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ABSTRACT

Edge effects and Gibbs phenomena are a ubiquitous problem in signal processing.
We show how this problem can arise from a mismatch between the “topology™ of the
data D (e.g., an interval in the case of a time series or a rectangle in the case of a
photographic image) and the topology X (often a circle or torus) natural to the
construction of the transformation O. The notion of a manifold control space X for an
orthogonal transformation O is introduced. It is proved that no matter how compli-
cated X is. O mav be “truncated” to an " with control space D). homeomorphic to
an interval or a product of intervals. This vields a new, topologically motivated
approach to edge effects. We give the complete details for applying this approach to
the discrete Daubechies transform of functions on the unit interval so that no data are
wrapped around from one end of the interval to the other.

The discrete operation v — Ov, multiplication of a data vector v (or
partially processed vector) by an orthogonal transformation O. lies at the
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heart of linear signal processing. It is fortunate that O will often be quite
sparse. In wavelet theory the algebraic conditions which define O may create
a topologically complex pattern of sparsity. For example, in the 1-dimensional
discrete wavelet transform the pattern is circular; in dimension n the pattern
is modeled on an n-torus R"/Z" (the n-dimensional real vector space
modulo the lattice of integer points).

In processing a time series (domain an interval) or a photographic image
(domain a rectangle), and in many other applications, there is no useful
relation between various data near different parts of the boundary. In such
cases O can be modified, or truncated, to a new orthogonal matrix O’
agreeing in most of its entries with O but such that the passage v - O'v
does not involved the formation of linear combinations of data gathered at far
away points near the domain boundary. This represents an approach to edge
effects somewhat different from the usual windowing methods.

There is a fairly general setting—Ilinear algebra with metrical control (see
for example [7D)—for the problem of passing from O to O’. But before
turning to this, we give a detailed description of truncation as it applies to the
1-dimensional Daubechies wavelets [2]. For the simplest nontrivial example,
the truncation is given explicitly. Finally we return to the general case but
allow the 2-torus T? to stand in for an arbitrary metric space. This substitu-
tion relieves the reader of a general discussion of triangulations and their dual
handle structures while presenting enough of the general picture that other
(and higher dimensional) cases should amount to a manageable exercise. We
treat only the dead zero version of sparsity, but expect analogous results to
hold with only assumptions of rapid decay.

Consider the discrete (1-dimensional) Daubechies transforms:

2y _
M2n - MZn
C(J “es ces 02"_1 0 () oo een ()
Con-1 “Cay. 2 —Co 0 Y 0
0 0 C() “ee C2n—l cee PN ()
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M, denotes a 2% X 2V matrix for 2% > 2n. Orthogonality of M,, is
implied by n equations of the form

Y =1,

Zcicwzk:(), l<k<gn-—1.
i

(1)
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Additionally, n-moment conditions may be enforced:

Z( 1) "like, =0, O<k<n-—1. (2)

Clearly the nonzero entries of M,, are organized by the geometry of the
circle. This is a consequence interpreting the subscripts in (1) modulo 2n.
This interpretation derives from translation invariance and corresponds to
taking wraparound boundary conditions on the data vector v.

There is a process known as a pyramid [2; 4; 6, Chapter 13.10] into which
v may be fed. First, form M2 (v), and set aside even entries (numerlcall\
these are the finest scale wavelet coefficients of ¢). Second, form ’\I,"
[odd entries of M2 (1)), and set aside the resulting even entries (these are
the coefficients of the next to finest scale). Continue forming MZ [odd
entires of .\L,z"\ “ "(v)]. The even entries for k = 0,1,....2% % > 4n give
numerical approximations to the wavelet coefficients of v. This pyramid
computes the Daubechies transform in the discrete setting and defines the
continuous Daubechies transform as a limit where N - % and N - k =
constant.

We give a precise procedure for constructing an orthonormal truncation
M; when 4n < 2% In the more trivial case 4n > 2%, M, is not modified:
M, =M, .

M,, will be truncated to a purely band-diagonal 2% X 2% matrix M},
which agrees with M, except in the first n and last n rows. The procedure
requires the orthogonality relations (1) to hold for M,, but makes no use of
the moment conditions (2), and it is quite possible in applications that the
free parameters used up in the condition (2} should instead be saved for
some ditferent optimization more suited to the bounded setting.

Using the primed matrices M, in the pyramid. we obtain as output a
discrete version the Daubechies transform adapted to L*[0, 1]. Our adapta-
tion is quite different (and less developed. since we have not fixed
Cgr e ey Cq, -, completely) from the proposal in [1] and [3], but the two may
be compared if we imagine our discrete procedure taken to the limit. Thev
share the property that wavelet basis functions from L*(R) whose support is
contained wholly in [0,1] are unchanged. In our basis. wavelets whose
supports [in L2(R)] overlap a boundary point are increasingly crumpled and
scemingly less smooth as the overlap increases. In all discrete stages each
boundary value is carried by a simple “Dirac wavelet” (which disappears in
the continuous limit), and all other wavelets vanish at the boundaries. In [1]
the authors choose special functions adapted to and localized near the
borders to complete their basis. The freedom in these choices enables 1] to
produce wavelets on [0, 1] whose first n — 1 moments vanish. While our
boundarv behavior may be less desirable in many applications, we continue to
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be interested in this basis because of the mathematically canonical nature of
the truncation M,, — M, . It is an open problem to optimize our wavelets
by replacing the relations (2) with some unspecified relations.

For ease of description we henceforth assume n odd. The case of n even
is nearly identical. Before we start, let us revise slightly the form of the basic
wavelet matrix M,,. Let us cycle the columns through n — 1 steps so that
the nonzero entries are roughly centered on the diagonal and the pattern of
nonzero entries is (roughly)

M2n = (3)

The new form of M,, is preferable. When the M, of various sizes 27
are inserted into the pyramid which computes wavelet coefficients, the edge
effects—that is, the mixing of data obtained from opposite ends of the
interval—will fall only at the last possible moment (rather than repeatedly)
on data from the middle of the measurement stream.

The first unbroken row of M, [see (3)] is the nth when n is odd and the
n + lst when n is even (due to the staircase form near the diagonal). The
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“intact” rows of M, |

Fy = Couennn oo 0000000
Fpo) = Cap 12 Cay veees =y 0.0
e =000, 00 Cayonnt
(H)
Feey = 0,000y, 0 =5 0 TR
ray o =000, Cop 12 —Cap caeven, Co

span the “central” subspace C € V. where V' is the underlving vector space
on which M, operates.

Here is the algorithin for writing down AMj, . The first and last n — |
rows are broken into a left and a right piece by a sea of zero entries.
Geometrically speaking (and ignoring the staircase effect), these nonzero
entries break up into two trapozoids and two triangles:

top
right
top n-1 rows: top left
bottom n-1 rows: k N\ bottom right

Call the 4(n — 1) vectors represented by the rows of these figures
{e/! et ol ol 1 <i<n— 1), where t = top, b = bottom, | = left.
and r = right.

To construct the first n — 1 rows of M}, follow these steps. Place bottom
left on top of top left to form an 2(n — 1) X 2(n — 1) triangle. Select every

other row of this triangle to form a (n — 1) X 2(n — 1) tfizmgle of rows.
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These rows are

NN N bl el el N
AR5 AL A TR T-AL AU DAL (6)

Starting with the shortest, apply the Gram-Schmidt orthonormalization to
obtain another (n — 1) X 2(n — 2) triangle of rows w{,...,w!_,. Insert
these as the first n — 1 rows of M;,.

The middle rows of M,, agree with those of M,,. The last n — 1 rows of
M, are made by applying Gram-Schmidt (in reverse order, starting with the
shortest rows) to

b.r b.r bor o t.r o t.r tr -
vg v, IPARIIR TP AR /) LS AL (7N

The nonzero entries of M;, are indicated below (in particular, M;, is
band-diagonal with no increase in band width over the central portion of
M2n):

|

M2,n - > 2N

(8)
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We must now explain why M;, is an orthogonal matrix. Let C * denote
the subspace of vectors in V which are perpendicular to C. Since M,,
orthogonal, the 2(n — 1) rows {u,."l +toln et vl icigcn - 1)
M,, span C* . Thus

b bl el 4
{Ll P AT P P ,} (9a)
and
h.r b.or tor N
{t,, R AT ot ,...,L-”_]} (9b)
together will span C - . Also the geometry of the matrix, when n <2 Y.

mnplies that any vector in (9a) is perpendicular to any vector in (9b). Thus 1t
suffices to verify that the span of the even numbered vectors in each set
contains the odd numbered vectors in that sct. In fact we will show using the
orthogonality relations (1) that

(*) The 2k + Ist and 2k + 2nd vectors in either set are dependent.
modulo the sorter vectors, in that set.

Because of the symmetry we only consider the first set. which we write out
below:

row 1: Con—a Cap- |

row 2: c —C

row 3: Cop_y Con_y Coy a2 Capy |

row -4: C, —C, e -,

row 5: Com_gg  Capnon Cop g Cay s Cop o Copo

row 6: Cs -, C, -y C —Cy

row2n — 2 ¢y, 5 —cy

(10)

The two term relation in (1) implies the first two rows are collinear.

Clearly row 4 is perpendicular to & = (0,0, ¢,, ¢)) and B = (¢,. ¢}, 5. ).
Row 3 is also perpendicular to @ and B. using the two and four term
relations (1). Since row 2 is also perpendicular to a and B. rows 2. 3, and 4
span only a 2-dimensional space. Since row 2 is collinear with neither row 3

nor row 4. it follows that rows 3 and 4 are dependent modulo row 2.
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Similarly, rows 5 and 6 both lie in the 3-dimensional subspace perpendic-
ular to a' =1(0,0,0,0,¢4,¢,), B =1(0,0,¢4,¢c,, ¢5,¢3), and vy =
(cy, €1, €q, €3, ¢4, ¢5). Also in this subspace are rows 2 and 4. Since row 2 and
row 4 are independent of each other and of rows 5 and 6, it follows that rows
5 and 6 are dependent modulo rows 2 and 4.

Continuing in this way, we see that row 2k + 1 and row 2k + 2 are
dependent modulo the shorter even numbered rows, establishing (*).

A variant on our definition of Mj, might be considered. Proceed as above
except, when applying Gram-Schmidt, proceed from longest to the shortest
rows. This doubles the band thickness of the matrix but has the advantage
that the rows of M, only change gradually as the upper and lower rows are
approached. It would be interesting to see if this second definition yields
more perspicuous wavelets.

Table 1 gives numerical results for the truncated matrices produced by
this procedure, for the cases N = 2,3,4,5,6. (For typographical compact-
ness, the table shows the transposed matrices, with orthogonal columns
rather than orthogonal rows.) For N = 2,4, 6 the table examplifies the slight
difference of procedure required for the even N case: The first complete
Daubechies coefficient vector is offset by one from the edge, resulting in a
unit vector in the first row (or column).

Figures 4 and 5 show, for the case n = 2 (the simplest Daubechies
wavelets) the result of the pyramid construction for both truncated and
untruncated coefficient matrices. As an approximation to the continuum
(N = 10), the pyramid operates on a vector of length 1024. One sees (Figure
1) that those wavelets whose support wraps around are significantly modified
to adapted wavelets which do not wrap around, but nevertheless preserve
orthonormality. Wavelets whose support does not wrap around (Figure 2) are
unchanged in the continuum limit; for a finite hierarchy and the case of even
N, there is a slight modification (here of order 1o5) due to the offset of the
coefficient vectors by one. This allows the dashed and solid lines in Figure 2
to be both visible.It should be remarked that the truncation M,, — M, can
be made directly applicable to image (or higher dimensional data) processing
by using the “tensorial” or “product” wavelet decompositions on a rectangle
(or multirectangle). For other more subtle wavelet bases in dimension 2 and
higher, analogs of this truncation exist. It is not known if the details of these
will prove as elegant—for example, some coarsening of the bands of nonzero
entries may be expected corresponding to 8-control in the hypothesis and
e-control in the conclusion of the subsequent theorem. However, the exis-
tence of the truncation is assured by the theorem. The example we have just
worked through deals with the passage from circular control to interval
control. It is a first casc of a rather flexible theory. We now tum to a more
general setting in which truncation may be achieved.
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Let X be a compact metric space (called the control space), and € > 0 a
positive real number. Let V and W be finite dimensional inner product

spaces  with  orthonormal  bases {x,..... v} and {w,, .... wy). Tet
fodey..... v} = X and g:{w,.... w,}X be functions called control func-

tions. We sav that a linear map h:V — W is e-small or e-controlled (w.r.t
the control functions) if the components of h (w.r.t. the given bases) satisty
h,; = 0 whenever dist  (f(c ). g(ae)) 2 €.

Suppose the control space X is sinooth k-dimensional Riemannian mani-
fold' with the “path metric” obtained by integrating length along paths:

dy

. ]
o dt (1)

dist((x.y) = inf f
pathsin X' 7y
from 1 to y

fet DY - X bea compatible piccewise lincar map of a closed k-cell onto X
which is an imbedding on its interior. D¥ is called a top cell for X. Give D*
the path metric induced from paths in D*, and assume all control maps have
mmage € int D*. We have

dy

9
" dt. (12)

dist i (x. y) = inf [
paths y m D 7y
from v to g

Let X, with its path metric, be a 8-control space for a linear map
P:V — V.Thatis, {t,,..., ¢ }isabasis for V.and famap flu,,....¢,} = X
such that P is &small. A restriction of control to a subspace Y C X s
possible if fle,,.... ¢} € Y. We write the map with restricted control Pil,
to distinguish it from the usual notation for restricting to a subspace Ply-.
W c V. This simply means we will now measure distances according to paths
which lic in Y. Note that 8-control may be lost during restriction, as the short
paths in X between f(v,) and f(v;) may all leave Y. Assume that P restricts
to Y. and let Y’ C Y be a further subspace. The theorem below shows that
truncation may be used to restore control lost during restriction.

We call a linear map P':V — V an e-truncation of Plly :V —= Vover Y
if (@) P" is e-controlled w.rt. the control map f and (b) there is some
injection ¢ (perhaps the identitv) of the generators which map to Y’ into all
the generators {v, ..., ¢ ). ¢ : f'(Y") = f YY), satisfying dist, (v, ¢(1)) <
€ and such that if’ Q is the linear extension of ¢ and W the span of f (Y.
then

P'ly = P°Q|\\'~

" This assumption imposes very little limitation on the usefulness of the theon: (see [71),



MICHAEL H. FREEDMAN AND WILLIAM H. PRESS

10

¥180S¥36°0 GRARITST O — | SS0L92EL'0  629238SE00
1391 1LE°0 SOVO1EH 0 [S168908°0— LVI¥PS80'0—
9G2O¥T1180 0SLLB6SY O COL10SET0—
0v0esHee o GOTTOSCT'0 0SLL86SYO
LBIVPER0'0—  1S168308°0
63923SL0°0 — SSOLYBEL 0
GC0LIZEC 0 63962500
[S168908°0— LZTFPS80°0—
0SLL86SY' () SOLI0SE1'0— | OPOLSPEL 0 —
SOLL0SET0 0SLLS6SY O 9GcO¥118°0
LETPPER0'0— [S168308°0 SOrOIEHY 0 —  1€qaTI8L0—
6GICESL00— SCS0LIBEE 0 G8ERIT8I'0— ¥I80SPE60
=N
00000000°T
0vS30998°0 16¢9638Y' (0  GS60V6T1°0—
000000050 0£9199¢8°0—  LSEVIFET0
L8EYIVET0  0£L91S9¢€8°0
2S60¥631°0 1629638Y°0
1639628%°0 GS60¥631°0 —
0899199¢8°0—  L]EVYI¥TT0
L8EVIVEE 0 0€91G9¢8°0 000000050 —
TS60V631°0 16298¢8¥°0 099€0998%°0
00000000°T
c=N
« SPOLIIEJN 19[ABA SAYOAQNE(] PAJEdUN],
[ ATHV.L



ES

ATION OF WAVELET MATRIC

~
"

TRUNC

0000000071

[8LLEOLT0
Le9PRY1L'0—
LLO8S0EI0
LLERELB00
18¥E0L810 —
SETF80L0°0 —
10€882L0°0
OFLESOTO0

£EE6LISHO
FO0FL90E°0

0FL6S010°0 —
10€883L0°0
8EI¥R0L00
I87C0L8T0—
LLERELT00 —
LLOSS0C90
LGOPSYIL0
I8LLEOLTO

08302L61°0 —
LOS6PE6S 0

CELIBELL 0
FOBPTRLTE O

£¥169088°0 —
8¥209STL0
FIL6L829°0 —
PL]YSIL0'0 —
SETCEERT0
3LBBLESO 0

cL86L650°0
SEIGGEEs 10—
PLEPSOL0'0 —
P1L6L8¢9°0
8YE09C1L0
CE1E0LT 0

PO8YE8LE 0 —
SELIT6EL'O

LOS6¥665°0 —
083028610 —

[8LLE0ET0
LGOPSPLLO—
LLOSKOLY ()
LLESBLEO0
I8YE0L81°0 —
SCTYL0L00 —
[0E]8TE0'0
0FL6S010°0

YOOYLI0L 0 —
LEE6LISH 0

0FL6S010°0 —
10E88260°0
8C1PR0E0°0
I8¥E0L81°0 —
LLER6LE00 —
LLO8R0L90
LE9¥RY1L0
18LLE0LT0

00000000°1



MICHAEL H. FREEDMAN AND WILLIAM H. PRESS

12

T1009996°0
£E68BISE 0

0¥201091°0
L2638€09°0 —
£GR0LYEL0
SI8TP8ET 0
68Y685v6'0 —
L8Y¥e50'0
6¥1LSLLO0
6¥1¥2900°0
GLORSTI0'0—
£LSEEEO00—

S88YLIST'O—
889GETOL'0
GG966199°0
L1GGUSGLT O

£LGELL00°0
GLORSTI00—
6¥1¥3900°0 —
6¥1LSLLOO
L8¥¥eee00—
68¥68e¥e0 —
SIRGFRET'0
£G80EY2L'0
L3638E09°0
0¥301091°0

¢ =

LI1€I8I00
GOSPRRSE 0 —
c8S1SL01°0
¥RELGICL'O
£EL63609°0
LTTGGTOT0

PILEIO9T O
¢£096£09°0 —
9ET30¥EL'0
9838LICT 0 —
66£166¥6°0 —
LLOBLLEO0
818E+080°0
6LL3ETE0°0

N

6LLEETE0 0~
K818EV080°0
LLOBILZ00—
66€16¢¥6°0 —
98E8LICT0
9€120¥3L°0
¢L096£09°0
PILETO9T'0

LIISSTIOT0
£eL68609°0 —
PRELEIGLO
G8ST1SE01°0—
SISY88GE°0 —
LIT1€9890°0 —

0¥201091°0
L2628¢09°0 —
£S80LYeL0
SI8BH8E1 0 —
68¥688Y3 0 —
L8¥Y22e 0
6V LLSLLOO
6¥ 1729000
GLO8SE100—
€LGELE000 —

LISESSLTO
SG966199°0 —
8892EV0L 0
G88¥.LI981°0

CLSEELO0'0
GLOKSELO0 —
6V 1¥5900°0—
6V1LSLLOO
LYYVE6e0°0 —
68¥656¥6°0—
SI8BHF8ET0
£G80E¥2L°0
L2628£09°0
0v¥201091°0

££68395¢°0 —
110099960

(Panupuo))) , SR 19[IARA SINOIIGNE(] PIIEIULLL],
[ A'14V.L



ES

ATION OF WAVELET MATRIC

N
"

TRUNC

Ceeepez

Aq suwnjoo opepduios omy osayy Jo (dny umop spys (B 0} [BUOGOYHO OS[E BIR XLBUL OR0 JO SUHITH0D 31 [[V 10194 JUILII0)
saupoquec] Nadwod e ureuod yes sieq [rotHDA JO o) WBU oYy o) suwnod omy oy ared gora o s (Puosas) iy oyl ug
[RUOBOYHO ULIN[OD ST XLRUL YORS] "SYUR|Y A( POJOUID OIR SJUSHLO[D 0LYZ "POJSY 048 sooUeil RuSuel) OM} *A O S0[BA (DRI 10, o

000000001

VLOVGTITLO
68€29¥61°0 —
16EE€11SL°0
SE0SES1L0 —
69¥96963°0 —
L899L681°0
19106L60°0
L8BTSLT00 —
POGRSTE0 0 —
PRESCO00'0 —
9oLLLYOO0
0ELLOTOO0

06€0€SLE6°0
912Z86613°0

0ELLOTO00 —
9BLLLYOO0
FRESS000°0
POBRS1E00 —
L8eeSLE00
19105L60°0
LYYYL6CT 0~
69¥929¢2°0 —
C€LOSBSTE0
[6LET1EL0
68LTIT6E0
FLOFSTITO

8TILLYLTO—
GREL0SLL'O
G6S8ETHS 0
6998GLET0

CHSPSITTO
969¥9¥64°0 —
£8L601SL°0
£90E6¥V1€°0 —
966159260 —
G1618821°0
£L0SLE60'0
y£9€Lsa0’0 —
£2STOPL0°0 —
0CRO8LM) 0 —

GE6YELIN O
L9GL8008°0 —
06160€¥E°0
L366L9SL°0
S068B0T1<0
CEELOSTTO

0681811170
9ELERSEY () —
0£6301SL°0
¥c993L0¢°0 —
£E296¥L3°0 —
VOL8IZI L0
KSO0SOZL0
COLLILEO0

g ="

SILLILE0 O —
85005081°0
POLRICT 0~
£LGI6YET 0 ~
¥299¢L0¢°0
0£6B01SL0
9ELEREEY )
0681811170

LECLOSTTO
G068601€°0 —
LZ66£9¢L°0
061608V¢°0 -
1961800870 —
CLEYRLIN'O —

0ZRO8LOO'O
£e8B9re00 —
pye9Less0o
£L0SLE60°0
SI6188¢1'0—
966159220 -
£90L6¥1L°0
£SE601SL0
96IIP6Y 0
SOSYSTIT0

6998GEE1°0
CHSRLEHS(0 —
GRGELOSLLO
8CYLLYLTO

FLOVSTITO
68E39V6Y () —
[6LETTS
GE0SBSIC0—
69Y9292¢°0 —
L899L6381°0
19T0SL60°0
L8GBGLT00 -
F0B8ST1L0°0 —
P8ESS000°0 —
9GLLLYO0'0
0LLLOTOO0

912R661¢0—
06£0C4GL6°0

0ELLO1000 -
9GLLLY00 )
¥8£SS000°0
F0B8ST1E0°0 —
L832SL20°0
1910€260°0
L8IQL6T1 0~
69¥96965°0 —
GE0STSIC 0
I66ETT1SL0
68€CIF6T0
PLOVEITTO

00000000°



14 MICHAEL H. FREEDMAN AND WILLIAM H. PRESS

2T T T T T T T T T LI B B B o s B S e T S S e
C T T T T T T T T 7 ]
1 -
- R
oF

.\ S T T y
[ g
L ]
R = -
Y I ST ENPIDUTE IUTUTITE ST B ISP PO DFIDUTIPN S S IPUP B
20 50. 100 150 200 250 0 650 900 960 1000
LELER)

L 'l'l'l'lll'l'11[[lllll l'l]"l'II"T‘]’I"YT"TI'II'-
A -
- 1
“ B
X p
L 4
0

e | <
23 | E
¥ b
3 §
A} o]
L 4
[ 4
[P SN IO AT I AT AT A | FESTN IV ITSU TS UT SN SN AT AR AN S0 ST ATEE RVES SIS A

% 100 150 200 250 800 as0 900 950 1000

Fic. 4. Truncated and untruncated wavelets. Shown as solid curves are the
leftmost (top) and rightmost (bottom) wavelet of one hierarchical scale, constructed
on a vector of length 1024 using the truncated coefficient matrix developed in this
paper (note break in the horizontal scale). The dotted curves, which wrap around, are
the corresponding conventional wavelets, constructed with periodic boundary condi-
tions.

The truncation is “over” Y’ in the sense that P is basically unchanged on the
generators mapping to Y'. The complexity of (b) results from a problem
called flux (see Chapter 8 of [7]).

Often Q will be the identity, and then condition (b) is simply P'lw = Plw.
To appreciate the role of Q in the general case (where flux may occur),
consider the following example: X is the unit circle, and f:{v,,..., vp} - X
is defined by f(t,) = e*"*/?. Set Y = X — {e™/?}, Y’ = X \ I, where I is
an arc of the circle of length 27/p centered at ¢™/?. Let P cyclically
permute the v’s, P(v,) =uv;,, mod p. The P is clearly a 27/p-small
orthogonal transformation. And according to our definitions, the identity
V — V is a 2m/p-truncation of P|ly over Y'. But to find such a nonsingular
truncation, we need the freedom to choose Q to cycle the generators
mapping to Y’ counterclockwise one step. Without a nontrivial Q there is no
nonsingular extension of Plw which does not send the f-image of v, across
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Fic. 5. Same as Figure 4, but for the second from left (top) and second from
right (bottom) wavelets. One sees that the truncated and periodic wavelets are
virtually identical. (In the continuum limit they would be identical.) The small
difference comes from the offset by one of the rows of Daubechies coefficients in the
interior of the matrix (see Table 1). Note that the distortion of the truncated wavelet
as it nears the boundary will look different for different hierarchical scales.

the deleted points ¢™/? and thus move it a great distance, (1 — p)27r, in the
path metric on Y.

THEOREM.  For every € > 0 there exists a (DX —> X) > 0, depending
on the geometry of X and the inclusion of its top cell, such that given any
orthogonal transformation O :V — V of a finite dimensional inner product
space V which is 8-controlled over X, the restriction Olip+:V — V may be
e-truncated over D' = D* \ (a 8-neighborhood of dD*) to an e-controlled
orthogonal transformation O’ : V — V over D*.

Proof. We consider the case of X a torus with hexagonal “top cell” or
“fundamental domain” D. We may form X as Rz/{integral linear combina-
tions of vectors p and ¢ indicated in Figure 6}.
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Fic. 6.

Let F denote frontier D = D \ D. Cover F with round disks alternating
between black and white ( B, and W, ) with diameter € so that no two disks of
the same color meet and so that the concentric subdisks B; and W, of
diameter € — 28 cover a &-neighborhood of F as indicated in Figure 7.

The transformation O : V = V is 8-controlled over X. Let V, € V be the
subspace generated by those generators mapping outside a 8-neighborhood
of the frontier, f '(X \A4F)) = {v,}, and let C = O(V,) €V be the
“central” subspace. C is spanned by the orthonormal frame {Qv,} = F. Our
task is to extend this frame of C to an orthonormal frame of V subject to the
condition that for any additional frame vector w, the subset of {¢,..., v}
for which W has a nonzero component has radius < € when mapped by f
into D.

Consider an arbitrary black B,. Dropping the index, B meets two or (in
two cases) three widely separated regions of D (see Figure 4). If v € f~'(B),
we may correspondingly write O(v) = X297 3z, that is, z, belongs to the
span of generators which lie in B and one of the two or three distinct regions
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of D. Similarly if v € W, a white ball, we may write O(x) =y, + y,. Fixing
B and i, we may apply the Gram-Schmidt procedure to produce from {z,} an
orthonormal frame (of some indeterminant cardinality) .7 orthogonal to C.
Since span{z,} is orthogonal to spanfz } i# =123 these frames are
orthogonal f()r i # j. Furthermore, tlw disjointness of the black disks
Figure 2 assures that all these frames are disjoint us we vary B. Notice that
the new frame vectors in &% have diameter < € in the sense that their
nonzero components are alwavs attached to vectors which map by [ to a
single B.

Now work with a single white disk W. Let ¢ € f "W ) and Or =y, + 4,
as before. For Woand i fixed, i = 1 or 2, collect the fragments {y s}, and
orthonormalize to produce an orthogonal frame orthogonal to span{7. 7 all
B and i}. Call the result .. For the same reasons as before, the varions 44
are themselves orth()g,onal and their vector coustituents have diameter < e.
Thus .7 = {#.27; . F-}is an orthonormal frame. But clearly F spans all of V.
since it is made by applving Gram-Schmidt to a collection of vectors
Of "X NAFD} U {=lshu {17/s}. which must be a spanning set, since it
comes from t]l(‘ basis Of{t} on breaking several vectors into two or three
summands. The point is that if a vector in a spanning set is broken into two or
more summands and these replace the original vector in the spanning set.
then the span cannot decrease.

The new vectors in the orthonormal basis 7. i.c.. those not in 7. have
diameter < e: those in % have diameter € 8 < €. We may use a well-known
combinatorial lemma [3], the marriage theorem. to redefine O in accordance
with the theorem.

MARRIAGE THEOREM.  Suppose (b} and {g )} are sets of equal cardinality
and index set 1, and that R is a relation such that Jordl s c 1. card{g, : for
some i € S. b Rg} > card(S). It follows that there exists a bijection /1.1 -]

such that for all i € I. b, Rg,,,,.

Consider the relation ¢, R, that holds whenever 1w, is an clement of .7
with a nonzero component in the coordinate direction v, € {v Loee s 1:”}. Since
s a frame. no subset of F of cardinality ¢ can be contained in the span of
fewer than ¢ basis elements. Thus the hypothesis of the marriage theorem
holds. The bijection 6, = wy,,, extends to an orthogonal transtormation
O":V > V. Fixing j, the sets flr,: nonzero coetficient for wj} have diameter
< €. so O is econtrolled. Furthermore, O has the required form on
£ X NH(ED. O = O e Q. Notice that Q might not be the identity, since
at, € f (X N\ N;(F)) might be “married” to a frame vector different from
(but e-close to) O(c,). Thus the use of the marriage theorem automatically
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accommodates the flux problem. This completes the theorem’s proof in the
case that X is a 2-torus with hexagonal top cell D.

In this example, the optimal relation between € and 8 is an exercise in
plane geometry. For domains D? C X with 120° angles and & sufficiently
small, € > 108 is certainly adequate. In general € will increase as the
interior angles of D decrease (so regular hexagons are more efficient than
squares in that € can be chosen to be a smaller multiple of 8).

If X*isa general Riemannian manifold, the first step is to locate a top
cell D*. Then one restricts to D* and truncates to restore e-control. In the
general case, k distinct colors of balls must be chosen to cover the frontier of
D*. The vector O(v) will be broken into at most k + 1 summands, collected
into sets (fixing two indices—one labeling the ball, and the other the region
of the top cell in which the summands’ components land) and orthonormal-
ized; then we inductively extend the central frame & = {O(v,)): f(v,) &
Nj(frontier(top cell))}. In general, €(8) will increase with the dimension k of
X* and be sensitive to the geometry of X* and the choice of the top cell D*.

]

Iet us review the truncation of the discrete Daubechies transforms,
MQ,, — M;,., to see how it is a special case of the theorem. From the form of
M,, [sec (3)] it can be regarded as an &-small linear transformation for
8 =2mn/2% To do this, let (v, ... . Ly+) be the basis for the space V on
which M,, acts. Let f(v,) = e”“k/’ C X =§', the unit circle. While a
band-diagonal form would suggest control over an interval, the shaded
pattern in (3) corresponds to control over a circle:

(M), ;=0 -n<i—j<nmod2V.

We cycled the original M,, (1) into the form (3) precisely so that we
would not have the notational inconveniences of flux (that is, the relabeling
caused by Q). Proceeding from (3), we reduced the control space to an
interval, M,, — M, llst .1, and then truncated to restore lost control. That
is, truncation removes all far from diagonal entries (M}, is n-band diagonal)
while retaining M,, [as in (3)] except for a modification of the top and
bottom n rows. This means that if X = §' and Y = §' — {0}, then the space
Y' over which M, is retrained is

Y' = §' — {the interval of length mn /2" centered at 0}.

Decomposing the top and bottom rows of M,, as o'+ ¢! and
'+ vb " respectively corresponds in our proof to O(v) = y, + y,. The



TRUNCATION OF WAVELET MATRICES 19

inner product structure on V is Euclidean in the preferred basis in which
M,, is written.

A special feature of this truncation is that no degradation of the data

occurred. The matrix M}, is n-band diagonal where n is the radius of the
diagonal band in M,,. In ters of our theorem, this means e = 8. This is

e

rtainly too much to hope for in general, but it would be interesting to see if

there are other cases where the theorem holds with € = 8.
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