
Rapidly-Exploring Random Trees: A New Tool for Path PlanningSteven M. LaValleDepartment of Computer SieneIowa State UniversityAmes, IA 50011 USAlavalle�s.iastate.eduAbstratWe introdue the onept of a Rapidly-exploring Ran-dom Tree (RRT) as a randomized data struture thatis designed for a broad lass of path planning problems.While they share many of the bene�ial properties of ex-isting randomized planning tehniques, RRTs are speif-ially designed to handle nonholonomi onstraints (in-luding dynamis) and high degrees of freedom. An RRTis iteratively expanded by applying ontrol inputs thatdrive the system slightly toward randomly-seleted points,as opposed to requiring point-to-point onvergene, asin the probabilisti roadmap approah. Several desir-able properties and a basi implementation of RRTs aredisussed. To date, we have suessfully applied RRTsto holonomi, nonholonomi, and kinodynami planningproblems of up to twelve degrees of freedom.1 IntrodutionOver the past deade, several randomized approaheshave been proposed and suessfully applied to the gen-eral problem of path planning in a high-dimensional on-�guration spae. Two of the more popular approahesinlude the randomized potential �eld algorithm (e.g.,[2℄) and the probabilisti roadmap algorithm (e.g., [1, 4℄).Given these suesses, and the fat that there is littlehope of ever obtaining an eÆient, general path plan-ning algorithm, it is natural to ask: Why do we needanother randomized path planning tehnique?The primary diÆulty with existing tehniques isthat, although powerful for standard path planning, theydo not naturally extend to general nonholonomi plan-ning problems. Using state-spae representations, thislass of problems inludes kinodynami planning [3℄,whih is an extremely general and important area inrobotis, virtual prototyping, and many other applia-tions. The randomized potential �eld method dependsheavily on the hoie of a good heuristi potential fun-tion, whih beomes a daunting task when onfrontedwith obstales, kinemati di�erential onstraints, anddynamial onstraints. In the probabilisti roadmapapproah, a graph is onstruted in the on�gurationspae by generating random on�gurations and attempt-ing to onnet pairs of nearby on�gurations with a

Figure 1: A 2D projetion of a 5D RRT for a kinody-nami ar.loal planner that will onnet pairs of on�gurations.For planning of holonomi systems or steerable nonholo-nomi systems (see [6℄ and referenes therein), the lo-al planning step might be eÆient; however, in generalthe onnetion problem an be as diÆult as design-ing a nonlinear ontroller, partiularly for ompliatednonholonomi and dynamial systems. The probabilis-ti roadmap tehnique might require the onnetions ofthousands of on�gurations or states to �nd a solution,and if eah onnetion is akin to a nonlinear ontrol prob-lem, it seems impratial for many nonholonomi (andkinodynami) problems that arise in robotis and relatedareas.In this paper, we introdue a randomized data stru-ture for path planning that is designed for problems thathave nonholonomi onstraints. This leads to the in-trodution of a Rapidly-exploring Random Tree (RRT),whih is de�ned in Setion 2. An RRT inludes some ofthe same desirable properties as a probabilisti roadmap.Both are designed with as few heuristis and arbitrary1



parameters as possible. This tends to lead to better per-formane analysis and onsisteny of behavior. It alsofailitates the adaptation of the methods to related ap-pliations. The unique advantage of RRTs is that theyan be diretly applied to nonholonomi and kinody-nami planning. This advantage stems from the fatthat RRTs do not require any onnetions to be madebetween pairs of on�gurations (or states), while proba-bilisti roadmaps typially require tens of thousands ofonnetions. As disussed shortly, RRTs might be moreeÆient than a basi probabilisti roadmap for holo-nomi path planning.2 Rapidly-Exploring Random TreesPath planning will generally be viewed as a searh ina metri spae, X , for a ontinuous path from an ini-tial state, xinit to a goal region Xgoal � X or goal statexgoal. We use the term state spae to indiate a greatergenerality than is usually onsidered in path planning.For a standard problem, X = C, whih is the on�gura-tion spae of a rigid body or system of bodies in a 2Dor 3D world [5℄. For a kinodynami planning problem,X = T (C), whih is the tangent bundle of the on�gu-ration spae [7℄ (a state enodes both on�guration andveloity). Many other interpretations of X are possible.It is assumed that a �xed obstale region, Xobs � Xmust be avoided, and that an expliit representation ofXobs is not available. One an only hek whether a givenstate lies in Xobs. States in Xobs ould orrespond to ve-loity bounds, on�gurations at whih a robot is in ol-lision with an obstale in the world, or several other in-terpretations, depending on the appliation. A Rapidly-exploring Random Tree (RRT) will be onstruted sothat all of its verties are states in Xfree, the omple-ment of Xobs. Furthermore, eah edge of the RRT willorrespond to a path that lies entirely in Xfree.A state transition equation of the form _x = f(x; u)is de�ned to express the nonholonomi onstraints. Thevetor u is seleted from a set, U , of inputs. The ve-tor _x denotes the derivative of state with respet totime. This ontrol-theoreti representation is powerfulenough to enode virtually any kinemati and dynamialmodel. By integrating f over a �xed time interval, �t,the next state, xnew an be determined for a given ini-tial state, x, and input u 2 U . Using Euler integration,xnew � x+f(x; u)�t; however, it is usually preferable touse a higher-order integration tehnique, suh as Runge-Kutta. Let NEW STATE(x; u;�t) denote an algorithmthat returns xnew .For holonomi planning, one an de�ne f(x; u) = u,and kuk � 1, whih implies that any bounded veloityan be ahieved. After integrating f over �t, a new statean be obtained that moves the system in any diretion

relative to x. For a nonholonomi problem, the nextstate is onstrained due to the hoie of f .For a given initial state, xinit, an RRT, T , with Kverties is onstruted as shown below:GENERATE RRT(xinit ;K;�t)1 T .init(xinit);2 for k = 1 to K do3 xrand  RANDOM STATE();4 xnear  NEAREST NEIGHBOR(xrand; T );5 u SELECT INPUT(xrand; xnear);6 xnew  NEW STATE(xnear ; u;�t);7 T .add vertex(xnew);8 T .add edge(xnear ; xnew; u);9 Return TLet � denote a distane metri on the state spae.The �rst vertex of T is xinit 2 Xfree. In eah iteration,a random state, xrand, is seleted from X (it is assumedthat X is bounded). Step 4 �nds the losest vertex toxrand in terms of �. Step 5 selets an input, u, that mini-mizes the distane from xnear to xrand, and ensures thatthe state remains in Xfree. Collision detetion an beperformed by an inremental method suh as Mirtih'sV-Clip. NEW STATE is alled on eah input to eval-uate a potential new state (if U is not �nite, it an bedisretized, or an alternative optimization proedure anbe used). The new state, xnew, whih is obtained by ap-plying u, is added as a vertex to T . An edge from xnearto xnew is also added, and the input u is reorded withthe edge (beause this input must be applied to reahxnew from xnear).3 Nie Properties of RRTsThis setion presents several properties of RRTs,whih make them ideally suited for a wide variety ofpratial planning problems. The key advantages ofRRTs are: 1) the expansion of an RRT is heavily biasedtoward unexplored portions of the state spae; 2) the dis-tribution of verties in an RRT approahes the samplingdistribution, leading to onsistent behavior; 3) an RRTis probabilistially omplete under very general ondi-tions; 4) the RRT algorithm is relatively simple, whihfailitates performane analysis (this is also a preferredfeature of probabilisti roadmaps); 5) an RRT alwaysremains onneted, even though the number of edges isminimal; 6) an RRT an be onsidered as a path plan-ning module, whih an be adapted and inorporatedinto a wide variety of planning systems; 7) entire pathplanning algorithms an be onstruted without requir-ing the ability to steer the system between two presribedstates, whih greatly broadens the appliability of RRTs.To gain a better understanding of RRTs, onsider thespeial ase in whih X is a bounded, onvex region in2



the plane. Assume that a holonomoi model is used,implying that f = u and U = fu 2 <2 j kuk � 1g.Let � represent the Eulidean metri. The frames belowshow the onstrution of an RRT for the ase of X =[0; 100℄� [0; 100℄, �t = 1, and xinit = (50; 50):
The RRT quikly expands in a few diretions to quiklyexplore the four orners of the square. Although the on-strution method is simple, it is no easy task to �nd amethod that yields suh desirable behavior. Consider,for example, a naive random tree that is onstruted in-rementally by seleting a vertex at random, an inputat random, and then applying the input to generate anew vertex. Although one might intuitively expet thetree to \randomly" explore the spae, there is atuallya very strong bias toward plaes already explored (oursimulation experiments yielded an extremely high den-sity of verties near xinit, with little other exploration).A random walk also su�ers from a bias toward plaesalready visited. An RRT works in the opposite mannerby being biased toward plaes not yet visited. This anbe seen by onsidering the Voronoi diagram of the RRTverties. Larger Voronoi regions our on the \frontier"of the tree. Sine vertex seletion is based on nearestneighbors, this implies that verties with large Voronoiregions are more likely to be seleted for expansion. Onaverage, an RRT is onstruted by iteratively breakinglarge Voronoi regions into smaller ones.Based on simulation experiments, suh as the oneshown above, we have onluded that the generatedpaths are not far from optimal and that the verties willeventually beome uniformly distributed. Even thoughthe paths appear jagged, note that no spiraling ours.Based on several experiments in 2D, onvex spaes, theoptimal path to the root in omparison to the path inthe RRT, di�er on average by a fator of 1.3 to 2.0. Uni-formity of the RRT verties was repeatedly on�rmed bythe passing of several Chi-square tests, whih are typi-ally used to evaluate random number generators.It is not diÆult to prove that the verties will beomeuniformly distributed. As the RRT initially expands, theverties are learly not uniformly distributed; however,the probability that a randomly-hosen point lies within�t of a vertex of the tree eventually approahes one. Inthis ase, the random sample will be added as a vertexto the tree. If the samples are generated uniformly, theverties in the tree will beome uniform. This result is

independent of the initial vertex loation (also on�rmedby our experiments)! In general, if the points xrand aresampled from any smooth probability density funtion,p(x), the verties of the RRT will distributed aordingto p(x). This property is very useful for generating bi-asing shemes. A ruial piee of analysis that remainsopen is the rate of onvergene.For interesting planning problems, X will be nonon-vex. In this ase, the RRT verties will still beome uni-formly distributed; however, one would expet the rateof onvergene to be slower. This leads to a probabilisti-ally omplete [4℄ holonomi planner. Ideal performaneould be obtained by de�ning a metri, �, that yields thelength of the shortest path between two states, but deter-mining this metri is as diÆult as solving the path plan-ning problem. All randomized path planning methodssu�er from the diÆulty of determining or estimating theideal metri. In the ase of nonholonomi systems, theresulting RRT remains probabilistially omplete underfairly general onditions; however, onvergene issues be-ome even more important. For kinodynami planning,the ideal metri (or pseudometri, due to asymmetry)would be one that gives the ost of the optimal traje-tory between any two states. One again, determiningthis metri is as hard as solving the original problem.Thus, we (and others) are fored to use simple metris,hoping that onvergene will be fast in pratie.Based on our preliminary experiments, it appearsthat RRTs might be faster than the basi probabilis-ti roadmap approah for holonomi planning problems.An RRT is minimal in the sense that it is always able tomaintain a onneted struture with the fewest edges. Aprobabilisti roadmap often su�ers in performane be-ause many extra edges are generated in attempts toform a onneted roadmap. RRTs also require singlenearest-neighbor queries, while probabilisti roadmapsrequire more-expensive k-nearest neighbor queries. Col-lision detetion is a key bottlenek in path planning, andan RRT is ompletely suited for inremental ollision de-tetion. This allows the fastest-avaliable ollision dete-tion algorithms to be applied for every ollision hek.For these reasons and our preliminary observations fromexperimentation, it appears that an RRT-based plannermay generally yield better performane than a proba-bilisti roadmap-based planner; however, it is diÆult tomake a onlusive experimental omparison.4 ExamplesSeveral illustrative examples of RRTs are presentedhere. In a related paper [7℄, we presented an RRT-basedplanner that omputes ollision-free kinodynami traje-tories that �re thrusters for hoverrafts and satellites inluttered 2D and 3D environments. Several ompliated3



problems were solved, inluding unontrollable systemsand a 3D rigid body with dynamis (a 12D state spae).

Eah example above shows a 2D rigid body that movesin a 2D environment. The projetion of the RRT intothe plane is shown, along with a omputed path forthe robot. In the upper left, a solution to a tightly-onstrained 3D holonomi planning problem is shown.In the upper right, an RRT is shown for ar that is onlyallowed to move forward and turn right in varying de-grees. The lower left shows a omputed solution for anunontrollable ar in a luttered environment. The ar isonly apable of moving forward and turning left in threedi�erent inrements (it annot even move straight). Fig-ure 1 shows an RRT and a omputed trajetory for a5DOF dynamial model of a ar. A solution path for thissame model in a luttered environment is shown abovein the lower right. The urrent implementation negletsmany eÆieny issues; nevertheless, the omputationalperformane is enouraging so far.5 Researh IssuesAlthough our experiments with RRTs have beensuessful, many hallenging issues remain. EÆientnearest-neighbor tehniques are needed, whih has beena topi of ative interest in omputational geometry.There are a variety of ways to embed an RRT into aplanner. EÆient planners an be designed by gener-ating multiple RRTs (for example, one rooted at xinitand another rooted at xgoal). An RRT ould replae therandom walk stage in a randomized potential �eld ap-proah. For some problems, it might be preferable toobtain multiple, homotopially-distint paths. In this

ase, an RRT ould be onverted into a yli graph.Within a homotopy lass, the solution quality an begenerally improved by employing variational tehniques.Also, there are many issues involved in biasing the sam-ples, xrand. For example, a bias an be given that slightlyprefers a goal state (if the arti�ial bias is too strong, theRRT ould su�er the same pitfalls as a potential �eldmethod). Signi�ant theoretial analysis of RRTs alsoremains. It would be partiularly valuable to determinebounds on the onvergene rate and on solution qualitywith respet to the optimal solution.At the present time, we believe we have barelysrathed the surfae of potential appliations of RRTs.By allowing dynamis to be onsidered diretly, robotplanning problems for numerous navigation, manipula-tion, and loomotion tasks an be approahed. Auto-motive engineers an evaluate virtual prototypes to de-termine whether a proposed vehile is likely to roll oversideways, or an perform high-speed lane hanges. Simi-lar problems an be imagined in the design of spaeraft,airraft, and underwater vehiles. Researhers in om-putational uid dynamis an study the e�ets of ow�elds on movable bodies. In omputer graphis, dynami-al motions of simulated mahines and digital ators anbe automated.Aknowledgments I thank Brue Donald for his en-ouragement to explore kinodynami planning, JamesKu�ner for his suggestions and experimental work usingRRTs, and Jim Bernard for providing a dynamial ve-hile model. Steve LaValle is partially supported by anNSF CAREER award.Referenes[1℄ N. M. Amato and Y. Wu. A randomized roadmap methodfor path and manipulation planning. In IEEE Int. Conf.Robot. & Autom., pages 113{120, 1996.[2℄ J. Barraquand and J.-C. Latombe. Robot motion plan-ning: A distributed representation approah. Int. J.Robot. Res., 10(6):628{649, Deember 1991.[3℄ B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kin-odynami planning. Journal of the ACM, 40:1048{66,November 1993.[4℄ L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.Overmars. Probabilisti roadmaps for path planningin high-dimensional on�guration spaes. IEEE Trans.Robot. & Autom., 12(4):566{580, June 1996.[5℄ J.-C. Latombe. Robot Motion Planning. Kluwer Aa-demi Publishers, Boston, MA, 1991.[6℄ J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guide-lines in nonholonomi motion planning for mobile robots.In J.-P. Laumond, editor, Robot Motion Plannning andControl, pages 1{53. Springer-Verlag, Berlin, 1998.[7℄ S. M. LaValle and J. J. Ku�ner. Randomized kinody-nami planning. In Pro. IEEE Int'l Conf. on Robotisand Automation, 1999. To appear.4


