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ABSTRACT 

Edge eft~cts and (,ibbs phenomena are a ubiquitous problem in signal processing. 
We show how this problem can arise from a mismatch between the "topology."' of the 
data D (e.g., an interval in the case o f  a time series or a rectangle in the case c)t a 
photographic image) and the topolok' )' X (often a circle or toms) natural to the 
construction of the transformation O. The notion of a manitold control space X lot an 
orthogonal transformation 0 is introduced. It is proved that no matter how compli- 
eated X is, 0 may be "truncated" to an O' with control spacc, I), homeom(~rphic to 
an interval or a product of intervals. This yields a new, topologically motivated 
approach to edge effects. We W e  the compleie details tbr applying this approach t-  
the discrete l)aubechies transform of thnctions on the unit interval s~) that no data m'v 
wrapped around from one end of the interval to the other. 

T h e  d iscre te  ope ra t ion  v ~ O r ,  mul t ip l ica t ion  o f  a data  vec to r  t: ( o r  

partial ly p roces sed  vec tor )  by a n  or thogona l  t r ans format ion  O. lies at the  
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heart of linear signal processing. It is fortunate that O will often be quite 
sparse. In wavelet theory the algebraic conditions which define O may create 
a topologically complex pattern of sparsity. For example, in the 1-dimensional 
discrete wavelet transform the pattern is circular; in dimension n the pattern 
is modeled on an n-torus R " / Z "  (the n-dimensional real vector space 
modulo the lattice of integer points). 

In processing a time series (domain an interval) or a photographic image 
(domain a rectangle), and in many other applications, there is no useful 
relation between various data near different parts of the bounda~. In such 
cases O can be modified, or truncated, to a new orthogonal matrix O' 
agreeing in most of its entries with O but such that the passage v -o O'v 
does not involved the formation of linear combinations of data gathered at far 
away points near the domain boundary. This represents an approach to edge 
efl}ects somewhat different from the usual windowing methods. 

There is a fairly general setting--linear algebra with metrical control (see 
for example [7])--for the problem of passing from O to O'. But before 
turning to this, we give a detailed description of truncation as it applies to the 
1-dimensional Daubechies wavelets [2]. For the simplest nontrMal example, 
the truncation is given explicitly. Finally we return to the general ease but 
allow the 2-torus T 2 to stand in for an arbitrary metric space. This substitu- 
tion relieves the reader of a general discussion of triangulations and their dual 
handle structures while presenting enough of the general picture that other 
(and higher dimensional) cases should amount to a manageable exercise. We 
treat only the dead zero version of sparsi~', but expect analogous results to 
hold with only assumptions of rapid decay. 

Consider the discrete (1-dimensional) Daubechies transforms: 

M22n v = M . 2 n  

c 0 

c . 2 . -  1 

0 
= 

C2 

C 1 

. . . . . .  c.~._ l 0 0 . . . . . .  0 
-c2, ,  2 . . . .  Co 0 0 . . . . . .  0 

0 c o "'" c2,,- l . . . . . .  0 
G.2n_  2 - - C 2 n  _ 2 . . . .  C 0 . . . . . .  0 

" '"  C'2n - I CO C1 

" '"  CO Con  - I - - C 2 n -  1 

M2n denotes a 2 N × 2 'v matrix for 2 ~' >> 2n. Orthogonality of M2, , is 
implied by n equations of the form 

E C t C  i = ] ,  

i (1) 

Y'~c,c,+2k = O, 1 ~ k ~ n - 1. 
i 
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.A, dditionally, n-moment conditions may be enforced: 

E ( - 1 ) ' + ' i % ,  = 0, 0 < k ~ n - 1 .  (2) 
i 

Clearly the nonzero entries of M2, , are organized by the geometry of the 
circle• This is a consequence interpreting the subscripts in (1) modulo 2n. 
This interpretation derives from translation invariance and corresponds to 
taking wraparound bounda~ conditions on the data vector v. 

There is a process known as a pyramid [2; 4; 6, Chapter 13.10] into which 
2~; ~;' may be fed. First, form M2,,(v), and set aside even entries (nuinericallv 

these are the finest scale wavelet coefficients of" v). Second. form 5t~2,~ "~ 
2.~." [odd entries of M2,,(v)], and set aside the resulting even entries (these are 

the coefficients of the next to finest scale). Continue forming M '2~ ~ [odd 
entires of M~2,1 ' " ~'(v)]. The even entries for k = 0, 1 . . . . .  2:~'-k >/4,, give 
numerical approximations to the wavelet coefficients of v. This pyramid 
computes the Daubechies transfi)rm in the discrete setting and defines the 
continuous Daubechies transform as a limit where N --* .~ and N - k  = 
constant. 

We give a precise procedure for constralcting an orthonormal tnmcation 
M~,, when 4n < 2 "x'. In the more. trivial case 4n >/2 x, Mz, . is not modified: 
M~,, = M2, ,. 

Me, , ~511 be truncated to a purely band-diagonal 2 x × 2 x matrix M~,, 
which agrees with M2, except in the first n and last n rows. The procedure 
requires the orthogonality relations (1) to hold for Me, , but makes no use of 
the moment conditions (2), and it is quite possible in applications that the 
fiee parameters used up in the condition (2) should instead be saved for 
some different optimization more suited to the bounded setting. 

Using the primed matrices M~,, in the pyramid, we obtain as output a 
discrete version the l)aubechies transform adapted to L2[0, I]. Our adapta- 
tion is quite different (and less developed, since we have not fixed 
% . . . . .  c2,,-1 completely) from the proposal in [1] and [5], but the two may 
be compared if we imagine our discrete procedure taken to the limit. They 
share the property that wavelet basis fimctions from L2(R) whose support is 

contained wholly in [0, 1] are unchanged. In our basis, wavelets whose 
supports [in L"(R)] overlap a boundau, point are increasingly crumpled and 
seemingly less smooth as the overlap increases. In all discrete stages each 
boundary vzdue is carried by a simple "Dirac wavelet" (which disappears in 
the continuous limit), and all other wavelets vanish at the boundaries. In [I] 
the authors choose speci~d fimctions adapted to and localized near the 
borders to complete their basis. The freedom in these choices enables [1] to 
produce wavelets on [0, 1] whose first n - 1 momel~ts vanish. While our 
boundary behavior may be less desirable in many applications, we continue to 
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be interested in this basis because of  the mathematically canonical nature of  
the tnmcat ion M.2n ---) M.~n. It is an open problem to optimize our wavelets 
by replacing the relations (2) with some unspecified relations. 

For ease o{' (teseription we hencetbrth assume n odd. The  case of  n even 
is nearly identical. Betbre we start, let us revise slightly the form of the basic 
wavelet matrix Me, ,. Let us cycle the columns through n - 1 steps so that 
the nonzero entries are roughly centered on the diagonal and the pattern of  
nonzero entries is (roughly) 

Tt 

n 

rt 

(3) 

Tile new fbnn <)f Men is preferable.  When the M2, , of  various sizes 2 N 
are inserted into the pyramid which computes  wavelet coefficients, the edge 
effects--that is, tile mixing of data obtained from opposite ends of  the 
interval--wil l  l~lll only at the last possible moment  (rather  than repeatedly) 
on data frona the middle of  the measurement  stream. 

The  first unbroken row of Mz, ~ [see (3)] is the nth when n is odd and the 
n + /st when n is even (due to the staircase ~)rm near the diagonal). The  
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" i n t a c t "  r o w s  o f  M.2,  ,, 

r,, = c o . . . . .  c2,, - t,  O, 0 . . . . .  

r n .  1 = ( '2, ,  I - ( ' 2 , ,  2 . . . . .  - - ( ' o  " ( ) ' ( 1  . . . . .  

r,, _ 2 = (). O. c, . . . . . .  c2,, - I . . . . .  

t- , , .3 = O, (), c:,,, .. I. - -c2 ,  , , . . . . .  - - c  o . . . . .  
(4) 

r.2~ n ~ l  : 0 . . . . .  c,2n i .  - ( ' 2 n  2 . . . .  , - ( ' o .  

s p a n  t h e  " c e n t r a l "  s u b s p a c e  C c I ' .  w h e r e  V is t h e  u n d e r l y i n g  v e c t o r  s p a c e  

o n  w h i c h  M2,, o p e r a t e s .  

l l e r e  is t h e  a l g o r i t h m  fo r  w r i t i n g  d o w n  M=;.. T h e  f i rs t  l i nd  las t  ~ - I 

r ows  a r e  b r o k e n  i n t o  a lef t  a n d  a f i gh t  p i e c e  b y  a s e a  o f  z e r o  e n t r i e s .  

( ; e ( ) m e t r i c a l l y  s p e a k i n g  ( a n d  i g n o r i n g  t h e  s t a i r c a s e  e f f ee t ) ,  t h e s e  n( )nzer ( )  

e n t r i e s  1)reak u p  i n t o  t w o  t r u p o z o i d s  a n d  t w o  t r i a n g l e s :  

top n-1 rows: 

b o t t o m  n-1 r o w s :  

top left 

x~ttom right 
(5) 

Cal l  t h e  4 ( n -  1) v e c t o r s  r e p r e s e n t e d  Iw t i le  r ows  o f  t h e s e  f i g u r e s  

{ 1 : [ ' t , V [ " , V ~ ' l , V [ " r ,  1 < i <-% n --  1}, w h e r e  t = t op ,  b = b o t t o m ,  1 = lef t ,  

a n d  r = r igh t .  

T o  c o n s t r u c t  t i l e  f i rs t  n - I r ows  o f  M ~ , ,  fo l low t h e s e  s t eps .  P l a c e  b o t t o m  

lef t  o n  t o p  o f  t o p  lef t  t o  f o r m  a n  ?2(n - 1) × 2 ( n  - 1) t r i a n g l e .  S e l e c t  eyeD:  

o t h e r  r o w  o f  t h i s  t r i a n g l e  to  f o r m  a ( n  - 1) × 2 ( n  - 1) t r i a n g l e  o f  rows .  
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These rows are 

v~. t ,  vb4.t ' b,t . t , t  v~,t, . t . t  . . . .  v . - l , 1 ) 2  . . . . .  (6) 

Starting with the shortest, apply the Gram-Schmidt orthonormalization to 
obtain another (n - 1 ) ×  2(n - 2 )  triangle of rows Wtl . . . . .  w~_ i. Insert 

t these as the first n - 1 rows of M2.. 
The middle rows of M~. agree with those of M2n. The last n - 1 rows of 

M~. are made by applying Gram-Schmidt (in reverse order, starting with the 
shortest rows) to 

b , r  1)b.r  . b , r  . t . r  . t , r  1)t ,r  
• ", 1 ) n - l ,  V2 , I ) 4  , "  n - 1" ( 7 )  I )  2 , , • . . ,  

The nonzero entries of M~. are indicated below (in particular, M~,, is 
band-diagonal with no increase in band width over the central portion of 
M2.): 

M 2 g l  
2~ v 

(8) 
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Vv'e must  now expla in  why  M.~, is an o r thogona l  matrix.  Let  C ~ d e n o t e  
the subspace of  vectors  in V which are  p e r p e n d i c u l a r  to C. Since  M2, , is 
orthogonal, the  2 ( n -  1) rows {v[  "t + v[ "r ,v[  ' t  + v[  '~ ,  i <~ i <~ n - 1} of 
M2, , span C '  . Thus  

, " " " " t ' n  I " L 1 , " • ( 9a ) 

i I I l d  

{,.q . . . .  ,,..r,..,.r . , , ' }  
• " ' " ' l " n  L I ' " ' " ' l ) u  - 1 (gb) 

t o g e t h e r  will span C -  . Also the  g e o m e t r y  ()f the  matrix,  when  n ,~ 2 \ ,  
impl ies  that  an)'  vec to r  in (ga) is l}erp(:ndicular  t{} any vec to r  in (gb).  Thus  it 
suffices to verify that  the  span  of  the  even n u m b e r e d  vect{}rs in each set 
conta ins  the  odti  n u m b e r e d  vec tors  ill that  set. In fact we will show Ilsin~ th(' 
o r thogona l i ty  re la t ions  (1) that  

( * )  The  2k  + Ist and  2k  + 2nd  vec tors  in e i t he r  set are d e p e n d e n t .  
modu lo  the  sor te r  vectors ,  in that  set. 

Because  of  the  s y m m e t r y  we {}nix' cons ide r  the  first set. which we wr i te  out 
l}elow: 

FOX.V I : C 2 n -  2 C2n 1 

F { } \ V  c') : C I  _ C O  

F(}XV 3 :  C 2 n -  4 C 2 n - 3  

r (  B , v  4 : C .~  - -  C 2 

r ( )%v ,~ :  C 2 n  - 6 ( ' 2 n  -- B 

r ( } \ v  6 :  C 3 - -  C . I  

C2u 2 ('2n I 

( ' 1  - ( ' ( )  

( ' 2 u  .t ( ' 2 .  :~ ( ' 2 n  :2 ( ' 2 n  I 

C . t  - -  C 2  ( ' 1  - -  {'o 

row 2n - "2: c2, ' :~ . "  - -  ( ' { I  

(I0) 

Tilt '  two te rm re la t ion ill (1) i ,npl ies  the  first two rows art" col l inear .  
C lea r ly  row 4 is p e r p e n d i c u l a r  to a = (0, 0, %,  c I ) a n d / 3  = (%.  c I , %,  c~ ). 

Row 3 is also p e r p e n d i c u l a r  to oe and /3, us ing the  two and  four t e rm 
relat ions (1). Since  row 2 is also peq~end icu la r  to o< and  /3, rows 2, 3, and  4 
span only a 2 -d imens iona l  space.  Since  row 2 is co l l inear  with ne i t he r  row 3 
nor  row 4, it follows that  rows 3 and  4 are  d e p e n d e n t  m o d u l o  row 2. 
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Similarly, rows 5 and 6 both lie in the 3-dimensional subspace perpendic- 
ular to a '  = ( 0 , 0 , 0 , 0 ,  c o ,c l ) ,  /3' = (0,0,  c o , c  l , c  2,c3), and T' = 
(c 0, c l, c 2, c3, c 4, c~). Also in this subspace are rows 2 and 4. Since row 2 and 
row 4 are independent of each other and of rows 5 and 6, it follows that rows 
5 and 6 are dependent modulo rows 2 and 4. 

Continuing in this way, we see that row 2k + 1 and row 2k + 2 are 
dependent modulo the shorter even numbered rows, establishing (*).  

A variant on our definition of M~n might be considered. Proceed as above 
except, when applying Gram-Schmidt, proceed from longest to the shortest 
rows. This doubles the band thickness of the matrix but has the advantage 
that the rows of M.~, only change gradually as the upper and lower rows are 
approached. It would be interesting to see if this second definition yields 
more perspicuous wavelets. 

Table 1 gives numerical results for the truncated matrices produced by 
this procedure, for the cases N = 2, 3, 4, 5, 6. (For typographical compact- 
ness, the table shows the transposed matrices, with orthogonal columns 
rather than orthogonal rows.) For N = 2, 4, 6 the table examplifies the slight 
difference of procedure required for the even N case: The first complete 
Daubechies coefficient vector is offset by one from the edge, resulting in a 
unit vector in the first row (or column). 

Figures 4 and 5 show, for the case n = 2 (the simplest Daubechies 
wavelets) the result of the pyramid construction fbr both truncated and 
untruncated coefficient matrices. As an approximation to the contimlum 
(N = 10), the pyramid operates on a vector of length 10"24. One sees (Figalre 
1) that those wavelets whose support wraps around are significantly modified 
to adapted wavelets which do not wrap around, but nevertheless preserve 
orthonormalit T. Wavelets whose support does not wrap around (Figure 2) are 
unchanged in the coutinuum limit; for a finite hierarchy and the case of even 
N, there is a slight modification (here of order T~.~) due to the offset of the 
coefficient vectors by one. This allows the dashed and solid lines in Figure 2 
to he both visible.It shouh| be remarked that the truncation M2,  , --.* M~,, can 
be made directly applicable to image (or higher dimensiomd data) processing 
by using the "tensorial'" or "l)r(×tuct '' wavelet decompositions on a rectangle 
(or multirectangle). For other more subtle wavelet bases in dimension "2 and 
higher, analogs of this truncation exist. It is not known if the details of these 
will prove as elegant--for  example, some coarsening of the bands of nonzero 
entries may be expected corresponding to 8-control in the hypothesis and 
e-control in the conclusion of the subsequent theorem. However, the exis- 
tence of the truncation is assured by the theorem. The example we have just 
worked through deals with the passage from circular control t() interval 
control. It is a first case of a rather flexible theou'. We now turn to a more 
general setting in which truncation may be achieved. 
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Ix,t X be a compact metric space (called the control s'pace), and • > 0 a 
positive real number.  Let V and W be finite dimensional inner product 
spaces with orthonormal bases {vj . . . . .  r,} and {tc~ . . . . .  w~,}. la.t 

.1": {t:~ . . . . .  ~:,,} -~ X and g :{u." I . . . . .  w~,}X Iw functions called c(mtrol f i ,  nc- 
lions. \V(, say. that a linear map h :V ~ W is e-small or t-controlled (w.r.t 
the control fi,nctions) if the components  of  h (w.r.t. the ~i','en bases) satist\ 
]1,1 - -  {~ whenever distx(f(t; ,) ,  g(wi)) a e. 

Suppose the control space X is smooth k-dimensional Riemamtian mani- 
tokt I with the "'path metric" obtained by integrating, length alone, paths: 

f., d7  dist x ( x ,  y )  = i n f  -7[[ dl. ( 111 
paths in X , 

[ r O l l l  ~. l o  !l 

[,et I) k --+ X be a compatible piccm~se linear map of  a closed k-cell onto X 
which is an imbedding on its interior. I) k is called a top cell for X. Give I) k 
the path metric induced from paths in 1) k, and assume all control maps have 
image c int I) ~. W e  ]rave 

!,) = f - -  d l .  ( 1 2 )  
I ~aths 3' m 1) ~ y (It 

}rOl l l  ).' t o  I/ 

Ix't X, with its path metric, l)e a g-control space tbr a linear map 
P : V ~ V. That is, {c l . . . . .  v,,} is a basis for V. and f a map J{~;i . . . . .  t:,} ~ X 
such that P is &small. A restriction of  control to a subspace Y c X is 
possible if Jlt" l . . . . .  t:,,} c )'. We write the map with restricted control Pli) 
to distin~fish it from the usual notati(m for restricting to a sut)spac(' P lu .  
W c V. This simply means we will now measure distances according to paths 
which lit: in Y. Note that &control may be lost during restriction, as the short 
paths in X between f(t~,) and f (v i )  may all leave Y. Assume that P restricts 
to Y. and let Y' c Y be a further subspace. The theorem below shows that 
truncation may be used to restore control lost durin~ restriction. 

We call a linear map P' : V ---, V an e-truncation of  Pllr : V -~ V ,,t:cr Y' 
if (a) P' is e-controlled w.r.t, the control map f and (b) there is some 
injection q (perhaps the identity') of  the generators which map to Y' into all 
the generators {c~ . . . . .  %}. q: f - ' ( Y ' )  --, f ~( Y ). satist};ing dist~ ( v ,  q (  r )) < 
e and such that i f Q  is the linear extension o f q  a n d W  the span o f . f  !(Y').  
then 

P'{u" = P o (r)hv. 

I This assumption imlx)st.s v(.rv litth' limitation on tim ust.fuluess of the throrv (s(',' [7]). 
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Fzc;. 4. Truncated and untruncated wavelets. Shown as solid curves are the 
leftmost (top) and rightmost (bottom) wavelet of one hierarchical scale, constructed 
on a vector of length 1024 using the truncated coefficient matrix developed in this 
paper (note break in the horizontal scale). The dotted curves, which wrap around, are 
the corresponding conventional wavelets, constructed with periodic boundary condi- 
tions. 

The truncation is "'over" Y' in the sense that P is basically unchanged on the 
generators mapping to Y'. The complexity of (b) results from a problem 
called f l u x  (see Chapter 8 of [7]). 

Often Q will be the identity, and then condition (b) is simply P'lw = PIw. 
To appreciate the role of Q in the general case (where flux may occur), 
consider the following example: X is the unit circle, and f : { v  l . . . . .  vp} --+ X 
is defined b y f ( v  k) = e 2~'~k/p. Set Y = X - {eTri/P}, Y '  = X \ I ,  where I is 
an arc of the circle of length 2 ~ ' / p  centered at e **/p. Let P cyclically 
permute the v's, P ( v  k) = vk+ l rood p. The P is clearly a 27r/p-small 
orthogonal transformation. And according to our definitions, the identity 
V ~ V is a 2or/p-truncation of PIIy over Y'. But to find such a nonsingular 
truncation, we need the freedom to chc×)se Q to cycle the generators 
mapping to Y' counterclockwise one step. Without a nontrivial Q there is no 
nonsingular extension of Plw which does not send the f-image of v~, across 
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F[(:. 5. Same as Figure 4, but for the second from left (top) and second from 
right (bottom) wavelets. One sees that the tnmcated and periodic wavelets are 
\irtuallv identical. (In the c()ntinuum limit they would be identical.) The small 
diFfcrc;mt~ comes from the offset by one of the rows of l)aubechies coefficients in the 
int(,rfi)r ()f the matrix (see Table 1). Note that the distortion of the tnmcated wavelet 
,s it n,'ars th(' l~×)unda~, will look different for different hierarchical scales. 

[he de l e t ed  points  e '~ / p and thus m o v e  it a great  dis tance,  (I - p)2rr, in th(" 

l)ath m(' tr ic on ) .  

"l'Ht.:()m,:~t. For every • > 0 there exists a 8 ( D  ~ ~ X )  > O, deT)ending 
on the geometry o f  X and the inclusion o f  its top cell, such that given any 
orthogonal transfi~rrr~tion 0 : V ~ V o f  a f inite dimensional inner product 
space V which is &controlled ow, r X, the restriction OIIt: : W ~ W may be 
e-tm,~cated over D' = D k \ (a ~-neighborhood o f  c~D k) to an e-controlled 
orthogonal transformation O' : V ~ V over D k. 

Proof. W e  cons ide r  the  case o f  X a torus  wi th  hexagonal  " t o p  cel l"  or  

" f im( |am(;n ta l  d o m a i n "  D. W e  may tbrm X as R 2 / { i n t e g r a l  l inear  combina -  
tions o f  vec tors  p and q indica te( |  in Figalre 6}. 
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FI(;. 6. 

Let F denote frontier D = D \ D. Cover F with round disks alternating 
between black and white (B k and W k) with diameter • so that no two disks of  
the same color meet  and so that the concentric subdisks B~ and W~' of  
diameter • - 2 ~ cover a 8-neighborhood of  F as indicated in Figure 7. 

Tile transformation O : V --+ V is &controlled over X. Let V 0 c V be the 
subspace generated by those generators mapping outside a &-neighborhood 
of  the frontier, f l (X \J//~a,gr)) = {v0}, and let C = O(1,1 o ) c V be the 
"central" subspace. C is spanned by the orthonormal frame {Qv 0} = ,~. Our  
task is to extend this frame of  C to an orthonormal frame of  V subject to the 
condition that for any additional frame vector w, the subset of  {v l . . . . .  v~} 
for which W has a nonze.ro component  has radius < • when mapped by f 
into D. 

Consider an arbitrary black B k. Dropping the index, B meets two or (in 
two cases) three widely separated regions of  D (see Figure 4). I f  v ~ f - l ( B ) ,  
w( r may correspondingly write O(v)  = S,~_"[ 3z i, that is, z, belongs to the 
span of  generators which lie in B and one o|" the two or three distinct regions 

X 

FnG. 7. 
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()f D.  Similarly if v ~ W,  a white ball. we may writ(, O ( c )  = y ,  + y : .  Fixing 
B and i, w(, may apply the G r a m - S c h m i d t  pr t)cedure to p roduce  from {z} an 
()rthonormal f rame (of  st)me inde te rminant  cardimditv).~~f~ t)rthogonal to C. 
Since span{z.,} is or thogtmal  to span{z/}, i ¢ ~ j  = 1.2 .3 ,  tht 'se frames at[' 
ortht)gonal f()r i ¢ : . j .  Fur the rmore ,  th( ~ disjt)mtnt,ss ()f the black disks in 
Figure 2 assures that all thes('  t'ramt.s are disjt)int as we v~tr-,- B. Nt)tice thai 
the uew frame vectors in .')~j~ have d iamete r  < • in th(' sense that tht 'ir 
, ~ ( ) , l z ( ' r o  c'()|nl)t)nt'llts ;Ire alxv~ws ~ttt~lc~ht'd to vectors whic'h map I)y J" t~ ,, 
single B. 

Now wt)rk with a single white  disk W. Let r ~ J ' (11" ) ~md Or  = y! + .9'_) 
as l)('for(', l"()r 1t" and i fixed, i = 1 or 2, collect the" fragmt'|~ts {yls}. ~t~,(I 
()rthtmor|naliz(, to p roduce  an t)rth()gt)~,al f rame t)rtl~ogo|ml to Sl)an{/~..~i. all 
1~ and i}. (:all the result d~' v. For  the same rt'ast)us as t)('fc~re, the various .'&'~ 
art' themselves ortht)gtmal, ant |  th['ir vector  c()ustitut'nts h;txc d iameter  < e. 
Thus  .~  = {.'X,':~..:~v } is an t)rtht)n(~rmal frame. F~ut clearly f f  spans all (d" 1". 
sim'e it is mad('  I)v applying ( ; rau,-Schmit l t  t() a or)lit'orion of  vt,ct()rs 
( ){J  '(.\" \ .  l',i( F))} U (zl.s'} ~ {!f~). xvhic]a must h(, u Sl)annin ~ st't, since it 
ct)m('s from the I)asis O{c,} (m t)rt'~tking several vectt)rs int~ txv~ ()r thrt '( '  
summantts .  The  point is that i f a  vt.ctt)r in a Sl)amm, ~ set is broken int() txv(, or 
~n()r(' s u m m a n d s  and these replace the ori~in;d xt'ct()r in lh(' Sl)mmiu g set. 
then the span cam~t)t decrease.  

"l'h~' ueu: vectors in the (~rth~mt)rmal t)~tsis f t .  i.t'., thos(' not in :~. hay(, 
([iamt'tt'v < e: th()st, in ,~- hay(' diam(,t[ 'r  ~< 6 < e. \Vc ma~ use ~t well-knt)w~, 
(~mdmmt()rial l emma  [3], the marr iage thet)rt,m, t() rt,tt(,fi,~(. O in ac'c()r(lat~ce 
with tht '  the()r('||,. 

.M.xm~l..x(:u.: nW()REM. Suppo.s.c {b,} arm {~,} ar~: s'ct.s' o/ 'equal  cardinal i ty  
and  ind~'x set I, and  that R is a relation such that . / i ,"  all S c I, c a r t l { ~ / : . f ,  
so ,u '  i ~ S. b~ R ~/} >/ card(S) ,  l t . f , l l ows  that there  exists a I~ij,r'ti,m h : l  --. I 
sur'h that. /; ,r  all i ~ l, b, R gt,(,>. 

(;~)nsitler the relation r t R to~ that holds wheneve r  it~ is an ¢'lemt'nt ~d'.'7 
wilh ~t ntmzer¢) c()mponent  in the coordina te  direction t:, ~ {c I . . . . .  t:,}. Since 
.,)7 is a frame, no subset of  f f  of  cardmali tv c c a n  [)( '  ¢'(mtaint'd in the span cd 
tewer  than c basis e lements .  Thus  the h>])otht'sis of  the marriage the~wenL 
holds. Tht '  bijection t ; , -- ,  tt'~,~,~ extends to) an c)flhogtmal trausfon,lati(m 
() '  : I '  .-+ V. Fixing j ,  the sets J~r,: nt)nzer<) cc)eff'icient for u~)} hay(" d iameter  
:~ e, st) O '  is e-ctmtrolled. Fu r the rmore .  O '  has the rt ' t tuircd form ()u 

j l ( X  \ ,  jt~(F)), O' = O o (c). Notice that Q might not b(" the identity, since 
a t:,, e . f  '( x \ 5,~(F)) mig, ht be " 'marr ied" t~)a f rame vector  diflbre;lt from 
(but  E-close tt)) O ( % ) .  Thus  the use of  th(' marriage theorem a, , t t )maticalk 
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accommodates  the flux problem. This completes  the theorem's  proof  in the 
case that X is a 2-torus with hexagonal top cell D. 

In this example,  the optimal relation between e and 6 is an exercise in 
plane geometry.  For  domains D o c X with 120 ° angles and 6 sufficiently 
small, e >~ 106 is certainly adequate.  In general e will increase as the 
interior angles of  D decrease (so regular hexagons are more efficient than 
squares in that e can be chosen to be a smaller multiple of  6). 

I f  X k is a general Riemannian manifold, the first step is to locate a top 
cell D k. Then one restriets to D k and tnmcates  to restore e-control. In the 
general case, k distinct colors of  balls must be chosen to cover the frontier of  
D ~'. The  vector  O ( v )  will be broken into at most k + 1 summands,  collected 
into sets (fixing two ind i ces - -one  labeling the ball, and the other  the region 
of the top cell in which the summands '  eomponents  land) and orthonormal-  
ized; then we inductively extend the central f rame 2, ~ ' =  { O ( v ) : f ( v , )  
N8(frontier(top cell))}. In general, E(g)  will increase with the dimension k of  
X k and be sensitive to the geomet ry  of X k and the choice of  the top cell D k. 

l,et us review the tnmcat ion o|" the discrete l )aubechies  trans[brms, 
Me, ' ~ M.~ n, to see how it is a sFn~cial case of  the theorem. From the form of  
M2, , [see (3)] it can be regarded as an ~smal l  linear transformation for 
6 = 2 7 r n / 2  x. To do this, let (v 1 . . . . .  v2 , )  be the basis for the space V on 
which M.2, , acts. Let f ( v k )  = e '~'~ik/2~ c X = S l, the unit circle. While a 
band-diagonal form would suggest control over an interval, the shaded 
pattern in (3) corresponds to control over a circle: 

( Mz, , ) i . )  = 0 - n  <~ i - j <~ n m o d 2  ~. 

We cycled the original M2, , (1) into the form (3) precisely so that we 
would not have the notational inconveniences of  flux (that is, the relabeling 
caused by Q). Proceeding from (3), we reduced the control space to an 
interval, M2, , --* M.~,,]ls~ ~01, and then truncated to restore lost control. That 
is, tramcation removes all far fromr diagonal entries (M~,, is n-band diagonal) 
while retaining M.2, , [as in (3)] except fi)r a modification of the top and 
bot tom n rows. This means that if X = S l and Y = S l - {0}, then the space 
Y' over which Me,  ̀  is retrained is 

Y' = S ~ - {the interval of  length 7 r n / 2  x centered at 0}. 

Decomposing the top and bot tom rows of M2, , as v : ' t +  v : "  and 
v~ 't + v~ ' r  respectively corresponds in our proof  to O ( v )  = y~ + Y2. The 
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tuner product  s t ructure  on V is Eucl idean in the pret~.rred basis in which 
M~,, is written. 

A special t~ature of  this tnmea t ion  is that no degradat ion of  the data 
cwcurred. The  matrix M~,, is n -band  diagonal where  n is the radius of  the 
diagonal band in M~,,. In terms of  our  theorem,  this means • = 6. This is 
certainly too much to hope for in general ,  hut it would I)e interestin~ to set, it  
lher¢" are ¢~ther eases where  the theorem holds with • = ~. 
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