
Higher-Order and Symbolic Computation, 13, 11–49, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Fundamental Concepts in Programming Languages

CHRISTOPHER STRACHEY
Reader in Computation at Oxford University, Programming Research Group, 45 Banbury Road, Oxford, UK

Abstract. This paper forms the substance of a course of lectures given at the International Summer School in
Computer Programming at Copenhagen in August, 1967. The lectures were originally given from notes and the
paper was written after the course was finished. In spite of this, and only partly because of the shortage of time, the
paper still retains many of the shortcomings of a lecture course. The chief of these are an uncertainty of aim—it is
never quite clear what sort of audience there will be for such lectures—and an associated switching from formal
to informal modes of presentation which may well be less acceptable in print than it is natural in the lecture room.
For these (and other) faults, I apologise to the reader.

There are numerous references throughout the course to CPL [1–3]. This is a programming language which has
been under development since 1962 at Cambridge and London and Oxford. It has served as a vehicle for research
into both programming languages and the design of compilers. Partial implementations exist at Cambridge and
London. The language is still evolving so that there is no definitive manual available yet. We hope to reach another
resting point in its evolution quite soon and to produce a compiler and reference manuals for this version. The
compiler will probably be written in such a way that it is relatively easy to transfer it to another machine, and in
the first instance we hope to establish it on three or four machines more or less at the same time.

The lack of a precise formulation for CPL should not cause much difficulty in this course, as we are primarily
concerned with the ideas and concepts involved rather than with their precise representation in a programming
language.

Keywords: programming languages, semantics, foundations of computing, CPL, L-values, R-values, para-
meter passing, variable binding, functions as data, parametric polymorphism, ad hoc polymorphism, binding
mechanisms, type completeness

1. Preliminaries

1.1. Introduction

Any discussion on the foundations of computing runs into severe problems right at the
start. The difficulty is that although we all use words such as ‘name’, ‘value’, ‘program’,
‘expression’ or ‘command’ which we think we understand, it often turns out on closer
investigation that in point of fact we all mean different things by these words, so that com-
munication is at best precarious. These misunderstandings arise in at least two ways. The
first is straightforwardly incorrect or muddled thinking. An investigation of the meanings
of these basic terms is undoubtedly an exercise in mathematical logic and neither to the taste
nor within the field of competence of many people who work on programming languages.
As a result the practice and development of programming languages has outrun our ability
to fit them into a secure mathematical framework so that they have to be described in ad
hoc ways. Because these start from various points they often use conflicting and sometimes
also inconsistent interpretations of the same basic terms.

12 STRACHEY

A second and more subtle reason for misunderstandings is the existence of profound
differences in philosophical outlook between mathematicians. This is not the place to
discuss this issue at length, nor am I the right person to do it. I have found, however, that
these differences affect both the motivation and the methodology of any investigation like
this to such an extent as to make it virtually incomprehensible without some preliminary
warning. In the rest of the section, therefore, I shall try to outline my position and describe
the way in which I think the mathematical problems of programming languages should be
tackled. Readers who are not interested can safely skip to Section 2.

1.2. Philosophical considerations

The important philosophical difference is between those mathematicians who will not allow
the existence of an object until they have a construction rule for it, and those who admit the
existence of a wider range of objects including some for which there are no construction
rules. (The precise definition of these terms is of no importance here as the difference is
really one of psychological approach and survives any minor tinkering.) This may not seem
to be a very large difference, but it does lead to a completely different outlook and approach
to the methods of attacking the problems of programming languages.

The advantages of rigour lie, not surprisingly, almost wholly with those who require
construction rules. Owing to the care they take not to introduce undefined terms, the
better examples of the work of this school are models of exact mathematical reasoning.
Unfortunately, but also not surprisingly, their emphasis on construction rules leads them to
an intense concern for the way in which things are written—i.e., for their representation,
generally as strings of symbols on paper—and this in turn seems to lead to a preoccupation
with the problems of syntax. By now the connection with programming languages as we
know them has become tenuous, and it generally becomes more so as they get deeper into
syntactical questions. Faced with the situation as it exists today, where there is a generally
known method of describing a certain class of grammars (known as BNF or context-free),
the first instinct of these mathematicians seems to be to investigate the limits of BNF—what
can you express in BNF even at the cost of very cumbersome and artificial constructions?
This may be a question of some mathematical interest (whatever that means), but it has
very little relevance to programming languages where it is more important to discover
better methods of describing the syntax than BNF (which is already both inconvenient and
inadequate for ALGOL) than it is to examine the possible limits of what we already know to
be an unsatisfactory technique.

This is probably an unfair criticism, for, as will become clear later, I am not only tem-
peramentally a Platonist and prone to talking about abstracts if I think they throw light on a
discussion, but I also regard syntactical problems as essentially irrelevant to programming
languages at their present stage of development. In a rough and ready sort of way it seems
to me fair to think of the semantics as being what we want to say and the syntax as how
we have to say it. In these terms the urgent task in programming languages is to explore
the field of semantic possibilities. When we have discovered the main outlines and the
principal peaks we can set about devising a suitably neat and satisfactory notation for them,
and this is the moment for syntactic questions.

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 13

But first we must try to get a better understanding of the processes of computing and
their description in programming languages. In computing we have what I believe to be a
new field of mathematics which is at least as important as that opened up by the discovery
(or should it be invention?) of calculus. We are still intellectually at the stage that calculus
was at when it was called the ‘Method of Fluxions’ and everyone was arguing about how
big a differential was. We need to develop our insight into computing processes and to
recognise and isolate the central concepts—things analogous to the concepts of continuity
and convergence in analysis. To do this we must become familiar with them and give them
names even before we are really satisfied that we have described them precisely. If we
attempt to formalise our ideas before we have really sorted out the important concepts the
result, though possibly rigorous, is of very little value—indeed it may well do more harm
than good by making it harder to discover the really important concepts. Our motto should
be ‘No axiomatisation without insight’.

However, it is equally important to avoid the opposite of perpetual vagueness. My own
view is that the best way to do this in a rapidly developing field such as computing, is to be
extremely careful in our choice of terms for new concepts. If we use words such as ‘name’,
‘address’, ‘value’ or ‘set’ which already have meanings with complicated associations and
overtones either in ordinary usage or in mathematics, we run into the danger that these
associations or overtones may influence us unconsciously to misuse our new terms—either
in context or meaning. For this reason I think we should try to give a new concept a neutral
name at any rate to start with. The number of new concepts required may ultimately be
quite large, but most of these will be constructs which can be defined with considerable
precision in terms of a much smaller number of more basic ones. This intermediate form of
definition should always be made as precise as possible although the rigorous description
of the basic concepts in terms of more elementary ideas may not yet be available. Who
when defining the eigenvalues of a matrix is concerned with tracing the definition back to
Peano’s axioms?

Not very much of this will show up in the rest of this course. The reason for this is partly
that it is easier, with the aid of hindsight, to preach than to practice what you preach. In part,
however, the reason is that my aim is not to give an historical account of how we reached
the present position but to try to convey what the position is. For this reason I have often
preferred a somewhat informal approach even when mere formality would in fact have been
easy.

2. Basic concepts

2.1. Assignment commands

One of the characteristic features of computers is that they have a store into which it is
possible to put information and from which it can subsequently be recovered. Furthermore
the act of inserting an item into the store erases whatever was in that particular area of the
store before—in other words the process is one of overwriting. This leads to the assignment
command which is a prominent feature of most programming languages.

14 STRACHEY

The simplest forms of assignments such as

x := 3

x := y + 1

x := x + 1

lend themselves to very simple explications. ‘Setx equal to3’, ‘Set x to be the value of
y plus1’ or ‘Add one tox’. But this simplicity is deceptive; the examples are themselves
special cases of a more general form and the first explications which come to mind will not
generalise satisfactorily. This situation crops up over and over again in the exploration of a
new field; it is important to resist the temptation to start with a confusingly simple example.

The following assignment commands show this danger.

i := a > b j,k (See note 1)

A[i] := A[a > b j,k]

A[a > b j, k] := A[i]

a > b j, k := i (See note 2)

All these commands are legal in CPL (and all but the last, apart from minor syntactic
alterations, in ALGOL also). They show an increasing complexity of the expressions written
on the left of the assignment. We are tempted to write them all in the general form

ε1 := ε2

whereε1 andε2 stand for expressions, and to try as an explication something like ‘evaluate
the two expressions and then do the assignment’. But this clearly will not do, as the meaning
of an expression (and a name or identifier is only a simple case of an expression) on the left
of an assignment is clearly different from its meaning on the right. Roughly speaking an
expression on the left stands for an ‘address’ and one on the right for a ‘value’ which will be
stored there. We shall therefore accept this view and say that there are two values associated
with an expression or identifier. In order to avoid the overtones which go with the word
‘address’ we shall give these two values the neutral names:L-value for the address-like
object appropriate on the left of an assignment, andR-value for the contents-like object
appropriate for the right.

2.2. L-values and R-values

An L-value represents an area of the store of the computer. We call this alocationrather than
an address in order to avoid confusion with the normal store-addressing mechanism of the
computer. There is no reason why a location should be exactly one machine-word in size—
the objects discussed in programming languages may be, like complex or multiple precision
numbers, more than one word long, or, like characters, less. Some locations are addressable
(in which case their numerical machine address may be a good representation) but some are
not. Before we can decide what sort of representation a general, non-addressable location
should have, we should consider what properties we require of it.

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 15

The two essential features of a location are that it has a content—i.e. an associated
R-value—and that it is in general possible to change this content by a suitable updating
operation. These two operations are sufficient to characterise a general location which are
consequently sometimes known as ‘Load-Update Pairs’ or LUPs. They will be discussed
again in Section 4.1.

2.3. Definitions

In CPL a programmer can introduce a new quantity and give it a value by an initialised
definition such as

let p = 3.5

(In ALGOL this would be done byreal p; p := 3.5;). This introduces a new use of the
namep (ALGOL uses the term ‘identifier’ instead of name), and the best way of looking at
this is that the activation of the definition causes a new location not previously used to be
set up as theL-value ofp and that theR-value 3.5 is then assigned to this location.

The relationship between a name and itsL-value cannot be altered by assignment, and it
is this fact which makes theL-value important. However in both ALGOL and CPL one name
can have several differentL-values in different parts of the program. It is the concept of
scope (sometimes called lexicographical scope) which is controlled by the block structure
which allows us to determine at any point whichL-value is relevant.

In CPL, but not in ALGOL, it is also possible to have several names with the sameL-value.
This is done by using a special form of definition:

let q ' p

which has the effect of giving the name of the sameL-value asp (which must already exist).
This feature is generally used when the right side of the definition is a more complicated
expression than a simple name. Thus ifM is a matrix, the definition

let x ' M[2,2]

givesx the sameL-value as one of the elements of the matrix. It is then said to be sharing
with M[2,2], and an assignment tox will have the same effect as one toM[2,2].

It is worth noting that the expression on the right of this form of definition is evaluated in
the L-mode to get anL-value at the time the definition is obeyed. It is thisL-value which
is associated withx. Thus if we have

let i = 2

let x ' M[i,i]

i := 3

theL-value ofx will remain that ofM[2,2].
M[i,i] is an example of an anonymous quantity i.e., an expression rather than a simple

name—which has both anL-value and anR-value. There are other expressions, such as

16 STRACHEY

a+b, which only haveR-values. In both cases the expression has no name as such although
it does have either one value or two.

2.4. Names

It is important to be clear about this as a good deal of confusion can be caused by differing
uses of the terms. ALGOL 60 uses ‘identifier’ where we have used ‘name’, and reserves the
word ‘name’ for a wholly different use concerned with the mode of calling parameters for
a procedure. (See Section 3.4.3.) ALGOL X, on the other hand, appears likely to use the
word ‘name’ to mean approximately what we should call anL-value, (and hence something
which is a location or generalised address). The termreference is also used by several
languages to mean (again approximately) anL-value.

It seems to me wiser not to make a distinction between the meaning of ‘name’ and that
of ‘identifier’ and I shall use them interchangeably. The important feature of a name is that
it has no internal structure at any rate in the context in which we are using it as a name.
Names are thus atomic objects and the only thing we know about them is that given two
names it is always possible to determine whether they are equal (i.e., the same name) or not.

2.5. Numerals

We use the word ‘number’ for the abstract object and ‘numeral’ for its written representation.
Thus 24 and XXIV are two different numerals representing the same number. There is
often some confusion about the status of numerals in programming languages. One view
commonly expressed is that numerals are the ‘names of numbers’ which presumably means
that every distinguishable numeral has an appropriateR-value associated with it. This seems
to me an artificial point of view and one which falls foul of Occam’s razor by unnecessarily
multiplying the number of entities (in this case names). This is because it overlooks the
important fact that numerals in general do have an internal structure and are therefore not
atomic in the sense that we said names were in the last section.

An interpretation more in keeping with our general approach is to regard numerals as
R-value expressions written according to special rules. Thus for example the numeral 253
is a syntactic variant for the expression

2× 102+ 5× 10+ 3

while the CPL constant8 253 is a variant of

2× 82+ 5× 8+ 3

Local rules for special forms of expression can be regarded as a sort of ‘micro-syntax’ and
form an important feature of programming languages. The micro-syntax is frequently used
in a preliminary ‘pre-processing’ or ‘lexical’ pass of compilers to deal with the recognition
of names, numerals, strings, basic symbols (e.g. boldface words in ALGOL) and similar

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 17

objects which are represented in the input stream by strings of symbols in spite of being
atomic inside the language.

With this interpretation the only numerals which are also names are the single digits and
these are, of course, constants with the appropriateR-value.

2.6. Conceptual model

It is sometimes helpful to have a picture showing the relationships between the various
objects in the programming language, their representations in the store of a computer
and the abstract objects to which they correspond. Figure 1 is an attempt to portray the
conceptual model which is being used in this course.

Figure 1. The conceptual model.

18 STRACHEY

On the left are some of the components of the programming language. Many of these
correspond to either anL-value or anR-value and the correspondence is indicated by an
arrow terminating on the value concerned. BothL-values andR-values are in the idealised
store, a location being represented by a box and its contents by a dot inside it.R-values
without correspondingL-values are represented by dots without boxes, andR-values which
are themselves locations (as, for example, that of a vector) are given arrows which terminate
on another box in the idealised store.

R-values which correspond to numbers are given arrows which terminate in the right
hand part of the diagram which represents the abstract objects with which the program
deals.

The bottom section of the diagram, which is concerned with vectors and vector elements
will be more easily understood after reading the section on compound data structures.
(Section 3.7.)

3. Conceptual constructs

3.1. Expressions and commands

All the first and simplest programming language—by which I mean machine codes and
assembly languages—consist of strings of commands. When obeyed, each of these causes
the computer to perform some elementary operation such as subtraction, and the more
elaborate results are obtained by using long sequences of commands.

In the rest of mathematics, however, there are generally no commands as such. Expres-
sions using brackets, either written or implied, are used to build up complicated results.
When talking about these expressions we use descriptive phrases such as ‘the sum ofx and
y’ or possibly ‘the result of addingx to y’ but never the imperative ‘addx to y’.

As programming languages developed and became more powerful they came under
pressure to allow ordinary mathematical expressions as well as the elementary commands.
It is, after all, much more convenient to write as in CPL,x := a(b+c)+d than the more
elementary

CLA b
ADD c
MPY a
ADD d
STO x

and also, almost equally important, much easier to follow.
To a large extent it is true that the increase in power of programming languages has

corresponded to the increase in the size and complexity of the right hand sides of their
assignment commands for this is the situation in which expressions are most valuable.
In almost all programming languages, however, commands are still used and it is their
inclusion which makes these languages quite different from the rest of mathematics.

There is a danger of confusion between the properties of expressions, not all of which
are familiar, and the additional features introduced by commands, and in particular those

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 19

introduced by the assignment command. In order to avoid this as far as possible, the next
section will be concerned with the properties of expressions in the absence of commands.

3.2. Expressions and evaluation

3.2.1. Values. The characteristic feature of an expression is that it has avalue. We have
seen that in general in a programming language, an expression may have two values—an
L-value and anR-value. In this section, however, we are considering expressions in the
absence of assignments and in these circumstancesL-values are not required. Like the rest
of mathematics, we shall be concerned only withR-values.

One of the most useful properties of expressions is that called by Quine [4]referential
transparency. In essence this means that if we wish to find the value of an expression which
contains a sub-expression, the only thing we need to know about the sub-expression is its
value. Any other features of the sub-expression, such as its internal structure, the number
and nature of its components, the order in which they are evaluated or the colour of the ink
in which they are written, are irrelevant to the value of the main expression.

We are quite familiar with this property of expressions in ordinary mathematics and often
make use of it unconsciously. Thus we expect the expressions

sin(6) sin(1+ 5) sin(30/5)

to have the same value. Note, however, that we cannot replace the symbol string 1+5 by the
symbol 6 in all circumstances as, for example 21+52 is not equal to 262. The equivalence
only applies to complete expressions or sub-expressions and assumes that these have been
identified by a suitable syntactic analysis.

3.2.2. Environments. In order to find the value of an expression it is necessary to know the
value of its components. Thus to find the value ofa+ 5+ b/a we need to know the values
of a andb. Thus we speak of evaluating an expression in an environment (or sometimes
relative to an environment) which provides the values of components.

One way in which such an environment can be provided is by awhere-clause.
Thus

a+ 3/a wherea = 2+ 3/7

a+ b− 3/a wherea = b+ 2/b

have a self evident meaning. An alternative syntactic form which has the same effect is the
initialised definition:

let a = 2+ 3/7 . . . a+ 3/a

let a = b+ 2/b . . . a+ b− 3/a

Another way of writing these is to useλ-expressions:

(λa. a+ 3/a)(2+ 3/7)

(λa. a+ b− 3/a)(b+ 2/b)

20 STRACHEY

All three methods are exactly equivalent and are, in fact, merely syntactic variants whose
choice is a matter of taste. In each the lettera is singled out and given a value and is known
as thebound variable. The letterb in the second expression is not bound and its value still
has to be found from the environment in which the expression is to be evaluated. Variables
of this sort are known asfree variables.

3.2.3. Applicative structure. Another important feature of expressions is that it is possible
to write them in such a way as to demonstrate anapplicative structure—i.e., as an operator
applied to one or more operands. One way to do this is to write the operator in front of its
operand or list of operands enclosed in parentheses. Thus

a+ b corresponds to+(a, b)
a+ 3/a corresponds to+(a, /(3,a))

In this scheme aλ-expression can occur as an operator provided it is enclosed in parentheses.
Thus the expression

a+ a/3 wherea = 2+ 3/7

can be written to show its full applicative structure as

{λa.+ (a, /(3,a))}(+(2, /(3, 7))).

Expressions written in this way with deeply nesting brackets are very difficult to read.
Their importance lies only in emphasising the uniformity of applicative structure from
which they are built up. In normal use the more conventional syntactic forms which are
familiar and easier to read are much to be preferred—providing that we keep the underlying
applicative structure at the back of our minds.

In the examples so far given all the operators have been either aλ-expression or a single
symbol, while the operands have been either single symbols or sub-expressions. There is, in
fact, no reason why the operator should not also be an expression. Thus for example if we use
D for the differentiating operator,D(sin) = cosso that{D(sin)}(×(3,a)) is an expression
with a compound operator whose value would becos(3a). Note that this is not the same as
the expressiond

dxsin(3x) for x = a which would be written(D(λx.sin(x(3, x))))(a).

3.2.4. Evaluation. We thus have a distinction betweenevaluatingan operator andapplying
it to its operands. Evaluating the compound operatorD(sin) produces the result (or value)
cosand can be performed quite independently of the process of applying this to the operands.
Furthermore it is evident that we need to evaluate both the operator and the operands before
we can apply the first to the second. This leads to the general rule for evaluating compound
expressions in the operator-operand form viz:

1. Evaluate the operator and the operand(s) in any order.
2. After this has been done, apply the operator to the operand(s).

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 21

The interesting thing about this rule is that it specifies a partial ordering of the operations
needed to evaluate an expression. Thus for example when evaluating

(a+ b)(c+ d/e)

both the additions must be performed before the multiplication, and the division before the
second addition but the sequence of the first addition and the division is not specified. This
partial ordering is a characteristic of algorithms which is not yet adequately reflected in most
programming languages. In ALGOL, for example, not only is the sequence of commands
fully specified, but the left to right rule specifies precisely the order of the operations.
Although this has the advantage of precision in that the effect of any program is exactly
defined, it makes it impossible for the programmer to specify indifference about sequencing
or to indicate a partial ordering. The result is that he has to make a large number of logically
unnecessary decisions, some of which may have unpredictable effects on the efficiency of
his program (though not on its outcome).

There is a device originated by Sch¨onfinkel [5], for reducing operators with several
operands to the successive application of single operand operators. Thus, for example,
instead of+(2, p) where the operator+ takes two arguments we introduce another adding
operator say+′ which takes a single argument such that+′(2) is itself a function which
adds 2 to its argument. Thus(+′(2))(p) = +(2, p) = 2+ p. In order to avoid a large
number of brackets we make a further rule of association to the left and write+′ 2p in
place of((+′ 2)p) or (+′ (2))(p). This convention is used from time to time in the rest of
this paper. Initially, it may cause some difficulty as the concept of functions which produce
functions as results is a somewhat unfamiliar one and the strict rule of association to the
left difficult to get used to. But the effort is well worth while in terms of the simpler and
more transparent formulae which result.

It might be thought that the remarks about partial ordering would no longer apply to
monadic operators, but in fact this makes no difference. There is still the choice of evaluating
the operator or the operand first and this allows all the freedom which was possible with
several operands. Thus, for example, ifp andq are sub-expressions, the evaluation of
p+ q (or+(p,q)) implies nothing about the sequence of evaluation ofp andq although
both must be evaluated before the operator+ can be applied. In Sch¨onfinkel’s form this is
(+′ p)q and we have the choice of evaluating(+′ p) andq in any sequence. The evaluation
of +′ p involves the evaluation of+′ and p in either order so that once more there is no
restriction on the order of evaluation of the components of the original expression.

3.2.5. Conditional expressions.There is one important form of expression which appears
to break the applicative expression evaluation rule. A conditional expression such as

(x = 0) 0,1/x

(in ALGOL this would be writtenif x = 0 then 0 else 1/x) cannot be treated as an
ordinary function of three arguments. The difficulty is that it may not be possible to evaluate
both arms of the condition—in this case whenx = 0 the second arm becomes undefined.

22 STRACHEY

Various devices can be used to convert this to a true applicative form, and in essence
all have the effect of delaying the evaluation of the arms until after the condition has been
decided. Thus suppose thatIf is a function of a Boolean argument whose result is the
selectorFirst or Secondso thatIf (True)=First andIf (False)=Second, the naive interpre-
tation of the conditional expression given above as

{If (x = 0)}(0, 1/x)

is wrong because it implies the evaluation of both members of the list(0, 1/x) before
applying the operator{If (x = 0)}. However the expression

[{If (x = 0)}({λa. 0}, {λa. 1/x})]a

will have the desired effect as the selector functionIf (x = 0) is now applied to the list
({λa. 0}, {λa. 1/x}) whose members areλ-expressions and these can be evaluated (but not
applied) without danger. After the selection has been made the result is applied toa and
provideda has been chosen not to conflict with other identifiers in the expression, this
produces the required effect.

Recursive (self referential) functions do not require commands or loops for their defini-
tion, although to be effective they do need conditional expressions. For various reasons, of
which the principal one is lack of time, they will not be discussed in this course.

3.3. Commands and sequencing

3.3.1. Variables. One important characteristic of mathematics is our habit of using names
for things. Curiously enough mathematicians tend to call these things ‘variables’ although
their most important property is precisely that they do not vary. We tend to assume auto-
matically that the symbolx in an expression such as 3x2 + 2x + 17 stands for the same
thing (or has the same value) on each occasion it occurs. This is the most important conse-
quence of referential transparency and it is only in virtue of this property that we can use
the where-clauses orλ-expressions described in the last section.

The introduction of the assignment command alters all this, and if we confine ourselves to
theR-values of conventional mathematics we are faced with the problem of variables which
actually vary, so that their value may not be the same on two occasions and we can no longer
even be sure that the Boolean expressionx = x has the valueTrue. Referential transparency
has been destroyed, and without it we have lost most of our familiar mathematical tools—for
how much of mathematics can survive the loss of identity?

If we considerL-values as well asR-values, however, we can preserve referential trans-
parency as far asL-values are concerned. This is becauseL-values, being generalised
addresses, are not altered by assignment commands. Thus the commandx := x+1 leaves
the address of the cell representingx (L-value ofx) unchanged although it does alter the
contents of this cell (R-value ofx). So if we agree that the values concerned are allL-values,
we can continue to use where-clauses andλ-expressions for describing parts of a program
which include assignments.

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 23

The cost of doing this is considerable. We are obliged to consider carefully the relationship
betweenL and R-values and to revise all our operations which previously tookR-value
operands so that they takeL-values. I think these problems are inevitable and although
much of the work remains to be done, I feel hopeful that when completed it will not seem
so formidable as it does at present, and that it will bring clarification to many areas of
programming language study which are very obscure today. In particular the problems of
side effects will, I hope, become more amenable.

In the rest of this section I shall outline informally a way in which this problem can be
attacked. It amounts to a proposal for a method in which to formalise the semantics of a
programming language. The relation of this proposal to others with the same aim will be
discussed later. (Section 4.3.)

3.3.2. The abstract store.Our conceptual model of the computing process includes an
abstract store which contains bothL-values andR-values. The important feature of this
abstract store is that at any moment it specifies the relationship betweenL-values and the
correspondingR-values. We shall always use the symbolσ to stand for this mapping from
L-values ontoR-values. Thus ifα is anL-value andβ the correspondingR-value we shall
write (remembering the conventions discussed in the last section)

β = σα.

The effect of an assignment command is to change the contents of the store of the machine.
Thus it alters the relationship betweenL-values andR-values and so changesσ . We can
therefore regard assignment as an operator onσ which produces a freshσ . If we update
theL-valueα (whose originalR-value inσ wasβ) by a freshR-valueβ ′ to produce a new
storeσ ′, we want theR-value ofα in σ ′ to beβ ′, while theR-value of all otherL-values
remain unaltered. This can be expressed by the equation

(U (α, β ′))σ = σ ′ whereσ ′x = (x = α)→ β ′, σ x.

ThusU is a function which takes two arguments (anL-value and anR-value) and produces
as a result an operator which transformsσ into σ ′ as defined.

The arguments ofU areL-values andR-values and we need some way of getting these
from the expressions written in the program. Both theL-value and theR-value of an
expression such asV[i+3] depend on theR-value ofi and hence on the store. Thus both
must involveσ and if ε stands for a written expression in the programming language we
shall writeL ε σ andR ε σ for its L-value andR-value respectively.

BothL andR are to be regarded as functions which operate on segments of text of the
programming language. The question of how those segments are isolated can be regarded
as a matter of syntactic analysis and forms no part of our present discussion.

These functions show an application to Sch¨onfinkel’s device which is of more than merely
notational convenience. The functionR, for example, shows that its result depends on both
ε andσ , so it might be thought natural to write it asR(ε, σ). However by writingR ε σ

and remembering that by our convention of association to the left this means(R ε)σ it
becomes natural to consider the application ofR to ε separately and before the application

24 STRACHEY

of R ε to σ . These two phases correspond in a very convenient way to the processes of
compilation, which involves manipulation of the text of the program, and execution which
involves using the store of the computer. Thus the notation allows us to distinguish clearly
between compile-time and execution-time processes. This isolation of the effect ofσ is a
characteristic of the method of semantic description described here.

It is sometimes convenient to use the contents functionC defined byC α σ = σ α.
Then if

α = L ε σ
β = R ε σ

we haveβ = C α σ = σ α. After updatingα by β ′, we have

σ ′ = U (α, β ′)σ

and

C α σ ′ = β ′.

3.3.3. Commands. Commands can be considered as functions which transformσ . Thus
the assignment

ε1 := ε2

has the effect of producing a store

σ ′ = U (α1, β2)σ

where

α1 = L ε1 σ

and

β2 = R ε2 σ

so that

σ ′ = U (L ε1 σ,R ε2 σ)σ

and if θ is the function onσ which is equivalent to the original command we have

σ ′ = θσ
where

θ = λ σ. U (L ε1 σ,R ε2 σ)σ

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 25

Sequences of commands imply the successive application of sequences ofθ ’s. Thus, for
example, ifγ1, γ2, γ3 are commands andθ1, θ2, θ3 the equivalent functions onσ , the
command sequence (or compound command)

γ1;γ2;γ3;

applied to a storeσ will produce a store

σ ′ = θ3(θ2(θ1 σ))

= (θ3 · θ2 · θ1)σ

where f · g is the function product off andg.
Conditional commands now take a form similar to that of conditional expressions. Thus

the command

Test ε1 If so do γ1

If not do γ2

corresponds to the operator

λσ. If (R ε1 σ)(θ1, θ2)σ

whereθ1 andθ2 correspond toγ1 andγ2.
Conditional expressions can also be treated more naturally. The dummy argument in-

troduced in the last section to delay evaluation can be taken to beσ with considerable
advantages in transparency. Thus

R(ε1 ε2, ε3)σ = If (R ε1 σ)(R ε2,R ε3)σ

and

L(ε1 ε2, ε3)σ = If (R ε1 σ)(L ε2,L ε3)σ

Informally R ε2 andL ε2 correspond to the compiled program for evaluatingε2 in the
R-mode orL-mode respectively. The selectorIf (R ε1 σ) chooses between these at execu-
tion time on the basis of theR-value ofε1 while the final application toσ corresponds to
running the chosen piece of program.

If we consider commands as being functions operating onσ , loops and cycles are merely
recursive functions also operating onσ . There is, however, no time to go further into these
in this course.

An interesting feature of this approach to the semantics of programming languages is that
all concept of sequencing appears to have vanished. It is, in fact, replaced by the partially
ordered sequence of functional applications which is specified byλ-expressions.

In the remaining sections we shall revert to a slightly less formal approach, and try to
isolate some important ‘high level’ concepts in programming languages.

26 STRACHEY

3.4. Definition of functions and routines

3.4.1. Functional abstractions. In order to combine programs hierarchically we need the
process of functional abstraction. That is to say that we need to be able to form functions
from expressions such as

let f[x] = 5x2+ 3x + 2/x3

This could be thought of as definingf to be a function and giving it an initial value.
Thus the form of definition given above is merely a syntactic variant of the standard form
of definition (which has the quantity defined alone on the left side)

let f = λx. 5x2+ 3x + 2/x3

This form makes it clear that it isfwhich is being defined and thatx is a bound or dummy
variable and could be replaced by any other non-clashing name without altering the value
given tof.

3.4.2. Parameter calling modes.When the function is used (or called or applied) we write
f[ε] whereε can be an expression. If we are using a referentially transparent language
all we require to know about the expressionε in order to evaluatef[ε] is its value. There
are, however, two sorts of value, so we have to decide whether to supply theR-value or the
L-value ofε to the functionf. Either is possible, so that it becomes a part of the definition
of the function to specify for each of its bound variables (also called its formal parameters)
whether it requires anR-value or anL-value. These alternatives will also be known as
calling a parameter byvalue(R-value) orreference(L-value).

Existing programming languages show a curious diversity in their modes of calling pa-
rameters. FORTRANcalls all its parameters by reference and has a special rule for providing
R-value expressions such asa+b with a temporaryL-value. ALGOL 60, on the other hand,
has two modes of calling parameters (specified by the programmer):valueandname. The
ALGOL call byvaluecorresponds to call byR-value as above; the call by name,3 however,
is quite different (and more complex). Only if the actual parameter (i.e., the expressionε

above) is a simple variable is the effect the same as a call by reference. This incompatibility
in their methods of calling parameters makes it difficult to combine the two languages in a
single program.

3.4.3. Modes of free variables.The obscurity which surrounds the modes of calling the
bound variables becomes much worse when we come to consider the free variables of a
function. Let us consider for a moment the very simple function

f[x] = x + a

wherea is a free variable which is defined in the surrounding program. Whenf is defined
we want in some way to incorporatea into its definition, and the question is do we use its

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 27

R-value or itsL-value? The difference is illustrated in the following pair of CPL programs.
(In CPL a function definition using= takes its free variables byR-value and one using≡
takes them byL-value.)

Free variable byR-value Free variable byL-value

let a = 3 let a = 3
let f[x] = x + a let f[x] ≡ x + a

... (f[5] = 8)... ...(f[5] = 8)...
a := 10 a := 10
... (f[5] = 8)... ...(f[5] = 15)...

The expressions in parentheses are all Booleans with the valuetrue .
Thus the first example freezes the currentR-value ofa into the definition off so that it

is unaffected by any future alterations (by assignment) toa, while the second does not. It
is important to realize, however, that even the second example freezes something (i.e., the
L-value ofa) into the definition off. Consider the example

let a = 3
let f[x] ≡ x + a

... (f[5] = 8),(a = 3) ...
§ let a = 100
... (f[5] = 8),(a = 100) ...

a := 10
... (f[5] = 8),(a = 10) ...
............§|

... (f[5] = 8),(a = 3) ...

Here there is an inner block enclosed in the statement brackets §....... §| (which
corresponds tobegin andend in ALGOL), and inside this an entirely fresha has been
defined. This forms a hole in the scope of the originala in which it continues to exist but
becomes inaccessible to the programmer. However as itsL-value was incorporated in the
definition off, it is the originala which is used to findf[5]. Note that assignments toa in
the inner block affect only the seconda and so do not alterf.

It is possible to imagine a third method of treating free variables (though there is nothing
corresponding for bound variables) in which the locally current meaning of the variables is
used, so that in the example above the second and third occurrences off[5] would have
the values105 and15 respectively. I believe that things very close to this exist in LISP2
and are known as fluid variables. The objection to this scheme is that it appears to destroy
referential transparency irrevocably without any apparent compensating advantages.

In CPL the facilities for specifying the mode of the free variables are considerably
coarser than the corresponding facilities for bound variables. In the case of bound variables
the mode has to be specified explicitly or by default for each variable separately. For the
free variables, however, it is only possible to make a single specification which covers all
the free variables, so that they must all be treated alike. The first method is more flexible
and provides greater power for the programmer, but is also more onerous (although good

28 STRACHEY

default conventions can help to reduce the burden); the second is much simpler to use but
sometimes does not allow a fine enough control. Decisions between methods of this sort
are bound to be compromises reflecting the individual taste of the language designer and
are always open to objection on grounds of convenience. It is no part of a discussion on
the fundamental concepts of programming languages to make this sort of choice—it should
rest content with pointing out the possibilities.

A crude but convenient method of specification, such as CPL uses for the mode of the
free variables of a function, becomes more acceptable if there exists an alternative method
by which the finer distinctions can be made, although at the cost of syntactic inelegance.
Such a method exists in CPL and involves using an analogue to theownvariables in ALGOL

60 proposed by Landin [6].

3.4.4. Own variables. The idea behindown variables is to allow some private or secret
information which is in some way protected from outside interference. The details were
never very clearly expressed in ALGOL and at least two rival interpretations sprang up,
neither being particularly satisfactory. The reason for this was thatownswere associated
with blocks whereas, as Landin pointed out, the natural association is with a procedure
body. (In this case of functions this corresponds to the expression on the right side of the
function definition.)

The purpose is to allow a variable to preserve its value from one application of a function
to the next—say to produce a pseudo-random number or to count the number of times the
function is applied. This is not possible with ordinary local variables defined within the body
of the function as all locals are redefined afresh on each application of the function. It would
be possible to preserve information in a non-local variable—i.e., one whose scope included
both the function definition and all its applications, but it would not then be protected and
would be accessible from the whole of this part of the program. What we need is a way of
limiting the scope of a variable to be the definition only. In CPL we indicate this by using
the word in to connect the definition of the own variable (which is usually an initialised
one) with the function definitions it qualifies.

In order to clarify this point programs using each of the three possible scopes (non-
local, own and local) are written below in three ways viz. Normal CPL, CPL mixed with
λ-expressions to make the function definition in its standard form, and finally in pureλ-
expressions. The differences in the scope rules become of importance only when there is a
clash of names, so in each of these examples one or both of the namesa andx are used
twice. In order to make it easy to determine which is which, a prime has been added to one
of them. However, the scope rules imply that if all the primes were omitted the program
would be unaltered.

1. Non-local variable

CPL let a' = 6
let x' = 10
let a = 3/x'
let f[x]≡ x + a

.... f[a]

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 29

Mixed let a' = 6
let x' = 10
let a = 3/x'
let f ≡ λx. x + a

.... f[a]

Pureλ {λa'.{λx'. {λa. {λf. f a}[λx. x + a]}[3/x']}10}6
2. Own variable

CPL let a' = 6
let x' = 10
let a = 3/x'
in f[x] ≡ x + a
.... f[a']

Mixed let a' = 6
let x' = 10
let f ≡ {λa. λx. x + a}[3/x']
.... f[a']

Pureλ {λa'. {λx'. {λf. f a'}[{λa. λx. x + a}[3/x']]}10}6
3. Local variable

CPL let a' = 6
let x' = 10
let f[x] ≡ (x + a where a = 3/x)

.... f[a']

Mixed let a' = 6
let x' = 10
let f ≡ λx.{λa.x + a}[3/x]

.... f[a']

Pureλ {λa'. {λx'. {λf. f a' }[λx. {λa. x + a}[3/x]]}10}6

We can now return to the question of controlling the mode of calling the free variables
of a function. Suppose we want to definef[x] to beax + b + c and use theR-value of
a andb but theL-value ofc. A CPL program which achieves this effect is

let a' = a and b' = b
in f[x] ≡ a'x + b' + c
....

(Again the primes may be omitted without altering the effect.)
The form of definition causes theL-values ofa', b' andc to be used, while the definition

of the variablesa' andb' ensures that these are given freshL-values which are initialised to
theR-values ofa andb. As they are own variables, they are protected from any subsequent
assignments toa andb.

30 STRACHEY

3.4.5. Functions and routines. We have so far discussed the process of functional abstrac-
tion as applied to expressions. The result is called afunctionand when applied to suitable
arguments it produces a value. Thus a function can be regarded as a complicated sort of
expression. The same process of abstraction can be applied to a command (or sequence of
commands), and the result is know in CPL as aroutine. The application of a routine to a
suitable set of arguments is a complicated command, so that although it affects the store of
the computer, it produces no value as a result.

Functions and routines are as different in their nature as expressions and commands. It
is unfortunate, therefore, that most programming languages manage to confuse them very
successfully. The trouble comes from the fact that it is possible to write a function which
also alters the store, so that it has the effect of a function and a routine. Such functions are
sometimes said to have side effects and their uncontrolled use can lead to great obscurity in
the program. There is no generally agreed way of controlling or avoiding the side effects
of functions, and most programming languages make no attempt to deal with the problem
at all—indeed their confusion between routines and functions adds to the difficulties.

The problem arises because we naturally expect referential transparency ofR-values in
expressions, particularly those on the right of assignment commands. This is, I think, a very
reasonable expectation as without this property, the value of the expression is much harder
to determine, so that the whole program is much more obscure. The formal conditions
on expressions which have to be satisfied in order to produce thisR-value referential
transparency still need to be investigated. However in special cases the question is usually
easy to decide and I suggest that as a matter of good programming practice it should always
be done. Any departure ofR-value referential transparency in aR-value context should
either be eliminated by decomposing the expression into several commands and simpler
expressions, or, if this turns out to be difficult, the subject of a comment.

3.4.6. Constants and variables.There is another approach to the problem of side effects
which is somewhat simpler to apply, though it does not get round all the difficulties. This
is, in effect, to turn the problem inside out and instead of trying to specify functions and
expressions which have no side effect to specify objects which are immune from any possible
side effect of others. There are two chief forms which this protection can take which can
roughly be described as hiding and freezing. Their inaccessibility (by reason of the scope
rules) makes them safe from alteration except from inside the body of the function or routine
they qualify. We shall be concerned in this section and the next with different forms of
protection by freezing.

The characteristic thing about variables is that theirR-values can be altered by an assign-
ment command. If we are looking for an object which is frozen, or invariant, an obvious
possibility is to forbid assignments to it. This makes it what in CPL we call aconstant. It
has anL-value andR-value in the ordinary way, but applying the update function to it either
has no effect or produces an error message. Constancy is thus an attribute of anL-value, and
is, moreover, an invariant attribute. Thus when we create a newL-value, and in particular
when we define a new quantity, we must decide whether it is a constant or a variable.

As with many other attributes, it is convenient in a practical programming language to
have a default convention—if the attribute is not given explicitly some conventional value is
assumed. The choice of these default conventions is largely a matter of taste and judgement,

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 31

but it is an important one as they can affect profoundly both the convenience of the language
and the number of slips made by programmers. In the case of constancy, it is reasonable
that the ordinary quantities, such as numbers and strings, should be variable. It is only
rather rarely that we want to protect a numerical constant such asPi from interference.
Functions and routines, on the other hand, are generally considered to be constants. We
tend to give them familiar or mnemonic names such aCubeRt or LCM and we would rightly
feel confused by an assignment such asCubeRt := SqRt. Routines and functions are
therefore given the default attribute of being a constant.

3.4.7. Fixed and free. The constancy or otherwise of a function has no connection with
the mode in which it uses its free variables. If we write a definition in its standard form
such as

let f ≡ λx. x + a

we see that this has the effect of initialisingfwith aλ-expression. The constancy offmerely
means that we are not allowed to assign to it. The mode of its free variables (indicated by
≡) is a property of theλ-expression.

Functions which call their free variables by reference (L-value) are liable to alteration
by assignments to their free variables. This can occur either inside or outside the function
body, and indeed, even if the function itself is a constant. Furthermore they cease to have
a meaning if they are removed from an environment in which their free variables exist. (In
ALGOL this would be outside the block in which their free variables were declared.) Such
functions are calledfreefunctions.

The converse of a free function is afixedfunction. This is defined as a function which
either has no free variables, or if it has, whose free variables are all both constant and fixed.
The crucial feature of a fixed function is that it is independent of its environment and is
always the same function. It can therefore be taken out of the computer (e.g., by being
compiled separately) and reinserted again without altering its effect.

Note that fixity is a property of theλ-expression—i.e., a property of theR-value, while
constancy is a property of theL-value. Numbers, for example, are always fixed as are all
‘atomic’ R-values (i.e., ones which cannot be decomposed into smaller parts). It is only in
composite objects that the distinction between fixed and free has any meaning. If such an
object is fixed, it remains possible to get at its component parts, but not to alter them. Thus,
for example, a fixed vector is a look-up table whose entries will not (cannot) be altered,
while a free vector is the ordinary sort of vector in which any element may be changed if
necessary.

3.4.8. Segmentation.A fixed routine or function is precisely the sort of object which can
be compiled separately. We can make use of this to allow the segmentation of programs
and their subsequent assembly even when they do communicate with each other through
free variables. The method is logically rather similar to the FORTRAN Common variables.

SupposeR[x] is a routine which usesa, b, andc by reference as free variables. We can
define a functionR'[a,b,c] which has as formal parameters all the free variables ofR and

32 STRACHEY

whose result is the routineR[x]. ThenR' will have no free variables and will thus be a
fixed function which can be compiled separately.

The following CPL program shows how this can be done:

§ let R'[ref a,b,c] = value of
§ let R[x] be

§ ... a,b,c ...
(body ofR) §|

result is R §|
WriteFixedFunction [R']

finish §|

The commandWriteFixedFunction [R'] is assumed to output its argument in some
form of relocatable binary or otherwise so that it can be read in later by the function
ReadFixedFunction.

If we now wish to useR in an environment where its free variables are to bep, q andr
and its name is to beS we can write

§ let p,q,r = . . . (Setting up the environment)
let S' = ReadFixedFunction
let S = S'[p,q,r]

.... S[u] §|
In this wayS' becomes the same function asR' and the callS'[p,q,r], which use the

L-values ofp, q andr, producesS which is the original routineR but withp, q andr as its
free variables instead ofa, b andc.

One advantage of this way of looking at segmentation is that it becomes a part of the
ordinary programming language instead of a special ad hoc device. An unfamiliar feature
will be its use of a functionR' which has as its result another function or routine. This is
discussed in more detail in the next section.

3.5. Functions and routines as data items.

3.5.1. First and second class objects.In ALGOL a real number may appear in an expression
or be assigned to a variable, and either may appear as an actual parameter in a procedure
call. A procedure, on the other hand, may only appear in another procedure call either
as the operator (the most common case) or as one of the actual parameters. There are no
other expressions involving procedures or whose results are procedures. Thus in a sense
procedures in ALGOL are second class citizens—they always have to appear in person
and can never be represented by a variable or expression (except in the case of a formal
parameter), while we can write (in ALGOL still)

(if x > 1 then a else b) + 6

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 33

whena andb are reals, we cannot correctly write

(if x > 1 then sin else cos)(x)

nor can we write a type procedure (ALGOL’s nearest approach to a function) with a result
which is itself a procedure.

Historically this second class status of procedures in ALGOL is probably a consequence
of the view of functions taken by many mathematicians: that they are constants whose
name one can always recognise. This second class view of functions is demonstrated by the
remarkable fact that ordinary mathematics lacks a systematic notation for functions. The
following example is given by Curry [7, p. 81].

SupposeP is an operator (called by some a ‘functional’) which operates on functions.
The result of applyingP to a function f (x) is often writtenP[f (x)]. What then does
P[f (x + 1)] mean? There are two possible meanings (a) we formg(x) = f (x + 1) and
the result isP[g(x)] or (b) we formh(x) = P[f (x)] and the result ish(x + 1). In many
cases these are the same but not always. Let

P[f (x)] =
{ f (x)− f (0)

x
for x 6= 0

f ′(x) for x = 0

Then if f (x) = x2

P[g(x)] = P[x2+ 2x + 1] = x + 2

while

h(x) = P[f (x)] = x

so thath(x + 1) = x + 1.
This sort of confusion is, of course, avoided by usingλ-expressions or by treating func-

tions as first class objects. Thus, for example, we should prefer to write(P[f])[x] in place of
P[f (x)] above (or, using the association ruleP[f][x] or evenP f x). The two alternatives
which were confused would then become

P g x whereg x = f (x + 1)

andP f (x + 1).
The first of these could also be writtenP(λx. f (x + 1))x.
I have spent some time on this discussion in spite of its apparently trivial nature, because

I found, both from personal experience and from talking to others, that it is remarkably
difficult to stop looking on functions as second class objects. This is particularly unfortunate
as many of the more interesting developments of programming and programming languages
come from the unrestricted use of functions, and in particular of functions which have
functions as a result. As usual with new or unfamiliar ways of looking at things, it is harder
for the teachers to change their habits of thought than it is for their pupils to follow them. The

34 STRACHEY

difficulty is considerably greater in the case of practical programmers for whom an abstract
concept such as a function has little reality until they can clothe it with a representation and
so understand what it is that they are dealing with.

3.5.2. Representation of functions.If we want to make it possible to assign functions
we must be clear what are theirL-values andR-values. TheL-value is simple—it is the
location where theR-value is stored—but theR-value is a little more complicated. When
a function is applied it is theR-value which is used, so that at least sufficient information
must be included in theR-value of a function to allow it to be applied. The application of a
function to its arguments involves the evaluation of its defining expression after supplying
the values of its bound variables from the argument list. To do this it is necessary to provide
an environment which supplies the values of the free variables of the function.

Thus theR-value of a function contains two parts—a rule for evaluating the expression,
and an environment which supplies its free variables. AnR-value of this sort will be called
aclosure. There is no problem in representing the rule in a closure, as the address of a piece
of program (i.e., a subroutine entry point) is sufficient. The most straightforward way of
representing the environment part is by a pointer to aFree Variable List(FVL) which has an
entry for each free variable of the function. This list is formed when the function is initially
defined (more precisely when theλ-expression which is the function is evaluated, usually
during a function definition) and at this time either theR-value or theL-value of each of
the free variables is copied into the FVL. The choice ofR- or L-value is determined by the
mode in which the function uses its free variables. Thus in CPL functions defined by= have
R-values in their FVL while functions defined by≡ haveL-values. Own variables of the
kind discussed in the previous section can also be conveniently accommodated in the FVL.

The concept of a closure as theR-value of a function makes it easier to understand
operations such as passing a function as a parameter, assigning to a variable of type function,
or producing a function as the value of an expression or result of another function application.
In each case the value concerned, which is passed on or assigned, is a closure consisting of
a pair of addresses.

It is important to note that a function closure does notcontainall the information associ-
ated with the function, it merelygives access(or points) to it, and that as theR-value of a
function is a closure, the same applies to it. This is in sharp distinction to the case of data
items such asrealsor integerswhoseR-value is in some sense atomic or indivisible and
contains all the information about the data items.

This situation, where some of the information is in the FVL rather than theR-value,
is quite common and occurs not only with functions and routines, but also with labels,
arrays and all forms of compound data structure. In these cases it is meaningful to ask if the
information which is in the FVL or accessible through it is alterable or whether it cannot
be changed at all, and this property provides the distinction between free and fixed objects.

A function which has been defined recursively so that the expression representing it
includes at least one mention of its own name, can also be represented rather simply by
making use of closures. Suppose, for example, we take the non-recursive function

let f[x]= (x = 0) 1,x*g[x-1]

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 35

This has a single free variable, the functiong which is taken byR-value. Thus the closure
for f would take the form

If we now identifygwith f, so that the function becomes the recursively defined factorial,
all we need to do is to ensure that the FVL contains the closure forf, Thus it will take the form

so that the FVL, which now contains a copy of the closure forf, in fact points to itself. It
is a characteristic feature of recursively defined functions of all sorts that they have some
sort of a closed loop in their representation.

3.6. Types and polymorphism

3.6.1. Types. Most programming languages deal with more than one sort of object—for
example with integers and floating point numbers and labels and procedures. We shall call
each of these a differenttypeand spend a little time examining the concept of type and
trying to clarify it.

A possible starting point is the remark in the CPL Working Papers [3] that “The Type of
an object determines its representation and constrains the range of abstract object it may be
used to represent. Both the representation and the range may be implementation dependent”.
This is true, but not particularly helpful. In fact the two factors mentioned—representation
and range—have very different effects. The most important feature of a representation
is the space it occupies and it is perfectly possible to ignore types completely as far as
representation and storage is concerned if all types occupy the same size of storage. This
is in fact the position of most assembly languages and machine code—the only differences
of type encountered are those of storage size.

In more sophisticated programming languages, however, we use the type to tell us what
sort of object we are dealing with (i.e., to restrict its range to one sort of object). We
also expect the compiling system to check that we have not made silly mistakes (such as
multiplying two labels) and to interpret correctly ambiguous symbols (such as+) which
mean different things according to the types of their operands. We call ambiguous operators
of this sortpolymorphicas they have several forms depending on their arguments.

The problem of dealing with polymorphic operators is complicated by the fact that the
range of types sometimes overlap. Thus for example3 may be anintegeror a real and it
may be necessary to change it from one type to the other. The functions which perform
this operation are known astransfer functionsand may either be used explicitly by the
programmer, or, in some systems, inserted automatically by the compiling system.

36 STRACHEY

3.6.2. Manifest and latent. It is natural to ask whether type is an attribute of anL-value
or of anR-value—of a location or of its content. The answer to this question turns out to be
a matter of language design, and the choice affects the amount of work, which can be done
when a program is compiled as opposed to that which must be postponed until it is run.

In CPL the type is a property of an expression and hence an attribute of both itsL-value and
its R-value. MoreoverL-values are invariant under assignment and this invariance includes
their type. This means that the type of any particular written expression is determined solely
by its position in the program. This in turn determines from their scopes which definitions
govern the variables of the expression, and hence give their types. An additional rule states
that the type of the result of a polymorphic operator must be determinable from a knowledge
of the types of its operands without knowing their values. Thus we must be able to find the
type ofa + b without knowing the value of eithera or b provided only that we know both
their types.4

The result of these rules is that the type of every expression can be determined at compile
time so that the appropriate code can be produced both for performing the operations and
for storing the results.

We call attributes which can be determined at compile time in this waymanifest; attributes
that can only be determined by running the program are known aslatent. The distinction
between manifest and latent properties is not very clear cut and depends to a certain extent
on questions of taste. Do we, for example, take the value of2 + 3 to be manifest or latent?
There may well be a useful and precise definition—on the other hand there may not. In
either case at present we are less interested in the demarkation problem than in properties
which are clearly on one side or other of the boundary.

3.6.3. Dynamic type determination.The decision in CPL to make types a manifest prop-
erty of expressions was a deliberate one of language design. The opposite extreme is also
worth examining. We now decide that types are to be attributes ofR-values only and that
any type ofR-value may be assigned to anyL-value. We can settle difficulties about stor-
age by requiring that all types occupy the same storage space, but how do we ensure that
the correct operations are performed for polymorphic operators? Assembly languages and
other ‘simple’ languages merely forbid polymorphism. An alternative, which has interest-
ing features, is to carry around with eachR-value an indication of its type. Polymorphic
operators will then be able to test this dynamically (either by hardware or program) and
choose the appropriate version.

This scheme of dynamic type determination may seem to involve a great deal of extra
work at run time, and it is true that in most existing computers it would slow down pro-
grams considerably. However the design of central processing units is not immutable and
logical hardware of the sort required to do a limited form of type determination is relatively
cheap. We should not reject a system which is logically satisfactory merely because today’s
computers are unsuitable for it. If we can prove a sufficient advantage for it machines
with the necessary hardware will ultimately appear even if this is rather complicated; the
introduction of floating-point arithmetic units is one case when this has already happened.

3.6.4. Polymorphism. The difficulties of dealing with polymorphic operators are not re-
moved by treating types dynamically (i.e., making them latent). The problems of choosing

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 37

the correct version of the operator and inserting transfer functions if required remain more
or less the same. The chief difference in treating types as manifest is that this information
has to be made available to the compiler. The desire to do this leads to an examination
of the various forms of polymorphism. There seem to be two main classes, which can be
called ad hoc polymorphism and parametric polymorphism.

In ad hoc polymorphism there is no single systematic way of determining the type of the
result from the type of the arguments. There may be several rules of limited extent which
reduce the number of cases, but these are themselves ad hoc both in scope and content. All
the ordinary arithmetic operators and functions come into this category. It seems, moreover,
that the automatic insertion of transfer functions by the compiling system is limited to this
class.

Parametric polymorphism is more regular and may be illustrated by an example. Suppose
f is a function whose argument is of typeα and whose results is ofβ (so that the type of
f might be writtenα ⇒ β), and thatL is a list whose elements are all of typeα (so that
the type ofL is α list). We can imagine a function, sayMap, which appliesf in turn to
each member ofL and makes a list of the results. ThusMap[f,L] will produce aβ list .
We would likeMap to work on all types of list providedf was a suitable function, so that
Map would have to be polymorphic. However its polymorphism is of a particularly simple
parametric type which could be written

(α ⇒ β, α list)⇒ β list

whereα andβ stand for any types.
Polymorphism of both classes presents a considerable challenge to the language designer,

but it is not one which we shall take up here.

3.6.5. Types of functions. The type of a function includes both the types and modes of
calling of its parameters and the types of its results. That is to say, in more mathematical
terminology, that it includes the domain and the range of the function. Although this seems
a reasonable and logical requirement, it makes it necessary to introduce the parametric
polymorphism discussed above as without it functions such asMap have to be redefined
almost every time they are used.

Some programming languages allow functions with a variable number of arguments;
those are particularly popular for input and output. They will be known asvariadicfunctions,
and can be regarded as an extreme form of polymorphic function.5

A question of greater interest is whether a polymorphic function is a first class object in
the sense of Section 3.5.1. If it is, we need to know what type it is. This must clearly include
in some way the types of all its possible versions. Thus the type of a polymorphic function
includes or specifies in some way the nature of its polymorphism. If, as in CPL, the types
are manifest, all this information must be available to the compiler. Although this is not
impossible, it causes a considerable increase in the complexity of the compiler and exerts a
strong pressure either to forbid programmers to define new polymorphic functions or even
to reduce all polymorphic functions to second class status. A decision on these points has
not yet been taken for CPL.

38 STRACHEY

3.7. Compound data structures

3.7.1. List processing. While programming was confined to problems of numerical anal-
ysis the need for general forms of data structure was so small that it was often ignored.
For this reason ALGOL, which is primarily a language for numerical problems, contains no
structure other than arrays. COBOL, being concerned with commercial data processing, was
inevitably concerned with larger and more complicated structures. Unfortunately, however,
the combined effect of the business man’s fear of mathematics and the mathematician’s
contempt for business ensured that this fact had no influence on the development of general
programming languages.

It was not until mathematicians began using computers for non-numerical purposes—
initially in problems connected with artificial intelligence—that any general forms of com-
pound data structure for programming languages began to be discussed. Both IPL V and
LISP used data structures built up from lists and soon a number of other ‘List Processing’
languages were devised.

The characteristic feature of all these languages is that they are designed to manipulate
more or less elaborate structures, which are built up from large numbers of components
drawn from a very limited number of types. In LISP, for instance, there are only two sorts
of object, anatomand acons-wordwhich is a doublet. The crucial feature is that each
member of a doublet can itself be either an atom or another cons-word. Structures are built
up by joining together a number of cons-words and atoms.

This scheme of building up complex structures from numbers of similar and much simpler
elements has a great deal to recommend it. In some sense, moreover, the doublet of LISP
is the simplest possible component from which to construct a structure and it is certainly
possible to represent any other structure in terms of doublets. However from the practical
point of view, not only for economy of implementation but also for convenience in use, the
logically simplest representation is not always the best.

The later list processing languages attempted to remedy this by proposing other forms
of basic building block with more useful properties, while still, of course, retaining the
main plan of using many relatively simple components to form a complex structure. The
resulting languages were generally very much more convenient for some classes of problems
(particularly those they had been designed for) and much less suitable (possibly on grounds
of efficiency) for others. They all, however, had an ad hoc look about them and arguments
about their relative merits seemed somewhat unreal.

In about 1965 or 1966 interest began to turn to more general schemes for compound
data structures which allowed the programmer to specify his own building blocks in some
very general manner rather than having to make do with those provided by the language
designer. Several such schemes are now around and in spite of being to a large extent
developed independently they have a great deal in common—at least as far as the structures
described in the next section as nodes are concerned. In order to illustrate these ideas, I
shall outline the scheme which will probably be incorporated in CPL.

3.7.2. Nodes and elements.The building blocks from which structures are formed are
known asnodes. Nodes may be of many types and the definition of a new node is in fact

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 39

the definition of a new programmer-defined type in the sense of section 3.6. A node may
be defined to consist of one or more components; both the number and the type of each
component is fixed by the definition of the node. A component may be of any basic or
programmer-defined type (such as a node), or may be anelement. This represents a data
object of one of a limited number of types; the actual type of object being represented is
determined dynamically. An element definition also forms a new programmer-defined type
in the sense of Section 3.6 and it also specifies which particular data types it may represent.

Both node and element definitions are definitions of new types, but at the same time
they are used to form certain basic functions which can be used to operate on and construct
individual objects of these types. Compound data structures may be built up from individuals
of these types by using these functions.

The following example shows the node and element definitions which allow the lists of
LISP to beformed.

node Cons is LispList : Car
with Cons : Cdr

element LispList is Atom
or Cons

node Atom is string PrintName
with Cons : PropertyList

These definitions introduce three new types:Cons and Atom, which are nodes, and
LispListwhich is an element. They also define the basic selector and constructor functions
which operate on them. These functions have the following effect.

If x is an object of typeCons, it has two components associated with it; the first, which is
of manifest typeLispList is obtained by applying the appropriateselector functionCar to
x, thusCar[x] is the first component ofx and is of type LispList. The second component
of x is Cdr[x] and is an object of typeCons.

If p is an object of typeLispList andq is an object of typeCons, we can form a fresh
node of typeCons whose first component isp and whose second component isq by using
the constructor functionCons[p,q] which always has the same name as the node type.
Thus we have the basic identities

Car[Cons[p,q]]= p

Cdr[Cons[p,q]]= q

In an exactly similar way the definition of the nodeAtom will also define the two selector
functionsPrintName andPropertyList and the constructor functionAtom.

The number of components of a node is not limited to two—any non-zero number is
allowed. There is also the possibility that any component may be the special objectNIL.This
can be tested for by the system predicateNull. Thus, for example, if end of a list is indicated
by aNIL second component, we can test for this by the predicateNull[Cdr[x]].

There is also a constructor function associated with an element type. Thus, for example
if n is an atom,LispList[n] is an object of typeLispList dynamically marked as being
an atom and being in fact the atomn. There are two general system functions which apply

40 STRACHEY

to elements, both are concerned with finding their dynamically current type. The function
Type[p] wherep is aLispList will have the result eitherAtom or Cons according to the
current type ofp. In a similar way the system predicateIs[Atom,p] will have the value
true if p is dynamically of typeAtom.

These definitions give the basic building block of LISP using the same names with the
exception ofAtom. In Lisp Atom[p] is the predicate which would be written here as
Is[Atom,p]. We use the functionAtom to construct a new atom from aPrintName and a
PropertyList.

3.7.3. Assignments. In order to understand assignments in compound data structure we
need to know what are theL- andR-values of nodes and their components.

Let us suppose thatA is avariableof typeCons—i.e., thatA is a named quantity to which
we propose to assign objects of typeCons. TheL-value ofA presents no problems; like any
otherL-value it is the location where theR-value ofA is stored. TheR-value ofA must give
access to the two components ofA (Car[A] andCdr[A])—i.e., it must give theirL-values
or locations. Thus, we have the diagram:

The L-values or locations are represented by boxes. TheR-value ofA is represented by
the ‘puppet strings’ which lead from the inside of theL-value ofA to theL-values of its
components. One can think of the ‘shape’ of the box as representing its type and hence
specifying the kind of occupant which may be put there.

Using this sort of diagram, it is now simple to determine the effect of an assignment.
Consider the structure

The effect of obeying the assignment command

Car[Car[A]] := Cdr[Cdr[A]]

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 41

can be determined by the following steps

(1) Find theL-value of[Car[Car[A]].
This is the box marked (1).

(2) Find theR-value of[Cdr[Cdr[A]].
This is the puppet string marked (2).

(1) and (2) may be carried out in either order as neither actually alters the structure.

(3) Replace the contents of (1) by a copy of (2).

The resulting structure is as follows

Notice that this assignment has changed the pattern of sharing in the structure so that
now Car[Car[Car[A]]] andCar[Cdr[Cdr[A]]] actually share the sameL-value (and
hence also the sameR-value). This is because the assignment statements only take a copy
of the R-value of its right hand side, not a copy of all the information associated with it. In
this respect, structures are similar to functions whose FVL is not copied on assignment.

Thus, as with functions, theR-value of a compound data structure gives access to all the
information in the structure but does not contain it all. So that the distinction between fixed
and free applies as much to structures as it does to functions.

3.7.4. Implementation. The discussion ofR- andL-values of nodes has so far been quite
general. I have indicated what information must be available, but in spite of giving diagrams
I have not specified in any way how it should be represented. I do not propose to go into
problems of implementation in any detail—in any case many of them are very machine
dependent—but an outline of a possible scheme may help to clarify the concepts.

Suppose we have a machine with a word length which is a few bits longer than a single
address. TheR-value of a node will then be an address pointing to a small block of
consecutive words, one for each component, containing theR-values of the components.
An element requires for itsR-value an address (e.g., theR-value of a node) and a marker to
say which of the various possibilities is its dynamically current type. (There should be an
escape mechanism in case there are too few bits available for the marker.) The allocation

42 STRACHEY

and control of storage for these nodes presents certain difficulties. A great deal of work has
been done on this problem and workable systems have been devised. Unfortunately there
is no time to discuss these here.

If we use an implementation of this sort for our example in the last section, we shall find
that nodes of typeCons will fill two consecutive words. The ‘puppet string’R-values can
be replaced by the address of the first of these, so that we can redraw our diagram as

After the assignment

Car[Car[A]] := Cdr[Cdr[A]]

this becomes

3.7.5. Programming example.The following example shows the use of a recursively de-
fined routine which has a structure as a parameter and calls it by reference (L-value). A
tree sort takes place in two phases. During the first the items to be sorted are supplied in
sequence as arguments to the routineAddtoTree. The effect is to build up a tree structure
with an item and two branches at each node. The following node definitions define the
necessary components.

node Knot is Knot : Pre
with Knot : Suc
with Data : Item

node Data is integer Key
with Body : Rest

Here the key on which the sort is to be performed is an integer and the rest of the
information is of typeBody. The routine for the first phase is

rec AddtoTree [ref Knot : x, value Data : n] is
§ Test Null[x]

If so do x := Knot[NIL,NIL,n]
If not do AddtoTree[((Key[n] < Key[Item[x]]) Pre[x],

Suc[x]),n]
return §|

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 43

The effect of this is to build up a tree where all the items accessible from thePre (prede-
cessor) branch of aKnot precede (i.e., have smaller keys) than the item at theKnot itself,
and this in turn precedes all those which are accessible from theSuc (successor) branch.

The effect ofAddtoTree(T,N) whereN is a data-item whoseKey is 4 would be to replace
the circled NIL node by the node

where the central branch marked4 stands for the entire data-itemN.
The second phase of a tree sort forms a singularly elegant example of the use of a

recursively defined routine. Its purpose is effectively to traverse the tree from left to right
printing out the data-items at eachKnot. The way the tree has been built up ensures that
the items will be in ascending order ofKeys.

We suppose that we have a routinePrintBodywhich will print information in a data-item
in the required format. The following routine will then print out the entire tree.

rec PrintTree[Knot:x] is

§ Unless Null[x] do
§ PrintTree[Pre[x]]
PrintBody[Rest[Item[x]]]
PrintTree[Suc[x]] §|

return §|

3.7.6. Pointers. There is no reason why anR-value should not represent (or be) a location;
such objects are known aspointers. SupposeX is areal variable with anL-valueα. Then
if P is an object whoseR-value isα, we say the type ofP is real pointer and thatP

44 STRACHEY

‘points to’ X. Notice that the type of a pointer includes the type of the thing it points to, so
that pointers form an example of parametric type. (Arrays form another.) We could, for
example, have another pointerQ which pointed toP; in this caseQ would be of typereal
pointer pointer .

There are two basic (polymorphic) functions associated with pointers:
Follow[P] (also written↓ P in CPL) calls its argument byR-value and produces as a

result theL-value of the object pointed to. This is, apart from changes of representation,
the same as its argument. Thus we have

L-value ofFollow[P] = P

R-value ofFollow[P] = Contents ofP

The functionPointer[X] calls its argument byL-value and produces as a result an
R-value which is a pointer toX.

Follow[Pointer[X]]

has the sameL-value asX.
We can assign either toP or toFollow[P], but as their types are not the same we must

be careful to distinguish which we mean.

P := Follow[Y]

will move the pointerP

↓ P := ↓ P + 2

will add 2 to the numberP points to.
Pointers are useful for operating on structures and often allow the use of loops instead of

recursive functions. (Whether this is an advantage or not may be a matter for discussion.
With current machines and compilers loops are generally faster than recursion, but the
program is sometimes harder to follow.) The following routine has the same effect as the
first routine in the previous section. (It is not nearly so easy to turn the other recursive
routine into a loop, although it can be done.)

AddtoTree' [ref Knot : x, value Data : n] is
§ let p = Pointer[x]

until Null[↓p] do
p := (Key[n] < Key[Item[↓p]]) aPointer[Pre[↓p]],

Pointer[Suc[↓p]]
↓p := Knot[NIL,NIL,n]
return §|

3.7.7. Other forms of structure. Vectors and arrays are reasonably well understood. They
are parametric types so that the type of an array includes its dimensionality (the number of

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 45

its dimensions but not their size) and also the type of its elements. Thus unlike in nodes,
all the elements of an array have to be of the same type, though their number may vary
dynamically. It is convenient, though perhaps not really necessary, to regard ann-array
(i.e., one withn dimensions) as a vector whose elements are(n− 1)-arrays.

We can then regard theR-value of a vector as something rather similar to that of a node
in that it gives access (or points to) the elements rather than containing them. Thus the
assignment of a vector does not involve copying its elements.

Clearly if this is the case we need a system functionCopy (or possiblyCopyVector)
which does produce a fresh copy.

There are many other possible parametric structure types which are less well understood.
The following list is certainly incomplete.

List An ordered sequence of objects all of the same type. The number is dynamically
variable.

Ntuple A fixed (manifest) number of objects all of the same type. This has many advan-
tages for the implementer.

Set In the mathematical sense. An unordered collection of objects all of which are of
the same type but different from each other. Operations on sets have been proposed for
some languages. The lack of ordering presents considerable difficulty.

Bag or Coll This is a new sort of collection for which there is, as yet, no generally
accepted name. It consists of an unordered collection of objects all of which are of the
same type and differs from a set in that repetitions are allowed. (The name bag is derived
from probability problems concerned with balls of various colours in a bag.) A bag is
frequently the collection over which an iteration is required—e.g., when averaging.

There are also structures such asrings which cannot be ‘syntactically’ defined in the
manner of nodes. They will probably have to be defined in terms of the primitive functions
which operate on them or produce them.

It is easy enough to include any selection of these in a programming language, but the
result would seem rather arbitrary. We still lack a convincing way of describing those and
any other extensions to the sort of structures that a programmer may want to use.

4. Miscellaneous topics

In this section we take up a few points whose detailed discussion would have been out of
place before.

4.1. Load-Update Pairs

A generalL-value (location) has two important features: There is a function which gives the
correspondingR-value (contents) and another which will update this. If the location is not
simply addressable, it can therefore be represented by a structure with two components—a
Load part and anUpdate part; these two can generally share a common FVL. Such an

46 STRACHEY

L-value is known as a Load-Update Pair (LUP). We can now represent any location of type
α by an element (in the sense of Section 3.7.2)

element α Location is α Address
or α LUP

node α LUP is α Function[] : Load
with Routine [α: ∗] : Update

Note that these are parametrically polymorphic definitions. There is also a constraint on
the components of a LUP that ifX is anα LUP andy is of typeα

y = value of § Update[x][y]
result is Load[X] §|

LUPs are of considerable practical value even when using machine code. A uniform
system which tests a general location to see if it is addressable or not (in which case it is a
LUP)—say by testing a single bit—can then use the appropriate machine instruction (e.g.
CDA orSTO) or apply the appropriate part of the LUP. This allows all parts of the machine to
be treated in a uniform manner as if they were all addressable. In particular index registers,
which may need loading by special instruction, can then be used much more freely.

Another interesting example of the use of a LUP is in dealing with the registers which
set up the peripheral equipment. In some machines these registers can be set but not read
by the hardware. Supervisory programs are therefore forced to keep a copy of their settings
in normal store, and it is quite easy to fail to keep these two in step. If theL-value of the
offending register is a LUP, and it is always referred to by this, theUpdate part can be made
to change both the register and its copy, while theLoad part reads from the copy.

The importance of this use of LUPs is that it reduces the number of ad hoc features of the
machine and allows much greater uniformity by treatment. This in turn makes it easier for
programmers at the machine code level to avoid oversights and other errors and, possibly
more important, makes it easier to write the software programs dealing with these parts of
the machine in a high level language and to compile them.

The disadvantage in current machines is that, roughly speaking, every indirect reference
requires an extra test to see if the location is addressable. Although this may be unaccept-
able for reasons of space or time (a point of view which requires the support of much more
convincing reasons than have yet been given), it would be a relatively insignificant extra
complication to build a trap into the hardware for this test. It is the job of people investi-
gating the fundamental concepts of programming to isolate the features such as this whose
incorporation in the hardware of machine would allow or encourage the simplification of
its software.

4.2. Macrogenerators

Throughout this course, I have adopted the point of view that programming languages are
dealing with abstract objects (such as numbers or functions) and that the details of the way

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 47

in which we represent these are of relatively secondary importance. It will not have escaped
many readers that in the computing world, and even more so in the world of mathematicians
today, this is an unfashionable if not heretical point of view. A much more conventional
view is that a program is a symbol string (with the strong implication that it is nothing more),
a programming language the set of rules for writing down local strings, and mathematics
in general a set of rules for manipulating strings.

The outcome of this attitude is a macrogenerator whose function is to manipulate or
generate symbol strings in programming languages without any regard to their semantic
content. Typically such a macrogenerator produces ‘code’ in some language which is already
implemented on the machine and whose detailed representation must be familiar to anyone
writing further more definitions. It will be used to extend the power of the base language,
although generally at the expense of syntactic convenience and often transparency, by adding
new macrocommands.

This process should be compared with that of functional abstraction and the definition
of functions and routines. Both aim to extend the power of the language by introducing
now operations. Both put a rather severe limit on the syntactic freedom with which the
extensions can be made.

The difference lies in the fact that macrogenerators deal with the symbols which represent
the variables, values and other objects of concern to a program so that all their manipulation
is performed before the final compiling. In other words all macrogeneration is manifest.
Function and routine definitions on the other hand are concerned with the values themselves,
not with the symbols which represent them and thus, in the first instance are dynamic (or
latent) rather than manifest.

The distinction is blurred by the fact that the boundary between manifest and latent is
not very clear cut, and also by the fact that it is possible by ingenuity and at the expense of
clarity to do by a macrogenerator almost everything that can be done by a function definition
andvice versa. However the fact that it is possible to push a pea up a mountain with your
nose does not mean that this is a sensible way of getting it there. Each of these techniques
of language extension should be used in its proper place.

Macrogeneration seems to be particularly valuable when a semantic extension of the
language is required. If this is one which was not contemplated by the language designer the
only alternative to trickery with macros is to rewrite the compiler—in effect to design a new
language. This has normally been the situation with machine code and assembly languages
and also to a large extend with operating systems. The best way to avoid spending all your
time fighting the system (or language) is to use a macrogenerator and build up your own.

However with a more sophisticated language the need for a macrogenerator diminishes,
and it is a fact that ALGOL systems on the whole use macrogenerators very rarely. It is,
I believe, a proper aim for programming language designers to try to make the use of
macrogenerators wholly unnecessary.

4.3. Formal semantics

Section 3.3 gives an outline of a possible method for formalising the semantics of program-
ming languages. It is a development of an earlier proposal [8], but it is far from complete
and cannot yet be regarded as adequate.

48 STRACHEY

There are at present (Oct. 1967) only three examples of the formal description of the
semantics of a real programming language, as opposed to those which deal with emasculated
versions of languages with all the difficulties removed. These are the following:

(i) Landin’s reduction of ALGOL to λ-expressions with the addition of assignments and
jumps. This requires a special form of evaluating mechanism (which is, of course, a
notional computer) to deal with the otherwise non-applicative parts of the language.
The method is described in [6] and given in full in [9].

(ii) de Bakker [10] has published a formalisation of most of ALGOL based on an extension
of Markov algorithms. This is an extreme example of treating the language as a symbol
string. It requires no special machine except, of course, the symbol string manipulator.

(iii) A team at the IBM Laboratories in Vienna have published [12, 13] a description of PL/I
which is based on an earlier evaluating mechanism for pureλ-expressions suggested
by Landin [11] and the concept of a state vector for a machine suggested by McCarthy
[14]. This method requires a special ‘PL/I machine’ whose properties and transition
function are described. The whole description is very long and complex and it is hard
to determine how much of this complexity is due to the method of semantic description
and how much to the amorphous nature of PL/I.

The method suggested in Section 3.3 has more in common with the approach of Landin
or the IBM team than it has with de Bakker’s. It differs, however, in that the ultimative
machine required (and all methods of describing semantics come to a machine ultimately)
is in no way specialised. Its only requirement is that it should be able to evaluate pure
λ-expressions. It achieves this result by explicitly bringing in the store of the computer in
an abstract form, an operation which brings with it the unexpected bonus of being able to
distinguish explicitly between manifest and latent properties. However until the whole of a
real language has been described in these terms, it must remain as a proposal for a method,
rather than a method to be recommended.

Notes

1. This is the CPL notation for a conditional expression which is similar to that used by LISP. In ALGOL the
equivalent would beif a > b then j else k.

2. The ALGOL equivalent of this would have to beif a > b then j := i else k := i.
3. ALGOL 60call by nameLet f be an ALGOL procedure which calls a formal parameterx by name. Then a call

for fwith an actual parameter expressionεwill have the same effect as forming a parameterless procedureλ ().ε

and supplying this by value to a proceduref∗ which is derived fromf by replacing every written occurrence
of x in the body off by x(). The notationλ().ε denotes a parameterless procedure whose body isε while
x() denotes its application (to a null parameter list).

4. The only elementary operator to which this rule does not already apply is exponentiation. Thus, for example,
if a andb are both integersab will be an integer ifb ≥ 0 anda real if b< 0. If a andb are reals, the type ofab

depends on the sign ofa as well as that ofb. In CPL this leads to a definition ofa ↑ b which differs slightly in
its domain fromab.

5. By analogy with monadic, dyadic and polyadic for functions with one, two and many arguments. Functions
with no arguments will be known asanadic. Unfortunately there appears to be no suitable Greek prefix meaning
variable.

FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES 49

References

1. Barron, D.W., Buxton, J.N., Hartley, D.F., Nixon, E., and Strachey, C. The main features of CPL.Comp. J.
6 (1963) 134–143.

2. Buxton, J.N., Gray, J.C., and Park, D. CPL elementary programming manual, Edition II. Technical Report,
Cambridge, 1966.

3. Strachey, C. (Ed.). CPL working papers. Technical Report, London and Cambridge Universities, 1966.
4. Quine, W.V.Word and Object. New York Technology Press and Wiley, 1960.
5. Schönfinkel, M.Über die Bausteine der mathematischen Logik.Math. Ann.92 (1924) 305–316.
6. Landin, F.J. A formal description of ALGOL 60. In Formal Language Description Languages for Computer

Programming, T.B. Steel (Ed.). North Holland Publishing Company, Amsterdam, 1966, pp. 266–294.
7. Curry, H.B. and Feys, R.Combinatory Logic, Vol. 1, North Holland Publishing Company, Amsterdam, 1958.
8. Strachey, C. Towards a formal semantics. InFormal Language Description Languages for Computer Pro-

grammingT.B. Steel (Ed.). North Holland Publishing Company, Amsterdam, 1966, pp. 198–216.
9. Landin, P.J. A correspondence between ALGOL 60 and Church’s Lambda notation.Comm. ACM8 (1965)

89–101, 158–165.
10. de Bakker, J.W.Mathematical Centre Tracts 16: Formal Definition of Programming Languages. Mathematisch

Centrum, Amsterdam, 1967.
11. Landin, P.J. The Mechanical Evaluation of Expressions.Comp. J. 6 (1964) 308–320.
12. PL/I—Definition Group of the Vienna Laboratory. Formal definition of PL/I. IBM Technical Report TR

25.071, 1966.
13. Alber, K. Syntactical description of PL/I text and its translation into abstract normal form. IBM Technical

Report TR 25.074, 1967.
14. McCarthy, J. Problems in the theory of computation. InProc. IFIP Congress 1965, Vol. 1, W.A. Kalenich

(Ed.). Spartan Books, Washington, 1965, pp. 219–222.

