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FPC: A High-Speed Compressor for
Double-Precision Floating-Point Data

Martin Burtscher, Senior Member, IEEE, and Paruj Ratanaworabhan, Student Member, IEEE

Abstract—Many scientific programs exchange large quantities of double-precision data between processing nodes and with mass
storage devices. Data compression can reduce the number of bytes that need to be transferred and stored. However, data
compression is only likely to be employed in high-end computing environments if it does not impede the throughput. This paper
describes and evaluates FPC, a fast lossless compression algorithm for linear streams of 64-bit floating-point data. FPC works well on
hard-to-compress scientific data sets and meets the throughput demands of high-performance systems. A comparison with five
lossless compression schemes, BZIP2, DFCM, FSD, GZIP, and PLMI, on 4 architectures and 13 data sets shows that FPC
compresses and decompresses one to two orders of magnitude faster than the other algorithms at the same geometric-mean
compression ratio. Moreover, FPC provides a guaranteed throughput as long as the prediction tables fit into the L1 data cache. For
example, on a 1.6-GHz Itanium 2 server, the throughput is 670 Mbytes/s regardless of what data are being compressed.

Index Terms—Data compression, prediction methods, data models, floating-point compression.

1 INTRODUCTION

MANY scientific applications produce and transfer large
amounts of 64-bit floating-point data. Some exchange
data between processing nodes and with mass storage
devices after every simulation time step. In addition,
scientific programs are usually checkpointed at regular
intervals so that they can be restarted from the most recent
checkpoint after a crash. Checkpoint data tend to be large
and have to be saved to disk.

Compression can reduce the amount of data that needs
to be transferred and stored. If done fast enough, it can
actually increase the throughput of the data exchanges. Of
course, the challenge is to achieve a good compression ratio
and a high compression and decompression speed at the
same time. Additionally, the compression algorithm should
be lossless and single pass. For example, checkpoint data
cannot be lossy and neither can data from which certain
derived quantities will be computed. A single-pass algo-
rithm is needed so that the data can be compressed and
decompressed on the fly as it is generated and consumed,
respectively.

This paper presents and evaluates FPC, a lossless, single-
pass, linear-time compression algorithm. FPC targets
streams of double-precision floating-point data with un-
known internal structure, such as the data seen by the
network or a storage device in scientific and high-
performance computing systems. If the internal structure
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is known, e.g., a matrix or a linearized tree, then this extra
information could be exploited to improve the compression
ratio [23]. FPC delivers a good average compression ratio on
hard-to-compress numeric data. Moreover, it employs a
simple algorithm that is very fast and easy to implement
with integer operations. We found FPC to compress and
decompress 2 to 300 times faster than the special-purpose
floating-point compressors DFCM, FSD, and PLM], and the
general-purpose compressors BZIP2 and GZIP.

The execution path (i.e., the control flow) through FPC’s
code is independent of the input data and the compression
ratio. Furthermore, in the steady state (i.e., after a short
period of compulsory cache misses), all instructions in the
algorithm have a fixed latency as long as the prediction
tables fit into the L1 data cache. As a consequence, the
number of machine cycles needed to compress/decompress
a double value is constant, meaning that the time it takes to
process a given block of data is known a priori. Hence, FPC
provides a constant throughput guarantee when used with
small enough table sizes.

The remainder of this paper is organized as follows:
Section 2 describes the FPC algorithm and its design in
detail. Section 3 summarizes related work. Section 4
explains the evaluation methods. Section 5 presents
performance results for FPC and five other compressors.
Section 6 concludes this paper with a summary and
directions for future work.

2 THE FPC ALGORITHM

2.1 Operation

FPC compresses linear sequences of IEEE 754 double-
precision floating-point values by sequentially predicting
each value, XORing the true value with the predicted value,
and leading-zero compressing the result. As illustrated in
Fig. 1, it uses variants of an fcm [27] and a dfcm [14] value
predictor to predict the doubles. Both predictors are

Published by the IEEE Computer Society

Authorized licensed use limited to: Cornell University. Downloaded on December 10, 2008 at 20:17 from IEEE Xplore. Restrictions apply.



BURTSCHER AND RATANAWORABHAN:

FPC: A HIGH-SPEED COMPRESSOR FOR DOUBLE-PRECISION FLOATING-POINT DATA

19

uncompressed 1D double,
block of doubles
-1 64
fcm dfcm
164 164
\4 A
. selector
predictor closer
code value v
+1 _ 64 XOB
leading
zero byte
counter
encoder ¢
1+31— t 0 to 8 bytes
compressed bit, cnt, |bit, cnt, residual, residual,
block :

Fig. 1. FPC compression algorithm overview.

effectively hash tables. The more accurate of the two
predictions, i.e., the one that shares more common most
significant bits with the true value, is XORed with the true
value. The XOR operation turns identical bits into zeros.
Hence, if the predicted and the true value are close, the XOR
result has many leading zeros. FPC then counts the number
of leading zero bytes, encodes the count in a 3-bit value, and
concatenates it with a single bit that specifies which of the
two predictions was used. The resulting 4-bit code and the
nonzero residual bytes are written to the output. The latter
are emitted verbatim without any encoding.

FPC outputs the compressed data in blocks. Each block
starts with a header that specifies how many doubles the
block encodes and how long it is (in bytes). The header is
followed by the stream of 4-bit codes, which in turn is
followed by the stream of residual bytes. To maintain byte
granularity, which is more efficient than bit granularity, a
pair of doubles is always processed together and the
corresponding two 4-bit codes are packed into a byte. In
case an odd number of doubles needs to be compressed, a
spurious double is encoded at the end. This spurious value
is later eliminated using the count information from the
header. Note that our first version of FPC [4] does not use
blocks. We added them now because keeping the 4-bit
codes and the residual bytes separate instead of interleaving
them makes FPC faster and potentially simplifies post-
processing of the output (e.g., adding another compression
stage).

Decompression works as follows. It starts by reading the
current 4-bit code, decoding the 3-bit field, reading the
specified number of residual bytes, and zero-extending
them to a full 64-bit number. Based on the 1-bit field, this
number is XORed with either the 64-bit fcm or dfcm
prediction to recreate the original double. This lossless
reconstruction is possible because XOR is reversible.

For performance reasons, FPC interprets all doubles as
64-bit integers and uses only integer arithmetic. Since there
can be between zero and eight leading zero bytes, i.e., nine
possibilities, not all of them can be encoded with a 3-bit
value. We decided not to support a leading zero count of
four because it occurs only rarely (cf. Section 5.4). Conse-
quently, all XOR results with four leading zero bytes are
treated like values with only three leading zero bytes, and
the fourth zero byte is emitted as part of the residual.

Before compression and decompression, both predictor
tables are initialized with zeros. After each prediction, they
are updated with the true double value to ensure that they
generate the same sequence of predictions during compres-
sion as they do during decompression. The following
pseudocode demonstrates the operation of the fcm pre-
dictor. The table_size has to be a power of two. fcm is
the hash table.

unsigned long long true_value,
fcm_prediction, fcm_hash, fcm[table_size];

// prediction: read hash table entry
fcm_prediction = fem[fem_hash];

// update: write hash table entry
fem[fcem_hash] = true_value;

fem_hash=( (fcm_hash<<6) ~ (true_value>>48) ) &
(table_size — 1);

Right shifting true_value (i.e.,, the current double
expressed as a 64-bit integer) by 48 bits eliminates the often
random mantissa bits. The remaining 16 bits are XORed
with the previous hash value to produce the new hash.
However, the previous hash is first shifted by 6 bits to the
left to gradually phase out bits from older values. The hash
value (fcm_hash) therefore represents the sequence of
most recently encountered doubles, and the hash table
stores the double that follows this sequence. Hence, making
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an fcm prediction is tantamount to performing a table
lookup to determine which value followed the last time a
similar sequence of previous doubles was seen.

The dfcm predictor operates in the same way. However, it
predicts integer differences between consecutive values
rather than absolute values, and the shift amounts in the
hash function are different.

unsigned long long last_value,
dfcm_prediction,dfcm_hash,dfcm[table_sizel;

dfcm_prediction = dfcm[dfcm_hash] +
last_value;

dfcm[dfcm _hash] = true_value — last_value;
dfcm_hash = ((dfcm_hash << 2)* ((true_value —
last_value) >> 40)) & (table_size — 1);
last_value = true_value;

The complete C source code and a brief description of
how to compile and use FPC are available at http://
www.csl.cornell.edu/~burtscher/research/FPC/. The web-
site also contains links to our data sets as well as to a
detailed discussion of the code and some of the optimiza-
tion techniques it employs.

2.2 Design

FPC’s primary objective is to maximize the throughput
while still delivering a competitive compression ratio.
Therefore, FPC does not include features that improve the
compression ratio at a significant cost of speed. For
example, we deemed extracting and handling the sign,
exponent and mantissa separately to be too slow for
throughput-oriented compression. Likewise, we excluded
variable-length encoding at bit granularity as well as bit
reversal because of their inefficiency on modern CPUs.
Furthermore, we replaced all floating-point arithmetic with
integer arithmetic. Even though the former is more natural
and sometimes results in better compression ratios, it is
slower and, more importantly, may cause exceptions.

Our previous experience with fast lossless compressors
[3], [21], [26] demonstrated algorithms that predict the data
using value predictors and leading-zero compress the
residual to be very fast while offering a good compression
ratio. Hence, we based FPC on this approach. We
considered both subtraction and XORing for the residual
generation. Since subtraction with a two’s complement
representation yields about a 10 percent lower compression
ratio and subtraction with a sign-magnitude representation
a 3 percent to 8 percent lower compression ratio as well as a
lower processing speed, we abandoned subtraction and
selected XOR.

2.2.1 Predictor Parameter Selection
Value predictors have been researched extensively to
predict the results of CPU machine instructions at runtime
[24]. These predictors are designed to make billions of
predictions per second in hardware. As a consequence, they
employ simple and fast prediction algorithms.

First, we had to determine which and how many
(software) predictors to use. As one might expect, the more
accurate prediction algorithms tend to be slower. Similarly,
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employing a larger number of predictors increases the
probability of one of them being correct but lowers the
throughput. We experimented with many combinations
and configurations of four basic value predictors (a last
value [24], a stride [11], a finite context method [27], and a
differential finite context method predictor [14]) as well as
variations thereof (including a last n value [6] and a stride
2-delta predictor [27]).

Because a high processing speed was paramount in our
design, we soon found two-predictor combinations to
represent the best tradeoff for the following reasons. First,
adding predictors increases the runtime linearly but quickly
yields diminishing returns on the gained compression ratio.
Therefore, only few predictors should be used. Second, to
achieve high performance, we had to operate at least at byte
granularity. Consequently, we were faced with 3-bit codes
to express the number of leading zero bytes of the residual
between the predicted and the true value. That left 5 bits to
select 1 of 32 predictors, which was far beyond the number
of predictors we could reasonably employ. The only good
alternative, which we ended up choosing, was to utilize
1 bit to pick between two predictors. Concatenating this bit
with the 3-bit leading zero count resulted in a 4-bit field,
which can be combined with the 4-bit field of the next
prediction to form a byte. (Four-predictor combinations
together with 2-bit codes for expressing the leading zero
counts result in poor compression ratios.)

The next question was which two predictors to select.
Initially, we evaluated single predictors with different
configurations in isolation and paired up the best
performers. However, this approach ended up combining
predictors that largely made the same predictions. So we
switched to evaluating predictor pairs rather than single
predictors, i.e., we optimized the algorithm as a whole
instead of its individual components. The result was a
significant boost in compression ratio without loss in
throughput. Note that the predictors making up the best
pairs do not perform particularly well when used in
isolation, but they complement each other nicely.

The two-predictor experiments revealed that we should
combine an fcm predictor with a dfem predictor. That left
us with determining good parameters for these predictors.
For speed reasons and to prevent overfitting to our data
sets, we opted to hardcode the parameters and use the
same fixed set of parameters for all predictor sizes. To
determine the best configuration, we evaluated the follow-
ing 10,000 combinations of table sizes and shift amounts in
the two hash functions (cf. Section 2.1) on each data set:

Number of table entries : 1,024, 32,768, 1,048,576

Left shift in fem hash function : 1,2,3,4,5,6,7,8

Right shift in fem hash function : 8,16, 24, 32,40, 48, 56
Left shift in dfem hash function : 1,2,3,4,5,6,7,8

Right shift in dfem hash function : 8,16, 24, 32,40, 48, 56.

Next, we performed a local search to refine the best right-
shift amounts. Unfortunately, no clear winners could be
identified because different data sets prefer different
configurations and large predictors work well with settings
that are suboptimal for small predictors and vice versa. In
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the end, we settled for the parameters listed in the previous
section, which perform reasonable in most cases and work
well in the mid-range of table sizes.

Because FPC runs at the same speed for all table sizes
that fit into the L1 data cache but compresses better with
larger tables, there is little reason to use it with very small
tables (e.g., less than half of the L1 data cache size). Hence,
we were not overly concerned with our parameter choices
resulting in poor compression at the low end. Nevertheless,
the most important change to improve the compression
ratio with small tables is to increase the right-shift amount
in dfcm from 40 to a value in the 50s. This change would
increase the average compression ratio over our data sets by
about 3 percent. At the high end, better hash functions are
obtained by lowering the left-shift amount in fcrm to between
2 and 4, increasing the dfcm left-shift amount to between
4 and 8, and lowering the dfcm right-shift amount to 32. This
change would increase the average compression ratio by
1 percent.

3 RELATED WORK

A large body of work related to lossy floating-point
compression exists, in particular for the transmission and
reproduction of audio and image data. Because some
degree of imprecision can be tolerated in these domains,
such data do not have to be recreated exactly. Our work
focuses exclusively on the lossless compression of floating-
point values. There are many instances, especially in science
and engineering, where lossless compression is required.
Simulation checkpoint data and medical images are
examples where lossy compression is unacceptable.

Much of the related work that deals with lossless
compression of floating-point data focuses on 32-bit
single-precision values. Our work concentrates on 64-bit
double-precision data, such as those produced by numeric
programs, which are also the target of the following
algorithms from the literature.

Engelson et al. [9] propose a compression scheme for
the double-precision output of a numerical solver for
ordinary differential equations. It uses integer delta and
extrapolation techniques to compress and decompress the
data. This method is particularly beneficial with gradually
changing data. The difference between consecutive values
of this nature is small and can, therefore, be encoded
with only a few bits. The algorithm includes support for
fixed and varying step sizes. It can optionally perform
lossy compression.

Lindstrom and Isenburg [23] designed an efficient
compressor for both 32- and 64-bit images. Their emphasis
is on 2D and 3D data for rendering. The algorithm predicts
the data using the Lorenzo predictor [18] and encodes the
residual, i.e., the difference between the predicted and the
true value, with a range coder based on Schindler’s quasi-
static probability model [28].

We have previously used value predictors as data
models in program-execution-trace compressors [3]. How-
ever, that work focuses on integer data. Together with
Jian Ke, the authors have proposed the DFCM compressor
for 64-bit floating-point data [26]. DFCM uses a modified
dfcm value predictor to generate the residual, which is the

XORed difference between the true and the predicted value.
Then, a 4-bit leading zero suppress scheme is employed to
encode it. We incorporated the DFCM compression algo-
rithm in an MPI library to speed up parallel message-
passing programs running on a cluster of workstations [21].

Several papers on lossless compression of floating-point
data focus on 32-bit single-precision values, as exemplified
by the following work. Klimenko et al. [22] present a
method that combines differentiation and zero suppression
to compress floating-point data from experiments con-
ducted at the Laser Interferometer Gravitation Wave
Observatory (LIGO). It has about the same compression
ratio as GZIP but is significantly faster. Its success is tied to
the nature of the LIGO data, which are time series whose
values change only gradually. Ghido [13] proposes an
algorithm for the lossless compression of audio data. It
transforms the floating-point values into integers and
generates an additional binary stream for the lossless
reconstruction of the original floating-point values.

Lossless compression of single-precision floating-point
data is also of interest to the scientific visualization and
imaging community. Several publications cover the com-
pression of the different types of data encountered in this
field. These studies, however, focus on maximizing the
compression ratio as the compression and decompression
speeds are not very important.

Fowler and Yagel [10] use a predictive coding technique
to compress volumetric data sets from medical images used
for diagnosis and treatment. Their method employs a
combination of differential pulse-code modulation (DPCM)
and Huffman coding to predict and encode a data sample,
respectively.

Ibarria et al. [18] propose the Lorenzo predictor for
compressing high-dimensional scalar fields. The predictor
is an extension of the 2D-parallelogram predictor originally
proposed by Touma and Gotsman [29] to compress triangle
meshes. The residuals generated by the predictor are
further encoded using arithmetic coding. The scheme by
Ibarria et al. requires only a small buffer, and is, thus,
appropriate for out-of-core compression.

Usevitch [31] proposes extensions to the JPEG2000
standard that allow data to be efficiently encoded with
bit-plane coding algorithms where the floating-point values
are represented as “big integers.” Gamito and Dias [12]
describe modifications needed in JPEG2000 to accommo-
date lossless floating-point compression, namely, adjust-
ments in the wavelet transformation and earlier signaling of
special numbers such as NaNs in the main header.

Isenburg et al. [20] describe an adaptation to lossy
predictive geometry coding to compress vertex positions in
triangular meshes in a lossless manner. The idea is to break
up each floating-point value into its sign, exponent, and
mantissa component, and to compress them separately.
This scheme employs the parallelogram predictor proposed
by Touma and Gotsman [29] in the prediction stage and a
context-based arithmetic coder in the coding stage.

Trott et al. [30] use an extended precision algorithm,
the Haar wavelet transform, and Huffman coding to
losslessly compress 3D curvilinear grids. The extended
precision algorithm first converts single-precision data
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into double-precision data so that loss of precision will not
occur during the transformation and coding process.

Chen et al. [7] compress irregular grid volume data
represented as a tetrahedral mesh. Their technique per-
forms differential coding and clustering to generate
separate data residuals for the mantissa and the exponent.
Then, a Huffman coder and GZIP are used to encode the
mantissa and exponent residuals.

4 EVALUATION METHODOLOGY

4.1 Systems and Compilers
We compiled and evaluated FPC and the compressors listed
in Section 4.4 on the following four systems:

e A 64-bit Alpha system with an 833-MHz Alpha
21264B CPU, a 2-way associative 64-Kbyte L1 data
cache, a direct-mapped 4-Mbyte unified L2 cache
(off chip), and 1 Gbyte of main memory. The
operating system is Tru64 UNIX V5.1B. We used
the Compaq C Compiler version 6.5 with the “-O3
-arch ev68 -non_shared” flags.

e A 64-bit Athlon system with a 2-GHz Athlon
64 CPU, a 2-way associative 64-Kbyte L1 data cache,
a 16-way associative 512-Kbyte unified L2 cache
(which does not duplicate the data in the L1 cache),
and 1 Gbyte of main memory. The operating system
is Red Hat Linux 3.4.5-2 and the compiler is gcc
version 3.4.5. All programs were compiled with the
“-O3 -march = athlon64 -static” flags on this system.

e A 64-bit Itanium system with a 1.6-GHz Itanium
2 CPU, a 4-way associative 16-Kbyte L1 data cache,
an 8-way associative 256-Kbyte unified L2 cache, a
12-way associative 3-Mbyte unified L3 cache (on
chip), and 3 Gbytes of main memory. The operating
system is Red Hat Enterprise Linux AS4 and the
compiler is the Intel C Itanium Compiler version 9.1.
We used the “-O3 -mcpu = itanium? -static” compi-
ler flags.

e A 32-bit Pentium system with a 3-GHz Pentium4-
Xeon CPU, a 4-way associative 16-Kbyte L1 data
cache, an 8-way associative 1-Mbyte unified L2
cache, and 1 Gbyte of main memory. The operating
system is SuSE Linux 9.1 and the compiler is gcc
version 3.3.3. We compiled the compressors with
the “-O3 -march = pentium4 -static” flags on this
machine.

4.2 Timing Measurements

All timing measurements in this paper refer to the elapsed
time reported by the UNIX shell command time. To make
the measurements independent of the disk speed, each
experiment was conducted five times in a row and the
shortest running time is reported. (Using the median
runtime instead of the minimum does not change the
results significantly.) This approach minimized the timing
component due to disk I/O operations because, after the
first run, the compressors’ inputs were cached in main
memory by the operating system. All output was written to
/dev/null, that is, it was consumed but ignored.
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4.3 Data Sets

We used 13 data sets from various scientific domains for

our evaluation. Each data set consists of a 1D binary

sequence of IEEE 754 double-precision floating-point

numbers and belongs to one of the following categories.
Observational data. These four data sets comprise

measurements from scientific instruments:

e  obs_error: data values specifying brightness tempera-
ture errors of a weather satellite.

e obs_info: latitude and longitude information of the
observation points of a weather satellite.

e obs_spitzer: data from the Spitzer Space Telescope
showing a slight darkening as an extrasolar planet
disappears behinds its star.

e  obs_temp: data from a weather satellite denoting how
much the observed temperature differs from the
actual contiguous analysis temperature field.

Numeric simulations. These four data sets are the result
of numeric simulations:

e num_brain: simulation of the velocity field of a
human brain during a head impact.

e num_comet: simulation of the comet Shoemaker-
Levy 9 entering Jupiter’s atmosphere.

e num_control: control vector output between two
minimization steps in weather-satellite data
assimilation.

e num_plasma: simulated plasma temperature evolu-
tion of a wire array z-pinch experiment.

Parallel messages. These five data sets contain the
numeric messages sent by a node in a parallel system
running NAS Parallel Benchmark (NPB) [1] and ASCI
Purple [17] applications:

e msg_bt: NPB computational fluid dynamics pseudo-

application bt.

e msg_lu: NPB computational fluid dynamics pseudo-

application lu.

o msg_sp: NPB computational fluid dynamics pseudo-

application sp.

o msg_sppm: ASCI Purple solver sppm.

o  msg_sweep3d: ASCI Purple solver sweep3d.

Table 1 summarizes information about each data set. The
first two data columns list the size in megabytes and in
millions of double-precision floating-point values. The
middle column shows the percentage of values in each
data set that are unique, i.e., appear exactly once. The fourth
column displays the first-order entropy of the values in bits.
The last column expresses the randomness of the data sets
in percent, that is, it reflects how close the first-order
entropy is to that of a truly random data set with the same

number of unique values.
Jregi
*\total ) )

The entropy is computed as
n—1
freq;
t = - x 1
entropy Z(total 0g
where n is the number of distinct values, total refers to the
total number of values, and the fregq; are the number of

1=0
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TABLE 1
Statistical Information about the Data Sets

size doubles |unique values| 1storder |[randomness
(megabytes) | (millions)| (percent) [ entropy (bits)| (percent)
msg_bt 254.0 33.30 92.9 23.67 95.1
msg_lu 185.1 24.26 99.2 24 .47 99.8
msg_sp 276.7 36.26 98.9 25.03 99.7
msg_sppm 266.1 34.87 10.2 11.24 51.6
msg_sweep3d 119.9 15.72 89.8 23.41 98.6
num_brain 135.3 17.73 94.9 23.97 99.9
num_comet 102.4 13.42 88.9 22.04 93.8
num_control 152.1 19.94 98.5 2414 99.6
num_plasma 33.5 4.39 0.3 13.65 99.4
obs_error 59.3 7.77 18.0 17.80 87.2
obs_info 18.1 237 239 18.07 94.5
obs_spitzer 189.0 24.77 5.7 17.36 85.0
obs_temp 38.1 4.99 100.0 22.25 100.0

occurrences of each distinct value (i.e., total = Z;L;Ol freg).
The randomness is

entropy

randommness = ,
log,(n)

where the denominator is the first-order entropy of a
sequence of n values that are all distinct.

We observe that all data sets contain several million
doubles. What is striking is that the data sets from all three
categories appear to largely consist of unique values. More-
over, they are highly random from an entropy perspective,
even the ones that do not contain many unique doubles (e.g.,
num_plasma).

Based on these statistics, it is unlikely that a purely
entropy-based compression approach will work well. Note
that the higher-order entropies (not shown) are also close to
random because of the large percentage of unique values.
Clearly, we have to use a good data model or subdivide the
doubles into smaller entities (e.g., bytes), some of which
may exhibit less randomness, to compress these data sets
well. FPC incorporates both approaches.

4.4 Compressors

This section describes the compression schemes with which
we compare our approach. BZIP2 and GZIP are lossless,
general-purpose algorithms that can be used to compress
any kind of data. The remaining algorithms represent our
implementations of special-purpose floating-point compres-
sors from the literature. They are all single-pass, lossless
compression schemes that “know” about the format of
double-precision values. We compiled the C source code of
each algorithm described in this section with the same
compiler and optimization flags (cf. Section 4.1).

BZIP2. BZIP2 [15] is a general-purpose compressor that
operates at byte granularity. It implements a variant of the
block-sorting algorithm described by Burrows and Wheeler
[2]. BZIP2 applies a reversible transformation to a block of
inputs, uses sorting to group bytes with similar contexts
together, and then compresses them with a Huffman coder.
The block size is adjustable. We evaluate BZIP2 version
1.0.2 with all supported block sizes, i.e., one through nine.

DFCM. Our previously proposed DFCM scheme [26]
maps each encountered floating-point value to an unsigned
integer and predicts it with a modified dfcm predictor. This
predictor computes a hash value out of the three most
recently encountered differences between consecutive
values in the input. Next, it performs a hash table lookup
to retrieve the differences that followed the last two times
the same hash was encountered, and one of the two
differences is used to predict the next value. A residual is
generated by XORing the predicted value with the true
value. This residual is encoded using a 4-bit leading zero bit
count. We evaluate all predictor sizes between 16 bytes and
512 Mbytes that are powers of two. Note that DFCM and
FPC utilize different dfcm predictors.

FSD. The FSD compressor implements the fixed step
delta-algorithm proposed by Engelson et al. [9]. As it reads
in a stream of doubles, it iteratively generates difference
sequences from the original sequence. The order determines
the number of iterations. A zero suppress algorithm is then
used to encode the final difference sequence, where each
value is expected to have many leading zeroes. Generally,
gradually changing data tend to benefit from higher
difference orders, whereas rapidly changing data compress
better with lower orders. We evaluate orders one through
seven.

GZIP. GZIP [16] is a general-purpose compression
utility that operates at byte granularity and implements a
variant of the LZ77 algorithm [32]. It looks for repeating
strings, i.e., sequences of bytes, within a 32-Kbyte sliding
window. The length of the string is limited to 256 bytes,
which corresponds to the look-ahead buffer size. GZIP uses
two Huffman trees, one to compress the distances in the
sliding window and another to compress the lengths of the
strings as well as the individual bytes that were not part of
any matched sequence. The algorithm finds duplicated
strings using a chained hash table. A command-line
argument determines the maximum length of the hash
chains and whether lazy evaluation should be used. We
evaluate GZIP version 1.3.5 with all supported levels, i.e.,
one through nine.
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PLMI. The PLMI scheme proposed by Lindstrom and
Isenburg [23] employs a Lorenzo predictor in the front-end
to predict 2D and 3D geometry data for rendering. Since our
data sets are 1D (i.e., we do not have dimension informa-
tion), we cannot evaluate PLMI in its intended mode. For
linear data, the Lorenzo predictor reverts to a delta
predictor, which processes data similarly to the first-order
FSD algorithm. Hence, we use the modified dfcm predictor
from the DFCM compressor (see above) in our implementa-
tion of PLMI, which compresses linear data better. The
predicted and true floating-point values are mapped to
unsigned integers from which a residual is computed by a
difference process. The final step involves encoding the
residual with range coding based on Schindler’s quasi-static
probability model [28]. We evaluate all predictor sizes
between 16 bytes and 512 Mbytes that are powers of two.

5 RESULTS

This section evaluates FPC and compares it with the five
compressors presented in the previous section. Section 5.1
studies the compression ratio, Section 5.2 investigates the
throughput, and Section 5.3 looks at the memory consump-
tion. Section 5.4 evaluates the predictor, and Section 5.5
studies the critical-loop performance of FPC.

5.1 Compression Ratio

Table 2 presents the compression ratios that the six
algorithms achieve on each data set. The numbers in bold
print highlight the best compression ratio for each data set.
The leftmost column lists the compression level for BZIP2
and GZIP, the order for FSD, and the binary logarithm of
the number of table entries (an entry consists of two 8-byte
words) for DFCM, FPC, and PLMIL To improve the
readability, the table only includes results for odd DFCM,
FPC, and PLMI sizes. The bottom-most row gives the
compression ratio of the original PLMI algorithm (based on
an executable provided by the PLMI authors), which uses
the Lorenzo predictor instead of the modified dfcm
predictor.

With table sizes above 1 Mbyte, FPC achieves the highest
geometric-mean compression ratio. It outperforms the other
five algorithms by a large margin on four data sets.
However, on the two data sets msg_sppm and obs_spitzer,
GZIP and BZIP2 substantially outperform FPC, respec-
tively. Surprisingly, BZIP2 delivers the second highest
geometric-mean compression ratio even though it was not
specifically designed for compressing floating-point data.

DFCM is superior to FPC in some instances because it
employs a more sophisticated predictor, which stores two
difference values in each table entry and uses a more
elaborate hash function. However, FPC outperforms
DFCM on the majority of our data sets because FPC
contains two predictors that complement each other, i.e.,
when one of them performs poorly, the other often
performs well (cf. Section 5.4).

The original version of PLMI outperforms our modified
PLMI version on six data sets and excels over all other
algorithms on four data sets. Interestingly, all of these data
sets are generally poorly compressible. On average, the
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original PLMI algorithm performs at the level of our version
with 1,024 table entries (i.e., 16 Kbytes of state).

DFCM occasionally outperforms PLMI (e.g., on
msg_sweep3d and obs_error). Both algorithms employ the
same predictor and, intuitively, the fixed-length codes
used by DFCM should be inferior to PLMI’s variable-
length codes because of the nonuniform symbol distribu-
tion (cf. Section 5.4). However, DFCM’s coding scheme is
sometimes superior for two reasons. First, PLMI uses a
quasi-static probability model to estimate the symbol
distribution on the fly. The estimate is solely based on
the frequency of the previously seen symbols. If the
estimated distribution does not accurately reflect the
distribution of the following symbols, it can result in
suboptimal code lengths. Second, PLMI employs range
coding that outputs data in byte increments. Consequently,
even though variable-length coding is employed, the
algorithm often needs to insert padding bits to stay at a
byte boundary. Our measurements show that on average
3.46 bits of padding are added per double with a one-
million-entry predictor.

No compression algorithm performs best on more than
5 of the 13 data sets. There is also no best algorithm within
the three data set categories. Even BZIP2 and GZIP, the
general-purpose compressors, provide the highest com-
pression ratio in some cases.

With the exception of msg_sppm, which can be com-
pressed by at least a factor of two, none of our data sets are
highly compressible with the algorithms we studied. All six
algorithms are ineffective on num_control and obs_temp,
which they compress by no more than 6 percent and
4 percent, respectively. These results are consistent with the
randomness information from Table 1, based on which we
would expect msg_sppm to be the most and obs_temp the
least compressible data set. The highest overall compression
ratio is obtained on num_plasma, which contains the lowest
fraction of unique values.

Some data sets, most notably msg_sweep3d, num_plasma,
obs_error, obs_info, obs_spitzer, and msg_sppm much prefer
one algorithm over the others. (For example, num_plasma
strongly favors FPC, which compresses this data set by
more than a factor of 15, over the other algorithms, which
compress it less than half as much.) With the exception of
msg_sweep3d, these data sets contain relatively few unique
values.

The five data sets with above 99.5 percent randomness
(msg_lu, msg_sp, num_brain, num_control, and obs_temp)
cannot be compressed by more than 26 percent by any of
the algorithms we studied.

Increasing the level (i.e., the block size) of BZIP2
increases the compression ratio by more than 3 percent on
four data sets and hurts the performance on msg_bt and
msg_sp. Increasing the level of GZIP boosts the compression
ratio by more than 2 percent only on msg_sppm. FSD
performs worse with higher orders on our data sets. There
are some cases where orders two, three, or four are best, but
most of the time order one results in the highest compres-
sion ratio. Increasing the predictor size improves the
compression ratio by more than 10 percent on eight data
sets for DFCM and FPC and on five data sets for PLMI.
However, FPC’s performance decreases with larger table
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TABLE 2
Compression Ratio of the Six Algorithms on the 13 Data Sets

message datasets numeric datasets observational datasets
. - ) GM
bt lu sp sppm sweep3d| brain comet control plasma| error info spitzer temp

1] 1.102 1.021 1.075 6.783 1.061 1.039 1.145 1.028 1.383 1.295 1.095 1.287 1.021 | 1.290

2| 1.097 1.018 1.068 6.863 1.062 1.041 1.154 1.029 1.788 1.301 1.116 1.387 1.023 | 1.327

3] 1.094 1.017 1.063 6.875 1.130 1.041 1.159 1.030 2418 1.303 1.131 1.466 1.023 | 1.372

g 41 1.092 1.016 1.059 6.880 1.172 1.042 1.162 1.030 2.942 1.312 1.153 1.530 1.023 | 1.404
N 5| 1.091 1.017 1.056  6.878 1.190 1.042 1.165 1.030 3.523 1.321 1.153 1.584 1.023 | 1.430
0 6] 1.090 1.017 1.055 6.878 1.213 1.042 1.167 1.029 4312 1.328 1.165 1.634 1.023 | 1.459
71 1.089 1.017 1.053 6.880 1.247 1.042 1.169 1.029 4579 1.334 1.174 1.678 1.023 | 1.474

8| 1.088 1.018 1.054 6.899 1.275 1.042 1.172 1.029 5177 1.333 1.205 1.717 1.024 | 1.496

9] 1.088 1.018 1.055 6.933 1.294 1.043 1.173 1.029 5.789 1.339 1.217 1.752 1.024 | 1.516

1] 1.126 1.021 1.089 2.509 1.285 1.171 1.151 1.062 0.970 1.009 0.968  0.984 0.991 | 1.137

3| 1.162 1.134 1.138 2.705 1.283 1.171 1.138 1.053  0.969 1.098 0.968  0.986 0.999 | 1.167

5| 1.226 1.221 1.155  2.898 1.294 1.167 1.143 1.052 0.970 1.172 0.970  0.986 1.006 | 1.193

7| 1.264 1.229 1213  3.247 1.298 1.157 1.140 1.049 0.976 1.230 0.979  0.987 1.003 | 1.217

9] 1.301 1.239 1.230 3.510 1.300 1.164 1.138 1.050 0.978 1.271 0.980 0.988 1.005 | 1.233

s 11| 1.312 1.224 1234 3.700 1.307 1.167 1.138 1.050 0.982 1.277 0.986  0.988 1.005 | 1.240
‘,_i 13] 1.331 1.229 1.236  3.846 1.338 1.175 1.141 1.049  0.983 1.293 0.991 0.988 1.002 | 1.250
o 15] 1.351 1.233 1.241 3.948 1.383 1.194 1.148 1.053 1.303 1.321 1.217  0.991 1.007 | 1.312
17] 1.355 1.223 1.244 4036 1.446 1.207 1.145 1.050 1.301 1.350 1.221 0.991 1.002 | 1.321
19] 1.363 1.225 1246  4.126 1.482 1.225 1.152 1.046 1.301 1.395 1.222 0.992 1.004 | 1.332
21] 1.359 1.221 1.247 4185 1.518 1.226 1.158 1.043 1.300 1.438 1.223  0.993 1.008 | 1.339
23] 1.362 1.223 1.248 4.215 1.553 1.230 1.166 1.045 1.301 1.495 1.225 0.994 1.011 | 1.349
25] 1.363 1.224 1249 4234 1.559 1.232 1.174 1.054 1.301 1.518 1.226 0.995 1.014 | 1.354

11 1.127 1.061 1.088 2.714 1.234 1.150 1.156 1.047 1.106 1.141 1.109 1.014 1.013 | 1.181

3] 1131 1.114 1.196  3.200 1.220 1.140 1.145 1.047 1.157 1.151 1.151 1.013 1.019 | 1.216

5| 1.157 1.144 1235 3.840 1.229 1.131 1.146 1.047 1.268 1.193 1.156 1.013 1.019 | 1.254

71 1.185 1.142 1.247 4198 1.233 1.130 1.147 1.049 1.312 1.229 1.138 1.013 1.017 | 1.270

91 1.222 1.145 1.251 4575 1.231 1.136 1.146 1.050 1.305 1.242 1.131 1.013 1.015 | 1.282

o 11] 1.242 1.145 1.252  4.808 1.232 1.138 1.147 1.050 1.305 1.266 1.136 1.013 1.014 | 1.292
[ 13| 1.244 1.143 1249  4.901 1.263 1.140 1.147 1.048 1.421 1.278 1.167 1.013 1.013 | 1.308
15| 1.255 1.157 1.247 5.082 1.604 1.153 1.147 1.046 2.687 1.324 1.255 1.013 1.010 | 1.418
17] 1.272 1.169 1253 5264 2287 1.158 1.150 1.046  6.437 1.469 1.471 1.014 1.009 | 1.598
19] 1.280 1.172 1257 5298 2794 1.158 1.150 1.042 11.377 | 1.890 1.857 1.014 1.008 | 1.762
21] 1.284 1.173 1.260 5276  2.999 1.162 1.151 1.038 13.870 | 2.723 2.138 1.015 1.004 | 1.870
23] 1.287 1.172 1.262 5284 3.065 1.163 1.155 1.038 14.764 | 3.376  2.269 1.020 0.999 | 1.924
25] 1.286 1.169 1.261 5.274  3.089 1.164 1.156 1.041 15.048 | 3.603  2.270 1.027 0.997 | 1.938

1] 1.070 1.004 0987 2.348 1.151 1.100 1.095 0.992 0.940 1.163 0.938  0.962 0.966 | 1.095

2| 1.054 0.992 0.982  2.227 1.193 1.092 1.109 0976  0.997 1.004 1.002 0.950 0.959 | 1.087

a 3] 1.037 0.984 0967 2.182 1.210 1.076 1.105 0.985 0.996 1.003 0.999  0.939 0.953 | 1.080
@ 41 1.022 0.986 0.946 2.139 1.195 1.058 1.089 0968 0.979 1.001 0.985  0.937 0.969 | 1.069
5| 0.997 0.958  0.941 2.114 1.176 1.036 1.072 0.971 0.925 0.998 0.942 0.927 0.948 | 1.048

6| 0.984 0917 0934 2.072 1.153 1.017 1.058  0.951 0.889 0.971 0.916  0.916 0.926 | 1.025

7] 0.975 0.906 0.927 2.049 1.131 1.002 1.044 0.939 0.889 | 0.934  0.903 0.903 0.909 | 1.011

11 1.127 1.050 1.108 6.314 1.085 1.057 1.157 1.054 1.592 1.422 1.146 1.219 1.034 | 1.323

2| 1.128 1.050 1.108 6.675 1.086 1.058 1.157 1.054 1.591 1.422 1.146 1.228 1.034 | 1.329

3| 1.128 1.050 1.107 6.853 1.085 1.058 1.158 1.054 1.591 1.421 1.146 1.232 1.034 | 1.332

a 4] 1130 1.055 1.108  7.000 1.092 1.064 1.161 1.058 1.607 1.448 1.153 1.230 1.036 | 1.341
N 5] 1.130 1.055 1.108 7.217 1.092 1.064 1.161 1.058 1.608 1.448 1.154 1.231 1.036 | 1.344
© 5] 1130 1.055 1.108  7.352 1.092 1.064 1.161 1.058 1.608 1.448 1.154 1.231 1.036 | 1.346
7| 1.130 1.055 1.107 7.388 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 | 1.346

8] 1.130 1.055 1.107  7.420 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 | 1.347

9] 1.130 1.055 1.107 7.431 1.092 1.064 1.162 1.058 1.608 1.448 1.154 1.231 1.036 | 1.347

1] 1.123 1.054 1.094 2.722 1.206 1.115 1.168 1.057 1.133 1.054 1.138 1.067 1.033 | 1.182

3] 1.133 1.123 1134 2918 1.207 1.116 1.164 1.057 1.139 1.113 1.142 1.067 1.034 | 1.204

5| 1.162 1.181 1.161 3.210 1.207 1.117 1.169 1.060 1.149 1.173 1.147 1.069 1.035 | 1.229

7| 1.189 1.184 1.175  3.598 1.207 1.115 1.171 1.060 1.137 1.197 1.143 1.070 1.035 | 1.244

91 1.214 1.188 1.178  3.908 1.207 1.116 1.176 1.061 1.150 1.224 1.144 1.071 1.035 | 1.259

= 11] 1.223 1.182 1.180  4.208 1.208 1.115 1177 1.061 1.143 1.229 1.142 1.072 1.035 | 1.266
E 13] 1.234 1.184 1182  4.383 1.208 1.117 1.180 1.060 1.183 1.233 1.143 1.073 1.035 | 1.276
e 15| 1.238 1.185 1.182  4.495 1.209 1.119 1.182 1.061 1.232 1.239 1.148 1.074 1.035 | 1.284
17] 1.239 1.181 1.184 4719 1.210 1.121 1.181 1.061 1.243 1.239 1.151 1.075 1.035 | 1.290
19] 1.240 1.181 1.184  4.817 1.211 1.123 1.183 1.062 1.244 1.245 1.152 1.076 1.035 | 1.293
21] 1.239 1.180 1.185 4.962 1.212 1.123 1.182 1.062 1.255 1.249 1.152 1.078 1.036 | 1.298
23] 1.240 1.180 1.186  5.003 1.212 1.125 1.183 1.062 1.255 1.261 1.155 1.079 1.036 | 1.300
25] 1.241 1.180 1.186  5.025 1.213 1.125 1.184 1.063 1.255 1.262 1.156 1.081 1.037 | 1.302
PLMI| 1.200 1.134 1.112 3.249 13882 1.245 1.265 1.124 1.063 1.365 1.056 1.075 1.088 | 1.263

5.2 Throughput

25

sizes on num_control and obs_temp (i.e., the two data sets
that are the hardest to compress). The same is true for
DFCM on num_control. In summary, increasing the pre-
dictor size or level is only worthwhile on some data sets,
usually the ones that are easier to compress. Moreover, as
we shall see next, such an increase comes at the cost of
decreased throughput.

This section examines the compression and decompression
throughput of the six algorithms (i.e., the raw data set size
divided by the runtime). Fig. 2 presents the results from
the four systems described in Section 4.1. Each panel
plots the throughput in gigabits per second versus the
geometric-mean compression ratio. The four rows of panels
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Fig. 2. Geometric-mean compression throughput (a) and decompression throughput (b) versus compression ratio of the six algorithms on the four
systems.

correspond to the four platforms. The left panels show the 512 Mbytes (rightmost). For BZIP2 and GZIP, the individual
compression, and the right panels show the decompression data points correspond to levels one (leftmost) through nine
results. For DFCM, FPC, and PLM]I, the predictor table size (rightmost). For FSD, the figure shows results for order one
doubles for each data point from 16 bytes (leftmost) to (rightmost) through order seven (leftmost). Note that the
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Fig. 3. FPC’s compression and decompression throughput versus hash-table size on the four systems ((b) shows a zoomed in version of (a)’s lower

right corner).

y-axes are scaled differently in each panel to improve
readability.

For a given compression ratio, FPC exceeds the through-
put of the other algorithms by a large margin on all four
architectures. DFCM has the second highest throughput,
though, occasionally (e.g., on the Pentium 4), GZIP’s
decompression throughput is a little higher. FSD is third,
but it delivers the lowest compression ratios on our data
sets. PLMI compresses the data sets faster than GZIP but
decompresses them more slowly. BZIP2 is the slowest
algorithm but reaches the second highest compression ratio.
All algorithms except our implementation of PLMI decom-
press faster than they compress. On the Itanium 2, FPC
compresses our data sets 8 to 300 times faster and
decompresses them 9 to 100 times faster than the other
algorithms at the same geometric-mean compression ratio.
It reaches a compression throughput of up to 5.43 Gbps and
a decompression throughput of up to 6.73 Gbps.

FSD’s compression and decompression throughput is
roughly 0.5 Gbps, except on the Athlon 64, where it
decompresses at over 1 Gbps. DFCM also performs best
on the Athlon 64, where it reaches about 1.1 to 1.5 Gbps
compared to well under 1 Gbps on the other three
machines. PLMI’s highest throughput is below 0.2 Gbps
on all machines, but it, too, is the highest on the Athlon 64.
These three algorithms seem to benefit from the Athlon’s
combination of a high clock speed, large L1 data cache, and
64-bit support. Although the Pentium 4 has an even higher
clock speed, it lacks 64-bit support, provides fewer logical
registers, and has a smaller L1 cache.

GZIP runs faster on the two x86 machines than on the
Alpha and the Itanium. Compression is slightly faster on
the Athlon 64 whereas decompression is slightly faster on
the Pentium 4. GZIP operates at byte granularity and is
therefore not sensitive to 64-bit support. The same is true for
BZIP2. However, BZIP2’s memory footprint is substantially
larger than that of GZIP (cf. Section 5.3), which is probably
why it is more sensitive to the cache size. At least for
decompression, its throughput on the Itanium 2 is
significantly higher than on the Pentium 4, the latter of
which is clocked almost twice as fast (internally almost four
times as fast) but has a smaller cache hierarchy.

The Athlon 64 system delivers the highest compression
throughput on all algorithms except FPC, where the
Itanium 2 is faster. The Itanium 2 system is otherwise the
second fastest, followed by the Pentium 4, which is
outperformed on FPC by the Alpha 21264, the otherwise
slowest system. The same observations apply to the
decompression throughput.

The Athlon 64 has the highest clock speed of the three
64-bit systems and the largest L1 data cache (together with
the Alpha 21264). This combination of features makes it the
system of choice for most of the compression algorithms
we studied. FPC prefers the Itanium 2 because this
processor provides the largest number of logical registers
and the highest internal parallelism (cf. Section 5.5). These
two reasons, together with the fact that the Pentium 4 is a
32-bit CPU, also explain why FPC runs faster on the Alpha
than on the Pentium 4.

Fig. 3 combines the FPC throughput results from the four
systems in one graph. It plots the throughput in millions of
doubles per second against the binary logarithm of the
number of hash-table entries.

FPC runs over twice as fast on the Itanium 2 as on the
other three machines for table sizes up to about 4 Mbytes
(the L3 cache has a capacity of 3 Mbytes). As mentioned, the
two most important reasons for this performance difference
are that the Itanium 2 has the highest issue width of the four
CPUs (it can sustain 6 as opposed to 4 or 3 executed
instructions per cycle) and that it has the most logical
general-purpose registers (128 as opposed to the Alpha’s 32,
the Athlon’s 16, and the Pentium’s 8) and therefore does not
spill any scalar variables or temporaries.

The Pentium 4 performs the worst for table sizes up to a
few megabytes. This is mostly because it is the only 32-bit
machine we studied (our FPC implementation uses almost
exclusively 64-bit operations) and it has only eight logical
general-purpose registers. As a consequence, the Pentium 4
has to spill and fill registers all the time. Moreover, it needs
to execute at least two machine instructions for every 64-bit
operation for which the other three machines only require
one instruction. Evidently, the higher clock speed is not able
to compensate for this overhead. The Athlon 64 has fewer
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Fig. 4. Memory usage versus compression ratio of the six algorithms on the Itanium 2 system.

registers (16) than the Alpha 21264 (32) but outperforms it
because its clock speed is almost 2.5 times higher.

At the high end, i.e., up to 0.5 Gbytes of table space,
FPC frequently misses in all cache levels due to the rather
random hash-table accesses. Hence, the CPU parameters
do not matter much and the memory controller and the
main memory latency largely determine the performance.
In this range, we find the Athlon 64 system to dominate
except for the largest two table sizes, where the Itanium 2
takes the lead again. We suspect the Athlon’s superior
performance to be the result of the integration of the
memory controller with the core on the same die, which
significantly reduces the access latency. At the largest size
we measured (0.5 Gbytes), the performance is mostly
determined by the throughput of the main memory, which
is higher on the Itanium 2 server than on the Athlon 64
workstation. The Pentium 4’s memory system is designed
for 32-bit operations and has to handle twice the number
of accesses, which is why it is slower. The Alpha 21264
server has the slowest memory system, probably because it
is over four years older than the other three machines.

5.3 Memory Consumption

This section studies the memory footprint, as reported by
the UNIX command ps, of the six algorithms. Fig. 4 shows
the total memory consumption in megabytes relative to the
geometric-mean compression ratio. For GZIP and BZIP2,
which allocate a different amount of memory for compres-
sion and decompression, Fig. 4 plots the larger of the two
amounts. The individual datapoints in the figure again
correspond to different table sizes, levels, and orders. The
results were measured on the Itanium 2 system, but the
trends are the same on the other three systems.

Except for FPC, all algorithms basically reach their
highest geometric-mean compression ratio with less than
10 Mbytes of memory. In fact, the benefits are already small
above 2 Mbytes for most of the compressors. FSD and GZIP
have a constant memory footprint. PLMI and DFCM’s
modified dfcm predictor does not benefit from more than
6 Mbytes of memory.

At the low end, the code and stack size as well as the
input and output buffers determine FPC’s memory usage.
But for larger sizes, the two predictor tables dominate, as
can be seen from the exponentially growing curve. The
same is true for DFCM and PLMI. However, unlike their
modified dfcm predictor, FPC’s two predictors can effec-
tively turn additional memory (up to about 10 Mbytes) into
higher compression ratios. The next 500 Mbytes yield less
than a 10 percent increase in compression ratio for FPC.

5.4 Predictor Usage

Fig. 5 shows how often the fcm and the dfcm predictions are
used in FPC, i.e., how often they result in more leading zero
bytes than the prediction of the other predictor. A pair of
bars is shown for each data set; one bar for 1,024 hash-table
entries and the other for 1,048,576 entries.

We find that the two predictors complement each other
well. Only on msg_lu and msg_sppm is one predictor needed
less than 10 percent of the time with the small and the large
table size. In other words, both predictors are used
frequently in most cases.

Some data sets result in rather biased usage. On the one
hand, fcm is useless 83.1 percent of the time on msg_sweep3d
with one million entries. On the other hand, fcm yields more
leading zero bytes 75.5 percent of the time on msg_sp with
one million entries. These results highlight the importance
of having more than one predictor and explain why FPC
compresses many data sets better than the related DFCM
algorithm, which only uses a single predictor.

On some data sets, e.g., obs_spitzer and msg_sppm, the
frequency of usage does not change much when changing
the table size. On other data sets, e.g., msg_sweep3d and
num_plasma, the frequency changes by a large amount.
Interestingly, the data sets that result in different usage
frequencies typically see significant improvements in their
compression ratios due to the much better performance of
the dfcm predictor with larger tables (cf. Table 2).

Fig. 6 shows the distribution of the number of leading
zero bytes after XORing the true double values with the
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more accurate of the two predictions. The results are
averages over the 13 data sets.

With table sizes of more than eight entries, less than
15 percent of the doubles result in no leading zero bytes.
Because of the added 4-bit code in the compressed output,
these values are expanded instead of compressed by FPC.
However, the other 85 percent of the values are com-
pressed. One and two leading zero bytes are common for all
predictor sizes, but eight zero bytes (i.e., all 64 bits
predicted correctly) are also frequent with larger hash
tables. Seven and three leading zero bytes occur less than
7 percent of the time and six, five, and four leading zero
bytes are very infrequent (< 1.1 percent).

5.5 Critical-Loop Performance
This section studies the critical loop in the compression and
in the decompression function of our FPC implementation.

These two loops compress and decompress one block of
data (comprising up to 32,768 doubles), respectively. For
hash tables that fit in the L1 data cache, a little over
90 percent of the compression time is spent in the critical
loop and basically all of the remaining time is spent moving
data into and out of the buffers in I/O operations. Similarly,
just under 90 percent of the decompression time is spent in
the critical loop with the rest of the time going to data
movement. With larger hash table sizes, the loops run more
slowly because of cache misses and the percentage of the
total runtime they represent increases.

We investigated the assembly listing of the two loops on
each of our four systems. Table 3 shows the number of static
machine instructions in the loop bodies as well as the
approximate average number of static instructions in the
loops needed to compress and decompress one double.
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Fig. 6. Average distribution of the leading zero byte counts for different table sizes.
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TABLE 3
Static Instruction Count of the Critical Loops in FPC
compression decompression
loop body| per double] loop body| per double

Itanium 2 138 69.0 93 46.5
Athlon 64 185 925 110 55.0
Pentium 4 367 183.5 361 120.3
Alpha 21264 121 60.5 253 422

The results indicate that FPC requires roughly 60 to
90 machine instructions (i.e., operations) on 64-bit CPUs
to compress a double and roughly 40 to 55 instructions to
decompress a double. The 32-bit CPU is over a factor of
two less efficient because the compiler has to synthesize
64-bit operations out of 32-bit instructions. Moreover, due
to the small number of logical registers, a large amount of
spill and fill code is needed for the Pentium 4.

The Alpha compiler emits the entire loop as a single
basic block (all IF statements are converted into conditional
move instructions) and uses the fewest instructions per
double. It is the only compiler that chose to unroll one of the
loops (it unrolled the decompression loop three times). Both
loops contain one NOP for instruction slotting purposes [8].
The decompression loop contains a software prefetch
instruction.

The Itanium compiler generates slightly more instruc-
tions per double, partially because both loops contain four
NOPs due to static scheduling constraints [19]. Each loop
contains a software prefetch instruction. The loops are also
single basic blocks and are software pipelined. Because the
Itanium 2 is an in-order, statically scheduled machine, we
can determine the number of cycles a loop iteration takes,
assuming there are no L1 cache misses. A compression
iteration takes 25 cycles (12.5 cycles per double) and a
decompression iteration takes 18 cycles (9 cycles per
double). This means that the compression loop executes
an average of 5.5 instructions per cycle and the decompres-
sion loop 5.16 instructions per cycle. This very high ILP is
quite close to the CPU’s maximum of six executed
instructions per cycle. Moreover, it is substantially higher
than the fetch width of the other three machines we studied,
which explains why FPC runs particularly well on the
Itanium 2.

The fact that the two critical loop bodies are single
basic blocks has an important implication. The exact
same sequence of instructions is executed to compress/
decompress a block of doubles regardless of the data
values or their compressibility. The running time of these
loops, which account for most of the total runtime, is
therefore only dependent on the load latency, as all other
instructions have fixed latencies. In other words, as long
as the hash tables fit in the L1 data cache, the
compression and the decompression time for a block of
data are constant no matter what data are being
processed. This rather unusual feature, which most other
compression algorithms do not possess, is a requirement
in real-time environments.

The Athlon requires noticeably more instructions to
express the loop bodies, mostly because of a significant
number of register spills and fills. More than 16 (but no
more than 32) registers are needed to hold all the variables
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and temporaries. While the decompression loop is also a
single basic block, the Athlon compiler only converts 16 of
the 18 IF statements in the compression loop into condi-
tional moves and emits two conditional jumps. The
16 converted IF statements all compare a value to zero
and have only a single assignment in their bodies. The
remaining two IF statements are more complex.

The Pentium code of the compression loop includes the
same two conditional branches. Moreover, almost exactly
twice as many instructions are emitted for the 32-bit x86
CPU as for the 64-bit x86 CPU. The decompression code
consists of multiple basic blocks that are emitted out of
program order, i.e., the loop body is not straight-line code
but consists of chunks of code that jump to other chunks.
Moreover, about half of the code is duplicated in the
various chunks.

6 CONCLUSIONS

This paper describes FPC, a lossless compression algorithm
for linear streams of double-precision floating-point values.
It uses two context-based predictors to sequentially predict
each value in the stream. The prediction and the true value
are XORed, and the XORed result is leading zero byte
compressed. This algorithm features a high speed, good
compression ratio, and ease of implementation. In addition,
varying the predictors’ table sizes allows to trade off
throughput for compression ratio.

FPC delivers the highest geometric-mean compression
ratio and the highest throughput on our 13 hard-to-
compress scientific data sets. It achieves individual
compression ratios between 1.02 and 15.05. With predictor
tables that fit into the L1 data cache, it delivers a
guaranteed throughput of over 84 million doubles per
second on a 1.6-GHz Itanium 2. This corresponds to only
two machine cycles to process a byte of data. The source
code, a line by line description thereof, and the data sets
are available at http://www.csl.cornell.edu/~burtscher/
research/FPC/.

The current version of FPC does not compress structured
data sets (e.g., multidimensional data sets), 32-bit floating-
point values, and easy-to-compress data particularly well.
Hence, we want to generalize FPC by adding support for
exploiting structure, designing a version that is optimized
for single-precision data, and including an optional second
compression stage. To further improve the speed of FPC,
we are planning on writing a parallel version. We also
intend to look at compressing each block independently
(i.e., zero out the predictor state instead of continuing with
the state from the previous block). Doing so enables the
simultaneous compression/decompression of multiple
blocks and allows fast-forwarding without the need to
decompress all preceding values. Preliminary experiments
show that compressing blocks of several kilobytes indepen-
dently reduces the compression ratio by no more than a
couple of percent with small to medium predictor sizes.
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