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Online Trajectory Generation: Basic Concepts for
Instantaneous Reactions to Unforeseen Events

Torsten Kröger, Member, IEEE, and Friedrich M. Wahl, Member, IEEE

Abstract—This paper introduces a new method for motion-
trajectory generation of mechanical systems with multiple degrees
of freedom (DOFs). The key feature of this new concept is that
motion trajectories are generated online, i.e., within every control
cycle, typically every millisecond. This enables systems to react
instantaneously to unforeseen and unpredictable (sensor) events
at any time instant and in any state of motion. As a consequence,
(multi)sensor integration in robotics, in particular the development
of control systems enabling sensor-guided and sensor-guarded mo-
tions, becomes greatly simplified. We introduce a class of online
trajectory-generation algorithms and present the mathematical ba-
sics of this new approach. The algorithms presented here consist of
three steps: calculation of the minimum synchronization time for
all DOFs, synchronization of all DOFs, and calculation of output
values. The theory is followed by real-world experimental results
indicating new possibilities in robot-motion control.

Index Terms—Hybrid switched systems, multisensor integra-
tion, robot-motion control, trajectory generation.

I. INTRODUCTION

THIS PAPER focuses on sensor integration in robotics,
in particular in robotic-manipulation control systems. We

consider a mechanical system with multiple degrees of freedom
(DOFs) equipped with one or more sensors delivering digital
and/or analog sensor signals. It is—of course—no matter of
question that sensor integration and sensor-based control be-
long to the very basics in robotics. However, there is still one
important question that has yet to be completely answered: If
we consider a robot in an arbitrary state of motion, how can
we calculate a trajectory if we want the robot to react instan-
taneously to unforeseen sensor events? This is comparable to
many human everyday life scenarios: If a little child acciden-
tally touches a stove with its hand, he or she knee-jerkily reacts
by pulling its hand away from the hot surface. Another scenario
could be the fight of two swordsmen: Depending on the motion
of the opponent, the fighters react immediately by adapting their
own body motions and moves.

Before coming up with details, we would like to make some
basic clarifications: A robotic system is considered as a mechan-
ical and/or mobile system with multiple DOFs. Assuming such
a system to be equipped with a number of (different) sensors,
we distinguish between
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Fig. 1. Subject of this paper: Instantaneous switchings between trajectory-
following motions and sensor-guided motions.

1) trajectory-following control;
2) sensor-guided motion control;
3) sensor-guarded motion control.
Sensor-guided motion control employs the system’s actuators

to be part of a control loop, whose control variables are based
on sensor signals (cf. Fig. 1). We consider a sensor as a generic
device that delivers a signal depending on the overall system
state, i.e., the robotic system with its complete environment.
Clear and concrete examples are force/torque control (e.g., [1],
just to name one out of many) and visual servo control (e.g., [2]).
Here, the robot motion of one single control cycle depends on
the sensor signal(s) of the current control cycle.

In contrast to this, sensor-guarded motions are considered
as trajectory-following motions and/or sensor-guided motions
(cf. Fig. 1), whose motion parameters may change abruptly,
depending on sensor events. These parameter changes may in-
clude set-point switchings for closed-loop controllers (e.g., new
force/torque control set-points) as well as new target positions
for trajectory-following control. Simple examples here are the
transition from free space to contact, i.e., the transition from
pose to force/torque control. In the moment of transition, the
robot controller switches the controllers for all DOFs being in
contact from trajectory-following control to force/torque con-
trol. A second obvious example is the instantaneous reaction
of a robotic system to any predictable or unpredictable event:
The manipulator of [3] plays the parlor game Jenga [4] and
has to interrupt any motion as soon as the game tower starts to
topple.

In the development of such systems, it becomes evident that
we need to switch discretely between several (open- and/or
closed-loop) continuous controllers at any time. If we arbitrarily
switch one or more DOFs from trajectory-following control
to sensor-guided control, this problem is usually solved. By
using the transfer function of a desired controller, command
variables for lower level control can be generated at any time
instant (cf. Fig. 1). However, how can we switch one, some,
or all DOFs of a robotic system from sensor-guided control
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to trajectory-following control? If we consider a robot in an
arbitrary state of motion, how can we calculate a trajectory if we
want the robot to react instantaneously to unforeseen (sensor)
events?

This is the central question of this paper, whose central nov-
elty is an open-loop control module that is able to generate
time-optimal and time-synchronized motion trajectories for me-
chanical systems with multiple DOFs during runtime, i.e., on-
line during every control cycle. This opens completely new
advances for multisensor integration in robotic systems, and hy-
brid switched-control systems become suited for a wide range
of robotic applications.

Let us now give a short overview of this paper: After related
works have been presented in Section II, Section III introduces
some basics, a dedicated notation for this paper, and some spe-
cial conventions used throughout the paper. During the develop-
ment of this paper, nine different types of online trajectory gen-
erators (OTG) were elaborated and are classified in Section IV.
The basic algorithm applied to any type of online trajectory gen-
eration is introduced in Section V, whereas Section VI describes
the most relevant type of OTG, i.e., Type IV. After the relation of
this new concept to higher-level (sensor-based) motion-planning
system is discussed in Section VII, Section VIII presents simu-
lation and real-world experimental results, which highlight the
practical relevance of this concept.

II. RELATED WORK

Off-Line Trajectory-Generation Concepts: Kahn and Roth [5]
belong to the pioneers in the field of time-optimal trajectory
planning. They used methods of optimal, linear control theory
and achieved a near-time-optimal solution for linearized manip-
ulators. The work of Brady [6] introduces several techniques of
trajectory planning. In later works, the manipulator dynamics
were taken into account [7], and jerk-limited trajectories were
applied [8]. The concept of Lambrechts et al. [9] produces very-
smooth fourth-order trajectories but is also limited to a known
initial state of motion and to one DOF.

Real-Time Adaptive-Motion Planning: In recent times, works
on real-time adaptive-motion planning have been published
[10]–[13]. Here, the field of online trajectory planning is ad-
dressed and the path of a robotic manipulator is adapted that
depends on its state and environment. This proposal focuses
on online trajectory generation, which is more related to the
field of robot control. It acts as an important interface to such
higher-level planning methods of [10]–[13] (cf. Section VII).

Online Trajectory-Generation Concepts: The works mostly
related to this paper are [14]–[19]. Macfarlane and Croft [14]
present a jerk-bounded, near-time-optimal trajectory planner
that uses quintic splines, which are also computed online but
only for 1-DOF systems. In [15], Cao et al. use rectangular
jerk pulses to compute trajectories, but accelerations different
from zero cannot be applied. Compared with the multi-DOF
approach presented here, the latter method has been developed
for 1-D problems only. Broquère et al. [16] published a work
that uses an online trajectory generator for an arbitrary number
of independently acting DOFs. The approach is very similar to

the one of Liu [17] and is based on the classic seven-segment
acceleration profile [20], but the approach is unfortunately also
incomplete and can only perform reactions if the current accel-
eration value of a DOF is zero. Briefly summarized, a major
disadvantage of [14]–[17] is that they cannot cope with initial
acceleration values unequal to zero. A further, very recent work
of Haschke et al. [18] presents an online trajectory planner in
the very same sense as this paper does. The proposed algorithm
generates jerk-limited trajectories from arbitrary states of mo-
tion, but it suffers from numerical stability problems, i.e., it
may happen that no jerk-limited trajectory can be calculated.
In such a case, a second-order trajectory with infinite jerks is
calculated. Furthermore, the algorithm only allows target ve-
locities of zero. Ahn et al. [19] proposed a work for the online
calculation of 1-D trajectories for any given state of motion
and with arbitrary target states of motion, i.e., with target ve-
locities and target accelerations unequal to zero. Sixth-order
polynomials are used to represent the trajectory, which is called
arbitrary-states polynomial-like trajectory (ASPOT). The major
drawback of this paper is that no kinematic-motion constraints,
such as maximum velocity, acceleration, and jerk values, can be
specified.

Concepts for Instantaneous Reactions to Collisions and Inter-
actions: Heinzmann and Zelinsky [21] introduced a method to
limit impact forces in the case of undesired collisions, such that
damage and possible human injuries are prevented. Based on the
skeleton algorithm [22], De Santis and Siciliano [23] present a
reactive method for collision avoidance in which propriocep-
tive sensor data are used to calculate repulsion forces and joint
torques to “flee” from the position in which a potential collision
is expected. Based on these works, Haddadin et al. [24] present
a very impressive work on the detection of unforeseen collisions
and respective reaction concepts. Five different collision (= sen-
sor event) reaction strategies are investigated: 1) no reaction; 2)
immediate stopping; 3) switching from position control to zero-
gravity torque control [25]; 4) switching to torque control with
gravity compensation, but, in contrast, to; 3) using joint torque
feedback and the signal of the estimated external torque, which
is used as a collision signal, to scale down both the motor inertia
as well as the link inertia, thus obtaining an even “lighter” robot;
and 5) using the estimated external torque to implement an ad-
mittance controller. The strategies 3–5 contain switchings from
trajectory-following control to sensor-guided robot motion con-
trol; this paper considers the opposite way of switching: from
sensor-guided motion back to trajectory-following control (cf.
Fig. 1) or abrupt switching of trajectory parameters (e.g., target
state of motion and/or kinematic-motion constraints) to react to
unforeseen events such as the detection of potential collisions.

The proposed class of algorithms of this paper closes the
important loop of Fig. 1. Summarizing this section briefly, all
mentioned approaches are not able to cope with arbitrary initial
states of motion, i.e., arbitrary position, velocity, and accel-
eration values, in a robust way—neither for the one- nor for
the multidimensional case. This paper extends all mentioned
works, such that instantaneous reactions to unforeseen (sen-
sor) events become feasible for multi-DOF robotic systems
(cf. Fig. 1).
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III. BASICS, NOTATIONS, AND CONVENTIONS

This section briefly introduces the nomenclature used
throughout this paper, defines some important terms, and gives
a first impression how the regarded trajectories are mathemati-
cally represented.

As we consider PC- or microcontroller-based systems for
robot-motion control, we assume a time-discrete overall system
with a set of time instants

T = {T0 , . . . , Ti, . . . , TN }
with Ti = Ti−1 + T cycle and i ∈ {1, . . . , N} (1)

where T cycle represents the cycle time of the system. Time-
discrete values are represented by capital letters, time-
continuous values by lowercase letters. The position of the
robotic system at time Ti is �Pi = (1Pi, . . . , kPi, . . . , K Pi)

T ,
where K is the number of DOFs. Velocities, accelerations, and
jerks are analogously represented by �Vi , �Ai , and �Ji . A complete
state of motion at time Ti is described by the matrix

Mi = (�Pi, �Vi, �Ai, �Ji)

= (1 �Mi, . . . , k
�Mi, . . . , K

�Mi)T . (2)

Kinematic-motion constraints are analogously denoted as

Bi = (�V max
i , �Amax

i , �Jmax
i , �Dmax

i ) (3)

where �Dmax
i is the maximum value for the derivative of jerk at

time Ti . A target state of motion is denoted by

M trgt
i = (�P trgt

i , �V trgt
i , �A trgt

i , �J trgt
i ). (4)

TN is the time instant at which Mtrgt
i will be reached. As we

will explain later, time-continuous polynomials are needed for
the internal representation of trajectories. Here

l
k pi(t) = a4(t − ∆t)4 + a3(t − ∆t)3

+ a2(t − ∆t)2 + a1(t − ∆t) + a0 (5)

constitutes a fourth-order polynomial describing the position
progression for DOF k, time-shifted by ∆t, and calculated at
time instant Ti . The index l is described later in this section.
Polynomials for velocity, acceleration, and jerk progressions are
analogously denoted by l�vi(t), l�ai(t), and l�ji(t). In summary,
we obtain a matrix of polynomials

lmi(t) = (l �pi(t), l�vi(t), l�ai(t), l�ji(t))

= (l
1 �mi(t), . . . , l

k �mi(t), . . . , l
K �mi(t))T (6)

where a single row, i.e., the polynomials of one single DOF k,
is denoted by

l
k �mi(t) =

(
l
k pi(t), l

k vi(t), l
k ai(t), l

k ji(t)
)
. (7)

Each set of motion polynomials lmi(t) for all K DOFs is ac-
companied by a set of time intervals

lVi =
{

l
1ϑi, . . . ,

l
kϑi, . . . ,

l
K ϑi

}
, where l

kϑi =
[l

k
ti ,

(l+1)
k ti

]

(8)
in which a set of polynomials l

k �mi(t) for one single DOF k is
valid. A complete motion trajectory Mi(t) is finally composed

of a set of motion polynomials with according time intervals

Mi(t) = {(1mi(t), 1Vi), . . . , (lmi(t), lVi),

. . . , (Lmi(t), LVi)}. (9)

Depending on the type and variant of OTG (cf. Section IV), the
initial state of motion M0 , and the target state of motion Mtrgt

0 ,
the value L determines the required number of polynomials
(i.e., the number of single trajectory segments) to describe the
complete trajectory from M0 to Mtrgt

0 .
One important property of OTG is that all DOFs, which are

selected for trajectory-following control, have to reach their
target state of motion Mtrgt

i at the same time instant, namely at
tsync
i in order to achieve time synchronization. As a consequence

of this requirement, we can already state that

TN − tsync
i ≤ T cycle . (10)

Just to give an impression of time dimensions, T cycle lies in
the range of one millisecond or less, i.e., the resulting OTG
algorithms are designed to be applicable on a very low control
level.

In the following, the term time optimality is supposed to be
defined; we distinguish between the following two different
kinds:

1) Kinematic time-optimality: A system is transferred from
an initial state of motion Mi at instant Ti into a desired
target state of motion Mtrgt

i within the shortest possible
time without any consideration of couplings between in-
dividual DOFs.

2) Dynamic time-optimality: A system is transferred from
an initial state of motion Mi at instant Ti into a desired
target state of motion Mtrgt

i within the shortest possible
time with consideration of the whole system dynamics.

In the context of this paper, kinematic time optimality is con-
sidered. The important consequence of kinematic time optimal-
ity is, that all K DOFs can be considered to be linearly indepen-
dent. When calculating Mi(t) at Ti , the following requirements
have to be fulfilled to achieve time optimality:

∀ k ∈ {1, . . . , K}:
1
k ti = Ti

1
k �mi(Ti) = k

�Mi

l
k �mi(l

k ti) = l−1
k

�mi(l
k ti) with l ∈ {2, . . . , L}

L
k �mi(t

sync
i ) = k

�M trgt
i (11)

and

∀ (k, l) ∈ {1, . . . , K} × {1, . . . , L}:
l
k vi(t) ≤ kV max

i

l
k ai(t) ≤ kAmax

i

l
k ji(t) ≤ kJmax

i

l
k di(t) ≤ kDmax

i






, with t ∈
[l

k
ti ,

l+1
k ti

]
(12)

such that

tsync
i −→ min. (13)
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Fig. 2. Example of a very simple case of a fourth-order motion trajectory for
one DOF k consisting of L = 15 matrices of polynomials lmi (t) [cf. (6)]. The
input parameters are k

�M0 = �0, k
�B0 = (9.4 mm/s, 22.4 mm/s2 , 160 mm/s3 ,

2000 mm/s4 ), and k
�M trgt

0 = (8.8 mm, 0 mm/s, 0 mm/s2 , and 0 mm/s3 )
(cf. [9]).

Equation (11) describes the single-motion states at the beginning
or at the end of a trajectory segment l, respectively. Due to (12),
it is guaranteed that the motion variables are kept within their
kinematic constraints.

Now, we know how to describe a complete motion trajectory
Mi(t) at a time instant Ti . It constitutes the minimum set of
parameters to handle sets of trajectories for OTG. For a better
understanding and to clarify these introductory equations, Fig. 2
depicts a simple (translational) motion trajectory for one single
DOF k.

As last part of this section, we explain the accordance of
these introductory description to the input and output values of
the OTG algorithms. Fig. 3 shows all input parameters

Wi = (Mi ,M
trgt
i ,Bi , �Si) (14)

and all output values Mi+1 of the OTG algorithm, where Wi

is an arbitrary (K × 13) matrix. The selection vector �Si is a
Boolean vector and determines which of the K DOFs have to
be controlled by the OTG. The DOFs, which are controlled by
other open- or closed-loop controllers, are not considered by the
algorithm.

Fig. 3. Input and output values the OTG (z−1 represents a hold element). The
dotted part indicates how the output values of the OTG are usually fed back.

We assume arbitrary values for Wi as granted; the only (triv-
ial) kinematic constraint is given by (15)

∀ k ∈ {1, . . . ,K}:

kV trgt
i ≤ kV max

i ∧ kAtrgt
i ≤ kAmax

i ∧ kJ trgt
i ≤ kJmax

i . (15)

As already stated in (13), the challenge is to find a motion
trajectory Mi(t) that transfers the state of motion from Mi to
Mtrgt

i within the shortest possible time. For the current control
cycle at Ti , only Mi+1 is needed, because in the next control
cycle, we might have completely new input values Wi due to an
unforeseen event or switching action. Hence, only Mi+1 is for-
warded to the output. These values are then used as input values
for lower level control. This leads to the interesting requirement
that if the input values Mtrgt

i , Bi , and �Si remain constant for
i ∈ {0, . . . , N}, and if the output values Mi+1 are directly fed
back as input values for the following control cycle (cf. dotted
part of Fig. 3), then we have the following.

1) The value of the synchronization time must remain con-
stant during the whole trajectory execution, i.e., tsync

i =
const ∀ i ∈ {0, . . . , N}. This fact is relevant for time syn-
chronization such that �V trgt

i , �Atrgt
i , and �J trgt

i are coin-
stantaneously reached in �P trgt

i at tsync
i .

2) All trajectories Mu (t) with u ∈ {1, . . . , N} must exactly
fit into the one of M0(t).

3) Furthermore, any trajectory Mu (t) with u ∈ {1, . . . , N}
must exactly fit into all previously-calculated motion tra-
jectories Mv (t) with v ∈ {0, . . . , u − 1}.

The general algorithm for the calculation of Mi(t) is de-
scribed in Section V, but prior to this, we classify different
types and variants of OTG in the next section.
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TABLE I
DIFFERENT TYPES OF OTG

To summarize this section briefly, we introduced a dedicated
notation and described the task of OTG very generally without
offering solutions. Besides this, the important terms of time op-
timality and time synchronization were clarified for the context
of this paper.

IV. TYPES AND VARIANTS OF ONLINE

TRAJECTORY GENERATION

This section defines different types and variants of OTG al-
gorithms, i.e., the class of algorithms introduced by this paper.
Depending on the type, the algorithmic complexity and the prac-
tical relevance differ strongly.

A. Types of OTG

In general, we can denote that the output values of an OTG
algorithm are a function f of the input parameters, the OTG
algorithm itself is memoryless (it has no memory)

Mi+1 = f(Wi), where

f : IRαK × IBK −→ IRβK (16)

and IB = {0, 1} is responsible for the selection vector �Si . α and
β are type-dependent integer values. Table I shows a summary
of types of OTG. The OTG block of Fig. 3—if fully connected
to all input parameters and output values—corresponds to Type
IX. Depending on the type, not all input and output magnitudes
are in use. Type VIII, for example, does not offer to specify
�J trgt
i . Fig. 2, for example, shows a Type VI trajectory. β = 4

means that the position progression is described by polynomials
of up to fourth order, i.e., even the derivative of the jerk is lim-
ited ( �Dmax

i ∈ IRK ). All further types are defined analogously.
To finalize Table I, one may denote the trivial and irrelevant case
with rectangular velocity profiles as Type 0 (with α = 3, β = 1).
Of course, it would also be possible to extend Table I by higher
order trajectories (Type X, XI, etc.), but the complexity strongly
increases with increasing type numbers, such that the develop-
ment of these algorithms is hardly possible. For clarification,
this paper presents a whole class of algorithms that is applica-
ble to all types of OTG; the higher order types (Types VI and

higher) are of theoretical character, but the Types I–V are highly
relevant for sensor-based robot-motion control.

A very specific version of Type I was already suggested in [26]
and works as well as Type II with unlimited jerks. These two
types may offer sensor-integration possibilities for experimen-
tal purposes, for example, in research institutions, but due to
the nonsmooth bang–bang or trapezoidal trajectory character-
istics [27], they are not relevant for industrial practice, as has
already been stated in [5]. To achieve long lifetimes for me-
chanical systems, a jerk limitation is required (Types III–V).
Compared with Type III, Types IV and V additionally pro-
vide the possibility of specifying target-velocity vectors and/or
target-acceleration vectors in space, which is important for the
consideration of system dynamics. As a result, Type IV is the
first type of OTG, which is relevant for professional usage.

B. Variants of OTG

Regarding different variants of OTG, we distinguish between
constant and nonconstant kinematic constraint values and define
two variants A and B as

A) Bi = const ∀ i ∈ Z

B) Bi �= const.
The second, slightly more advanced variant with time-variant

values of kinematic motion constraints will be introduced in
a follow-up publication and is important for the integration of
robot dynamics in order to consider state-dependent and time-
variant values of �Amax

i .

C. Positional Limits

The consideration of positional limits (k
�Pmin

i , k
�Pmax

i ) (e.g.,
joint limits or Cartesian work space limits) cannot be embedded
in the OTG algorithm. In order to clarify this, Fig. 4 shows the
cuboidal motion constraint space for the OTG Types III–V [cf.
Table I and (3) and (12)] as well as the positional constraints
kPmax

i and kPmin
i for one single DOF k at instant Ti . If we then

consider the current state of motion for this DOF k as

k
�Mi = (kPi,+ kV max

i , 0, 0) (17)
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Fig. 4. (Top) Kinematic motion constraints k
�Bi of 1-DOF k at instant Ti for

the OTG Types III–V [cf. Table I and (3) and (12)], 3-D. (Bottom) Positional
limits, 1-D. The current state of motion for DOF k, k

�Mi , is marked by the white
circle with the black dot in both diagrams [cf. (17)].

where kPi is very close to kPmax
i (cf. Fig. 4), we have the choice

to
1) either overshoot kPmax

i and keep k
�Mi within k

�Bi , or
2) exceed k

�Bi and keep kPmax
i .

However, we cannot guarantee both (which is natural in this
situation). The requirement we have for practical implementa-
tions is that we have to react to sensor events at unforeseen in-
stants and in arbitrary states of motion. Hence, the responsibility
of keeping kPi within [kPmin

i , kPmax
i ] for all k ∈ {1, . . . , K}

is transferred to the system (or user) above the layer of the OTG
algorithm (e.g., a task or high-level motion planner). As also de-
scribed in [14]–[18], it is the task of the OTG layer to move one,
some, or all DOFs of a robotic system from an initial position �Pi

to a target position �P trgt
i , and the system above is responsible

for the (trivial) fact that

kP trgt
i ∈

[
kPmin

i , kPmax
i

]
∀ k ∈ {1, . . . , K} (18)

for the OTG Types I, III, and VI [cf. (15) and Table I). For
other OTG types, (18) becomes extended, because case differ-
entiations have to be made. This topic will be investigated in
Section VII.

V. ONLINE TRAJECTORY GENERATOR ALGORITHM—GENERAL

VERSION

Sections III and IV introduced basics, requirements, and types
of OTG. This section applies these foundations and describes the
central OTG algorithm generally, such that it is applicable to all
types and variants of OTG. To clarify its usage, Section VI de-
tails the algorithm concretely by means of Type IV and presents
practical results.

Assuming the algorithm is called at a discrete time instant Ti ;
all types of OTG require the same three algorithmic steps:

Step 1: calculation of the minimum possible tsync
i ;

Step 2: synchronization of all selected DOFs to tsync
i and

calculation of Mi ;
Step 3: calculation of Mi+1 based on Mi .
These steps are depicted in Fig. 5, which shows the overall

structogram of the OTG algorithm. The following three sections
describe each step in detail.

Fig. 5. Nassi–Shneiderman structogram of the general OTG algorithm.

A. Step 1

This step is the most complex one, although it only computes
the synchronization time tsync

i , i.e., one scalar value. It is a
function

f : IRαK × IBK −→ IR. (19)

As can be seen in Fig. 5, Step 1 can be subdivided into three parts:
the individual calculation of the minimum execution time k tmin

i

for each selected DOF k; the calculation of possibly existing
inoperative time intervals kZi , in which a selected DOF cannot
be synchronized; and finally, the determination of tsync

i .
1) Minimum Execution Time: One of the key ideas of this

algorithm is that there is a finite set of possible motion profiles of
which one profile transfers one single selected DOF k from the
initial state of motion k

�Mi to its target state of motion k
�M trgt

i

within the shortest possible time k tmin
i (time optimally). This

finite set for Step 1 is denoted by

PStep1 =
{1ΨStep1 , . . . , rΨStep1 , . . . , RΨStep1} (20)

where R is the number of elements inPStep1 and depends on the
type of OTG. A concrete profile is denoted by rΨStep1 . What
kinds of motion profiles are considered also depends on the used
type of OTG:

Types I–II : Velocity profiles (β = 2)

Types III–V : Acceleration profiles (β = 3)

Types V–IX : Jerk profiles (β = 4).

It is the task of this substep to execute a function f : IRα −→
PStep1 for every single selected DOF in order to select the
motion profile which leads to the time-optimal trajectory and
which simultaneously determines k tmin

i for each DOF k. Once
the time-optimal profile kΨStep1

i has been selected for 1-DOF
k, a system of nonlinear equations can be set up and solved to
calculate k tmin

i . The selection of kΨStep1
i can be realized by

decision trees, which are exemplarily presented in Section VI.1

1Alternatively, one could set up R systems of nonlinear equations, calculate
all solutions, take all valid solutions for k tm in

i , and choose the minimum one.
However, this procedure is computationally too expensive, especially if low
values for T cycle are desired.
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Each motion profile rΨStep1 with r ∈ {1, . . . , R} leads to a
system of nonlinear equations, and each system is solvable for
a certain domain rDStep1 with

rDStep1 ⊂ IRα . (21)

For the decision tree implementing (19), it is absolutely essential
that

R⋃

r=1

rDStep1 ≡ IRα (22)

holds. If this is not the case, the tree is erroneous, and the
algorithm will not work for certain input parameters, which
would be unacceptable for its practical application. In the work
of Broquère et al. [16] as well as in the contribution of Liu [17],
which suggest similar approaches for 1-DOF systems, (22) does
not hold, and hence, these approaches are not applicable in
general, but only for some (practically hardly relevant) special
cases.

Not even the theoretic literature provides a concept to let
only 1-DOF react instantaneously to unforeseen events with
jerk-limited trajectories. In this paper, we implicitly introduce
both, the 1-D case as well as the multidimensional case. If only
1-DOF is considered, the solution of the system of equations for
the time-optimal motion profile kΨ

Step1
i contains all required

trajectory parameters to set up Mi . The multidimensional
case, which also requires synchronization, is introduced in the
following.

2) Inoperative Time Intervals: After the minimum execution
time k tmin

i has been calculated, we have to check whether it is
possible to execute the trajectory for this DOF k within any
time t >k tmin

i . If this is the case, no inoperative time intervals
kZi = {} are existent; depending on the type, kZi may contain
up to Z = 3 time intervals in which a selected DOF k cannot be
synchronized. Referring to Table I, this can be expressed by

Z = α − 2β − 1 (23)

such that the following values of Z appear:

Types I, III, VI : Z = 0

Types II, IV, VII : Z = 1

Types V, VIII : Z = 2

Type IX : Z = 3.

If only a target position vector �P trgt
i is given (Types I, III,

and VI), the target state can, of course, be reached at any time
t ≥ tmin

i . For every further target-motion state vector, one in-
operative time interval may occur, i.e., if an additional target
velocity vector �V trgt

i is specified (Types II, IV, and VII) one
inoperative time interval may be present (cf. Fig. 6); a target
acceleration vector �Atrgt

i (Types V and VIII) leads to up to two
inoperative time intervals, etc. The inoperative time intervals of
one single DOF may overlap such that two or more intervals
affiliate to one interval.

The single elements of kZi are then denoted by

z
k ζi =

[z

k
tbegin
i , z

k tend
i

]
, with z ∈ {1, . . . , Z}. (24)

Fig. 6. Example of an inoperative time interval for one translational DOF
k calculated by a Type II OTG. Assuming k Am ax

i = 20 mm/s2 , k
�Mi =

(50 mm, 80 mm/s, 0, 0), and k
�M trgt

i = (300 mm, 70 mm/s, 0, 0), the time-
optimal case would take k tm in

i = 2820 ms. If other DOFs require more time,

this DOF k can also reach k
�M trgt

i after 1
k tb egin

i = 4950 ms, but it is not

possible to transfer DOF k to k
�M trgt

i in a time 1
k tb egin

i < t <1
k tend

i with
1
k tend

i = 10, 050 ms. For all times t ≥1
k tend

i , the synchronized execution of
DOF k is possible again. As a result for DOF k, there is an inoperative time
interval of 1

k ζi = [4950 ms, 10, 050 ms].

Fig. 7. Example of the determination of tsync
i for K = 4 DOFs. Here,

tsync
i = 1

2 tend
i .

To explain the origin of these inoperative time intervals, Fig. 6
illustrates a simple Type II trajectory with simple bang–bang
characteristics and one inoperative time interval 1

k ζi . It is ab-
solutely essential that the OTG algorithm be able to provide
a solution for any set of input values Wi . If this could not
be guaranteed, the concept would not be complete, would be
unsafe, and, thus, would be practically irrelevant. As a result,
2Z + 1 = 2α − 4β − 1 decision trees are required for Step 1,
i.e., one tree for the calculation of tsync

i and two Z trees for the
calculation of z

k ζi ∀ z ∈ {1, . . . , Z}.
3) Determining tsync

i : After the minimum execution times
for all selected DOFs and all existing inoperative time intervals
have been calculated, tsync

i can be determined easily. First, the
greatest time of all minimum execution times is taken. tsync

i

cannot be less than this value. As second step, we have to regard
that tsync

i must not be part of any inoperative time interval
z
k ζi with (z, k) ∈ {1, . . . , Z} × {1, . . . ,K}. Fig. 7 illustrates
an example with four DOFs, where tsync

i is determined.
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B. Step 2

The purpose of this step is to set up all parameters of the
trajectory Mi calculated at Ti [cf. (6)–(9)]. Wi and tsync

i act as
input parameters for this second step. Due to Step 1, we already
know that all selected DOFs are able to reach their desired
target state of motion Mtrgt

i exactly at tsync
i without exceeding

the kinematic-motion constraints Bi . Here, a similar procedure
as in the first part of Step 1 is applied. The key idea that there is a
finite set of motion profiles to set up the final motion trajectories
is employed again. This setPStep2 differs from the one of Step 1:
PStep1

PStep2 =
{1ΨStep2 , . . . , sΨStep2 , . . . , S ΨStep2} (25)

where S denotes the number of elements in PStep2 and de-
pends on the type of OTG. According to Table I, a function
f : IRα+1 −→ PStep2 is required, which determines a motion
profile for each selected DOF k. This function is again repre-
sented by a decision tree, which will be briefly described in the
next section. After the correct motion profile kΨStep2

i is chosen
for a DOF k, another system of nonlinear equations can be set
up.

According to Table I, a decision tree that acts as function

f : ((IRα+1)\ H) −→ PStep2 (26)

is required, which determines a motion profile sΨStep2 for each
selected DOF k. The meaning of H, i.e., holes in the domain
space, will be described next. Compared with Step 1, Step 2
always requires only one decision tree, which is executed once
for every selected DOF and control cycle. However, compared
with Step 1, there are two significant differences.

1) While in Step 1, more than one system of equations may
achieve a valid solution, and in Step 2, only one element of
PStep2 leads to a solvable system of equations. This fact is
rooted in the nature of the Step 2 motion profiles and leads
to a deterministic behavior, i.e., there can always be only
one possible trajectory, which transfers a selected DOF k
from k

�Mi to k
�M trgt

i in tsync
i .

2) If we denote the input domain of the system of equations
that corresponds to the motion profile sΨStep2 as

sD Step2 ⊂ IRα+1 (27)

we do not have such an equivalence as described by (22)
for Step 1

S⋃

s=1

sDStep2 �≡ IRα+1 . (28)

Due to the inoperative time intervals kZi for each selected
DOF k, the (α + 1)-dimensional space contains holes, in
which none of the systems of equations that correspond
to the motion profiles of PStep2 is solvable and in which
the decision tree of (26) does not deliver a solution. These
holes in the (α + 1)-dimensional space are represented by
the set

H ⊂ IRα+1 . (29)

Fig. 8. Two-dimensional illustration of (30). Union of all input domains
sDStep2 of the systems of equations for the motion profiles of Step 2: PStep2 .
The black areas represent H.

As a result, the union of all input domains of the systems
of equations for the Step 2 motion profiles PStep2 can
be described in (30); this is illustrated by Fig. 8. We can
also logically conclude here that the set of holes H is
disjunctive with the union of all input domains

S⋃

s=1

sDStep2 = (IRα+1)\H. (30)

Furthermore, it is an important property that the union of
pairwise intersections of all Step 2 input domains

S =
S⋃

s=1

{sDStep2 ∩ uDStep2 ∀ u ∈ {1, . . . , S}
∣
∣u �= s

}

(31)

constitutes α-dimensional hyperplanes in the (α + 1)-
dimensional space. These hyperplanes are described in
detail by the decision tree of (26). The fact that S rep-
resents only hyperplanes in the input space of Step 2 is
essential for the deterministic behavior of the OTG algo-
rithm, because this way there is only one possible motion
profile for any set of input values. If the (α + 1) input
values for a selected DOF k are an element of S, two or
even more motion profiles will lead to a solvable system
of equations, but the solution will be exactly the same for
all profiles. This fact emphasizes the overall consistency
of the proposed concept.

Let us now answer the following question: How can we de-
scribe the set of holes H? This is an important question because
we have to prevent from entering such a hole. Entering a hole
would lead to an unsolvable problem, and no output values
Mi+1 could be calculated.

The (α + 1)-dimensional space for one DOF k is spanned
by the first α elements of k

�Wi and by the synchronization time
tsync
i . The values of k

�Wi can be arbitrary [cf. (14)]. Hence, the
only parameter that can be responsible for H is tsync

i , which
was determined in Step 1. As described there, we need 2Z
decision trees to determine the limits of all inoperative time
intervals z

k ζi with (z, k) ∈ {1, . . . , Z} × {1, . . . , K}. These 2Z
decision trees exactly describe the set of holes H because we
mask the codomain of tsync

i and, thus, the (α + 1)-dimensional
input space.

An important insight at this point is that all (2Z + 1) decision
trees of Step 1 and the decision tree of Step 2 must exactly fit
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each other. It is comparable with a multidimensional puzzle
game whose parts have to fit each other exactly, and if this were
not the case, the game would not come to an end. The same
holds for the OTG algorithm: If the (2Z + 1) Step 1 decision
trees do not fit each other, the algorithm will be erroneous, and
there will exist input values Wi , to which no output values can
be calculated.

The resulting solution of the nonlinear system of equations en-
ables us to set up all L trajectory segments l

k �mi ∀ l ∈ {1, . . . , L}
as well as all corresponding time intervals l

kϑi ∀ l ∈ {1, . . . , L}
[cf. (5), (6), and (8)]. If this is done for all selected DOFs, Mi

is calculated for this time step Ti [cf. (9)].

C. Step 3

This third step of the OTG algorithm is trivial. After the com-
plete trajectory for one time step Ti , Mi , has been calculated
in Step 2, we only have to find the valid time interval l̂

k ϑi with
l̂ ∈ {1, . . . , L} such that

l̂−1
k ti ≤ (Ti + T cycle) ≤ l̂

k ti (32)

is satisfied [cf. (8) and (9)]. The output values Mi+1can finally
be calculated by

Mi+1 = l̂mi(Ti + T cycle). (33)

D. Final Remarks on the General OTG Algorithm

This section introduced the general OTG algorithm for all
types and variants of OTG. Its complexity strongly depends on
the implemented type; the higher the roman number of the OTG
type, the higher its algorithmic complexity. The measure of
complexity is influenced, in particular, by two properties: 1) the
size of the decision trees in Steps 1 and 2 and 2) the solvability of
the systems of equations, which are generated from the elements
in PStep1 and PStep2 . Over the past few years, implementations
of Types I–IV were realized by the authors, where Type IV is
the first one, which is relevant for practical usage. This type
includes Types I–III (cf. Table I) and will be concretized in the
next section.

VI. TYPE IV ONLINE TRAJECTORY GENERATION

Compared to the general OTG algorithm in Section V, this
section exemplarily introduces one concrete type of OTG: Type
IV-A. This leads us to the following general parameters for
the algorithm: α = 8, β = 3, �A trgt

i = �0 ∧ �J trgt
i = �0 ∀ i ∈ Z;

in addition, �Dmax
i may contain infinite values for any i ∈ Z.

In simple words, this type achieves kinematically time-optimal
and time-synchronized trajectories, whose velocity, accelera-
tion, and jerk values are limited, and the specification of target
velocity vectors �V trgt

i , which are reached in �P trgt
i , is possible.

Furthermore, variant A leads to constant values for Bi , i.e.,
�V max

i = const ∧ �Amax
i = const ∧ �Jmax

i = const ∀ i ∈ Z.

Fig. 9. Subset of the acceleration profile set PStep1 of Type IV-A. The dotted
horizontal line indicates the maximum acceleration values. These profiles are
required to calculate k tm in

i as well as all limits of existing inoperative time
intervals kZi for each single selected DOF k.

A. Step 1

The goal of this step is to calculate the synchronization time
tsync
i .

1) Minimum Execution Time: We first calculate the mini-
mum possible execution times for each individual DOF k, k tmin

i .
As described in the previous section, we need to specify an accel-
eration profile, which enables us to set up a system of equations
and to calculate the desired time value. Fig. 9 shows a subset
of all possible acceleration profiles PStep1 . Compared with tri-
angle (Tri) profiles, trapezoid (Trap) profiles always reach the
maximum acceleration value for the respective DOF kAmax

i .
All profiles that do not contain a zero phase do not reach the
maximum velocity for the respective DOF kV max

i .
In the following substep, we have to answer the question:

How can we determine the time-optimal acceleration profile
kΨStep1

i , i.e., the element of PStep1 that leads to k tmin
i for DOF

k? Due to lack of space, we can only show a small cutout of the
Step 1 decision tree in Fig. 10, which exemplarily explains the
functionality of decision trees. The tree actually acts as function
f : IR8 −→ PStep1 and determines the time-optimal acceleration
profile for 1-DOF k. Decision 1A.001 checks whether the current
acceleration value kAi is positive or negative. The left branch is
designed for positive values of kAi . Decision 1A.002 calculates
the velocity value if we would bring kAi down to zero (by
applying kJmax

i ). If this value is less than kV trgt
i , the left branch

will be taken. Hence, we already know that −kV max
i ≤ kVi ≤

kV trgt
i . It is our aim to reach kV trgt

i , and Decision 1A.003
checks whether a triangle or a trapezoid profile is required for
this. If a trapezoid profile is required, Decision 1A.004 will
check whether the position would be less or greater than the
target position kP trgt

i . If we are still in front of kP trgt
i , we will

need to increase the trapezoid acceleration profile, i.e., we will
definitely need a PosTrap. . .Neg. . . profile. Decision 1A.005
then checks the velocity value that would be achieved if we
would accelerate to +kV max

i by applying a trapezoid profile and
subsequently decelerate with a negative triangular profile, which
exactly reaches −kAmax

i . If the achieved velocity value is less
than kV trgt

i , we will definitely need a negative triangle profile as
second part of the composed acceleration profile. Now, we only
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Fig. 10. Cutout of the Type IV-A decision tree for Step 1 (Part A, calculate k tm in
i ) to determine an acceleration profile k ΨStep1

i that leads to the minimum-time
solution for one DOF k.

Fig. 11. PosTriNegTri profile with all relevant variables such that a system of
equations can be set up and solved in order to calculate k tm in

i or any beginning
or end of an inoperative time interval.

have to check whether +kV max
i can be reached in order to obtain

kV trgt
i in kP trgt

i (Decision 1A.006). The further decisions work
analogously to the described ones. For the development of this
kind of decision trees, it is essential that a tree covers the whole
input domain (here: IR8) such that the algorithm can work with
arbitrary input values Wi .

Once we know the correct acceleration profile kΨStep1
i for

1-DOF k, we can set up a system of equations that corresponds
to this profile. Let us exemplarily set up the system for the
PosTriNegTri profile (see the top right of Fig. 9). Fig. 11 shows
this profile and all relevant variables such that we can set up a
system of equations to calculate k tmin

i . The symbol δ indicates
time differences, ν velocity differences, and ξ position differ-
ences. The system of equations for 1-DOF k can be directly de-
rived from Fig. 11 and is given by (34)–(50). In this full-length
way, we achieve 17 equations with 17 unknown variables k tmin

i ,
k δ01 , k δ12 , k δ23 , k δ34 , kapeak1 , kapeak2 , kν, kν01 , k ν12 , kν23 ,
kν34 , k ξ, k ξ01 , k ξ12 , k ξ23 , and k ξ34 :

k tmin
i = k δ01 + k δ12 + k δ23 + k δ34 (34)

k δ01 =
(kapeak1 − kAi)

kJmax
i

(35)

k δ12 = kapeak1

kJmax
i

(36)

k δ23 = − kapeak2

kJmax
i

(37)

k δ34 = − kapeak2

kJmax
i

(38)

kν = kV trgt
i − kVi (39)

kν = kν01 + kν12 + kν23 + kν34 (40)

kν01 = k δ01 kAi +
1
2 k δ01(kapeak1 − kAi) (41)

kν12 =
1
2 k δ12 kapeak1 (42)

kν23 =
1
2 k δ23 kapeak2 (43)

kν34 =
1
2 k δ34 kapeak2 (44)

k ξ = kP trgt
i − kPi (45)

k ξ = k ξ01 + k ξ12 + k ξ23 + k ξ34 (46)

k ξ01 = kVi k δ01 +
1
2 kAi(k δ01)2 +

1
6 kJmax

i (k δ01)3 (47)

k ξ12 = (kVi + kν01) k δ12 +
1
2 kapeak1(k δ12)2

− 1
6 kJmax

i (k δ12)3 (48)

k ξ23 = (kVi + kν01 + kν12) k δ23 −
1
6 kJmax

i (k δ23)3 (49)

k ξ34 =
(
kV trgt

i − kν34
)

k δ34 +
1
2 kapeak2(k δ34)2

+
1
6 kJmax

i (k δ34)3 . (50)
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Fig. 12. Cutout of the Type IV-A decision tree for Step 2 to determine an acceleration profile k ΨStep2
i for 1-DOF k.

The domains of the systems of equations for the elements of
PStep1 are disjunctive. Although these systems of equations are
nonlinear for all elements of the set PStep1 , we are able to find
analytical solutions by employing computer algebra programs;
this would be the straightforward way. However, these expres-
sions become very large, and problems with numerical stability
appear. To bypass these problems, we can use efficient and
real-time capable numerical methods as, for example, described
in [28]. In particular, the methods of Anderson and Björck [29]
and King [30], as well as simple bisection methods are applied
here to calculate k tmin

i .
For higher types of OTG algorithms (Type V and higher),

the number of equations increases, but their numerical solution
can be done in the same way [28]. Of course, the complexity
increases too, and thus, the numerical solution of these equations
becomes computationally more expensive.

2) Inoperative Time Intervals: Corresponding to Section V-
A.2, we have to look for up to one inoperative time interval.
If such an interval exists for 1-DOF k, we have to calculate
1
k tbegin

i and 1
k tend

i to determine 1
k ζi , the only possible element of

kZi [cf. (24)]. For this purpose, we need 2Z = 2α − 4β = 2
further decision trees, 1B and 1C, that work very similar to
the one of Fig. 10. Instead of trying to reach kP trgt

i and kV trgt
i

as fast as possible, the first decision tree (1B) tries to reach
the target state of motion as slow as possible and without any
turning back on the way to kP trgt

i (cf. Fig. 6). As a result,
we obtain a further acceleration profile k Ψ̂Step1

i ∈ PStep1 , on
whose base we can set up a further system of equations in the
same way we did before (34)–(50), but here, we calculate not
k tmin

i but 1
k tbegin

i . If there are two possible solutions for 1
k tbegin

i ,
we always take the minimum one, because the maximum would
already be 1

k tend
i .

1
k tend

i is calculated in a very similar way. The third decision
tree of Step 1 (1C) selects the acceleration profile k Ψ̃Step1

i ∈
PStep1 , which determines the minimum possible time after a
turning back on the way to kP trgt

i . Similar to the calculation of

k tmin
i and 1

k tbegin
i , we set up a third system of equations, whose

solution leads to 1
k tend

i . In the case of two valid solutions, we

Fig. 13. Subset of the acceleration profile set PStep2 of Type IV-A. Step 2
sets up all polynomial coefficients of lmi (t) as well the time intervals lVi with
l ∈ {1, . . . , L}, in which the respective polynomials are valid [cf. (8)].

take the maximum one (the other one would lead to 1
k tbegin

i ).
Of course, k tmin

i ≤ 1
k tbegin

i ≤ 1
k tend

i always holds for any DOF
k (cf. Figs. 6 and 7).

3) Determining tsync
i : The determination of minimum pos-

sible value of tsync
i works in the same way as generally described

in Section V-A3.

B. Step 2

In accordance with Section V-B, Step 2 calculates the coef-
ficients of all sets of polynomials lmi(t) [cf. (6)]. That means,
we need an acceleration profile kΨStep2

i for each single selected
DOF k that enables the desired time synchronism, i.e., all se-
lected DOFs reach their kP trgt

i and kV trgt
i at tsync

i . Besides the
eight input values of Wi for each DOF k, tsync

i is the ninth input
value for a further decision tree (see Fig. 12) that acts as function
f : IR9 −→ PStep2 . Fig. 13 shows a subset of PStep2 , which can
be parameterized in order to calculate the final trajectory for a
selected DOF k.

Fig. 12 shows a small cutout of the Step 2 decision tree
and was drawn analogously to Fig. 10. As Decision 1A.001
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Fig. 14. PosTriZeroNegTri profile with all relevant variables such that a system
of equations can be set up and solved in order to calculate kMi for 1-DOF k.

does, Decision 2.001 checks whether the current acceleration
value kAi is positive or negative. We assume to take the left
branch, and let Decision 2.002 check whether the velocity
value would be greater or less then k vtrgt

i after −kJmax
i has

been applied to decrease the acceleration value to zero. De-
cision 2.003 checks whether kAmax

i must be applied to reach
k vtrgt

i , i.e., we find out whether a positive triangle or trape-
zoidal acceleration profile would lead us to k vtrgt

i . We as-
sume that a trapezoidal profile is required. Decision 2.004 in-
spects whether the resulting position value of DOF k at tsync

i

is greater or less than kptrgt
i if kvtrgt

i would be reached as
soon as possible by applying a trapezoidal acceleration pro-
file (PosTrap). If the resulting value is less, we know that we
will have to increase the hold time of the trapezoidal accelera-
tion profile, i.e., a PosTrapZeroNeg. . . profile will be required.
Before we decide whether kΨStep2

i = PosTrapZeroNegTri or

kΨStep2
i = PosTrapZeroNegTrap is correct, Decision 2.005 ver-

ifies whether we would have enough time to apply a positive
trapezoidal acceleration profile directly followed by a negative
triangle-shaped profile that exactly touches −kAmax

i such that
k vtrgt

i is finally reached. If we do not have enough time for this
acceleration progression, kΨStep2

i = PosTrapZeroNegTri will
be the solution. If there is enough time for the acceleration
behavior checked by Decision 2.005, Decision 2.006 will check
the boundary case for the profiles PosTrapZeroNegTrap and Pos-
TrapZeroNegTri and finally determine the acceleration profile.
The decisions from 2.007 to 2.012 work analogously.

Analogous to the system of equations given by (34)–(50), we
can set up a further system of equations for each kΨStep2

i ∈
PStep2 (cf. Fig. 13), whose solution delivers all required pa-
rameters for all L trajectory segments lmi ∀ l ∈ {1, . . . , L}
[cf. (7)] as well as all time intervals lVi [cf. (8)]. This pro-
cedure will be exemplarily explained by means of the profile
sΨStep2 = PosTriZeroNegTri, as shown in Fig. 14 (cf. top right
element of Fig. 13). In a straightforward way, we can set up a
system of 14 equations for each selected DOF k at time instant Ti

2
k ti − Ti =

(kapeak1 − kAi)
kJmax

i

(51)

3
k ti − 2

k ti = kapeak1

kJmax
i

(52)

5
k ti − 4

k ti = − kapeak2

kJmax
i

(53)

tsync
i − 5

k ti = − kapeak2

kJmax
i

(54)

2
kvi − Vi =

1
2
(2
k ti − Ti

)(
kAi + kapeak1) (55)

3
k vi − 2

kvi =
1
2
(3
k ti − 2

k ti
)
kapeak1 (56)

4
k vi − 3

kvi = 0 (57)

5
k vi − 4

kvi =
1
2
(5
k ti − 4

k ti
)
kapeak2 (58)

kV trgt
i − 5

kvi =
1
2
(
tsync
i − 5

k ti
)
kapeak2 (59)

2
kpi − kPi = kVi

(2
k ti − Ti

)
+

1
2 kAi

(2
k ti − Ti

)2

+
1
6 kJmax

i

(2
k ti − Ti

)3
(60)

3
kpi − 2

kpi = 2
k vi

(3
k ti − 2

k ti
)

+
1
2 kapeak1

i

(3
k ti − 2

k ti
)2

− 1
6 k

Jmax
i

(3
k ti − 2

k ti
)3

(61)

4
kpi − 3

kpi = 3
k vi

(4
k ti − 3

k ti
)

(62)

5
kpi − 4

kpi = 4
k vi

(5
k ti − 4

k ti
)
− 1

6 kJmax
i

(5
k ti − 4

k ti
)3

(63)

kP trgt
i − 5

kpi = 5
k vi

(
tsync
i − 5

k ti
)

+
1
2 kapeak2

i

(
tsync
i − 5

k ti
)2

+
1
6 kJmax

i

(
tsync
i − 5

k ti
)3

. (64)

There is a significant difference between the systems of
equations for Step 1 (34)–(50) and Step 2 (51)–(64). In Step 1,
there is a number of systems of equations (elements of PStep1),
which lead to a valid solution, but in Step 2, exactly one system
of equations sΨStep2 leads to the desired solution. This system
has to be determined by the decision tree of Fig. 12.

The solution of (51)–(64) contains 2
k ti , 3

k ti , 4
k ti , 5

k ti , 2
kvi , 3

kvi ,
4
kvi , 5

k vi , 2
kpi , 3

kpi , 4
kpi , 5

kpi , kapeak1
i , and kapeak2

i . The first four
values of this list together with Ti and tsync

i compose l
kϑi ∀ l ∈

{1, . . . , 5} [cf. (8)]. The latter eight values are used to calculate
the motion polynomials at time instant Ti

l
k �mi ∀ l ∈ {1, . . . , 5}

such that the trajectory for DOF k kMi is completely described.

C. Step 3

Step 3 calculates the output values �Pi+1 , �Vi+1 , and �Ai+1 and
works according to Section V-C.

D. Final Remarks on the Type IV-A OTG Algorithm

Because these decision trees would take too much space, they
cannot be depicted completely in a book, thesis, or paper. The
following gives an impression of the complexity: The tree 1B—
written in font size of 10 pt, prepared in a minimized version,
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TABLE II
NUMBER OF NODES PER DECISION TREE FOR THE TYPE IV,

VARIANT A OTG ALGORITHM

and with all nodes tightly arranged—can just be plotted on a
poster of DIN A0 size. Even the description would fill a book of
several hundred pages such that here only an impression shall
be imparted, and only the basic conceptual ideas are explained.
The cutouts of the two Type IV decision trees presented in Figs.
10 and 12 can only be considered as small samples. The total
numbers of nodes per tree for the Type IV-A OTG algorithm are
given by Table II. Minimized means that the number of nodes
was minimized, i.e., subtrees were used multiple times (e.g., in
the tree of Fig. 12, the decisions 2.005 and 2.006 are used twice
in order to save space; although this kind of representation looks
like a graph, the actual structure is a tree, i.e., there are no loops
existent).

The challenge during the development of decision trees is
the guarantee that (22) and (30) hold. When starting to develop
a decision tree, the motion profile sets PStep1 and PStep2 are
unknown [cf. (20) and (25)]. These two sets have to fit exactly
to each other such that the two equations mentioned above hold.
The design of these sets can only take place during the devel-
opment of the (2α − 4β) (cf. Table I) decision trees, because
we cannot know how these profiles look like until we know all
possible cases. Summarizing this

1) if we knew the motion profile sets PStep1 and PStep2 (and
thus, all input domains rDStep1 ∀ r ∈ {1, . . . , R} and
sDStep2 ∀ s ∈ {1, . . . , S}) for a concrete type of OTG, it
might be possible to generate the decision trees automati-
cally;

2) if we knew all (2α − 4β) decision trees for a concrete
type of OTG, it would be possible to determine the motion
profile sets PStep1 and PStep2 .

However, since we neither know PStep1 or PStep2 of a con-
crete type nor the decision trees beforehand, it cannot be possible
to generate an OTG algorithm automatically. For the validation
of (20), (22), (25), and (30), random input values Wi are gen-
erated until every single edge of the trees (and thus, also every
single profile of the sets PStep1 and PStep2 , cf. Table II) were
used at least once.

VII. RELATION TO HIGH-LEVEL MOTION-PLANNING SYSTEMS

Robot motion planning and, in particular, path planning be-
long to the classic and fundamental areas of robotics. Here, we
regard a special field of this area: real-time adaptive motion
planning (RAMP, [10]). We assume robots that have to act in a
dynamic and/or unknown environment and which are equipped
with sensor systems to react to (unknown) static or dynamic
obstacles, events, or abrupt changes of task parameters. Refer-
ences [11] and [31] give general overviews about the field of

Fig. 15. High-level motion planning system may calculate intermediate mo-
tion states h Mtrgt

0 ∀ h ∈ {1, . . . , 7} in configuration space, which are passed

through by the online-generated trajectories from �P0 to �P trgt
0 .

motion planning, and [10], [32], and [33] focus on real-time
capable methods for (multi-)robot motion planning.

As in [10], the generation of splines is one commonly used
method to represent calculated trajectories; it is the task of a
motion-planning algorithm to calculate respective knots. In [33],
collision-free vertices (“milestones”) and edges on a roadmap,
which is another kind of representation, are used to represent
currently planned trajectories. These knots or milestones are
generated from an overall view onto the robotic system and its
environment—it is, in particular, a kind of motion planning from
a global point of view. The output values of such higher level
motion-planning systems, i.e., the knots and milestones, can be
ideally used as input values for the OTG algorithm such that the
combination of these systems leads to a very good symbiosis.
Based on this idea, we can realize robotic systems which can
move according to global and task-dependent motion planning
and do not loose the ability to instantaneously react to low-level
sensor events.

This is also comparable to human scenarios: If we unex-
pectedly touch a very spiky object and suddenly perceive pain,
we can immediately pull our hand away in a reactive manner
(without thinking, i.e., without global motion planning). As con-
sequence, the OTG would be responsible for providing a kind
of robot reflex, as was discussed in Section II.

In the following, we explain this idea by means of a concrete,
simple, and static example. For illustration, Fig. 15 depicts a
configuration space obstacle in 2-D-dimensional space. The task
of the robot is to move from �P0 = (50, 50)mm to �P trgt

0 =
(700, 300)mm. For this purpose, the high-level motion planning
system may calculate intermediate motion states

hMtrgt
0 =

(h �P trgt
0 , h �V trgt

0 , h �Atrgt
0

)
, with h ∈ {1, . . . , H}

(65)

which have to be passed through by the trajectories of the OTG
algorithm. H is the number of calculated motion states, which
correspond to the knots [10] or milestones [33], i.e., the mo-
tion states of (65) constitute the interface to the high-level
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Fig. 16. Complete decision tree to determine the acceleration profile for trans-
ferring the target state of motion h Mtrgt

0 to zero velocity and zero acceleration
in a time-optimal way as it would be required for the OTG algorithms of
Types IV and V.

motion-planning system. Of course, hBi [cf. (3)] can also be
adapted for the motions in-between two knots. In the case of
dynamic environments, all motion states, which have not been
passed by the robot yet, can, of course, be furthermore adapted
at any future time.

The result of Fig. 15 was achieved with the Type IV-B OTG
algorithm, i.e., h �Atrgt

0 = �0 ∀ h ∈ {1, . . . , 7} such that velocity
vectors were simply put into the given configuration space

1 �P trgt
0 = (300, 100)mm 1 �V trgt

0 = (80, 30) mm/s

2 �P trgt
0 = (500, 300)mm 2 �V trgt

0 = (−30, 100) mm/s

3 �P trgt
0 = (400, 450)mm 3 �V trgt

0 = (−10, 100) mm/s

4 �P trgt
0 = (400, 600)mm 4 �V trgt

0 = (−50, 80) mm/s

5 �P trgt
0 = (500, 800)mm 5 �V trgt

0 = (60, 40) mm/s

6 �P trgt
0 = (650, 850)mm 6 �V trgt

0 = (120, 0) mm/s

7 �P trgt
0 = (800, 800)mm 7 �V trgt

0 = (150,−70) mm/s.

Finally, �P trgt
0 = (700, 300) mm is achieved with zero velocity.

Depending on the type of OTG, several restrictions may
hold for the higher level planning algorithms. As discussed
in Section IV-C, (18) only holds for the Types I, III, and VI.
To keep the position of the system within its positional limits
(k

�Pmin
i , k

�Pmax
i ), we have to assure the target states of motion

hMtrgt
i ∀ h ∈ {1, . . . , H} are bounded. Analogous to the de-

cision trees of Figs. 10 and 12, Fig. 16 depicts the complete
decision tree used for the calculation of the the actual val-
ues of h �P trgt

i in hMtrgt
i for the OTG Types IV and V. First,

one out of four acceleration profiles is determined to transfer
hMtrgt

i to zero velocity and zero acceleration in a time-optimal
way.

In the same way the systems of equations in (34)–(50) and
(51)–(64) were set up based on the acceleration profiles of

Fig. 17. Sample of a Type IV trajectory for K = 4 DOFs.

Figs. 11 and 14, the value for the required position differ-
ence (i.e., the minimum distance between kPmin

i or kPmax
i and

h
k P trgt

i ) can be calculated in a closed form for each of the four
acceleration profiles of Fig. 16.

This section introduced how an OTG algorithm can act as an
interface to higher level motion planning systems. The major
symbiotic effect of this use case is that a robotic system, which
is guided by a higher level planning system, can obtain the
ability of performing immediate reflex motions as instantaneous
reactions to unforeseen events.

VIII. RESULTS OF TYPE IV ONLINE TRAJECTORY GENERATION

A. Handling Arbitrary States of Motion

Earlier, we have only discussed the mathematical basics for
Type IV OTG. To clarify the idea of this paper, Fig. 17 exem-
plarily illustrates one concrete result trajectory for K = 4 DOFs,
i.e., the Type IV OTG acts as function f : IR32 × IB4 −→ IR12 ,
which is computed every control cycle. Our implemented robot
motion controller works at a frequency of 1 KHz such that the
algorithm is called once per T cycle = 1 ms. The given arbitrary
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Fig. 18. XY plot of the exemplary geometric of a 2-DOF path according the
trajectory in Fig. 19 with and without sensor event.

motion parameters are (normalized values, without units):

�P0 = (100,−200, 400,−800)T

�V0 = (300,−200,−50, 200)T

�A0 = (−350,−300,−50, 350)T





M0

�P trgt
0 = (−800,−500,−300,−400)T

�V trgt
0 = (−50,−50,−100,−400)T

}

Mtrgt
0

�V max
0 = (800, 750, 150, 600)T

�Amax
0 = (400, 400, 100, 300)T

�Jmax
0 = (200, 400, 100, 600)T





B0

�S0 = (1, 1, 1, 1)T






W0 .

In Fig. 17, one can clearly recognize that all four DOFs reach
their desired state of motion Mtrgt

i at the same time instant
tsync
i = 5340ms ∀ i ∈ {0, . . . , 5340} (N = 5340 cycles, i.e.,

the OTG algorithm was executed 5340 times). tsync
i was deter-

mined by 3t
min
i . The selected acceleration profiles are

1Ψ
Step2
i = NegTrapZeroPosTri

2Ψ
Step2
i = PosTriZeroNegTri

3Ψ
Step2
i = NegTrapZeroPosTri

4Ψ
Step2
i = NegTriZeroNegTrap.

For simplicity, the input parameters Mtrgt
i , Bi , and �Si

remained constant during the whole execution time from
T0 to TN , i.e., Mtrgt

i = Mtrgt
0 ∧ Bi = B0 ∧ �Si = �S0 ∀ i ∈

{0, . . . , 5340} [cf. (1) and (10)].

B. Reaction to Sensor Events

This section explains, how the OTG is applied to the simplest
case of sensor-guarded motion control. For a simple and clear
demonstration, we consider only a 2-DOF Cartesian robot. Of
course, the OTG concept works for any number of DOFs K.

Fig. 18 depicts the geometric path of a trivial point-to-point
motion (dotted line). It is the robot’s task to move from an
initial position �P0 to a target position �P trgt

0 under the kinematic

Fig. 19. Position, velocity, and acceleration progressions of the 2-DOF Type
IV-A trajectory that corresponds to the path of Fig. 18.

constraints of �V max
0 , �Amax

0 , and �Jmax
0

�P0 = (100, 200)T mm

�P trgt
0 = (800, 850)T mm

�V max
0 = (300, 200)T mm/s

�Amax
0 = (200, 300)T mm/s2

�Jmax
0 = (400, 500)T mm/s3 .

In the following, we analyze this for two cases.
1) Without Obstacle: If we would not have to react to sen-

sor events, off-line methods, which belong to the most classic
ones in the field of robot-motion control, could be applied. An
overview of trajectory generation methods is given in [27]. The
resulting path is marked by the dotted line. The position, ve-
locity, and acceleration progressions of the original trajectory
are also depicted in Fig. 19 (dash-dotted and dotted lines). As
can be seen in the bottom diagram of Fig. 19, both DOFs are
transferred into their target positions by trapezoidal acceleration
profiles such that both reach their target state at t = 4518 ms
with symmetrical velocity profiles.

2) With Obstacle and Reaction to Sensor Event: If we con-
sider unknown objects/obstacles in our workspace, we have to
react right after their detection. The results of this procedure
are illustrated by the solid line in Fig. 18 and the solid and
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dashed lines of the diagrams in Fig. 19. Type IV-A OTG is ap-
plied in this example. Due to some sensor, the system detects
the unforeseen obstacle at t = 1674 ms (1P1674 = 300 mm, cf.
Figs. 18 and 19). A simple solution could then be the abrupt
change of the target position values in the moment of obstacle
detection, for example, to �P trgt

1674 = (800, 600)T mm, such that
we would prevent the collision with the object. After reaching
�P trgt

1674 , the old target position �P trgt
0 could then be reused to reach

the originally desired position.
See the velocity and acceleration progressions in Fig. 19.

Compared to the earlier idea, we present an advanced and
more dynamic version in which the system puts an intermediate
target-velocity vector �V trgt

1674 = (100, 100)T mm/s into the posi-
tion �P trgt

1674 = (800, 600)T mm in order to bypass the obstacle dy-
namically. Right after �P trgt

1674 and �V trgt
1674 have been time-optimally

reached (at t = 3879 ms, cf. Fig. 19), a second (abrupt) switch-
ing of input parameters occurs, and the system sets up the origi-
nal parameters again ( �P trgt

3879 = �P trgt
0 and �V trgt

3879 = �0). These are
finally reached at t = 6 s (cf. Fig. 19).

Final Remarks : The OTG algorithm is executed every mil-
lisecond, and the output values of the algorithm lead to con-
tinuous trajectories, which reach each desired state of motion
time optimally and time-synchronized. Furthermore, all kine-
matic motion constraints, �V max

0 , �Amax
0 , and �Jmax

0 are kept dur-
ing the whole trajectory. How the intermediate positions and
velocity vectors as �P trgt

1674 and �V trgt
1674 are calculated depends on

the system layer above the OTG (cf. Section VII).

C. Switching From Sensor-Guided Motion Control
to Trajectory-Following Control

This paper contains theory, simulation results, and real-world
experimental results. The latter demonstrates the functionality
of the OTG concept in practice and is presented in this section.
For the experiments, the following hardware setup has been
used: The original controller of a Stäubli RX60 industrial ma-
nipulator [34] was replaced, and the frequency inverters were
directly interfaced. Three PCs running with QNX [35] as real-
time operating system perform a control rate of 10 kHz for the
joint controllers; a hybrid switched-system controller is used for
Cartesian space control and runs at a frequency of 1 kHz.

To explain the behavior of instantaneous switchings from
sensor-guided control to trajectory-following control, Fig. 20
now closes the loop of the introductory chapter (cf. Fig. 1). At
T0 = 0ms, a sensor-guided robot motion command was exe-
cuted w.r.t. the hand frame of the manipulator. All six Carte-
sian DOFs are controlled by a simple zero-force/torque con-
troller (proportional-integral differential), which uses unfiltered
force/torque values of a JR3 force/torque sensor [36].2 This was
done intentionally in order to show the response of the overall
system (including the OTG algorithm) on strongly noised sen-
sor data. At t = 586ms, a (sensor) event happens, and the sys-
tem instantaneously switches from sensor-guided robot-motion
control to trajectory-following control. The new trajectory is
calculated instantaneously (within the control cycle after the

2Sensor model 85M35A-40 200N12, receiver board running at 8 kHz.

Fig. 20. Position, velocity, and acceleration progressions in Cartesian space
of a sample motion of Stäubli RX60 industrial manipulator. First, all six DOFs
are controlled by a feedback controller using force/torque sensor signals. At
t = 584 ms, an event happens, and the (open-loop) Type IV OTG algorithm
takes over control.

event) and the manipulator performs a smooth, continuous mo-
tion. Here, this is done for all six DOFs, i.e., the selection
vector switches from �S585 = �0 to �S586 = �1. Of course, it would
also be possible that only some DOFs were switched from one
controller to another. To describe the relevance for industrial
practice, imagine that a sensor (e.g., a force/torque sensor or a
vision system) fails during a sensor-guided robot motion, and
then, the OTG algorithm can always take over control in any
state of motion and at any time such that a smooth, continuous
motion results. Furthermore, if a desired (force/torque or vision)
set-point cannot be achieved for some reason, the current motion
can be interrupted at any instant such that the OTG algorithm
guides respective DOFs to a safe state.
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The computations for this 6-DOF system requires an aver-
age execution time of 135µs on a single-core machine.3 The
worst-case execution time is 540µs. This difference is due to
the calculation of inoperative time intervals. In most cases, in-
operative time intervals are not existent, but for the worst case,
they are considered for all DOFs.

IX. CONCLUSION AND OUTLOOK

This work introduced a new concept for motion generation in
robotic systems during runtime. The presented online trajectory-
generation algorithm is executed in parallel to low-level motion
controllers such that systems using it are able to react instan-
taneously to unforeseen (sensor) events. In particular, the algo-
rithm closes a significant gap: Switching from sensor-guided
machine motions to trajectory-following motions becomes pos-
sible at any time and in any state of motion. As a consequence,
(multi)sensor integration becomes substantially simplified, and
robot-motion control systems are enabled to execute trajectory-
following motions, sensor-guided motions, and sensor-guarded
motions within one framework. The proposed online trajectory-
generation algorithm acts as an open-loop controller and can
take over control at any time instant such that safe and continu-
ous motions can be guaranteed—even if sensors fail.

The algorithm was developed with the aim to advance mo-
tion control systems for many robotic applications in various
fields, such as service robotics, manipulation control systems,
mobile robotics and manipulation, or robotic surgery—in short,
all fields in which sensor integration plays a fundamental role.
The algorithm can be regarded as an intermediate control layer,
thus constituting one element of the important bridge between
low-level robot motion control and higher level (sensor-based)
motion planning.

Besides the general theory of online trajectory generation,
this contribution introduced the A-variants of OTG, i.e., the
kinematic-motion constraint values for velocity, acceleration,
jerk, and derivative of jerk remain constant. In a follow-up pub-
lication, we will present the procedures and results of the B-
variants (i.e., the matrix Bi becomes time-variant), which are
required for the embedding of robot dynamics, for unforeseen
control-space switchings, and for unforeseen reference-frame
switchings. Furthermore, an adaptation of the algorithm will be
described that enables the generation of homothetic trajectories
(i.e., straight-line trajectories).
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