
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters

Hung-chih Yang, Ali Dasdan
Yahoo!

Sunnyvale, CA, USA
{hcyang,dasdan}@yahoo-inc.com

Ruey-Lung Hsiao, D. Stott Parker
Computer Science Department, UCLA

Los Angeles, CA, USA
{rlhsiao,stott}@cs.ucla.edu

ABSTRACT
Map-Reduce is a programming model that enables easy de-
velopment of scalable parallel applications to process vast
amounts of data on large clusters of commodity machines.
Through a simple interface with two functions, map and re-
duce, this model facilitates parallel implementation of many
real-world tasks such as data processing for search engines
and machine learning.

However, this model does not directly support processing
multiple related heterogeneous datasets. While processing
relational data is a common need, this limitation causes dif-
ficulties and/or inefficiency when Map-Reduce is applied on
relational operations like joins.

We improve Map-Reduce into a new model called Map-
Reduce-Merge. It adds to Map-Reduce a Merge phase that
can efficiently merge data already partitioned and sorted (or
hashed) by map and reduce modules. We also demonstrate
that this new model can express relational algebra operators
as well as implement several join algorithms.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks;
H.2.4 [Database Management]: Systems—Parallel data-
bases; Relational databases

General Terms
Design, Languages, Management, Performance, Reliability

Keywords
Cluster, Data Processing, Distributed, Join, Map-Reduce,
Map-Reduce-Merge, Parallel, Relational, Search Engine

1. INTRODUCTION
Search engines process and manage a vast amount of data

collected from the entire World Wide Web. To do this task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

efficiently at reasonable cost, instead of relying on generic
DBMS, they are usually built as customized parallel data
processing systems and deployed on large clusters of shared-
nothing commodity nodes. In [3], based on his experience
as Inktomi (now part of Yahoo!) co-founder, Eric Brewer
advocated that building novel data-intensive systems (e.g.,
search engines) should “apply the principles of databases,
rather than the artifacts.” It was because DBMS are usu-
ally overly generalized with many features that some can
be unnecessary overhead for specific applications like search
engine. Hence, search engine companies have developed and
operated on “simplified” distributed storage and parallel
programming infrastructures. These include Google’s File
System (GFS) [10], Map-Reduce [6], BigTable [4]; Ask.com’s
Neptune (using the Data Aggregation Call (DAC) frame-
work) [5]; and Microsoft’s Dryad [13]. Yahoo! also has
similar infrastructures. These infrastructures adopt only
a selected subset of database principles, hence are “simpli-
fied,” but they are sufficiently generic and effective that they
can be easily adapted to data processing in search engines,
machine learning, and bioinformatics. Following these use-
ful but proprietary (non-publicly released) infrastructures,
Hadoop[1] is an open-source implementation, which is rem-
iniscent of GFS and Map-Reduce, and is released under the
umbrella of the Apache Software Foundation.

Common to these infrastructures is the refactoring of data
processing into two primitives: (a) a map function to process
input key/value pairs and generate intermediate key/values,
and (b) a reduce function to merge all intermediate pairs
associated with the same key and then generate outputs.
The DAC framework has similar primitives, called local and
reduce. These primitives allow users to develop and run
parallel data processing tasks without worrying about the
nuisance details of coordinating parallel sub-tasks and man-
aging distributed file storage. This abstraction can greatly
increase user productivity [6].

Though sufficiently generic to perform many real world
tasks, the Map-Reduce framework is best at handling homo-
geneous datasets. As indicated in [15], joining multiple het-
erogeneous datasets does not quite fit into the Map-Reduce
framework, although it still can be done with extra Map-
Reduce steps. For example, users can map and reduce one
dataset and read data from other datasets on the fly. In
short, processing data relationships, which is what RDBMS
excel at, is perhaps not Map-Reduce’s strong suit.

For a search engine, many data processing problems can
be easily solved using the Map-Reduce framework, but there
are some tasks that are best modeled as joins. For ex-

1029

ample, a search engine usually stores crawled URLs with
their contents in a crawler database, inverted indexes in
an index database, click or execution logs in a variety of
log databases, and URL linkages along with miscellaneous
URL properties in a webgraph database. These databases
are gigantic and distributed over a large cluster of nodes.
Moreover, their creation takes data from multiple sources:
index database needs both crawler and webgraph databases;
a webgraph database needs both a crawler and a previous
version of the webgraph database.

To handle these tasks in the Map-Reduce framework, de-
velopers might end up writing awkward map/reduce code
that processes one database while accessing others on the
fly. Alternatively they might treat these databases as ho-
mogeneous inputs to a Map-Reduce process but encode het-
erogeneity with an additional data-source attribute in the
data and extra conditions in the code.

Processing data relationships is ubiquitous, especially in
enterprise information systems. One major focus of the ex-
tremely popular relational algebra and RDBMS is to model
and manage data relationships efficiently. Besides search en-
gine tasks, another scenario of applying a join-enabled Map-
Reduce framework is to join large databases across applica-
tion, company, or even industry boundaries. For example,
both airliners and hotel chains have huge databases. Join-
ing these databases can permit data miners to extract more
comprehensive rules than they could individually. While
many traditional (shared- or shared-nothing, cluster-based
or mass parallel) RDBMS have been deployed in enterprise
OLAP systems, a join-enabled Map-Reduce system can pro-
vide a highly parallel yet cost effective alternative.

Based on these observations, we believe that one impor-
tant improvement for the Map-Reduce framework is to in-
clude relational algebra in the subset of the database prin-
ciples it upholds. That is, it should be further extended to
support relational algebra primitives without sacrificing its
existing generality and simplicity. The chief focus and con-
tribution of this paper is this extension. We extend the Map-
Reduce framework (shown in Fig. 1) to the Map-Reduce-
Merge framework (shown in Fig. 2). This new framework
introduces a naming and configuring scheme that extends
Map-Reduce to processing heterogeneous datasets simulta-
neously. It also adds a new Merge phase that can join re-
duced outputs.

To recap, the contributions of this paper are as follows:

• Abiding by Map-Reduce’s “simplified” design philoso-
phy, we augment the Map-Reduce framework by adding
a Merge phase, so that it is more efficient and eas-
ier to process data relationships among heterogeneous
datasets.

Note that, while Map-Reduce tasks are usually stacked
to form a linear user-managed workflow, adding a new
Merge primitive can introduce a variety of hierarchi-
cal workflows for one data processing task. A Map-
Reduce-Merge workflow is comparable to a RDBMS
execution plan, but developers can embed program-
ming logic in it and it is designed specifically for par-
allel data processing.

• In a parallel setting, relational operators can be mod-
eled using various combinations of the three functional-
programming-based primitives: map, reduce, and merge.
With proper configurations, these three primitives can

Figure 1: Data and control flow for Google’s Map-
Reduce framework. A driver program initiates a co-
ordinator process. It remotely forks many mappers,
then reducers. Each mapper reads file splits from
GFS, applies user-defined logic, and creates several
output partitions, one for each reducer. A reducer
reads remotely from every mapper, sorts, groups the
data, applies user-defined logic, and sends outputs
to GFS.

be used to implement the parallel versions of several
join algorithms: sort-merge, hash, and block nested-
loop.

In [12], Jim Gray et al. emphasized that there must be a
“synthesis of database systems and file systems,” as “file sys-
tems grow to petabyte-scale archives with billions of files.”
This vision not only applies to scientific data management,
the focus of [12], but also applies to any data-intensive sys-
tem such as a search engine. As stated in [12], Google’s
Map-Reduce framework not only abstracts parallel program-
ming from data processing tasks, but it also abstracts files
as just “containers for data” through its set-oriented model.
This “synthesis” vision echoes Brewer’s “principle” idea as
Map-Reduce/GFS provides both views a great example of
database-oriented data processing. Jim Gray et al. also
envisioned that simplified data/programming models like
Google’s Map-Reduce could evolve into more general ones
in the coming decade. Our Map-Reduce-Merge proposal is
a step towards that goal.

2. MAP-REDUCE
Google’s Map-Reduce programming model and its under-

lying Google File System (GFS) focus mainly to support
search-engine-related data processing. It has a simple pro-
gramming interface, and, though seemingly restricted, it is
actually quite versatile and generic. It can extend to data
processing tasks beyond the search-engine domain. Accord-
ing to [6], it has also been heavily applied within Google for
data-intensive applications such as machine learning.

2.1 Features and Principles
Contrary to traditional data processing and management

systems, Map-Reduce and GFS are based on several un-
orthodox assumptions and counter-intuitive design princi-
ples:

• Low-Cost Unreliable Commodity Hardware: In-
stead of using expensive, high-performance, and reli-
able symmetric multiprocessing (SMP) or massively

1030

Figure 2: Data and control flow for the Map-
Reduce-Merge framework. The coordinator man-
ages two sets of mappers and reducers. After these
tasks are done, it launches a set of mergers that read
outputs from selected reducers and merge them with
user-defined logic.

parallel processing (MPP) machines equipped with high-
end network and storage subsystems, most search en-
gines run on large clusters of commodity hardware.
This hardware is managed and powered by open-source
operating systems and utilities, so that the cost is low.

• Extremely Scalable RAIN Cluster: Instead of us-
ing centralized RAID-based SAN or NAS storage sys-
tems, every Map-Reduce node has its own local off-
the-shelf hard drives. These nodes are loosely cou-
pled in rackable systems connected with generic LAN
switches. Loose coupling and shared-nothing architec-
ture make Map-Reduce/GFS clusters highly scalable.
These nodes can be taken out of service with almost no
impact to still-running Map-Reduce jobs. These clus-
ters are called Redundant Array of Independent (and
Inexpensive) Nodes (RAIN) [18]. GFS is essentially a
RAIN management system.

• Fault-Tolerant yet Easy to Administer: Due to
its high scalability, Map-Reduce jobs can run on clus-
ters with thousands of nodes or even more. These
nodes are not very reliable. At any point in time, a
certain percentage of these commodity nodes or hard
drives will be out of order. GFS and Map-Reduce are
designed not to view this certain rate of failure as an
anomaly; instead they use straightforward mechanisms
to replicate data and launch backup tasks so as to
keep still-running processes going. To handle crashed
nodes, system administrators simply take crashed hard-
ware off-line. New nodes can be plugged in at any time
without much administrative hassle. There is no com-
plicated backup, restore and recovery configurations
and/or procedures like the ones that can be seen in
many DBMS.

• Simplified and Restricted yet Powerful: Map-
Reduce is a restricted programming model, it only
provides straightforward map and reduce interfaces.
However, most search-engine (and generic) data pro-
cessing tasks can be effectively implemented in this

model. These tasks can immediately enjoy high paral-
lelism with only a few lines of administration and con-
figuration code. This “simplified” philosophy can also
be seen in many GFS designs. Developers can focus on
formulating their tasks to the Map-Reduce interface,
without worrying about such issues as implementing
memory management, file allocation, parallel, multi-
threaded, or network programming.

• Highly Parallel yet Abstracted: The most impor-
tant contribution of Map-Reduce is perhaps its auto-
matic parallelization and execution. Even though it
might not be optimized for a specific task, the produc-
tivity gain from developing an application with Map-
Reduce is far higher than doing it from scratch on the
same requirements. Map-Reduce allows developers to
focus mainly on the problem at hand rather than wor-
rying about the administrative details.

• High Throughput: Deployed on low-cost hardware
and modeled in simplified, generic frameworks, Map-
Reduce systems are hardly optimized to perform like
a massively parallel processing systems deployed with
the same number of nodes. However, these disadvan-
tages (or advantages) allow Map-Reduce jobs to run on
thousands of nodes at relatively low cost. A schedul-
ing system places each Map and Reduce task at a near-
optimal node (considering the vicinity to data and load
balancing), so that many Map-Reduce tasks can share
the same cluster.

• High Performance by the Large: Even though
Map-Reduce systems are generic, and not usually tuned
to be high performance for specific tasks, they still can
achieve high performance simply by being deployed on
a large number of nodes. In [6], the authors mentioned
a then world-record Terabyte [11] sorting benchmark
by using Map-Reduce on thousands of machines. In
short, sheer parallelism can generate high performance,
and Map-Reduce programs can take advantage of it.

• Shared-Disk Storage yet Shared-Nothing Com-
puting: In a Map-Reduce environment, every node
has its own local hard drives. Mappers and reduc-
ers use these local disks to store intermediate files and
these files are read remotely by reducers, i.e., Map-
Reduce is a shared-nothing architecture. However,
Map-Reduce jobs read input from and write output to
GFS, which is shared by every node. GFS replicates
disk chunks and uses pooled disks to support ultra
large files. Map-Reduce’s shared-nothing architecture
makes it much more scalable than one that shares disk
or memory. In the mean time, Map and Reduce tasks
share an integrated GFS that makes thousands of disks
behave like one.

• Set-Oriented Keys and Values; File Abstracted:
With GFS’s help, Map-Reduce can process thousands
of file chunks in parallel. The volume can be far beyond
the size limit set for an individual file by the underlying
OS file system. Developers see data as keys and values,
no longer raw bits and bytes, nor file descriptors.

• Functional Programming Primitives: The Map-
Reduce interface is based on two functional-progra-
mming primitives [6]. Their signatures are re-produced

1031

here:

map: (k1, v1) → [(k2, v2)]

reduce: (k2, [v2]) → [v3]

The map function applies user-defined logic on every
input key/value pair and transforms it into a list of
intermediate key/value pairs. The reduce function ap-
plies user-defined logic to all intermediate values asso-
ciated with the same intermediate key and produces a
list of output values. This simplified interface enables
developers to model their specific data processing into
two-phase parallel tasks.

These signatures were informally defined for readabil-
ity, they were not meant to be rigorous enough to pass
a strongly-typed functional type checking mechanism.
However, [14] pointed out that the reduce function out-
put [v3] can be in different type from its input [v2].

• Distributed Partitioning/Sorting Framework:
Map-Reduce system also includes phases that work on
the intermediate data, and users usually do not need
to deal with them directly. These phases include a par-
titioner function that partitions mapper outputs to re-
ducer inputs, a sort-by-key function that sorts reducer
inputs based on keys, and a group-by-key function that
groups sorted key/value pairs with the same key into
a single key/value pair of the same key and all the
values. In its pure form, the system is essentially a
2-phase parallel sorter similar to the one in NOW [2].

• Designed for Search Engine Operations yet Ap-
plicable to Generic Data Processing Tasks: Map-
Reduce is a generic framework, not limited to search
engine operations. It can be applied to any data pro-
cessing task that fits the simple map-reduce interface.

2.2 Homogenization
Despite all these advantages and design principles, Map-

Reduce focuses mainly on processing homogeneous datasets.
Through a process we called homogenization, Map-Reduce
can be used to do equi-joins on multiple heterogeneous data-
sets. This homogenization process applies one map/reduce
task on each dataset that it inserts a data-source tag into
every value. It also extracts a key attribute common for
all heterogeneous datasets. Transformed datasets now have
two common attributes: key and data-source — they are
homogenized. A final map/reduce task can then apply to
all the homogenized datasets combined. Data entries from
different datasets with the same key value will be grouped
in the same reduce partition. User-defined logic can extract
data-sources from values to identify their origins, then the
entries from different sources can be merged.

This procedure takes lots of extra disk space, incurs ex-
cessive map-reduce communications, and is limited only to
queries that can be rendered as equi-joins. In the next
section, we will discuss a general approach of extending
Map-Reduce to efficiently process multiple heterogeneous
datasets.

3. MAP-REDUCE-MERGE
The Map-Reduce-Merge model enables processing multi-

ple heterogeneous datasets. The signatures of the Map-
Reduce-Merge primitives are listed below, where α, β, γ

represent dataset lineages, k means keys, and v stands for
value entities.

map: (k1, v1)α → [(k2, v2)]α

reduce: (k2, [v2])α → (k2, [v3])α

merge: ((k2, [v3])α, (k3, [v4])β) → [(k4, v5)]γ

In this new model, the map function transforms an input
key/value pair (k1, v1) into a list of intermediate key/value
pairs [(k2, v2)]. The reduce function aggregates the list of
values [v2] associated with k2 and produces a list of values
[v3], which is also associated with k2. Note that inputs and
outputs of both functions belong to the same lineage, say
α. Another pair of map and reduce functions produce the
intermediate output (k3, [v4]) from another lineage, say β.
Based on keys k2 and k3, the merge function combines the
two reduced outputs from different lineages into a list of
key/value outputs [(k4, v5)]. This final output becomes a
new lineage, say γ. If α = β, then this merge function does
a self-merge, similar to self-join in relational algebra.

Notice that the map and reduce signatures in the new
model are almost the same as those in the original Map-
Reduce. The only differences are the lineages of the datasets
and the production of a key/value list from reduce instead
of just values. These changes are introduced because the
merge function needs input datasets organized (partitioned,
then either sorted or hashed) by keys and these keys have to
be passed into the function to be merged. In Google’s Map-
Reduce, the reduced output is final, so users pack whatever
needed in [v3], while passing k2 for next stage is not re-
quired.

To build a merge function that reads data from both lin-
eages in an organized manner, the design of these signatures
emphasizes having the key k2 passed from map to reduce,
then to merge functions. This is to make sure that data is
partitioned, then sorted (or hashed) on the same keys be-
fore they can be merged properly. This condition, however,
is too strong. Keys still can be transformed between phases
and they do not even need to be of the same type (as implied
by the same type descriptor k2 used in every phase) as long
as records pointed by transformed keys are still organized in
the same way as the one by the mapped keys represented by
k2. For example, 4-digit integers can be transformed into 4-
byte numerical strings padded with 0s. The order of integers
and the one for transformed strings are the same, so they
are compatible and replaceable between phases if compati-
ble range partitioners are used in map functions. However,
since users already can transform keys in the map function
(from k1 to k2), there is hardly a need to transform them
again in reduce and merge functions. Thus, to keep these
signatures simple, we chose to have the same k2 passed be-
tween phases.

As mentioned in [6], the map and reduce functions origi-
nate from functional programming. The merge function can
be related to two-dimensional list comprehension, which is
also popular in functional programming.

3.1 Example
In this section, we start with a simple example that will

be continued to next sections. It shows how Map, Reduce,
and Merge modules work together. There are two datasets
in this example: Employee and Department. Employee’s
“key” attribute is emp id and the others are packed into an
emp info “value.” Department’s “key” is dept id and the

1032

Figure 3: Example to join Employee and Depart-
ment tables and compute employee bonuses (see
§ 3.1).

Algorithm 1 Map function for the Employee dataset.

1: map(const Key& key, /* emp id */
2: const Value& value /* emp info */) {
3: emp id = key;
4: dept id = value.dept id;
5: /* compute bonus using emp info */
6: output key = (dept id, emp id);
7: output value = (bonus);
8: Emit(output key, output value);
9: }

others are packed into a dept info “value.” One example
query is to join these two datasets and compute employee
bonuses.

Before these two datasets are joined in a merger, they are
first processed by a pair of mappers and reducers. A com-
plete data flow is shown in Fig. 3. On the left hand side, a
mapper reads Employee entries and computes a bonus for
each entry. A reducer then sums up these bonuses for ev-
ery employee and sorts them by dept id, then emp id. On
the right hand side, a mapper reads Department entries and
computes bonus adjustments. A reducer then sorts these de-
partment entries. At the end, a merger matches the output
records from the two reducers on dept id using the sort-
merge algorithm, applies a department-based bonus adjust-
ment on employee bonuses. Pseudocode for these mappers
and reducers are shown in Alg. 1, 2, 3, and 4.

After these two pairs of Map-Reduce tasks are finished,
a merger task takes their intermediate outputs, and joins
them on dept id. We will describe the details of major merge
components in following sections.

3.2 Implementation
We have implemented a Map-Reduce-Merge framework,

in which Map and Reduce components are inherited from
Google Map-Reduce except minor signature changes. The
new Merge module includes several new components: merge

Algorithm 2 Map function for the Department dataset.

1: map(const Key& key, /* dept id */
2: const Value& value /* dept info */) {
3: dept id = key;
4: bonus adjustment = value.bonus adjustment;
5: Emit((dept id), (bonus adjustment));
6: }

Algorithm 3 Reduce function for the Employee dataset.

1: reduce(const Key& key, /* (dept id, emp id) */
2: const ValueIterator& value
3: /* an iterator for a bonuses collection */) {
4: bonus sum = /* sum up bonuses for each emp id */
5: Emit(key, (bonus sum));
6: }

function, processor function, partition selector, and config-
urable iterator. We will use the employee-bonus example to
explain the data and control flow of this framework and how
these components collaborate.

The merge function (merger) is like map or reduce, in
which developers can implement user-defined data process-
ing logic. While a call to a map function (mapper) processes
a key/value pair, and a call to a reduce function (reducer)
processes a key-grouped value collection, a merger processes
two pairs of key/values, that each comes from a distinguish-
able source.

At the Merge phase, users might want to apply different
data-processing logic on data based on their sources. An
example is the build and probe phases of a hash join, where
build programming logic is applied on one table then probe
the other. To accommodate this pattern, a processor is a
user-defined function that processes data from one source
only. Users can define two processors in Merge.

After map and reduce tasks are about done, a Map-Reduce-
Merge coordinator launches mergers on a cluster of nodes
(see Fig. 2). When a merger starts up, it is assigned with a
merger number. Using this number, a user-definable module
called partition selector can determine from which reducers
this merger retrieves its input data. Mappers and reducers
are also assigned with a number. For mappers, this num-
ber represents the input file split. For reducers, this number
represents an input bucket, in which mappers partition and
store their output data to. For Map-Reduce users, these
numbers are simply system implementation detail, but in
Map-Reduce-Merge, users utilize these numbers to associate
input/output between mergers and reducers in partition se-
lectors.

Like mappers and reducers, a merger can be considered
as having logical iterators that read data from inputs. Each
mapper and reducer have one logical iterator and it moves
from the begin to the end of a data stream, which is an
input file split for a mapper, or a merge-sorted stream for
a reducer. A merger reads data from two sources, so it
can be viewed as having two logical iterators. These iter-
ators usually move forward as their mapper/reducer coun-
terparts, but their relative movement against each others
can be instrumented to implement a user-defined merge al-
gorithm. Our Map-Reduce-Merge framework provides a
user-configurable module (iterator-manager) that it is called
for the information that controls the movement of these con-
figurable iterators. Later, we will describe several iteration
patterns from relational join algorithms. A Merge phase
driver, as shown in Alg. 5, is needed to coordinate these

1033

Figure 4: A 2-way Map-Reduce-Merge data flow. Data is processed by a mapper, partitioner, and combiner
in the Map phase. Then, it is read remotely and processed by a sorter and reducer in the Reduce phase.
In the Merge phase, selected reducer outputs are processed by a matcher and merger guided by a pair of
configurable iterators.

Algorithm 4 Reduce function for the Department dataset.

1: reduce(const Key& key, /* (dept id) */
2: const ValueIterator& value
3: /* an iterator on a bonus adjustments collection */) {
4: /* aggregate bonus adjustments and
5: compute a final bonus adjustment */
6: Emit(key, (bonus adjustment));
7: }

Merge components and have them collaborate with each oth-
ers.

3.2.1 Partition Selector
In a merger, a user-defined partition selector function de-

termines which data partitions produced by up-stream re-
ducers should be retrieved then merged. This function is
given the current merger’s number and two collections of re-
ducer numbers, one for each data source. Users define logic
in the selector to remove unrelated reducers from the collec-
tions. Only the data from the reducers left in the collections
will be read and merged in the merger.

For the employee-bonus example, a simplified scenario
stipulates that both sources have the same collection of re-
ducer numbers and the same range partitioner function is
applied to the dept id key only in both mappers, so that
both reducer outputs are completely sorted and partitioned
into equal number of buckets. Notice that the employee
mapper produces keys in pairs of (dept id, emp id), thus its
reducer sorts data on this composite key, but partitioning is
done on dept id only. Based on these assumptions, a par-
tition selector function can be defined to map reducers and
mergers in an one-to-one relationship as in Alg. 6.

3.2.2 Processors
A processor is the place where users can define logic of

processing data from an individual source. Processors can be
defined if the hash join algorithm is implemented in Merge,
where the first processor builds a hash table on the first
source, and the second probes it while iterating through the
second data source. In this case, the merger function is
empty. Since we will apply the sort-merge algorithm on
the bonus-computation join example, these processors stay
empty.

3.2.3 Merger
In the merge function, users can implement data process-

ing logic on data merged from two sources where this data
satisfies a merge condition. Alg. 7 shows the last step of
computing employee bonuses by adjusting an employee’s raw
bonus with a department-based adjustment.

3.2.4 Configurable Iterators
As indicated, by manipulating relative iteration of a mer-

ger’s two logical iterators, users can implement different
merge algorithms.

For algorithms like nested-loop joins, iterators are con-
figured to move as looping variables in a nested loop. For
algorithms like sort-merge joins, iterators take turns when
iterating over two sorted collections of records. For hash-
join-like algorithms, these two iterators scan over their data
in separate passes. The first scans its data and builds a hash
table, then the second scans its data and probes the already
built hash table.

Allowing users to control iterator movement increases the
risk of running into a never-ending loop. This risk always ex-

1034

Algorithm 5 Merge phase driver.

1: PartitionSelector partitionSelector; // user-defined logic
2: LeftProcessor leftProcessor; // user-defined logic
3: RightProcessor rightProcessor; // user-defined logic
4: Merger merger; // user-defined logic
5: IteratorManager iteratorManager; // user-defined logic
6: int mergerNumber; // assigned by system
7: vector<int> leftReducerNumbers; // assigned by system
8: vector<int> rightReducerNumbers; // assigned by system
9: // select and filter left and right reducer outputs for this merger
10: partitionSelector.select(mergerNumber,
11: leftReducerNumbers,
12: rightReducerNumbers);
13: ConfigurableIterator left = /*initiated to point to entries
14: in reduce outputs by leftReducerNumbers*/
15: ConfigurableIterator right =/*initiated to point to entries
16: in reduce outputs by rightReducerNumbers*/
17: while(true) {
18: pair<bool,bool> hasMoreTuples =
19: make pair(hasNext(left), hasNext(right));
20: if (!hasMoreTuples.first && !hasMoreTuples.second) {break;}
21: if (hasMoreTuples.first) {
22: leftProcessor.process(left→key, left→value); }
23: if (hasMoreTuples.second) {
24: rightProcessor.process(right→key, right→value); }
25: if (hasMoreTuples.first && hasMoreTuples.second) {
26: merger.merge(left→key, left→value,
27: right→key, right→value); }
28: pair<bool,bool> iteratorNextMove =
29: iteratorManager.move(left→key, right→key, hasMoreTuples);
30: if (!iteratorNextMove.first && !iteratorNextMove.second) {
31: break; }
32: if (iteratorNextMove.first) { left++; }
33: if (iteratorNextMove.second) { right++; }
34: }

Algorithm 6 One-to-one partition selector.

1: bool select(int mergerNumber,
2: vector<int>& leftReducerNumbers,
3: vector<int>& rigthReducerNumbers) {
4: if (find(leftReducerNumbers.begin(),
5: leftReducerNumbers.end(),
6: mergerNumber) == leftReducerNumbers.end()) {
7: return false; }
8: if (find(rightReducerNumbers.begin(),
9: rightReducerNumbers.end(),
10: mergerNumber) == rightReducerNumbers.end()) {
11: return false; }
12: leftReducerNumbers.clear();
13: leftReducerNumbers. push back(mergerNumber);
14: rightReducerNumbers.clear();
15: rightReducerNumbers. push back(mergerNumber);
16: return true;
17: }

ists in user-defined logic and is a great concern, especially in
strictly-regulated DBMS systems. For programming models
like the Map-Reduce and Map-Reduce-Merge, this issue is
lesser because they are, after all, programming models and
data processing frameworks.

Still, it is a nuisance if a task never ends, so a frame-
work should provide a mechanism to reduce the chance of
it happening. In our implementation, we use a boolean pair
returned by a user-defined function to indicate whether to
move an iterator to point to the next entity. This function
is called after each merge operation; true indicates forward
and false indicates stay. If both booleans are false, then the
whole merge process is terminated.

Suppose reducers produce sorted outputs in an ascendant
order, Alg. 8 shows the programming logic of coordinating
iterator movement for sort-merge-alike algorithms. If both
sources still have inputs, then move the iterator that points
to a smaller key. If both keys are equivalent, then move the

Algorithm 7 Merge function for the employee-department
join.

1: merge(const LeftKey& leftKey,
2: /* (dept id, emp id) */
3: const LeftValue& leftValue, /* sum of bonuses */
4: const RightKey& rightKey, /* dept id */
5: const RightValue& rightValue /* bonus-adjustment */){
6: if (leftKey.dept id == rightKey) {
7: bonus = leftValue * rightValue;
8: Emit(leftKey.emp id, bonus); }
9: }

Algorithm 8 Iteration logic for sort-merge joins.

1: move(const LeftKey& leftKey,
2: const RightKey& rightKey,
3: const pair<bool, bool>& hasMoreTuples) {
4: if (hasMoreTuples.first && hasMoreTuples.second) {
5: if (leftKey < rightKey) {
6: return make pair(true, false); }
7: return make pair(false, true); }
8: return hasMoreTuples;
9: }

right iterator by default. If one source is exhausted, this in-
formation is stored in the input bool pair “hasMoreTuples,”
move the iterator for the source that still has data.

Alg. 9 is an implementation of nested-loop iteration pat-
tern. In a nested loop, keys are ignored in determining how
to move iterators. If the left and right sources are exhausted,
then the merge process is terminated. It is a logic error if
the right source still have data when the left is exhausted.
If the left source is not exhausted, then move the right it-
erator only. When the right source is exhausted, move the
left iterator and reset the right iterator to the beginning of
its data source.

To implement algorithms that follow the hash join’s two-
scan iteration pattern, a merger first scans one data source
from the beginning to the end, then repeats the scan on the
other one, e.g., see Alg. 10.

Notice that, for the employee-bonus example, implement-
ing configurable iterators is tied to the choosing of parti-
tioners. Using the sort-merge-based configurable iterators
requires a range partitioner in both mappers.

4. APPLICATIONS TO RELATIONAL DATA
PROCESSING

One fundamental idea of Map-Reduce-Merge is to bring
relational operations into parallel data processing at the
search-engine scale. On the other hand, map, reduce, and
merge can be used as standardized components in imple-
menting parallel OLAP DBMS. Novel data-processing ap-
plications such as search engines and Map-Reduce’s unortho-
dox principles and assumptions make it worthwhile to revisit
parallel databases [7, 16].

4.1 Map-Reduce-Merge Implementations of
Relational Operators

In our implementation, the Map-Reduce-Merge model as-
sumes that a dataset is mapped into a relation R with an
attribute set (schema) A. In map, reduce, and merge func-
tions, users choose attributes from A to form two subsets: K
and V . K represents the schema of the “key” part of a Map-
Reduce-Merge record and V the “value” part. For each tuple
t of R, this implies that t is concatenated by two field sets: k

1035

Algorithm 9 Iteration logic for nested-loop joins.

1: move(const LeftKey& leftKey,
2: const RightKey& rightKey,
3: const pair<bool, bool>& hasMoreTuples) {
4: if (!hasMoreTuples.first && !hasMoreTuples.second) {
5: return make pair(false, false); }
6: if (!hasMoreTuples.first && hasMoreTuples.second)
7: /* throw a logical-error exception */
8: if (hasMoreTuples.first && !hasMoreTuples.second) {
9: /* reset the right iterator to the beginning */
10: return make pair(true, false); }
11: return make pair(false, true);
12: }

Algorithm 10 Iteration logic for hash joins.

1: move(const LeftKey& leftKey,
2: const RightKey& rightKey,
3: const pair<bool, bool>& hasMoreTuples) {
4: if (!hasMoreTuples.first && !hasMoreTuples.second){
5: return make pair(false, false); }
6: if (hasMoreTuples.first) {
7: return make pair(true, false); }
8: return make pair(false, true);
9: }

and v, where K is the schema of k and V is the schema of v.
It so happens that Map-Reduce-Merge calls k as “key” and
v as “value”. This naming is arbitrary in the sense that their
attribute sets are decided solely by the user. This “key” is
used in Map-Reduce-Merge functions for partitioning, sort-
ing, grouping, matching, and merging tuples. By no means
it has the same uniqueness meaning in relational languages.
Below we describe how Map-Reduce-Merge can be used to
implement primitive and some derived relational operators,
so that Map-Reduce-Merge is relationally complete, while
being load-balanced, scalable, and parallel.

• Projection: For each tuple t = (k, v) of the input
relation, users can define a mapper to transform it into
a projected output tuple t′ = (k′, v′), where k′ and v′

are typed by schema K′ and V ′, respectively. K′ and
V ′ are subsets of A. Namely, using mappers only can
implement relational algebra’s projection operator.

• Aggregation: At the Reduce phase, Map-Reduce (as
well as Map-Reduce-Merge) performs the sort-by-key
and group-by-key functions to ensure that the input to
a reducer is a set of tuples t = (k, [v]) in which [v] is the
collection of all the values associated with the key k.
A reducer can call aggregate functions on this grouped
value list. Namely, reducers can easily implement the
“group by” clause and “aggregate” operators in SQL.

• Generalized Selection: Mappers, reducers, and merg-
ers can all act as filters and implement the selection
operator. If a selection condition is on attributes of one
data source, then it can be implemented in mappers. If
a selection condition is on aggregates or a group of val-
ues from one data source, then it can be implemented
in reducers. If a selection condition involves attributes
or aggregates from more than one sources, then it can
be implemented in mergers.

Straightforward filtering conditions that involve only
one relation in a SQL query’s “where” and “having”
clauses can be implemented using mappers and reduc-
ers, respectively. Mergers can implement complicated

filtering conditions involving more than one relations,
however, this filtering can only be accomplished af-
ter join (or Cartesian product) operations are properly
configured and executed.

• Joins: § 4.2 describes in detail how joins can be im-
plemented using mergers with the help from mappers
and reducers.

• Set Union: Assume the union operation (as well as
other set operations described below) is performed over
two relations. In Map-Reduce-Merge, each relation
will be processed by Map-Reduce, and the sorted and
grouped outputs of the reducers will be given to a
merger. In each reducer, duplicated tuples from the
same source can be skipped easily. The mappers for
the two sources should share the same range parti-
tioner, so that a merger can receive records within the
same key range from the two reducers. The merger can
then iterate on each input simultaneously and produce
only one tuple if two input tuples from different sources
are duplicates. Non-duplicated tuples are produced by
this merger as well.

• Set Intersection: First, partitioned and sorted Map-
Reduce outputs are sent to mergers as described in the
last item. A merger can then iterate on each input
simultaneously and produce tuples that are shared by
the two reducer outputs.

• Set Difference: First, partitioned and sorted Map-
Reduce outputs are sent to mergers as described in
the last item. A merger can then iterate on each in-
put simultaneously and produce tuples that are the
difference of the two reducer outputs.

• Cartesian Product: In a Map-Reduce-Merge task,
the two reducer sets will produce two sets of reduced
partitions. A merger is configured to receive one parti-
tion from the first reducer (F) and the complete set of
partitions from the second one (S). This merger can
then form a nested loop to merge records in the sole
F partition with the ones in every S partition.

• Rename: It is trivial to emulate Rename in Map-
Reduce-Merge, since map, reduce, and merge functions
can select, rearrange, compare, and process attributes
based on their indexes in the “key” and “value” sub-
sets.

Map-Reduce-Merge is certainly more expressive than the re-
lational algebra, since map, reduce, and merge can all con-
tain user-defined programming logic.

4.2 Map-Reduce-Merge Implementations of
Relational Join Algorithms

Join is perhaps the most important relational operator.
In this section, we will describe how Map-Reduce-Merge can
implement three most common join algorithms.

4.2.1 Sort-Merge Join
From [6], Map-Reduce is shown to be an effective parallel

sorter. The key of sorting is to partition input records based
on their actual values instead of, by Map-Reduce default,
hashed values. That is, instead of using a hash partitioner,

1036

users can configure the framework to use a range partitioner
in mappers. Using this Map-Reduce-based sorter, the Map-
Reduce-Merge framework can be implemented as a parallel,
sort-merge join operator. The programming logic for each
phase is:

• Map: Use a range partitioner in mappers, so that
records are partitioned into ordered buckets, each is
over a mutually exclusive key range and is designated
to one reducer.

• Reduce: For each Map-Reduce lineage, a reducer reads
the designated buckets from all the mappers. Data in
these buckets are then merged into a sorted set. This
sorting procedure can be done completely at the re-
ducer side, if necessary, through an external sort. Or,
mappers can sort data in each buckets before sending
them to reducers. Reducers can then just do the merge
part of the merge sort using a priority queue.

• Merge: A merger reads from two sets of reducer out-
puts that cover the same key range. Since these re-
ducer outputs are sorted already, this merger simply
does the merge part of the sort-merge join.

4.2.2 Hash Join
One important issue in distributed computing and par-

allel databases is to keep workload and storage balanced
among nodes. One strategy is to disseminate records to
nodes based on their hash values. This strategy is very pop-
ular in search engines as well as in parallel databases. It is
the the default partitioning mechanism in Map-Reduce [6]
and the only partitioning strategy in Teradata [16], a par-
allel RDBMS. Another approach is to run a preprocessing
Map-Reduce task to scan the whole dataset and build a
data density [6]. This density can be used by partitioners in
later Map-Reduce tasks to ensure balanced workload among
nodes. Here we show how to implement hash join [8] using
the Map-Reduce-Merge framework:

• Map: Use a common hash partitioner in both map-
pers, so that records are partitioned into hashed buck-
ets, each is designated to one reducer.

• Reduce: For each Map-Reduce lineage, a reducer reads
from every mapper for one designated partition. Using
the same hash function from the partitioner, records
from these partitions can be grouped and aggregated
using a hash table. This hash-based grouping is an
alternative to the default sorting-based approach. It
does not need a sorter, but requires maintaining a
hashtable either in memory or disk.

• Merge: A merger reads from two sets of reducer out-
puts that share the same hashing buckets. One is used
as a build set and the other probe. After the partition-
ing and grouping are done by mappers and reducers,
the build set can be quite small, so these sets can be
hash-joined in memory. Notice that, the number of
reduce/merge sets must be set to an optimally large
number in order to support an in-memory hash join,
otherwise, an external hash join is required.

4.2.3 Block Nested-Loop Join
The Map-Reduce-Merge implementation of the block nested-

loop join algorithm is very similar to the one for the hash

join. Instead of doing an in-memory hash, a nested loop is
implemented. The partitioning and grouping done by map-
pers and reducers concentrate the join sets, so this parallel
nested-loop join can enjoy a high selectivity in each merger.

• Map: Same as the one for the hash join.

• Reduce: Same as the one for the hash join.

• Merge: Same as the one for the hash join, but a
nested-loop join is implemented, instead of a hash join.

5. OPTIMIZATIONS
Map-Reduce provides several optimization mechanisms,

including locality and backup tasks [6]. In this section, we
describe some strategies that can reduce resources (e.g, the
number of network connections and disk bandwidth) used
in the Merge phase.

5.1 Optimal Reduce-Merge Connections
For a natural join over two datasets, A and B, suppose

for A, there are MA number of mappers and RA number of
reducers; and for B, MB and RB . Each A mapper produces
RA partitions, and each B mapper RB . Conversely, each A
reducer reads from every A mappers for the partitions des-
ignated for it. Same applies to B reducers from B mappers.
To simplify the scenario, let RA = RB = R, then in total
there would be at least R × (MA + MB) remote reads (not
counting redundant connections incurred by backup jobs)
among nodes where mappers and reducers reside. This is a
lot of remote reads among nodes, but it is the price to pay
to group and aggregate same-key records as these records
were originally scattered around in the whole cluster.

For mergers, because data is already partitioned and even
sorted after Map and Reduce phases, they do not need to
connect to every reducer in order to get their data. The
selector function in mergers can choose pertinent reduced
partitions for merging. For example, in a simplified scenario,
if there is also R number of mergers, then these mergers
can have an one-to-one association with A reducers and also
with B reducers. A user-defined selector can be like the
one shown in Alg. 6. This selector receives two collections
of reducer numbers for A and B reducers. It then picks
the reducers who share the same number with the merger
and removes other reducers’ numbers from the collections.
The merger then uses the selected reducer numbers to set
up connections with and requests data from these reducers.
In the one-to-one case, the number of connections between
reducers and mergers is 2R.

If one input dataset is much larger than the other, then it
would be inefficient to partition both datasets into the same
number of reducers. One can choose different numbers for
RA and RB , but the selection logic is more complicated.

Selector logic can also be quite complicated in the case of
θ-join. However, selector is a optimization mechanism that
can help avoid excessive remote reads. A naive selection can
always put only the merger number in one reducer number
set and leave the other set intact (see the selection logic
in 11) and still get the correct result. This is basically a
Cartesian product between two reduced sets. The number
of remote reads now becomes R2 + R.

Before feeding data from selected reducer partitions to a
user-defined merger function, these tuples can be compared
and see if they should be merged or not. In short, this

1037

Algorithm 11 Cartesian-product partition selector.

1: select(int mergerNumber,
2: vector<int>& leftReducerNumbers,
3: vector<int>& rightReducerNumbers) {
4: if (find(leftReducerNumbers.begin(),
5: leftReducerNumbers.end(),
6: mergerNumber) == leftReducerNumbers.end()) {
7: return false; }
8: leftReducerNumbers.clear();
9: leftReducerNumbers.push back(mergerNumber);
10: return true;
11: }

comparison can be done in a user-defined matcher that is
simply a fine-grained selector.

5.2 Combining Phases
To accomplish a data processing task, it usually takes sev-

eral Map-Reduce-Merge (or Map-Reduce) processes weaved
in a workflow, in which the output of a process become the
input of a subsequent one. The entire workflow may consti-
tute many disk-read-write passes. For example, Fig. 6 shows
a TPC-H Q2 join tree implemented with 13 Map-Reduce-
Merge passes. These passes can be optimized and combined:

• ReduceMap, MergeMap: Reducer and merger out-
puts are usually fed into a down-stream mapper for a
subsequent join operation. These outputs can sim-
ply be sent directly to a co-located mapper in the
same process without storing them in secondary stor-
age first.

• ReduceMerge: A merger usually takes two sets of
reducer partitions. This merger can be combined with
one of the reducers and gets its output directly while
remotely reads data from the other set of reducers.

• ReduceMergeMap: An straightforward combination
of ReduceMerge and MergeMap becomes ReduceMerge-
Map.

Another way of reducing disk accesses is to replace disk
read-writes with network read-writes. This method requires
connecting up- and down-stream Map-Reduce-Merge pro-
cesses while they are running. This approach is arguably
more complicated than saving intermediate data in local
disks, thus it may not comply with the “simplified” philos-
ophy of the Map-Reduce framework. When a process fails,
this network-based I/O strategy can cause difficulties for up-
stream processes to recollect the data already computed and
resend them to a new down-stream process.

6. ENHANCEMENTS
Besides optimizations, some Map-Reduce-Merge enhance-

ments can make coding easier.

6.1 Map-Reduce-Merge Library
There are many variations and patterns for the merge

module, such as the ones that implement relational oper-
ators or join algorithms. The selectors and configurable it-
erators for these common merge implementations can be put
into a library and users can use them in their Map-Reduce-
Merge tasks without reinventing the wheel.

Figure 5: Map-Reduce-Merge workflows. The left is
a typical 2-pass Map-Reduce workflow. The middle
one is a typical 3-pass Map-Reduce-Merge workflow.
The right is a multi-pass hierarchical workflow built
with several Map, Reduce, and Merge modules.

6.2 Map-Reduce-Merge Workflow
Map-Reduce programs follow a strict two-phase workflow,

i.e., mapping then reducing. Users have options to change
default configurations, but some basic operations such as
partitioning and sorting, are built-ins and cannot be skipped.
This, sometimes, is a nuisance if users would like to do map-
ping only or to do reducing on already mapped datasets.
These scenarios are quite common in real-world tasks as
well as in debugging only one of the Map-Reduce modules.
This constraint makes Map-Reduce simplified and it en-
ables unified usage and implementation, but advanced users
may want to see it relaxed, i.e., they may want to create
a customized workflow. Since there are only two phases in
Map-Reduce, it is not a serious issue. However, adding a
new phase (Merge, as proposed in this paper; future Map-
Reduce improvements might include other phases) creates
many workflow combinations that can fit the specific needs
of a data processing task. This is especially true for process-
ing relational queries where an execution plan constitutes a
workflow of several Map, Reduce, and Merge modules (see
an example in § 7.2).

A Map-Reduce-Merge enhancement is to provide a config-
uration API for building a customized workflow. In Fig. 5,
the left is a traditional Map-Reduce workflow. The middle
one is a basic Map-Reduce-Merge workflow. The left one is
a more complicated example.

When building a Map-Reduce-Merge workflow, an impor-
tant issue is to avoid using a distributed file system (DFS)
for storing intermediate data. In Google’s Map-Reduce im-
plementation, mapper outputs are stored in local hard drives,
instead of in GFS. GFS is only used to store permanent
datasets like the inputs and outputs of a Map-Reduce task.
If a Map-Reduce implementation stores intermediate datasets
in DFS, then it basically becomes a shared-disk architecture.
This might make it not as scalable as a shared-nothing im-
plementation [9].

Although we have only discussed hierarchical workflows so
far, in fact, outputs can be used as inputs in a Map-Reduce-
Merge workflow, making it recursive. These recursive work-
flows can be used to implement SQL recursive queries, for
example.

7. CASE STUDIES
In this section, we will present two case studies applying

1038

the Map-Reduce-Merge programming model to real-world
data processing tasks. The first is a search-engine task, while
the second is a rather complicated TPC-H query.

7.1 Join Webgraphs
In simple terms, a webgraph database for a search engine

stores a table in which each row has one URL (regarded
as the key) along with attributes such as its inlinks and
outlinks. The number of attributes can be large, and for
many operations, only a few of them are needed. As such,
a webgraph database may store each column of the table
in a separate file, distributed over many machines. This
choice of storage creates a need for joins. As an example,
consider the following three columns: URLs, inlinks, and
outlinks. Suppose for each URL, we need to compute the
intersection of its inlinks and outlinks. One way to compute
the intersection is (1) to create a table of all three columns
(URL, inlinks, outlinks), and (2) compute the intersection
over each row and output (URL, inlinks intersect outlinks).
Records of these columns are related to each other through
row-ids. These row-ids are used in place of URLs as keys
to these column files. The creation of the joined table can
be implemented with two 2-way joins: (1) join URLs and
inlinks using the row-ids as the common attribute, (2) join
the first join’s result dataset and outlinks using row-ids as
the common attribute. Then, a simple Map-Reduce can scan
the result dataset and find the inlink-outlink intersection.

These collections of inlinks and outlinks can be considered
as nested tables. As the number of inlinks and outlinks for
popular websites (e.g., www.yahoo.com) can be very large
that reading them directly into a map, reduce, or merge
process can overflow buffer. A safer approach is to flatten
these nested tables and replicate row-id to every inlink (or
outlink) record that belongs to the same URL. One sort-
merge-based intersect can produce records (row-id, inout-
link) that are shared by both (row-id, inlink) and (row-id,
outlink) datasets. An ensuing Map-Reduce-Merge natural
join with the (row-id, URL) dataset can than replace row-ids
with URLs and create the result dataset: (URL, inoutlink).

7.2 Map-Reduce-Merge Workflow for TPC-H
Query 2

To demonstrate how the Map-Reduce-Merge programming
model can be used to process complicated data relationships,
we use the TPC-H [17] schema and its No. 2 query (see
Fig. 6) as an example.

This query is rather complicated. It involves five tables,
one nested query, one aggregate and group by clause, and at
the end, the result dataset is ordered by several attributes.
The conditions for the 5-way join are all equal conditions,
while the nested query is only meant to select the tuples
with the minimum supply cost. Though this nested query
is also a 5-way join (4 tables in the from clause and one
outer table), because it is essentially the same as the outer
join, its logic can be processed during executing the outer
one. Based on these observations, we use an execution plan
that first does four 2-way joins for the overall 5-way join.
Then, this plan does group-by and selection operations for
the nested query and a sorting operation for the order-by
clause. The join tree of this execution plan is shown in Fig.
7. This plan might not be the most efficient one. We just use
it as an example for implementing a SQL query under the
Map-Reduce-Merge framework. Notice that the region and

-- TPC-H/TPC-R Minimum Cost Supplier Query (Q2)
select

s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

from
part,
supplier,
partsupp,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = :1
and p_type like ’%:2’
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’:3’
and ps_supplycost = (

select
min(ps_supplycost)

from
partsupp,
supplier,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’:3’

)
order by

s_acctbal desc,
n_name,
s_name,
p_partkey;

Figure 6: TPC-H Query 2.

nation tables are very small. They do not need a parallel
join implementation with a complete suite of Map, Reduce,
and Merge tasks. In fact, they can be read into memory as
look-up tables by mappers for other tables, such as supplier.

In the join tree, part and partsupp are joined into a tem-
porary table called p ps. In parallel, region and nation are
joined into n r. Table n r are then joined with supplier into
s n r. Later, p ps and s n r are joined into p ps s n r. Once
these four 2-way joins are done for the overall 5-way join,
p ps s n r is processed by two Map-Reduce tasks. The first
one does the nested query’s group by clause and its reducer
selects the tuples with the minimum supply-cost. The final
Map-Reduce task is simply a sorter for the order by clause.

In Fig. 7, we mechanically replace each join with a suite
of Map, Reduce, and Merge tasks. Thirteen disk-read-write
passes are needed to process the execution plan. In total,
there are 10 mappers, 10 reducers, and 4 mergers.

These numbers can be reduced by a simple optimization
that integrates merger and reducer modules with a follow-
up mapper. This optimization reduces the number of passes
to 9 with 5 mappers, 9 reducers, 4 merge-mappers, and 1
reduce-mapper.

If reducers and their follow-up mergers are further com-
bined as suggested in § 5.2, then the number of passes is
reduced to 6 with 5 mappers, 1 reducer, 4 reduce-merge-
mappers, and 1 reduce-mapper (see Fig. 8).

1039

Figure 7: A join tree for TPC-H Query 2. It is
implemented with 13 passes of Map-Reduce-Merge
modules (10 mappers, 10 reducers, and 4 mergers).

Figure 8: The join tree of Fig. 7 is re-implemented
with 6 passes of combined Map-Reduce-Merge mod-
ules (5 mappers, 4 reduce-merge-mappers, 1 reduce-
mapper, and 1 reducer).

8. CONCLUSIONS
Map-Reduce and GFS represent a rethinking of data pro-

cessing that uses only the most critical database principles
for their target applications, instead of relying on overly gen-
eralized DBMS. This “simplified” philosophy drives down
hardware and software cost for data-intensive systems such
as search engines, while Map-Reduce still provides great fea-
tures like high-throughput, high-performance, fault-tolerant,
and easy administration, etc. The most important feature of
Map-Reduce is that it abstracts parallel programming into
two simple primitives, map and reduce, so that developers
can easily convert many real-world data processing jobs into
parallel programs.

However, Map-Reduce does not directly support joins of
heterogeneous datasets, so we propose adding a Merge phase.
This new Map-Reduce-Merge programming model retains
Map-Reduce’s many great features, while adding relational
algebra to the list of database principles it upholds. It also
contains several configurable components that enable many
data-processing patterns.

Map-Reduce-Merge can also be used as an infrastructure
that supports parallel database functionality. We have demon-

strated that the Map-Reduce-Merge framework can be used
to implement many relational operators, particularly joins.
A natural next step is to develop an SQL-like interface and
an optimizer to simplify the process of developing a Map-
Reduce-Merge workflow. This work can readily reuse well-
studied RDBMS techniques.

Acknowledgments. We would like to thank reviewers
and Yahoo! Search colleagues for suggestions and discus-
sions.

9. REFERENCES
[1] Apache. Hadoop. http://lucene.apache.org/hadoop/,

2006.

[2] A. C. Arpaci-Dusseau et al. High-Performance Sorting
on Networks of Workstations. In SIGMOD 1997,
pages 243–254, 1997.

[3] E. A. Brewer. Combining Systems and Databases: A
Search Engine Retrospective. In J. M. Hellerstein and
M. Stonebraker, editors, Readings in Database
Systems, Fourth Edition, Cambridge, MA, 2005. MIT
Press.

[4] F. Chang et al. Bigtable: A Distributed Storage
System for Structured Data. In OSDI, pages 205–218,
2006.

[5] L. Chu et al. Optimizing Data Aggregation for
Cluster-Based Internet Services. In PPOPP, pages
119–130. ACM, 2003.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[7] D. J. DeWitt et al. GAMMA - A High Performance
Dataflow Database Machine. In VLDB 1986, pages
228–237, 1986.

[8] D. J. DeWitt and Gerber.R. Multiprocessor
Hash-Based Join Algorithms. In VLDB 1985, 1985.

[9] D. J. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Systems.
Commun. ACM, 35(6):85–98, 1992.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, pages 29–43, 2003.

[11] J. Gray. Sort Benchmark.
http://research.microsoft.com/barc/SortBenchmark/,
2006.

[12] J. Gray et al. Scientific data management in the
coming decade. SIGMOD Record, 34(4):34–41, 2005.

[13] M. Isard et al. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In
EuroSys, 2007.

[14] R. Lämmel. Google’s MapReduce Programming
Model – Revisited. Draft; Online since 2 January,
2006; 26 pages, 22 Jan. 2006.

[15] R. Pike et al. Interpreting the Data: Parallel Analysis
with Sawzall. Scientific Programming Journal,
13(4):227–298, 2005.

[16] Teradata. Teradata.
http://www.teradata.com/t/go.aspx, 2006.

[17] TPC. TPC-H. http://www.tpc.org/tpch/default.asp,
2006.

[18] Wikipedia. Redundant Array of Inexpensive Nodes.
http://en.wikipedia.org/wiki/
Redundant Array of Inexpensive Nodes, 2006.

1040

