. Periodically, a thread will scan every thread’s
head, tail, and hazard pointer to find the earliest segment that is in
use by any thread and reclaim all preceding segments. Section 3.6
describes the details of our memory reclamation scheme.

Ensure wait-freedom Using Herlihy’s approach [11], one makes
an operation wait-free by turning its contenders—concurrent oper-
ations that prevent the operation from succeeding—into helpers,
who help the operation to complete. For example, an enqueue
on the fast-path may never succeed because contending dequeues
mark every cell they visit as unusable. To make enqueues wait-free,
a slow-path enqueue enlists the help of contending dequeuers by
publishing an enqueue request. Initially, the local states of threads
are linked in a ring; each dequeuer keeps a pointer to the state of an
enqueue peer. Whenever a dequeue marks a cell unusable, it helps
its enqueue peer if the peer has a pending enqueue request. When
the peer’s request completes, the dequeuer updates its peer pointer
to the next enqueuer in the ring. Hence every time an enqueue fails,
its contending dequeuer will help some enqueue request to com-
plete. Eventually each pending enqueue request will get help from
contending dequeuers. When all contending dequeuers become the
enqueue’s helpers, the enqueue will definitely succeed.

Similarly, a fast-path dequeue may never succeed because en-
queued values are taken by contending dequeues. To make de-
queues wait-free, each dequeuer maintains a pointer to a dequeue
peer. Whenever a dequeue successfully takes a value, it helps its
dequeue peer if the peer has a pending dequeue request. A slow-
path dequeue and its helpers traverse the queue to find a value to
dequeue. A dequeue on the slow-path will eventually succeed be-
cause all contending dequeues will help it to dequeue.

3.3 Building Blocks
Global state Listing 2 shows the data types used to implement
our wait-free queue. The queue itself is represented by a triple
(Q,H, T ). Q is a singly-linked list of segments. Each segment in
the list consists of (1) a unique id, (2) a next pointer, and (3) an
N -vector of cells. Initially, Q points to a segment with id zero.
We denote the segment with id i as segment[i] and the j-th cell
in a segment as cell[j]. T and H are 64-bit head and tail indices
used to index cells in the queue. Both H and T are zero initially.
A cell at index i, known as Q[i], corresponds to cell[i mod N ] in
segment[i/N ].

Thread-local state The local state of each thread is stored in a
handle. Each handle contains head and tail pointers to segments
in the queue; both point to segment[0] initially. We maintain head
and tail pointers to queue segments as part of each thread’s local
state to avoid contention that would inevitably arise if we main-
tained them as part of the queue’s shared state. During initializa-
tion, all thread handles are linked in a ring using their next point-
ers; this enables any thread to access the state of other threads.

A thread’s enqueue state (Handle.enq) consists of an enqueue
request req, a peer, and an id. The req structure is used to request
help from other threads. The peer pointer is used to identify an-
other thread’s request that might need help. The id is used to record
the index of a pending request that the thread is helping. A thread’s
dequeue state also contains req and peer fields. Physically, both
enqueue and dequeue request are two 64-bit words. Logically, an



10 struct EnqReq
11 void *val;
12 struct { int pending : 1; int id : 63; } state;

13 struct DeqReq
14 int id : 64;
15 struct { int pending : 1; int idx : 63; } state;

16 struct Cell
17 void *val; EnqReq *enq; DeqReq *deq;

18 struct Segment
19 int id : 64; Segment *next; Cell cells[N];

20 struct Queue
21 Segment *Q; int T : 64; int H : 64;

22 struct Handle
23 Segment *tail , *head;
24 Handle *next;
25 struct { EnqReq req; Handle * peer; } enq;
26 struct { DeqReq req; Handle * peer; } deq;

27 Segment *new_segment(int id)
28 Segment *s := new Segment;
29 s->id := id;
30 s->next := null;
31 for (i := 0; i < N; i++) s->cells[i] := (?, ?e, ?d);
32 return s;

33 Cell *find_cell(Segment **sp, int cell_id)
34 s := *sp; // invariant: sp points to a valid segment
35 // traverse list to target segment with id cell_id/N
36 for (i := s->id; i < cell_id/N; i++) {
37 next := s->next;
38 if (next = null) {
39 // the list needs another segment.
40 // allocate one and try to extend the list.
41 tmp := new_segment(i + 1);
42 if (!CAS(&s->next , null , tmp)) {
43 free(tmp); // another thread extended the list
44 }
45 // invariant: a successor segment exists
46 next := s->next;
47 }
48 s := next;
49 }
50 // invariant: s is the target segment (cell_id/N)
51 *sp := s; // return target segment
52 return &s->cells[cell_id mod N]; // return target cell

53 void advance_end_for_linearizability(int *E, int cid)
54 // ensure head or tail index (*E) is at or beyond cid
55 do e := *E; while (e < cid and !CAS(E, e, cid ));

Listing 2. Structures and auxiliary methods.

enqueue request is a triple (val, pending, id), where val is a 64-bit
value to enqueue, pending is a bit flag, and id is a 63-bit integer.
We also refer to (pending, id) as an enqueue request’s state. An
enqueue request is initially (?, 0, 0), where ? is a reserved value
that is distinct from any value that might be enqueued. Over time,
a thread’s enqueue state will be rewritten to represent different re-
quests; the id field distinguishes different requests from the same
thread. Similarly, a dequeue request is a triple (id, pending, idx)
where id is a 64-bit integer, pending is a bit flag, and idx is a 63-bit
integer indicating the index of a cell that is the target of a dequeue.
A dequeue request’s id and pending serve the same purpose as
those in an enqueue request. We call (pending, idx) a dequeue
request’s state. A dequeue request is initially (0, 0, 0).

Cells Each cell in the queue is a triple (val, enq, deq). val is a
value. enq and deq are pointers to enqueue and dequeue requests,
respectively. Each component of a cell may also be a reserved
value. For val, we reserve ? and >. For enq, we reserve ?

e

and

>
e

. For deq, we reserve ?
d

and >
d

. Every cell is (?,?
e

,?
d

)

initially.
The find cell function locates a cell given sp, a pointer to a

segment, and cell id, the index of the cell. find cell traverses
the queue starting at segment sp until it finds the segment with id
cell id/N , i.e., the segment containing cell cell id. If find cell
reaches the end of the segment list before it finds the cell, it al-
locates a new segment, initializes it, and then tries to append it
to the list using a CAS on the last segment’s next pointer. If the
CAS fails, some other thread has already extended the segment
list, so the thread frees the segment it failed to append. The thread
continues the traversal with the successor segment now available.
Eventually, the thread will find segment[cell id/N ] and return
cell[cell id mod N ]. Note that find cell has a side-effect: it
updates the provided segment pointer to point to the segment that
contains the returned cell (line 51).

3.4 Wait-free Enqueue
Listing 3 shows the wait-free code for enqueue. An enqueue first
attempts to enqueue a value via the fast-path (enq fast) until it
succeeds or its “patience” runs out. If necessary, it will finish the
enqueue using the slow-path (enq slow), which is guaranteed to
succeed. enq fast is like enqueue in Listing 1; however, if it fails,
it will return the cell index it obtained with FAA in an output
parameter id. This index becomes the id of an enqueue request
used by the slow-path.

When necessary, an enqueue begins its slow-path by by pub-
lishing its enqueue request in its thread handle’s enq.req field. The
state of a pending enqueue request is (v, 1, id), where v is the value
to enqueue, id is a cell index that serves as the request’s identifier,
and pending = 1. After publishing its enqueue request to solicit
help, a slow-path enqueue continues trying to succeed on its own
by obtaining indices of additional cells in the queue using FAA and
trying to deposit its value into each candidate cell. This process
continues until the enqueue deposits its value into a cell or a con-
tending dequeuer helps it to complete. Each dequeuer tries to help
enqueue requests by calling help enq on each cell it visits. Given
a cell Q[i] and a pointer r to an enqueue request, an enqueuer or its
helpers perform the following steps to enqueue:

1. reserve Q[i] using (Q[i].enq : ?
e

! r),
2. claim r for Q[i] using (r->state : (1, id) ! (0, i)),
3. write v in Q[i0] using Q[i0].val := v, where i0 = r->state.id.

A cell’s enqueue result state A cell’s state is initially
(?,?

e

,?
d

). When an enqueuer (enq fast or enq slow) or an en-
queue helper (help enq) finishes with a cell, it will transition the
cell into one of the following states:

- (v,?
e

,?
d

): an enqueue succeeded using the fast-path,
- (v, r,?

d

): an enqueue succeeded using the slow-path, or
- (>, r,?

d

) or (>,>
e

,?
d

): an enqueue failed and a helper may
return EMPTY at the cell.

We call these four states a cell’s enqueue result states. The enqueue
routines and help enq maintain the following important invariant:

Invariant 1. A cell in an enqueue result state cannot be changed
by future enqueuers or enqueue helpers.

Invariant 1 ensures that when an enqueue routine (enq fast or
enq slow) and multiple help enq are invoked on the same cell,
they will produce one and only one unique enqueue result state for
that cell.

Avoid enqueueing into an unusable cell An unusable cell is a
cell that has been abandoned by dequeuers; a value written in an
unusable cell will not be dequeued. Therefore, an enqueuer must
not enqueue into a cell that has been marked unusable. To do this,



56 void enqueue(Queue *q, Handle *h, void *v)
57 for (p := PATIENCE; p >= 0; p--)
58 if (enq_fast(q, h, v, &cell_id )) return;
59 enq_slow(q, h, v, cell_id ); // use id from last attempt

60 bool try_to_claim_req(int *s, int id, int cell_id)
61 return CAS(s, (1, id), (0, cell_id ));

62 void enq_commit(Queue *q, Cell *c, void *v, int cid)
63 advance_end_for_linearizability (&q->T, cid +1);
64 c->val := v; // record value in claimed cell

65 bool enq_fast(Queue *q, Handle *h, void *v, int *cid)
66 // obtain cell index and locate candidate cell
67 i := FAA(&q->T, 1); c := find_cell (&h->tail , i);
68 if (CAS(&c.val , ?, v)) return true; // enq complete
69 *cid := i; return false; // fail , returning cell id

70 void enq_slow(Queue *q, Handle *h, void *v, int cell_id)
71 // publish enqueue request
72 r := &h->enq.req; r->val := v; r->state := (1, cell_id );
73 // use a local tail pointer to traverse because
74 // line 87 may need to find an earlier cell.
75 tmp_tail := h->tail;
76 do {
77 // obtain new cell index and locate candidate cell
78 i := FAA(&q->T, 1); c := find_cell (&tmp_tail , i);
79 // Dijkstra ’s protocol
80 if (CAS(&c->enq , ?e, r) and c.val = ?) {
81 try_to_claim_req (&r->state , id , i); // for cell i
82 // invariant: request claimed (even if CAS failed)
83 break;
84 }
85 } while (r->state.pending );
86 // invariant: req claimed for a cell; find that cell
87 id := r->state.id; c := find_cell (&h->tail , id);
88 enq_commit(q, c, v, id);
89 // invariant: req committed before enq_slow returns

90 void *help_enq(Queue *q, Handle *h, Cell *c, int i)
91 if (!CAS(&c->val , ?, >) and c->val != >) return c->val;
92 // c->val is >, so help slow -path enqueues
93 if (c->enq = ?e) { // no enqueue request in c yet
94 do { // two iterations at most
95 p := h->enq.peer; r := &p->enq.req; s := r->state;
96 // break if I haven’t helped this peer complete
97 if (h->enq.id = 0 or h->enq.id = s.id) break;
98 // peer request completed; move to next peer
99 h->enq.id := 0; h->enq.peer := p->next;

100 } while (1);
101 // if peer enqueue is pending and can use this cell ,
102 // try to reserve cell by noting request in cell
103 if (s.pending and s.id  i and !CAS(&c->enq , ?e, r))
104 // failed to reserve cell for req , remember req id
105 h->enq.id := s.id;
106 else
107 // peer doesn’t need help , I can’t help , or I helped
108 h->enq.peer := p->next; // help next peer next time
109 // if can’t find a pending request , write >e to
110 // prevent other enq helpers from using cell c
111 if (c->enq = ?e) CAS(&c->enq , ?e, >e);
112 }
113 // invariant: cell’s enq is either a request or >e

114 if (c->enq = >e) // no enqueue will fill this cell
115 // EMPTY if not enough enqueues linearized before i
116 return (q->T  i ? EMPTY : >);
117 // invariant: cell’s enq is a request
118 r := c->enq; s := r->state; v := r->val;
119 if (s.id > i)
120 // request is unsuitable for this cell
121 // EMPTY if not enough enqueues linearized before i
122 if (c->val = > and q->T  i) return EMPTY;
123 else if (try_to_claim_req (&r->state , s.id , i) or
124 // someone claimed this request; not committed
125 (s = (0,i) and c->val = >))
126 enq_commit(q, c, v, i);
127 return c->val; // c->val is > or a value

Listing 3. Pseudo code for wait-free enqueue. help enq is called
by a dequeue on each cell from which it tries to obtain a value.

we employ Dijkstra’s protocol [5] to synchronize an enqueuer and
its helpers. Specifically, after an enqueuer reserves a cell Q[i] for its
request r using (Q[i].enq : ?

e

7! r), it reads Q[i].val (line 80);
if Q[i].val has been set to >, it aborts enqueueing in Q[i] and
restarts the process using a different cell. After a dequeuer marks
a cell Q[i] unusable by an enqueuer3 using (Q[i].val : ? 7! >),
it reads Q[i].enq (line 93); if some request has reserved Q[i], i.e.
Q[i].enq 6= ?

e

, it helps the request to complete. Dijkstra’s proto-
col ensures that if a dequeuer marks a cell unusable by an enqueuer
after an enqueuer reserves the cell by recording an enqueue request,
the dequeuer will see the pending enqueue request. If the dequeuer
sees a pending request, the dequeuer will help complete it.

Ensure wait-freedom To ensure slow-path enqueue is wait-free,
enqueue’s helpers (help enq) maintains two key invariants:

Invariant 2. An enqueue helper continues helping a peer until (1)
the peer has published a new request or (2) the peer has no pending
request for help.

An enqueue helper only advances to a new peer on lines 99 and 108.
On line 99, an enqueue helper advances to the next peer if the
peer has published a new request since it helped last (h->enq.id
!= s.id). Line 99 only executes once because it establishes a
breaking condition for the loop (h->enq.id := 0). On line 108, an
enqueue helper advances to the next peer only if the peer doesn’t
need help (s.pending = 0), the request can’t deposit into the
current cell because that would violate linearizability (s.id > i)
(explained later), or the helper reserved this cell for the request with
(c->enq : ?

e

7! r)

Invariant 3. An enqueue helper does not help a thread again until
it has helped all other threads.

Invariant 2 ensures that an enqueue helper will advance to the next
peer when the peer publishes a new request. A helper returns to a
peer only after offering help to all other peer threads in the ring.

Ensure linearizability To ensure linearizability, we require that:

Invariant 4. An enqueue can only deposit a value into a cell Q[i],
where i < T when the enqueue completes.

Invariant 4 is always satisfied when an enqueuer claims a cell
for a value because it always obtains indices of cells using FAA
on T . An enqueuer claims a cell for a value by either (1) de-
positing the value into the cell (line 68), or (2) claiming a re-
quest for a cell (line 81). If a helper claims an enqueue request,
advance end for linearizability is called (lines 88 and 126)
to ensure that T is larger than the index of the cell where the value
will be deposited.

Invariant 5. A cell Q[i] can only be reserved for enqueue request
r where r.id  i.

All cell indices a slow-path enqueue obtains on line 78 with FAA
and tries to reserve on line 80 will be larger than the id of the
request it published, which is the result of an earlier FAA on T .
A helper can only reserve cell Q[i] for an enqueue request r if
r.id  i (line 103).

Invariant 6. A enqueue helper may return EMPTY to the dequeue
that called it on cell Q[i] only if no pending enqueue can deposit a
value into Q[i] and the helper sees T  i.

A call to help enq will return EMPTY iff T  i and the cell is in
enqueue result state (1) (>, r,?

d

), where r->id > i (line 122), or
(2) (>,>

e

,?
d

) (line 116).

3 Although a cell may be unusable by an enqueuer, a helping dequeue may
put a value there because at least one dequeue (itself) will try to consume it.



Write the proper value in a cell Since an enqueue request is
two 64-bit words that aren’t read or written atomically, when an
enqueue helper reads the two words, it must identify if both belong
to the same logical request and not write a cell value if they don’t. A
slow-path enqueue will never overwrite its thread’s enqueue request
before it finishes; thus, mismatch is only a potential problem with
a helper. A helper reads an enqueue request’s two words (line 118)
in the reverse order they were written (line 72). Since the helper
reads r.state into s first, then it reads r.val into v, value v belongs
to request s.id or a later request. In line 126, a helper commits v
to cell i only if (1) it claims the request for cell i (line 123), or (2)
someone else has claimed the request for cell i and no value has
yet been written into cell i (line 125). If either of those conditions
is true, the enqueuer has not finished yet, so the value v previously
read in line 118 must be for request s.id.

3.5 Wait-free Dequeue
Listing 4 shows routines for our wait-free dequeue. A dequeue is
in search of a candidate cell that has an unclaimed value or permits
returning EMPTY. A dequeue first uses the fast-path (deq fast) to
dequeue until it succeeds or its “patience” runs out. If necessary,
it finishes the dequeue using the slow-path (deq slow). A dequeue
and its helpers transforms a cell’s state from a enqueue result state
to one of the final states:

- (v,?
e

,>
d

) or (v, r
e

,>
d

): it returns v using the fast-path,
- (v,?

e

, r
d

) or (v, r
e

, r
d

): it returns v using the slow-path, or
- (>, r,?

d

) or (>,>
e

,?
d

): it returns EMPTY or >.
The difference between an enqueue result state and a final state is
that, if the cell’s enqueue result state has a value, a cell’s deq field
is transitioned from ?

d

to >
d

or a dequeue request.
A fast-path dequeue is similar to the dequeue in Listing 1,

except that it calls help enq on cells to try to secure a value, which
helps enqueuers if necessary (line 143). If help enq returns a value,
the dequeuer should claim the value using (Q[i].deq : ?

d

7! >
d

).
If help enq returns > or the dequeue failed to claim the returned
value, deq fast outputs the cell’s index, which will be used as
the id of the dequeue request on the slow-path, and returns > to
indicate failure. If a dequeuer successfully claims a value, it must
help its dequeue peer (line 136) before it returns the value.

A slow-path dequeuer begins by publishing a dequeue request
to announce its intent. Then both the dequeuer and its helpers call
help deq to complete the pending request. Since the dequeuer
calls help deq to complete its own request, we refer to both the
dequeuer and the helping dequeues as helpers. help deq ensures
the request is complete before it returns.

A dequeue request r = (id, pending, idx) is initially
(cid, 1, cid), where cid is the index of the cell that the dequeue
examined last on the fast-path, and prior (a prior candidate cell)
is initially cid. To help a dequeue request r, a helper performs the
following steps:
1. look for a cell Q[cand] that has an unclaimed value or permits

returning EMPTY (a candidate);
2. if the helper identified Q[cand] as a candidate, try to an-

nounce cand to other helpers using (r->state : (1, prior) 7!
(1, cand));

3. try to claim Q[s.idx] if it has a value using (Q[s.idx].deq :

?
d

7! r), where s = r->state (an announced candidate);
4. if Q[s.idx] doesn’t have a value or someone claimed Q[s.idx]

for request r, try to close r using (r->state : (1, s.idx) 7!
(0, s.idx)) and return;

5. prior := s.idx. if cand > s.idx begin with step 2; else return
to step 1.

Finally, the dequeuer should take the request’s result from
Q[s.idx].

128 void *dequeue(Queue *q, Handle *h)
129 for (p := PATIENCE; p >= 0; p--) {
130 v := deq_fast(q, h, &cell_id );
131 if (v != >) break;
132 }
133 if (v = >) v = deq_slow(q, h, cell_id );
134 // invariant: v is a value or EMPTY
135 if (v != EMPTY) { // got a value , so help peer
136 help_deq(q, h, h->deq.peer);
137 h->deq.peer := h->deq.peer ->next; // move to next peer
138 }
139 return v;

140 void *deq_fast(Queue *q, Handle *h, int *id)
141 // obtain cell index and locate candidate cell
142 i := FAA(&q->H, 1); c := find_cell (&h->head , i);
143 v := help_enq(q, h, c, i);
144 if (v = EMPTY) return EMPTY;
145 // the cell has a value and I claimed it
146 if (v != > and CAS(&c->deq , ?d, >d) return v;
147 // otherwise fail , returning cell id
148 *id := i; return >;

149 void *deq_slow(Queue *q, Handle *h, int cid)
150 // publish dequeue request
151 r := &h->deq.req; r->id := cid; r->state := (1, cid);
152 help_deq(q, h, h);
153 // find the destination cell & read its value
154 i := r->state.idx; c := find_cell (&h->head , i);
155 v := c->val;
156 advance_end_for_linearizability (&q->H, i+1);
157 return (v = > ? EMPTY : v);

158 void help_deq(Queue *q, Handle *h, Handle *helpee)
159 // inspect a dequeue request
160 r := helpee ->deq.req; s := r->state; id := r->id;
161 // if this request doesn’t need help , return
162 if (!s.pending or s.idx < id) return;
163 // ha: a local segment pointer for announced cells
164 ha := helpee ->head;
165 s := r->state; // must read after reading helpee ->head
166 prior := id; i := id; cand := 0;
167 while (true) {
168 // find a candidate cell , if I don’t have one
169 // loop breaks when either find a candidate
170 // or a candidate is announced
171 // hc: a local segment pointer for candidate cells
172 for (hc := ha; !cand and s.idx = prior;) {
173 c := find_cell (&hc, ++i);
174 v := help_enq(q, hc, c, i);
175 // it is a candidate if it help_enq return EMPTY
176 // or a value that is not claimed by dequeues
177 if (v = EMPTY or (v != > and c->deq = ?d)) cand := i;
178 // inspect request state again
179 else s := r->state;
180 }
181 if (cand) {
182 // found a candidate cell , try to announce it
183 CAS(&r->state , (1,prior), (1,cand ));
184 s := r->state;
185 }
186 // invariant: some candidate announced in s.idx
187 // quit if request is complete
188 if (!s.pending or r->id != id) return;
189 // find the announced candidate
190 c := find_cell (&ha, s.idx);
191 // if candidate permits returning EMPTY (c->val = >)
192 // or this helper claimed the value for r with CAS
193 // or another helper claimed the value for r
194 if (c->val = > or CAS(&c->deq ,?d,r) or c->deq = r) {
195 // request is complete , try to clear pending bit
196 CAS(&r->state , s, (0, s.idx));
197 // invariant: r is complete; r->state.pending =0
198 return;
199 }
200 // prepare for next iteration
201 prior := s.idx;
202 // if announced candidate is newer than visited cell
203 // abandon "cand" (if any); bump i
204 if (s.idx � i) { cand := 0; i := s.idx; }
205 }

Listing 4. Pseudo code for wait-free dequeue.



Find a candidate cell The first step of helping a dequeue request
is to find a candidate cell, which either has a value that is not
claimed by any dequeues or some help_enq called on it returned
EMPTY. A helper may find a candidate in two ways: it may traverse
the queue and perform help_enq on each cell it visits (line 174)
until it finds one, or it may read r->state.idx (line 179) to see if
some other helper has announced a candidate cell. It is possible that
a helper finds a candidate Q[i] by traversing the queue and noticing
that someone has announced another candiate Q[j](j 6= i) when it
tries to announce Q[i] and failed (line 183). In this case, if j > i,
the helper abandons Q[i] and uses Q[j] as its candidate; otherwise,
the helper uses Q[j] and keeps Q[i] as a backup in case helpers for
this request fail to complete the request using Q[j].4 In short, we
ensure the following invariant in selecting candidates:

Invariant 7. The announced candidate cell index of a dequeue
request r is initially r.id and increases monotonically.

Ensure linearizability Similar to wait-free enqueue, wait-free de-
queue maintains the following invariants for linearizability.

Invariant 8. A dequeue can only take a value from a cell Q[i]
where i < H where the dequeue completes.

Since a fast-path dequeue obtains cell indices using FAA, this
is obviously true. A slow-path dequeue ensures this invariant by
ensuring that H > i on line 156 before it returns.

Invariant 9. A dequeue may return EMPTY after some helper saw
a cell Q[i] with a > when T  i and announced Q[i].

The dequeue may return EMPTY if some help_enq on the last
announced cell returned EMPTY. When a helper finds an announced
candidate Q[i] that does not contain a value, i.e., Q[i].val = >
(line 194), the helper can safely assume the announcer’s help enq
performed on Q[i] returned EMPTY which means the announcer saw
T  i. Therefore, it can close the request and the dequeuer can
return EMPTY.

Invariant 10. For a dequeue request r, every cell Q[i]: r.id  i 
r.idx has been visited by at least one helper.

Every helper traverses the queue sequentially starting at r.id.
help deq may advance i by more than one only when an an-
nounced candidate has an index s.idx > i. In this case, the helper
that announced s.idx must have visited s.idx.

Invariant 11. If an announced candidate cell satisfies a dequeue
request, no new candidate may be announced in the future.

If the conditions on line 194 evaluate to true for one helper, it
will clear the pending bit and return on line 198. All other helpers
will return either on line 188 or on line 198 without changing the
announced candidate cell.

Ensure wait-freedom For wait-freedom, a dequeue ensures in-
variants similar to those for wait-free enqueues:

Invariant 12. A dequeue helper keeps helping a peer until its
pending request completes or it has no pending request for help.

If a help deq returns at line 188 or line 198, it means some helper
has completed the request being helped. A helper notices that
(1) the request is no longer pending or a new request has been

4 It may be the case when one helper called help enq(Q[j]), it could
determine that the queue was EMPTY. However, after q->T has been
moved by subsequent enqueues, another helper later inspecting cell Q[j]
might return >, unable to conclude that the queue was EMPTY. In this
case, the first helper may later announce j as a candidate after the second
helper has moved beyond j.

published (line 188), or (2) conditions that indicate that the request
is complete (line 194).

Invariant 13. A dequeue helper does not help multiple requests
from the same peer until it has helped all other peers.

A dequeuer cannot publish a new request without causing all
helpers of its prior request to return. Publishing a new request
changes the request’s state, which will be seen by helpers at
line 179 and 184, and will cause them to return at line 188 because
r->id != id. Anyone helping a peer (line 136) will advance to the
next peer (line 137) after helping one request. It will not offer help
again to the same peer until after it offers help to all other threads
in the ring.

Don’t advance segment pointers too early When a helper finds
a cell Q[i] using find cell, find cell will update the segment
pointer used to segment[i/N ]. An announced candidate cell Q[j]
may be in a segment before segment[i/N ]. To avoid irrevocably
advancing beyond a segment containing announced candidates,
help_deq uses two local segment pointers to traverse the queue: hc
to find candidate cells and ha to find announced cells. Both hc and
ha start at the helpee’s head pointer. A helper does not change the
helpee’s head pointer; a dequeuer may advance its head pointer
when it finds the resulting cell of the request (line 154).

3.6 Memory Reclamation
The only garbage that needs reclamation in our wait-free queue
is segments of the queue that are no longer in use. A segment
segment[i] is retired when both T and H have moved past i⇥N ,
and every enqueued value in segment[i] has been dequeued. We
designed an custom scheme to reclaim retired segments; it is es-
sentially an epoch based reclamation originally proposed by Har-
ris [10] to manage memory of a non-blocking linked list. Listing 5
shows pseudo code for our memory reclamation scheme and how
it is applied to our queue. We augment the queue structure with
a 64-bit integer I , which records the id of the oldest segment in
the queue. We also augment each thread’s handle with a hazard
pointer, hzdp, which a thread uses to announce the segment it is
currently using. When a thread begins an operation on the queue, it
writes the head or tail pointer it is using to find cells in the queue
into its hzdp; it clears its hzdp when the operation completes.
When a thread helps a dequeuer on the slow-path, it also writes
the dequeuer’s head pointer into its hzdp (line 220) to access cells
starting at the id of the dequeue request. Note that help deq does
not read dequeuer’s head pointer again after it sets hzdp. Instead,
help deq reads the dequeue request’s state again at line 165. If the
segment at helpee->head was reclaimed before hzdp is set, the
dequeue request read at line 160 must have completed. Before the
dequeue completed, it would have updated the state of its pending
request. In that case, the comparison of s.idx = prior in line 172
will fail and help_deq will return on line 188 without accessing a
(reclaimed) segment at helpee->head.

Cleanup retired segments When a dequeuer completes a de-
queue, it invokes the cleanup routine to attempt to reclaim retired
segments. To amortize the cost of memory reclamation, we allow
the number of retired segments to accumulate up to a pre-defined
threshold before initiating cleaning (line 225). Mutual exclusion
between cleaning threads avoids the need for synchronization be-
tween concurrent cleaners. When a thread starts cleaning, it uses
CAS to update I to �1, indicating that cleaning is in progress.
When other threads see I = �1, they immediately return.

A cleaning thread initially attempts to reclaim every segment
segment[i], i 2 [I, head->id), where head is the thread’s head
pointer. The cleaner uses s and e to denote the segments at the
start and end of the queue’s segments to reclaim; initially, s =



206 struct Queue { ..., int I : 64; };
207 struct Handle { ..., Segment * hzdp; };

208 void enqueue(Queue *q, Handle *h, void *v)
209 h->hzdp := h->tail;
210 ...
211 h->hzdp := null;

212 void * dequeue(Queue *q, Handle *h)
213 h->hzdp := h->head;
214 ...
215 h->hzdp := null;
216 cleanup(q, h);
217 return v;

218 void help_deq(Queue *q, Handle *h, Handle *peer)
219 ...
220 h->hzdp := ha; // between line 164 and 165
221 ...

222 void cleanup(Queue *q, Handle *h)
223 i := q->I; e := h->head;
224 if (i = -1) return;
225 if (e->id - i < MAX_GARBAGE) return;
226 if (!CAS(&q->I, i, -1)) return;
227 s := q->Q; hds := []; j := 0;
228 for (p := h->next; p != h and e->id > i; p := p->next) {
229 verify (&e, p->hzdp);
230 update (&p->head , &e, p);
231 update (&p->tail , &e, p);
232 hds[j++] := p;
233 }
234 // reverse traversal
235 while (e->id > i and j > 0) verify (&e, hds[--j]->hzdp);
236 if (e->id <= i) { q->Q := s; return; }
237 q->Q := e; q->I := e->id;
238 free_list(s, e);

239 void update(Segment **from , Segment **to , Handle *h)
240 n := *from
241 if (n->id < (*to)->id) {
242 if (!CAS(from , n, *to)) {
243 n := *from;
244 if (n->id < (*to)->id) *to := n;
245 }
246 verify(to, h->hzdp);
247 }

248 void verify(Segment **seg , Segment *hzdp)
249 if (hzdp and hzdp ->id < seg ->id) *seg := hzdp;

Listing 5. Pseudo code for memory reclamation

segment[I] and e = head. Since a segment between s and e
may be still in use, a cleaner needs to inspect every other thread’s
state to avoid reclaiming such segments. If it finds such a segment
segment[j] : s->id  j < e->id, it updates e to j. The cleaning
thread returns if e->id  s->id since there is nothing to reclaim.

Update head and tail pointers When a cleaning thread scans each
other thread’s state, it also updates a thread’s head and tail pointers
if the cleaning thread wants to reclaim them and they are not in use.
This is to avoid having a thread blocking the garbage collection if
it does not perform an operation on the queue for a long period.
Here we also use Dijkstra’s protocol [5] to synchronize between
the cleaning and the visited thread. A cleaning thread attempting
to update a thread’s head or tail pointer p from segment[i] to
segment[j], j > i, can reclaim segment[i] if (1) the thread’s
hzdp is null or hzdp->id � j (line 229), (2) (p : segment[i] 7!
segment[j]) succeeds or the updated pointer p0 which caused the
CAS to fail still has p = segment[j0], j0 > i (line 242), and (3)
on line 246, the thread’s hzdp is still null or hzdp->id � j after
the CAS .

Visit threads in reverse order Normally, a thread’s hazard pointer
is only updated to newer segments, either by the thread or a clean-
ing thread. In particular, given a hazard pointer that points to
segment[i], a new non-null value of the hazard pointer is normally
segment[j], j > i. However, when a thread is helping a dequeue
peer, the thread sets its hazard pointer to the peer’s head pointer,
which may be a segment that is older than the thread’s head pointer.
To avoid this “backward jump” causing problem for memory recla-
mation, we add a backward traversal step to a cleaning thread after
it has visited each thread (line 235). The forward traversal updates
each thread’s head and tail pointers to segments that are newer
than e. Therefore, no thread may “jump backward” to a segment
segment[k], where k < e->id after a forward traversal. The back-
ward traversal visits every thread in reverse order; it will capture
any hazard pointer’s “backward jump” that happened during the
forward traversal.

Overhead When implementing this memory reclamation scheme
on an system that provides a memory model that is weaker than
sequential consistency, a memory fence is needed after a thread
sets its hazard pointer. On x86 architectures, since atomic primi-
tives flush store buffers, no extra memory fence is needed. Because
our queue performs a FAA after setting the hazard pointer using
a head or tail pointer, we do not need an extra fence in enqueue
and dequeue. We only add a memory fence after setting the hazard
pointer in help deq. Therefore on x86 systems, our memory recla-
mation scheme adds almost no overhead to the fast-path execu-
tion, which is unprecedented among memory reclamation schemes
for lock-free data structures. On Power architectures, which are
weakly ordered, our reclamation protocol requires a full memory
fence (sync) after setting a hazard pointer and a lightweight fence
(lwsync) before a hazard pointer is cleared; this is the same as other
epoch-based memory reclamation strategies.

Thread failure Our memory reclamation scheme is prone to
thread failure; if a thread fails or suspended infinitely during an
operation, it may cause unbounded memory leakage. The failure of
an individual thread is impossible when using Posix threads since
the whole process will fail if a Posix thread fails. If threads are in-
dividual processes that communicates via shared memory, thread
failure is a possibility. We consider solving this problem as part of
our future work. Recently, Brown [3] developed a distributed vari-
ant of epoch based reclamation, called DEBRA, that uses signaling
to deal with thread failures. If thread failure is possible, one can
apply DEBRA to reclaim memory in our wait-free queue.

4. Linearizability and Wait-freedom
In this section, we reason about the linearizability of our queue and
its wait freedom.

4.1 Linearizability
We reason about linearizability using a logical queue L that con-
tains only cells into which values were deposited, i.e., excluding
cells marked unusable by a dequeuer. We denote the head and tail
indices of L as H

L

and T
L

. We denote the cell at index k in L as
L[k], k 2 {1, 2, ...}. A monotonic function f maps a cell index k in
L to the index of the corresponding cell in Q, i.e., L[k] = Q[f(k)].
We denote an enqueue that enqueues into L[k] as E

k

and a dequeue
that dequeues from L[k] as D

k

. We use ¯D to denote a dequeue that
returns EMPTY.

Let W = {e
j

: j = 1, 2, ...} be a possibly infinite execution
history of our wait-free queue. We assume that if an operation
begins in W it also completes in W . Procedure P , shown in
Figure 1, assigns a linearization point to each operation in W .

Essentially, procedure P linearizes each enqueue E
k

at the
FAA or CAS that moved T past f(k). The FAA or CAS may be



250 HL := 0; TL := 0
251 for j := {1, 2, ...}
252 if ej is a FAA or a CAS that updates T to t then
253 while true
254 k := TL + 1
255 if f(k) > t then break
256 linearize Ek at ej
257 TL := k
258 if ej is a read of T performed on behalf of some D̄ where
259 T  i and Q[i] is the cell D̄ is visiting then
260 linearize D̄ at ej
261 while HL < TL

262 k := HL + 1
263 if f(k) > H then break
264 linearize Dk at ej
265 HL := k

Figure 1. Linearization procedure P . Operations linearized at the
same e

j

are ordered based on the order of P ’s steps.

performed by the enqueuer or its helper but it must happen during
the execution interval of E

k

. If E
k

enqueues into L[k] via the fast-
path, it obtains the index f(k) using FAA, which is its linearization
point. If E

k

enqueues into L[k] via the slow-path, it publishes an
enqueue request r with an id r.id which is obtained using FAA on
T . Thus, we know T = r.id before the FAA on T returns r.id.
Because Invariant 6 ensures r.id < i, where i represents f(k),
we have T = r.id < f(k) before the FAA that returns r.id. In
addition, Invariant 4 ensures i < T , where i = f(k), when E

k

’s
enqueue request completes. Since T increments monotonically,
T < f(k) before the FAA on T returns r.id, and T > f(k) after
the enqueue request completes, the FAA or CAS that moves T past
f(k) must happen during the execution interval of E

k

.
Procedure P linearizes each dequeue D

k

at the earliest point
that (1) its matching enqueue E

k

is linearized and (2) a FAA or
CAS has moved H past f(k). Such a linearization point is always
within the execution interval of D

k

. Because D
k

takes a value from
L[k] using help_enq on Q[f(k)], which ensures f(k) < T before
it exits.5 This means E

k

is linearized before D
k

’s help_enq on
Q[f(k)] returns. If D

k

dequeues from L[k] via the fast-path, it
obtains f(k) using its own FAA on H , which is trivially within its
execution interval. If D

k

dequeues from L[k] via the slow-path, it
publishes dequeue request r with an id r.id obtained using FAA on
H by its last failing fast-path dequeue. We know that H = r.id
before its FAA returned r.id. Because the helpers of a dequeue
request only search for candidate cells starting at r.id, we know
r.id < f(k). Since H < f(k) before the FAA returning the
request id that D

k

stores in r.id, H increments monotonically, and
D

k

ensures H > f(k) before it returns, we know the FAA or
CAS that moves H past f(k) must happen during the execution
interval of D

k

. Since E
k

happens before or during D
k

’s execution
and the FAA or CAS that moves H past f(k) happens during D

k

’s
exection, D

k

’s linearization point is always within its execution
interval.

Procedure P linearizes a dequeue ¯D that returns EMPTY at its
read of T , where T  i, Q[i] is the cell ¯D or its helper is visiting.
Since ¯D’s helper only helps when ¯D’s dequeue request is pending.
¯D’s linearization point is always within its execution interval.

We now prove that P ’s linearization of W conforms to a cor-
rect sequential execution history of a FIFO queue. We denote the
linearization point of an operation op as e

j(op). We denote the
precedence ordering between two operations as op1 � op2. If
op1 � op2, we have j(op1)  j(op2). Note that operations lin-
earized at the same e

j

are ordered based on the order of P ’s steps.

5 f(k) is known as i in help enq.

Lemma 4.1. For k 2 {1, 2, ...}, P ’s linearization of W satisfies:
(1) E

k

� E
k+1, (2) E

k

� D
k

, (3) D
k

� D
k+1, and (4) H

L

= T
L

at every e
j(D̄).

Proof. Condition (1) means that a later enqueue E
k+1 cannot be

linearized before an earlier enqueue E
k

. This is obviously true
since P linearizes E

k

at the point T moves past f(k) and T
increments monotonically.

Condition (2) means that a dequeue is always linearized after
its matching enqueue. This is obviously true since P linearizes D

k

after E
k

(line 261).
We show that condition (3) holds using contradiction. Suppose

j(D
k+1) < j(D

k

), which means a later dequeue D
k+1 is lin-

earized before an earlier dequeue D
k

. Since we linearize D
k

at the
earliest point after e

j(Ek) and H > f(k), we have H > f(k + 1)

at e
j(Dk+1). Since j(D

k

) > j(D
k+1) � j(E

k+1) � j(E
k

), we
must have H  f(k) at e

j(Dk+1), otherwise D
k

would have been
linearized at e

j(Dk+1) on line 264. H > f(k + 1) and H  f(k)
cannot both be true simultaneously at e

j(Dk+1) since f is mono-
tonic: a contradiction.

We show that condition (4) holds using contradiction. Suppose
H

L

< T
L

= t at e
j(D̄). Then there exists a minimal h such that

h  H
L

and D
h

is not linearized at e
j(D̄). This means we have an

enqueued value in L that has not been dequeued when a dequeue
returns EMPTY. We now prove that such a case is not possible.
Assume e

j(D̄) (or its helper) reads T and sees T < i 1 , where
Q[i] is the cell inspected by a help_enq being performed on behalf
of ¯D. We know E

t

is linearized when T
L

= t, hence f(t)  T 2 .
We also know H < f(h) 3 at e

j(D̄), otherwise P would have
linearized D

h

at e
j(D̄) on line 264. Because h  H

L

< T
L

= t

and f is monotonic, f(h) < f(t) 4 . Combining 1 , 2 , 3 , and
4 , we have H < i at e

j(D̄) 5 . If ¯D visited Q[i] using the fast-
path, ¯D would have performed a FAA that updated H to i + 1;
however, from 5 H < i—a contradiction. Consider the case ¯D
(or its helpers) visited Q[i] using the slow-path. On its slow-path,
a dequeue always uses the value x returned from its last failed
fast-path attempt on H as its request id; following the FAA, we
have H = x + 1. There are two cases we must consider for ¯D:
x � f(h) and x < f(h); we consider each in turn. If x � f(h)
and H = x+ 1, then H > f(h); however, from 3 , H < f(h)—
a contradiction. If x < f(h), ¯D (or its helper) must have visited
Q[f(h)], i.e., L[h], before visiting Q[i] (Invariant 10). Then ¯D (or
its helper) must either claimed a value from L[h] or marked it as
unusable. If ¯D (or its helper) claimed a value from L[h], ¯D does
not return EMPTY, a contradiction. If it marked L[h] unusable, D

h

may not dequeue from L[h] later, a contradiction.

Theorem 4.2. The queue presented in Listings 3- 5 is linearizable.

Proof. Lemma 4.1 shows that procedure P linearizes an arbitrary
execution history W of our wait-free queue to a correct sequential
execution of a FIFO queue, thus our queue is linearizable.

4.2 Wait Freedom
We prove that operations on our queue are wait-free.

Lemma 4.3. Each enqueue operation in Listing 3 completes in a
bounded number of steps.

Proof Sketch. An enqueue e will attempt at most PATIENCE times
on the fast-path. On the slow-path, an enqueue request r will
definitely complete when all other threads become its helpers. In
the worst case, other threads may help n � 1 operations by other
threads before helping r, where n is the total number of threads.
Every time an enqueuer fails to enqueue into a cell Q[i] on the



slow-path, its contender c, the dequeuer that marks Q[i] unusable,
will help its peer. If c’s peer does not need help or it completes its
peer’s pending request, it sets its peer to the next thread. If c fails
to help its peer, it is because Q[i].enq was updated to > or another
request r0 by another helper h. In both cases, h will update its peer
to the next thread. Therefore, every time the enqueuer fails, some
thread will update its peer to the next thread. After an enqueue fails
(n � 1)

2 times on the slow-path, all other threads will become its
helper and it will complete.

Lemma 4.4. Each dequeue operation in Listing 4 completes in a
bounded number of steps.

Proof Sketch. Similar to enqueues, a dequeue will certainly com-
plete when all other threads becomes its helper on the slow-path.
In the worst case, all other threads may help n � 1 operations by
other threads before it helps a slow-path dequeue d. Every time a
dequeuer successfully dequeues a value, it helps its peer and up-
dates its peer to the next thread. All dequeuers will help d after d
fails to claim (n� 1)

2 values. Since an enqueue will succeed after
it tries (n � 1)

2 cells in the worst case, a dequeuer may traverse
(n� 1)

2 cells to find a value. Therefore, a slow-path dequeue will
definitely complete after visiting (n� 1)

4 cells.

Lemma 4.5. The memory reclamation scheme in Listing 5 com-
pletes in a bounded number of steps.

Proof Sketch. The cleanup process only visits handles of p threads,
where p is a finite number, to identify the lowest numbered
Segment in use. The number of segments to be freed between the
front and the first segment in use is finite. Therefore, an invocation
of cleanup will complete in a bounded number of steps.

Dequeue augmented with memory reclamation makes only one
call to cleanup. Since the work of cleanup is bounded and other
work of the dequeue is bounded by Lemma 4.4, the work of the
augmented dequeue is also bounded and thus wait free.

Theorem 4.6. The queue implementation presented in Listings 3- 5
is wait-free.

Proof. Lemmas 4.3, 4.4 show that enqueue and dequeue are wait-
free without memory reclamation. Lemma 4.5 shows that after
adding memory reclamation to dequeue it is still wait free. There-
fore, the queue implementation is wait-free since all of its opera-
tions are wait-free.

5. Evaluation
To understand the performance characteristics of the fast and slow
paths in our wait-free queue operations, we study two versions
of our code that differ in the PATIENCE threshold we set. We set
PATIENCE to 10 in the first version. We view this as a practical
threshold that should allow most operations to complete on the
fast-path, maximizing performance. We set PATIENCE to 0 in the
second version, which means that each operation only attempts
the fast-path once before switching to the slow-path. This version
emphasizes the performance of the slow-path in our queue, which
provides a lower bound on the queue’s throughput on most archi-
tectures. We refer to these two versions of our wait-free queue as
WF-10 and WF-0.

We compare our wait-free queue to several representative queue
implementations in the literature. We use Morrison and Afek’s
LCRQ [19] as the representative of prior FAA-based queues; it de-
livers the best performance among prior concurrent queue imple-
mentations because it avoids the CAS retry problem by using FAA.
We chose CC-Queue by Fatourou et al. [8] as the representative of

queues based on the combining principle. We also compare with
Michael and Scott’s classic non-blocking MS-Queue [17]. Note
that LCRQ and MS-Queue are lock-free queues, and CC-Queue is a
blocking queue; none provides a progress guarantee as strong as our
wait-free queue. Previous wait-free queues sacrifice performance to
provide strong progress guarantee and hence deliver lower perfor-
mance than these queues. In particular, the wait-free queue con-
structed by Kogan and Petrank [13] using the fast-path-slow-path
strategy, delivers the same performance as MS-Queue which is the
fast-path in their implementaion. The wait-free queue by Fatourou
and Kallimanis [7] using the P-Sim universal construction is slower
than CC-Queue, which is also of their design.

We also include a microbenchmark that simulates enqueue and
dequeue operations with FAA primitives on two shared variables:
one for enqueues and the other for dequeues. This simple mi-
crobenchmark provides a practical upper bound for the throughput
of all queue implementations based on FAA.

5.1 Experiment Setup
Platforms We evaluated the performance of aforementioned
queue implementation and the FAA microbenchmark on four plat-
forms based on the following processors: Intel Haswell, Intel
Knight’s Corner Xeon Phi, AMD Magny-Cours, and IBM Power7.
Table 1 lists the key characteristics of these platforms. Since the
Power7 architecture does not directly implement FAA, we em-
ulate FAA using a retry loop that employs load-linked and
store-conditional (LL/SC). It is important to note that imple-
menting FAA with LL/SC sacrifices the wait-freedom of our queue
because of the potential for unbounded retries.

We compiled each code with GCC 4.9.2 on all platforms except
on our Intel Knight’s Corner Xeon Phi where we used GCC 4.7.0,
which was the only GNU compiler available. We used -O3 as our
optimization level without any special optimization flags.

In our experiments, we used a compact mapping of software
to hardware threads; namely, each software thread is mapped to
the hardware thread that is closest to previously mapped threads.
For example, on a dual-socket system with a pair of 18-core Intel
Haswell processors, where each core supports two threads using
simultaneous multithreading (SMT), we map the first two of the
72 threads to the two SMT threads on the first core, the next two
threads to the second core on the same processor, and the last 36
threads to the second processor.

Implementation We implemented our queue algorithm, CC-
Queue, and MS-Queue in C. Our implementations of CC-Queue
and MS-Queue employ fences as necessary to execute correctly
on the Power7, which is a weakly ordered architecture. We use an
LCRQ implementation provided to us by Morrison [20]. We eval-
uate these algorithms using a framework very similar to that of Fa-
tourou and Kallimani. Unlike prior work, which didn’t reclaim any
memory, assuming that a 3rd party garbage collector would handle
the matter, we consider memory reclamation to be an integral re-
sponsibility of the queue algorithms since garbage collection is not
available in all environments, including Fatourou and Kallimani’s
framework previously used to test the performance of queue algo-
rithms. For LCRQ and MS-Queue, and CC-Queue, which lacked
support for memory reclamation, we added it.

To LCRQ and MS-Queue, we added implementations of the
hazard pointer scheme [16] to reclaim memory. Since CC-Queue
is a blocking queue, memory can be safely reclaimed after each op-
eration without the use of a lock-free memory reclamation scheme.
The segment size in our queue, N , we used in our experiments is
2

10. The segment size in LCRQ is 212, which is the size that yields
the best performance when running with all cores.



Processor Model Clock Speed # of Processors # of Cores # of Threads CC Protocol Native FAA
Intel Xeon E5-2699v3 (Haswell) 2.30 GHz 2 36 72 snooping yes
Intel Xeon Phi 3120 1.10 GHz 1 57 228 directory yes
AMD Opteron 6168 (Magny-Cours) 0.80 GHz 4 48 48 directory yes
IBM Power7 8233-E8B 3.55 GHz 4 32 128 snooping no

Table 1. Summary of experimental platforms.

Benchmark All experiments employ an initially-empty queue to
which threads apply a series of enqueue and dequeue operations.
We use the following two benchmarks to evaluation the perfor-
mance of the queue algorithms.

• enqueue-dequeue pairs: in each iteration a thread executes an
enqueue followed by a dequeue; the benchmark executes 10

7

pairs partitioned evenly among all threads;
•
50% enqueues: in each iteration a thread decides uniformly at
random to execute an enqueue or dequeue with equal odds; the
benchmark executes 10

7 operations partitioned evenly among
all threads;

As in prior studies of queue performance, each thread performs
a random amount of “work” (between 50 and 100ns) between
operations to avoid artifical long run scenarios [17], in which a
thread completes a series of operations when it has the shared
object in its L1 cache without being interrupted by other threads.
Long run scenarios can over-optimisticly bias the evaluation result
due to an unrealistically low cache miss rate. The execution time
of this “work” is excluded from the performance numbers we
report in this paper. Surprisingly, this random “work” between
operations actually improves performance on the Haswell-based
system used for our experiments. We have been unable to obtain
enough information about Haswell’s coherence protocol and how
it performs arbitration under contention to explain this effect.

During tests, we keep the activities of other processes on the
system to a minimum to avoid interference. All software threads are
pinned to a different hardware thread to minimize interference by
the OS scheduler. Our benchmark uses the jemalloc [6] memory
allocator to avoid requesting memory pages from the OS on every
allocation.

Methodology To provide an experimental result that is statisti-
cally rigorous, we follow the methodology suggested by Georges
et al. [9]. In each invocation of a process, we perform at most
20 benchmark iterations. During each process invocation i, we
determine the iteration s

i

in which a steady-state performance is
reached, i.e., once the coefficient of variation (COV) of the most
recent 5 iterations (s

i

� 4, s
i

� 3, ... s
i

) falls below the threshold
0.02. If the COV never drops below 0.02 for any 5 consecutive it-
erations in the 20 iterations, we choose the 5 consecutive iterations
that have the lowest COV under steady-state. We compute the mean
x̄
i

of the 5 benchmark iterations under steady-state

x̄
i

=

siX

j=si�4

x
ij

.

Then we perform 10 invocations of the same binary and compute
the 95% confidence interval over the mean of the 10 invocations
x̄
i

(i = 1, 2, ...10). Since the number of measurements n is rela-
tively small (n = 10 in our case), we compute the confidence in-
terval under the assumption that the distribution of the transformed
value

t =
x̄� µ

s/
p
n

where µ is the population mean and s is the sample standard
deviation, follows Student’s t-distribution with n � 1 degrees of

freedom. Georges et al. [9] describe in detail how to compute
confidence intervals.

5.2 Experimental Results
Figure 2 shows results of experiments with the queue implementa-
tions and the FAA-based microbenchmark on all four platforms.
For the 50%-enqueue benchmark, we omit the results on Intel
Knight’s Corner Xeon Phi and IBM Power7 since they are similar
to those of the enqueue-dequeue pair benchmark. We describe the
experimental result in two parts, considering the the performance
of a single core and a multi-core execution respectively.

Single core performance The single core performance of algo-
rithms shown in Figure 2 and marked with an ⇤, uses one thread
on Magny-Cours, two threads on Haswell, and four threads on
Knight’s Corner Xeon Phi and Power7.

The FAA microbenchmark outperforms all queue implementa-
tions because it contains only a FAA for each operation. Moreover,
because all threads on the same core share the same L1 cache, the
variable updated by FAA is always in cache.

CC-Queue outperforms other queues in sequential executions.
Because CC-Queue reuses the same node for every enqueue and
dequeue pair, it does not incur any cache misses without a contend-
ing thread. However, this advantage disappears with two or more
threads.

For the enqueue-dequeue pairs benchmark, WF-10 outperforms
LCRQ by about 65% in a single thread execution on both Haswell
and Magny-Cours. For the 50%-enqueues benchmark, WF-10 out-
performs LCRQ by about 35% in a single thread execution on both
Haswell and Magny-Cours. This is because of the low overhead of
our memory reclamation scheme compares favorably with the haz-
ard pointer scheme we added to LCRQ. LCRQ executes at least
one memory fence in each operation.

Multi-core performance Using 228 threads of a Intel Knight’s
Corner Xeon Phi, the performance of the fast version of our wait-
free queue, WF-10, achieves about 150⇥ the performance of MS-
Queue and about 30⇥ the performance of CC-Queue. MS-Queue
performance suffers from the CAS retry problem described earlier,
and CC-Queue’s combining technique serializes the execution of
operations that could have been performed in parallel.

Although the FAA implementation used in our experiment on
IBM Power7 suffers from retries of LL/SC pairs, our fast version
still achieves about 3.3⇥ the performance of MS-Queue and about
2.8⇥ the performance of CC-Queue. This shows that our queue is
still faster than other queue implementaions even on systems that
do not support FAA in hardware, if one is willing to sacrifice the
wait-free property.

For the enqueue-dequeue pairs benchmark, WF-10 and LCRQ
performs almost the same on both Haswell and Magny-Cours ma-
chine. On Intel Haswell, AMD Magny-Cours, and IBM Power7,
WF-10 and LCRQ deliver throughput comparable to the FAA mi-
crobenchmark, which provides a practical bound on the through-
put for all FAA-based queues. Surprisingly, WF-0, which executes
the slow-path more frequently performs better than WF-10 in some
cases. Since the slow-path dequeue in our algorithm does not per-
form FAA, it relieves contention on the head and tail indices, which
improves performance.
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Figure 2. Throughput of different queues on all four platforms. There is no implementation of LCRQ for Intel Xeon Phi and IBM Power7
because the architectures lack support for CAS2. *: executions where all threads run on the same core. ˆ: executions that involve multiple
processors. The error bar around each data point marks the bounds for its 95% confidence interval.

At high concurrency levels, LCRQ outperforms our wait-free
queues in the 50%-enqueues benchmark by about 50% on Intel
Haswell and 35% on AMD Magny-Cours; this is because our wait-
free queue is more costly when trying to dequeue from an empty
queue. To return an empty value, a dequeue needs to inspect its
enqueue peer first which elevates traffic between cores. Moreover,
when a dequeue cannot return empty because enqueues have per-
formed FAA but have yet to put values in the queue, the dequeue
will consume more cells before it completes.

# of threads 36 72 144 288
% of slow-path enqueues 0.002 0.004 0.024 0.028
% of slow-path dequeues 1.536 4.047 2.888 3.239
% of empty dequeues 0.002 0.002 0.003 0.003

Table 2. Breakdown of different execution passes of WF-0 on Intel
Haswell. The 144 and 288 threads are oversubscribed workloads.

Breakdown of different execution paths Table 2 shows a break-
down of different execution paths on our Intel Haswell system for



the 50%-enqueues benchmark. Using more software threads than
the 72 hardware threads increases the percentage of enqueues com-
pleted on the slow-path but decreases the percentage of dequeues
completed on the slow-path. In all cases, the percentage of slow-
path enqueues and dequeues is very low; more than 99% of en-
queues succeed with a single fast-path attempt and more than 95%
dequeues succeed with a single fast-path attempt. Our wait-free
queue rarely returns EMPTY.

In all cases, the percentage of dequeues that return EMPTY is less
than 0.01%. If a dequeue in our wait-free queue obtains an empty
cell, it performs many steps before it reads T . It is very likely that T
has been increased to be larger the index of the cell a dequeuer visits
when the dequeuer reads T , causing many dequeues that could have
returned EMPTY to fail.

6. Conclusions
Our design for a linearizable and wait-free FIFO queue delivers
high performance over a range of highly-threaded multi-core sys-
tems. On a Power7, our queue cannot provide a wait-free progress
guarantee because fetch-and-add is implemented using LL/SC,
which might require unbounded retries. Nevertheless, at the top
thread count on all but a Knight’s Corner Xeon Phi coprocessor,
the throughput of our queue in operations per second equals or
exceeds the throughput of fetch-and-add operations per second
performed by a tight loop in a microbenchmark. Although the per-
formance of our wait-free queue does not equal the throughput
of fetch-and-add on the Xeon Phi, it dominates the throughput
of other queues by a margin almost twice as wide as the gap be-
tween our queue’s throughput and that of the fetch-and-add mi-
crobenchmark. Not only does our queue dominate the throughput
of others, it also provides a wait-free progress guarantee that the
other queues do not. On a Knight’s Corner Xeon Phi, we believe
that the gap between the throughput of fetch-and-add and our
queue is due to low per-thread performance; investigating this is
the subject of ongoing work.

In summary, our performance experiments show that our wait-
free queue design is fast and faster than queues with weaker non-
blocking progress guarantees. Our queue design provides an in-
stance of a wait-free data structure fast enough to use in practice.
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