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Abstract

Functional programming may be beautiful, but to write rggdlecations we must grapple with awk-
ward real-world issues: input/output, robustness, caroay, and interfacing to programs written in
other languages.

These lecture notes give an overview of the techniques tnat been developed by the Haskell
community to address these problems. | introduce variooisqeed extensions to Haskell along the way,
and | offer an operational semantics that explains whaetke&gensions mean.

This tutorial was given at the Marktoberdorf Summer Schd#d® It will appears in the book
“Engineering theories of software construction, Marktadb@f Summer School 2000ed CAR Hoare,
M Broy, and R Steinbrueggen, NATO ASI Series, 10S Press, 20p47-96.

This version has a few errors corrected compared with thégtgal version. Change summary:

e Jan 2009: Clarifyr andfn () in Section 3.5; reword the one occurrencegof) in Section 2.7
e Feb 2008: Fix typo in Section 3.5

e May 2005: Section 6: correct the way in which the FFI declamesmported function to be pure
(no “unsaf e” necessary).

e Apr 2005: Section 5.2.2: some examples added to clanfyl uat e.
e March 2002: substantial revision



1 Introduction

There are lots of books about functional programming in leli$k4, 14, 7]. They tend to concentrate on
the beautiful core of functional programming: higher orflerctions, algebraic data types, polymorphic
type systems, and so on. These lecture notes are aboutshbdtiusuallyaren’t written about. To write
programs that aresefulas well asbeautiful the programmer must, in the end, confront the Awkward
Squad, a range of un-beautiful but crucial issues, geryaraficerning interaction with the external world:

e Input and output.

e Error detection and recovery; for example, perhaps therproghould time out if something does
not happen in time.

e Concurrency, when the program must react in a timely waydependent input sources.

e Interfacing to libraries or components written in some othaguage.

The call-by-value (or strict) family of functional languaghave generally taken a pragmatic approach to
these questions, mostly by adopting a similar approachaitéken by imperative languages. You want to
print something? No problem; we'll just have a functieni nt Char that has the side effect of printing

a character. Of courser i nt Char isn't really a function any more (because it has a side éffécit in
practice this approach works just fine, provided you are gnexpto specify order of evaluation as part of
the language design — and that is just what almost all othegrpmming languages do, from FORTRAN
and Java to mostly-functional ones like Lisp, and Standald M

Call-by-need (or lazy) languages, such as Haskell, weairahiat because their evaluation order is delib-
erately unspecified. Suppose that we were to extend Haskellithing side-effecting “functions” such as
pri nt Char . Now consider this list

xs = [printChar "a', printChar 'b’]

(The square brackets and commas denote a list in Haskell.at W earth might this mean? In SML,
evaluating this binding would prita’ followed by’ b’ . But in Haskell, the calls tpr i nt Char will
only be executed if the elements of the list are evaluatedekample, if the only use ofs is in the call

(1 ength xs), then nothing at all will be printed, becaulsengt h does not touch the elements of the
list.

The bottom line is thalazinessandside effectsre, from a practical point of view, incompatible. If you
want to use a lazy language, it pretty much has to paralyfunctional language; if you want to use side
effects, you had better use a strict language.

For a long time this situation was rather embarrassing ftdhy community: even the input/output story
for purely-functional languages was weak and unconvindieigalone error recovery, concurrency, etc.
Over the last few years, a surprising solution has emerdednbnad. | say “surprising” because anything
with as exotic a hame as “monad” — derived from category themre of the most abstract branches of
mathematics — is unlikely to be very useful to red-bloodeafppammers. But one of the joys of functional

programming is the way in which apparently-exotic theony bave a direct and practical application, and
the monadic story is a good example. Using monads we havel fomm to structure programs that perform

input/output so that we can, in effect, do imperative pragrang where that is what we want, and only

where we want. Indeed, thH&Omonad is the unifying theme of these notes.

The “standard” version of Haskell is Haskell 98, which comath an 1/O library that uses the monadic
approach. However, Haskell 98 is not rich enough to deal thi¢rest of the Awkward Squad (exceptions,
concurrency, etc), so we have extended Haskell 98 in a nuoflexperimental ways, adding support for
concurrency [35], exceptions [37, 29], and a foreign-laagpinterface [36, 11]. So far, these developments
have mostly been documented in scattered research papepsirpose in these lectures is to gather some
of it together into a coherent account. In what follows, wheefer to “Haskell”, | will always mean
Haskell 98, rather than earlier versions of the languaglessrotherwise specified.



As a motivating example, we will explore the issues involiredriting a web server in Haskell. It makes
an interesting case study because it involves every menfitiee dwkward Squad:

e Itis I/O intensive.
e It requires concurrency.
e It requires interaction with pre-existing low-level |/Mtaries.

e It requires robustness. Dropped connections must timeiboniyist be possible to reconfigure the
server without dropping running connections; errors madbigged.

The Haskell web server we use as a case study is remarkablyf@jalt uses only 1500 lines of Haskell

to implement (more than) the HTTP/1.1 standard. It is roleastugh to run continuously for weeks at a
time, and its performance is broadly comparable with theslyidised Apache server. Apache handles 950
connections/sec on the machine we used, while the Haskble®/er handles 700 connections/sec. But
this is a bit of an apples-and-oranges comparison: on théhané Apache has much more functionality
while, on the other, the Haskell web server has had verg tirformance tuning applied.

| began this introduction by saying that we must confrontAladward Squad if we are to write useful
programs. Does that mean that useful programs are awkward st judge for yourself, but | believe
that the monadic approach to programming, in which actioesfiest class values, is itself interesting,
beautiful, and modular. In short, Haskell is the world’s §ihienperative programming language.

2 Input and output

The first member of the Awkward Squad is input/output, andithevhat we tackle first.

2.1 The problem

We begin with an apparently fundamental conflict. A purelydiional program implementsfanctior it
has no side effect. Yet the ultimate purpose of running anamgs invariably to cause some side effect:
a changed file, some new pixels on the screen, a message setat@ver. Indeed it's a bit cheeky to
call input/output “awkward” at all. 1/O is the raison d'étof every program. — a program that had no
observable effect whatsoever (no input, no output) wouldbeovery useful.

Well, if the side effect can’t be in the functional progratnwill have to be outside it. For example, perhaps
the functional program could be a function mapping an inpatracter string to an output string:

main :: String -> String

Now a “wrapper” program, written in (gasp!) C, can get an inftuing from somewhere (a specified file,
for example, or the standard input), apply the function,tariid store the result string somewhere (another
file, or the standard output). Our functional programs mestain pure, so we locate all sinfulness in the
“wrapper”.

The trouble is that one sin leads to another. What if you waméad more than one file? Or write more
than one file? Or delete files, or open sockets, or sleep foecifsg time, ... ? The next alternative, and
one actually adopted by the first version of Haskell, is tddnthe argument and result type of the main
function:

main :: [Response] -> [Request]

Now the program takes as its argument a (lazy) lisRe§ponse values and produces a (lazy) list of
Request values (Figure 1). Informally & quest says something like “please get the contents of file
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Figure 1: The stream I/O model

/ et ¢/ not d”, while a Response might say “the contents you wantedNle enai | today”. More
concretelyRequest andResponse are both ordinary algebraic data types, something like this

type FilePath = String

ReadFil e Fil ePath

data Request =
| WiteFile FilePath String
|

dat a Response = Request Fail ed

| ReadSucceeded String
I

I

Wit eSucceeded

There is still a wrapper program, as before. It repeatedlgga request off the result list, acts on the
request, and attaches an appropriate response to the argigsnélhere has to be some clever footwork to
deal with the fact that the function has to be applied to afisesponses before thesiee any responses in
the list, but that isn’t a problem in a lazy setting.

This request/response story is expressive enough thasitdapted as the main input/output model in the
first version of Haskell, but it has several defects:

e |tis hard to extend. New input or output facilities can beedidnly by extending thBRequest and
Response types, and by changing the “wrapper” program. Ordinarysisee unlikely to be able
to do this.

e There is no very close connection between a request andrissponding response. It is extremely
easy to write a program that gets one or more “out of step”.

e Even if the program remains in step, it is easy to accidgnwlbluate the response stream too
eagerly, and thereby block emitting a request until thearsp to that request has arrived — which it
won't.

Rather than elaborate on these shortcomings, we moveswiftto a better solution, nametponadic

I/0. Hudak and Sundaresh give a useful survey of approachesdtygunctional input/output [15], which
describes the pre-monadic state of play.

2.2 Monadic I/O

The big breakthrough in input/output for purely-functiblemguages came when we learned how to use
so-callednonadsas a general structuring mechanism for functional progratese is the key idea:



A value of typel O a is an “action” that, when performed, may do some input/oyjtipefore
delivering a value of typa.

This is an admirably abstract statement, and | would not berised if it means almost nothing to you at
the moment. So here is another, more concrete way of lookitigeae “actions”:

type 10Oa = Wrld -> (a, Wrld)

This type definition says that a value of typ® a is a function that, when applied to an argument of type
Wor | d, delivers a newhor | d together with a result of typa. The idea is rather program-centric: the
program takes the state of the entire world as its input, @tidets a modified world as a result, modified
by the effects of running the program. | will say in Sectioh @hy | don't think this view offt Oactions as
functions is entirely satisfactory, but it generates mafhe right intuitions, so | will use it unashamedly
for a while. We may visualise a value of typ© a like this:

result:a

4
IO a

World in —p —» World out

TheWor | d is fed in on the left, while the neWdr | d, and the result of typa, emerge on the right. In
general, we will call a value of typeO a anl/O actionor justaction In the literature you will often also
find them calleccomputations

We can givd Otypes to some familiar operations, which are supplied anifivie:

getChar :: 10 Char
put Char :: Char -> 10 ()

get Char is an I/O action that, when performed, reads a character fnenstandard input (thereby hav-
ing an effect on the world outside the program), and returts the program as the result of the action.
put Char is a function that takes a character and returns an actieywthan performed, prints the char-
acter on the standard output (its effect on the externaldyoshd returns the trivial valug) . The pictures
for these actions look like this (the box fput Char takes an extra input for tHéhar argument):

Char Char 0
getChar L putChar
—P —» —P —»
getChar :: IO Char putChar :: Char->10 ()

Suppose we want to read a character, and print the charaeteave read. Then we need to glue together
put Char andget Char into a compound action, like this:

0
Char T
getChar putChar
— P P >

getChar >>= putChar

To achieve this we use a glue function, or combinator, alegiged as primitive:
(>>=) :: I10a->(a->10b) ->10hb



echo :: 10 ()
echo = get Char >>= put Char

The combinator( >>=) is often pronounced “bind”. It implements sequential cosipon: it passes
the result of performing the first action to the (parameggtjssecond action. More precisely, when the
compound actiofa >>= f) is performed, it performs actioa, takes the result, appliésto it to get a
new action, and then performs that new action. Ingbbo example( get Char >>= put Char) first
performs the actioget Char , yielding a character, and then performgut Char c.

Suppose that we wanted to perfoenho twice in succession. We can't s§gcho >>= echo), be-
causg >>=) expects dunctionas its second argument, not an action. Indeed, we want te i@y the
result,( ), of the firstecho. Itis convenient to define a second glue combindtef;) , in terms of the
first:

(>>) :: 10a->10b ->10b
(>>) al a2 = al >>= (\x -> a2)

Theterm(\ x -> a2) is Haskell's notation for a lambda abstraction. This pattic abstraction simply
consumes the argument, throws it away, and returre2. Now we can write

echoTwice :: 10 ()
echoTwi ce = echo >> echo

“(>>) " is often pronounced “then”, so we can read the right hand a&l'echo thenecho”.

In practice, it is very common for the second argumer{te$=) to be an explicit lambda abstraction. For
example, here is how we could read a character and printdetwi

echobDup :: 10 ()
echobDup = getChar >>= (\c -> (putChar c >> putChar c))

All the parentheses in this example are optional, becawm®bda abstraction extends as far to the right as
possible, and you will often see this laid out like this:

echoDup :: 10 ()

echoDup = get Char >>=\c ->
put Char ¢ >>
put Char c

The fact that this looks a bit like a sequence of imperatit®mas is no coincidence — that is exactly what
we wish to specify. Indeed, in Section 2.3 we will introdupeaial syntax to mirror an imperative program
even more closely.

How could we write an 1/O action that reads two characterd,raturns both of them? We can start well
enough:

get TwoChars :: 10 (Char, Char)

get TwoChars = get Char >>= \cl ->
get Char >>= \c2 ->
?2??

But what are we to put for the???” part? It must be of typé O ( Char, Char), but we have done all
the input/output required. What we need is one more comdminat

return :: a->10a

The action( r et ur n v) is an action that does no I/0O, and immediately retwrmsthout having any side
effects. We may draw its picture like this:



P o

L

return
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Now we can easily completget TwoChar s:
get TwoChars :: 10 (Char, Char)
get TwoChars = get Char >>= \cl ->
get Char >>= \c2 ->

return (cl,c2)

Here is a more realistic action that reads a whole line oftnpu

getLine :: 10 [Char]
get Li ne = get Char >>= \c ->
if ¢ =='\n" then
return []
el se
get Li ne >>= \cs ->

return (c : cs)

In this example, the[] " is Haskell's notation for the empty list, while the infix cstnuctor " is the list
constructor.

A complete Haskell program defines a single big I/O actiotiedarai n, of typel O (). The program
is executed by performing the action. Here, for example jgsogram that reads a complete line from the
input, reverses it, and prints it on the output:
main :: 10 ()
mai n = getLine >>=\ ¢s ->
put Li ne (reverse cs)

We have not yet defingaiut Li ne :: [Char] -> 10 () ;we leaveitas an exercise.

Notice that the only operation that combines, or compos2adtions i >>=) , and it treats the world in a
single-threaded wayThat is, it takes the world produced from the first action pasises it on to the second
action. The world is never duplicated or thrown away, no eratthat code the programmer writes. It is
this property that allows us to implemegét Char (and othett Oprimitives) by performing the operation
right away — a sort of “update in place”. | will say more abauplementation in Section 2.8.

You might worry that there is an unbounded number of possiiéprimitives”, such agput Char and
get Char, and you would be right. Some operations can be defined instefnexisting ones (such as
get Li ne) but many cannot. What is needed, of course, is a way to datrary 1/O libraries supplied by
the operating system, a topic | discuss in detail in Section 6



2.3 “do” notation

Rather than make you write programs in the stylised form efl#st section, Haskell provides a spe-
cial syntax, dubbed “thedo notation”, for monadic computations. Using tle notation we can write
get TwoChar s as follows:

get TwoChars :: 10 (Char, Char)

get TwoChars = do { cl1 <- getChar ;
c2 <- getChar ;
return (ci,c?)

}

You can leave out thec* <- " part when you want to throw away the result of the action:

put TwoChars :: (Char,Char) -> 10 ()
put TwoChars (cl1,c2) = do { putChar cl; putChar c2 }

The syntax is much more convenient than ugjirg>=) and lambdas, so in practice everyone udes
notation for 1/0O-intensive programs in Haskell. But it issjnotation! The compiler translates tHe
notation into calls tq >>=) , just as before. The translation rules are sirhiple

do { z<-¢; s} e>>=\z-> do { s}
do { e s} e>> do { s}
do {e} = e

It follows from this translation that theo statementX <- e” binds the variablex. It does nogssign to
the locationx, as would be the case in an imperative program. If we use the sariable name twice on
the left hand side, we bind two distinct variables. For eximp

do { c <- getChar ; -- ¢ :: Char
C <- putChar ¢ ; -- ¢ :: ()
return c
}

The first line bindsc to the character returned Igpet Char . The second line feeds thatto put Char
and binds alistinctc to the value returned lgyut Char , namely( ) . This example also demonstrates that
the scope ok bound by %k <- e” does notincludes.

A do expression can appear anywhere that an expression cam¢padat is correctly typed). Here, for
example, igget Li ne in do notation; it uses a nestelb expression:

getLine :: 10 [Char]
getLine = do { ¢ <- getChar ;
if ¢ =="\n then
return []
el se

do { cs <- getlLine ;
return (c:cs)
} }

2.4 Control structures

If monadic I/O lets us do imperative programming, what cspands to the control structures of imperative
languages: for-loops, while-loops, and so on? In fact, waataeed to add anything further to get them:
we can build them out of functions.

IHaskell also allows &et form in do notation, but we omit that for brevity.



For example, after some initialisation our web server go&san infinite loop, awaiting service requests.
We can easily express an infinite loop as a combinator:

forever :: 10 () ->10 ()
forever a = a >> forever a

So(forever a) is an action that repeatsforever; this iteration is achieved through the recursibn o
f or ever . Suppose instead that we want to repeat a given action digglatiimber of times. That is, we
want a function:

repeatN :: Int ->10a ->10()

So(repeat N n a) is an action that, when performed, will repean times. Itis easy to define:

repeatN 0 a return ()
repeatN n a = a >> repeatN (n-1) a

Notice thatf or ever andr epeat N, like (>>) and(>>=), take an action as one of their arguments.
It is this ability to treat an action as a first class value tidliws us to define our own control structures.
Next, af or loop:

for :: [a] ->(a->10()) ->10()

The idea is thaf{ f or ns fa) will apply the functionf a to each element dfis in turn, in each case
giving an action; these actions are then combined in seguenc

for [] fa =return ()
for (n:ns) fa =fan >> for ns fa

We can usd or to print the numbers between 1 and 10, thus:
printNuns = for [1..10] print

(Here,[ 1. . 10] is Haskell notation for the list of integers between 1 and a0¢d pri nt has type
Int -> 10 ().) Another way to definéor is this:

for ns fa = sequence_ (map fa ns)

Here,map appliesf a to each element ais, giving a list of actions; thesequence_ combines these
actions together in sequence. Saquence_ has the type

sequence_ :: [1Oa] -> 10 ()
sequence_ as = foldr (>>) (return ()) as

The*_"in"“sequence_"reminds us that it throws away the results of the sub-asticeturning only( ) .
We call this function $equence_" because it has a close cousin, with an even more beautat ty

sequence :: [I1Oa] ->10[a]

It takes a list of actions, each returning a result of tgpand glues them together into a single compound
action returning a result of tydea] . It is easily defined:

sequence []
sequence (a: as)

return []

do { r <- a;
rs <- sequence as ;
return (r:rs) }

Notice what is happening here. Instead of having a fixed ciidle of control structures provided by the
language designer, we are free to invent new ones, perhapsatipn-specific, as the need arises. This is
an extremely powerful technique.



2.5 References

The | O operations so far allow us to write programs that do inpdaplouin strictly-sequentialised, im-
perative fashion. It is natural to ask whether we can alsoghadother pervasive feature of imperative
languages, namely mutable variables. Taking inspiratiomfML's r ef types, we can proceed like this:

data IORef a -- An abstract type
newl ORef o a->10 (10Ref a)
readlORef :: IORef a ->10a
witelORef :: IORef a ->a ->10()

A value of typel ORef a is a reference to a mutable cell holding a value of tapeA new cell can be
allocated usingnewl ORef , supplying an initial value. Cells can be read and writteingis ead| ORef
andwr it el ORef.

Here is a small loop to compute the sum of the values betdemrdn in an imperative style:

count :: Int -> 10 Int
count n = do { r <- new ORef O ;
loopr 1}
wher e
loop :: IORef Int ->1Int -> 10 1Int
loop r i | i>n = readl ORef r

| otherwise = do { v <- readl ORef r ;
witelORef r (v+i) ;
loop r (i+1) }

Just for comparison, here is what it might look like in C:

count( int n) {
int i, v =0;
for (i=1; i<=n; i++) { v = v+i ; }
return( v ) ;

}

But this is an absolutely terrible example! For a start, thegpam is much longer and clumsier than it
would be in a purely-functional style (e.g. simgym [ 1. . n] ). Moreover, it purports to need theD
monad but does not really require any side effects at allsTtinel Omonad enables us to transliterate an
imperative program into Haskell, but if that's what you wémtlo, it would be better to use an imperative
language in the first place!

Nevertheless, ahORef is often useful to “track” the state of some external-worijezt. For example,
Haskell 98 provides a direct analogy of the Standard C hphanctions for opening, reading, and writing
afile:

openFile :: String -> | Owde -> | O Handl e

hPutStr :: Handle -> [Char] -> 10 ()
hGetLine :: Handle -> 10 [ Char]
hd ose . Handle -> 10 ()

Now, suppose you wanted to record how many characters wadeorawnritten to a file. A convenient way
to do this is to arrange thd&Put St r andhGet Li ne each increment a mutable variable suitably. The
| ORef can be held in a modified Handle:

type Handl eC = (Handl e, 1 ORef Int)

Now we can define a variant afpenFi | e that creates a mutable variable as well as opening the file,
returning aHandl eC; and variants ohPut St r andhGet Li ne that take aHandl eC and modify the
mutable variable appropriately. For example:

10



openFileC :: String -> | Ovbde -> | O Handl eC

openFil eC fn node = do { h <- openFile fn node ;
v <- new ORef O ;
return (h,v) }

hPutStrC :: HandleC -> String -> 10 ()

hPutStrC (h,r) ¢cs =do { v <- readl ORef r ;
witelORef r (v + length cs) ;
hPutStr h cs }

In this example, the mutable variable models (part of) tagesdf the file being written to, by tracking the
number of characters written to the file. Since the file itsglfn effect, an external mutable variable, it is
not surprising that an internal mutable variable is appetpito model its state.

2.6 Leaving the safety belt at home

| have been careful to introduce thé&® monad as ambstract data typethat is, a type together with a
collection of operations over that type. In particular, veséx

return :: a ->10a
(>>=) :: 10a->(a->10b) ->10hb
getChar :: 10 Char

putChar :: Char -> 10 ()
...nore operations on characters...

openFile :: [Char] -> | Owbde -> | O Handl e
...nhore operations on files...

newl ORef :: a -> 10 (I0ORef a)
...nore operations on | ORefs...
A key feature of an abstract data type is whatrégventsas well as what ipermits In particular, notice the
following:
¢ All the operations except oné>>=) , have an 1/O action as theiesult but do not take one as an
argument

e The only operation thatombined/O actions iy >>=) .

e Thel Omonad is “sticky”: no operation takes argument(s) witH &type and returns a result with
a nont Otype.

Sometimes, however, such restrictions are irksome. Fanpba suppose you wanted to read a configura-
tion file to get some options for your program, using code gbing like this:

configFileContents :: [String]

configFileContents = lines (readFile "config") -- VVRONG
useOptim sation :: Bool
useOptim sation = "optimse" ‘elem configFileContents
Herelines :: String -> [String] isastandard function that breaks a string into its corestitu
lines, whileel em :: Eq a => a -> [a] -> Bool tells whether its first argument is a member of

its second argument. Alas, the code is not type correctusecaadFi | e has type
readFile :: FilePath -> 10 String

11



Sor eadFi | e produces an O Stri ng, whilel i nes consumes &t ri ng. We can “solve” this by
giving conf i gFi | eCont ent s the typel O St ri ng, anduseQpt i m sat i on the typel O Bool ,
plus some changes to the code. But that means we can onlyse§pt i m sati on when we are in
the | Omonad, which would be very inconvenient! What we want is a way tofgetn | O Stri ng to
St ri ng, but that is the very thing we cannot do in th& monad

There is a good reason for this: reading a file is an 1/0 ac8orin principle it mattersvhenwe read the
file, relative to all the other I/O operations in the prograBut in this case, we are confident that the file
conf i g will not change during the program run, so it really doesréttar when we read it. This sort of
thing happens often enough that all Haskell implementatadfer one more, unsafe, /O primitive:

unsafePerformO:: I1Oa -> a
Now we can write

configFileContents :: [String]
configFileContents = |ines (unsafePerform O (readFile "config"))

and all is well. This combinator has a deliberately long nevideenever you use it, you are promising the
compiler that the timing of this I/O operation, relative tbthe other I/O operations of the program, does
not matter. You must undertake this proof obligation, beeailne compiler cannot do it for you; that is
what the ‘Unsaf e” prefix means. Just to make the point even clearer, here ipthmbing diagram” for
unsaf ePerform O

Result
A

Invent act
world

Discardworld

unsafePerformlO act

As you can see, we have to invent a world out of thin air, and thiecard it afterwards.

unsaf ePerform O is a dangerous weapon, and | advise you against using it swx&dn
unsaf ePer f or m Ois best regarded as a tool for systems programmers andyliwréters, rather than
for casual programmers. Because the input/output it endaties can happen at unpredictable moments
(or even not at all) you need to know what you are doing. Whiatsis obvious is that you can also use it to
defeat the Haskell type, by writing a functicmst :: a -> b;see [25]!

unsaf ePer f or M Ois often mis-used to force an imperative program into a gufwhctional setting.
This a bit like using a using a chain saw to repair a dishwashét's the wrong tool for the job. Such
programs can invariably be restructured into a cleanetional form. Nevertheless, when the proof
obligations are satisfiedinsaf ePer f or m Ocan be extremely useful. In practice, | have encountered
three very common patterns of usage:

e Performing once-per-run input/output, as émnf i gFi | eCont ent s.

e Allocating a global mutable variable. For example:

noCf OpenFiles :: |1 ORef Int
noCOF OpenFi | es = unsaf ePerfornm O (new ORef 0)

e Emitting trace messages for debugging purposes:

2We would also need to be careful not to read the file every timéasted the boolean!

12



trace :: String ->a -> a
trace s x = unsafePerform O (putStrLn s >> return x)

2.7 A quick review

Let us summarise what we have learned so far:

e A complete Haskell program is a single (perhaps large) IA®acalledmai n.
e Big I/O actions are built by gluing together smaller actioisghg( >>=) andr et ur n.

e An I/O action is a first-class value. It can be passed to a fonets an argument, or returned as the
result of a function call (consid€r>>) , for example). Similarly, it can be stored in a data struetur
— consider the argument Bequence, for example.

e The fact that I/O actions can be passed around so freely nitagasy to define new “glue” combi-
nators in terms of existing ones.

Monads were originally invented in a branch of mathematidked category theory, which is increasingly
being applied to describe the semantics of programminguages. Eugenio Moggi first identified the
usefulness of monads to describe composable “computé{®2ls Moggi's work, while brilliant, is not
for the faint hearted. For practical programmers the bieakigh came in Phil Wadler's paper “Compre-
hending monads” [47], in which he described the usefulnéssomads in a programming context. Wadler
wrote several more very readable papers about monads, whighly recommend [48, 49, 50]. He and |
built directly on this work to write the first paper about mdil/O [38].

In general, anonadis a triple of a type constructa¥/, and two functions; et ur n and>>=, with types

return : Vo a— M«
>>= & Vaf. Ma— (a—MpB)—-Mp

That is not quite all: these three must satisfy the followatgebraic laws:

returnz>>=f = fax (LUNIT)
m>>=return = m (RUNIT)
x does not appear free ing (BIND)
my >>= (Az.mg >>= (Ay.ms3)) = (mq >>= (Az.mg)) >>= (Ay.m3)

(In this box and ones like it, | use names like (LUNIT) simpf/aconvenient way to refer to laws from the
running text.) The last of these rules, (BIND), is much easi@einderstand when written oho notation:

do { x<- my; do { y<- do { =z<-my;
Y <- ma; = ma}
ms m3}

In any correct implementation of tHeD monad,r et ur n and( >>=) should satisfy these properties. In
these notes | present only one monad,|tllBmonad, but a single program may make use of many different
monads, each with its own type constructaturn andbind operators. Haskell’s type class mechanism
allows one to overload the functiongt ur n and( >>=) so they can be used in any monad, anddbe
notation can likewise be used for any monad. Wadler’s pap#esl above, give many examples of other
monads, but we do not have space to pursue that topic here.
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2.8 Implementation notes

How difficult is it for a compiler-writer to implement theO monad? There seem to be two main alterna-
tives.

Keep the monad right through. The first technique carries theO monad right through the compiler to
the code generator. Most functional-language compilarsstate the source program to an interme-
diate form based closely on the lambda calculus, apply agitig transformations to that interme-
diate form, and then generate code. It is entirely possibéxtend the intermediate form by adding
monadic constructs. One could simply ade>>=) andr et ur n as primitives, but it makes trans-
formation much easier if one adds ttie-notation directly, instead of a primitiye>>=) function.
(Compare the two forms of the (BIND) rule given in the prevd@ection.) This is the approach taken
by Benton and Kennedy in MLj, their implementation of ML [6].

The functional encoding. The second approach, and the one used in the Glasgow Haskelpiter
(GHC), is to adopt the functional viewpoint of th&® monad, which formed the basis of our earlier
pictorial descriptions:

type 10a = Wrld -> (a, Wrld)

If we represent the “world” argument by an un-forgeable toke typeWor | d, then we can directly
implement et ur n and( >>=) like this:

return :: a->10a
return a =\w -> (a,w

(>>=) :: 10a->(a->10b) ->10hDb
(>>=) mk =\w -> case mw of
(r,w) ->kr w

Herew is the un-forgeable token that stands for the world. In tHenden of ( >>=) we see that
the world returned by the first action is passed to the segostas in the picture in Section 2.2. We
must also implement the primitideO operations, such aget Char, but that is now no different to
implementing other primitive operations, such as additibtwo integers.

So which of these two approaches is better? Keeping @monad explicit is principled, but it means that
every optimisation pass must deal explicitly with the newstoucts. GHC's approach is more economical.
For example, the three laws in Section 2.7, regarded as iatiions, are simple consequences and need
no special attention. All the same, | have to say that | thirk@HC approach is a bit of a hack. Why?
Because it relies for its correctness on the fact that thepdemnever duplicates a redex. Consider this
expression:

get Char >>= \c -> (putChar ¢ >> put Char c)
If we use GHC's definitions of >>=) we can translate this to:

\w -> case get Char w of
(c,wl) -> case putChar ¢ wl of
(_,wW2) -> putChar ¢ w2

The compiler would be entirely justified in replacing thisleowith:

\w -> case get Char w of
(c,wl) -> case putChar ¢ wl of
(_,wW2) -> putChar (fst (getChar w)) w2
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Here | have replaced the second use ofiith another call toget Char w. Two bad things have hap-
pened: first, the incoming world tokew, has been duplicated; and second, there will now be two calls
to get Char instead of one. If this happens, our assumption of singleattedness no longer holds, and
neither does our efficient “update-in-place” implememtanfget Char . Catastrophe!

In the functional language Clean, the whole 1/O system it lomi an explicit world-passing style. The
single-threadedness of the world is ensured by Clean’suenigss-type system, which verifies that values
which should be single-threaded (notably the world) are@ttused in single threaded way [4]. In Haskell,
thel O monad maintains the world’s single-threadedness by aact&in; so the programmer cannot err,
but it is in principle possible for the compiler to do so.

In practice, GHC is careful never to duplicate an expresaibnse duplication might give rise to extra
work (a redex), so it will never duplicate the callget Char in this way. Indeed, Ariola and Sabry have
shown formally that if the compiler never duplicates redgsteen indeed our implementation strategy is
safe [2]. So GHC'’s approach is sound, but it is uncomfortdide an apparently semantics-preserving
transformation, such as that above, does not preservertiengies at all. This observation leads us neatly
to the next question | want to discuss, hamely how to give aasgios to the Awkward Squad.

3 What does it all mean?

It is always a good thing to give a precise semantics to a laggdeature. How, then, can we give a
semantics for thé Omonad? In this section | will describe the best way | know teveer this question. |
will introduce notation as we go, so you should not need aiyr pxperience of operational semantics to
understand this section. You can also safely skip to Sedtidtevertheless, | urge to persevere, because |
will use the same formal framework later, to explain the setica of concurrency and exceptions.

3.1 A denotational semantics?

One approach to semantics is to take the functional viewpaiescribed earlier:
type 10Oa = Wrld -> (a, Wrld)

In this view, the meaning of an action is just a function. Oaa make this story work, but it is a bit
unsatisfactory:

e Regarded as a function atbr | ds, this program

loop :: 10 ()
| oop = | oop

has denotation bottoml(). But, alas, this program

loopX :: 10 ()
| oopX = put Char

X' >> | oopX

unfortunately also has denotatidn Yet these programs would be regarded as highly distingbigh
by a user (one loops for ever, the other prints for ever). Nor is the problem restricted to erroneous
programs: some programs (server processes, for exampjé)edasignedo run essentially forever,
and it seems wrong to say that their meaning is simigly

e Consider two Haskell programs running in parallel, eacldsenoutput to the other — a Web server
and a Web browser, for example. The output of each must forhoptheWor | d given as the input
to the other. Maybe it would be possible to deal with this tlyto a fixpoint operator, but it seems
complicated and un-intuitive (to me anyway!).
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z,y € Variable
k€ Constant
con €  Constructor
c € Char
Values V u= \ax->M|k|conMy -+ M, | c
| returnM|M>>=N
| putChar c|get Char
Terms M,N,H := z|V|MN|if MthenN;elseNy| ---
Evaluation contexts E == []|E>>=M

Figure 2: The syntax of values and terms.

e The approach does not scale well when we add concurrencghwi@ will do in Section 4.

These problems may be soluble while remaining in a denataltiftamework, perhaps by producing a
sequence of\or | ds, or by returning a set dfacesrather than a newor | d. To give the idea of the trace
approach, we modelOlike this:

type 10O a = (a, Set Trace)
type Trace [ Event]
data Event = Put Char Char | GetChar Char |

A program that reads one character, and echoes it back torbers would have semantics

((), { [GetChar "a&, PutChar 'a'],
[GetChar "b’, PutChar 'b’],
[GetChar "¢, PutChar 'c’],

1)

We return asetof traces, because the trace contains detaiismftsas well autputs so there must be a
trace for each possible input. The set of traces describéseabehaviours the program can have, and no
others. For exampleGet Char ' x', Put Char 'vy’] isexcluded.

This approach is used to give the semantics of CSP by Ros@be iffowever we will instead adopt an
operationalsemantics, based on standard approaches to the semamiicees$s calculi [31]. Ultimately,

| think the two approaches have similar power, but | find therafional approach simpler and easier to
understand.

3.2 An operational semantics

Our semantics is stratified in two levels: @mmer denotational semantid¢hat describes the behaviour of
pure terms, while aputer monadic transition semantidescribes the behaviour bDcomputations. We
consider a simplified version of Haskell: our language haaual features of a lazy functional language
(lambda abstraction, application, data structures, cageessionsgetc), augmented with constants cor-
responding td O operations. We will only present those elements of the gytitat are relevant to the
semantics; other aspects (such as how we represent listeywatio write a case expression) would not aid
comprehension of the semantics, and are not presented.

M and N range ovetermsin our language, antl’ ranges over values (Figure 2). Valueis a term that
is considered by the inner, purely-functional semanticbacevaluated. The values in Figure 2 include
constants and lambda abstractions, as usual, but they aseairin two ways:
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o \We treat the primitive monadlcOoperations as values-or exampleput Char ' ¢’ is a value. No
further work can be done on this term in the purely-functlevald; it is time to hand it over to the
outer, monadic semantics. In the same wdy>>= N, get Char, andr et ur n M are all values.

e Some of these monadicO values have arguments that are not arbitrary terids/{, etc), but
are themselves values (e.g). The only example in Figure 2 is the valpait Char ¢ but others
will appear later. S@ut Char ' A’ is a value, buput Char (chr 65) is not (it is a term,
though). Itis as iput Char is astrict data constructor. The reason for this choice is that evialyat
put Char 's argument is something that can be done in the purely-fomatworld; indeed, imust
be done before the output operation can take place.

We will give the semantics by describing how opegram stateevolves into a new program state by
making atransition For now, we model a program state simply as a term, but we trih curly braces,
thus{M}, to remind us that it is a program state.

3.3 Labelled transitions

The transition from one program state to the next may or mapatabelledby anevent«. So we write
a transition like this:
P % Q

The eventsy represent communication with the external environmeratt ity input and output. Initially
we will use just two events:

|
e P -5 (@ means “program stat® can move toQ, by writing the character to the standard
output”.

?
e P 5 ( means “program stat® can move taQ, by reading the characterfrom the standard

input”.
Here, then, are our first two transition rules.

{put Char c} te {return()}
{get Char } 2e, {returnc}

The first rule says that a program consisting onlpof Char ¢ can make a transition, labelled by, to
a program consisting afet urn () . The second rule is similar. But most programs consist ofertioan
a single 1/0 action! What are we to do then? To answer thattouese introducesvaluation contexts

3.4 Evaluation contexts
The get Char transition rule is all very well, but what if the program csts of more than a single
get Char ? For example, consider the program

mai n = get Char >>= \c -> putChar (toUpper c)

Which is the first 1/O action that should be performed? gleé Char , of course! We need a way to say
“the first I/O action to perform is to the left of tHe>>=) ". Sometimes we may have to look to the left of
more than oné¢ >>=) . Consider the slightly artificial program

main = (getChar >>= \c -> getChar) >>=\d -> return ()

StoUpper :: Char -> Char converts a lower-case character to upper case, and ledasobiracters unchanged.
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{E[put Char c|} le, {E[return()]} (PUTC)
{E[get Char |} Ze, {E[returnc]} (GETC)

{E[return N>>=M|} — {E[MN]} (LUNIT)

EM]=V M=#V
{E[M]} — {E[V]}

(FUN)

Figure 3: The basic transition rules

Here, the first I/0O action to be performed is the leftmgst Char . In general, to find the first I/O action
we “look down the left branch of the tree p$>=) nodes”.

We can formalise all this arm-waving by using the now wethblished notion of amvaluation context
[9, 52]. The syntax of evaluation contexts is this (Figure 2)

E == []]| E>>=M

An evaluation contexE is a term with a hole, writter}], in it. For example, here are three possible
evaluation contexts:

B = []
Eo = []>>= (\c ->return (ord c))
By = ([]>>=1f) >=g

In each case the[]” indicates the location of the hole in the expression. Weeniri /] to denote the
result of filling the hole inE with the termM. Here are various ways of filling the holes in our examples:

Eifprint "hello"] = print "hello"
Es[get Char] = getChar >>= (\c ->return (ord c))
Es[newl ORef True] = (new ORef True >>= f) >>= g

Using the notation of evaluation contexts, we can give thértdes forput Char andget Char , in Figure
3. In general we will give each transition rule in a figure, gha it a name — such as (PUTC) and (GETC)
— for easy reference.

The rule for (PUTC), for example, should be read: “ipat Char occurs as the next I/O action, in a
contextE|[-], the program can make a transition, emitting a characterepldcing the call tput Char by
return (). This holds for any evaluation contekf-].

Let us see how to make transitions using our example program:
mai n = get Char >>= \c¢ -> put Char (toUpper c)

Using rule (GETC) and the evaluation contékt >>= \c¢ -> put Char (toUpper c)), and as-
suming that the environment delivers the charatt@r in response to thget Char , we can make the
transition:

{get Char >>= \c -> put Char (toUpper c)}
2w

{return 'w >>= \c¢ -> putChar (toUpper c)}

How did we choose the correct evaluation context? The begttavaee is to try choosing another one!
The context we chose is the only one formed by the syntax inrEi@ that allows any transition rule
to fire. For example the conteki, which is certainly well-formed, would force the term in thele to
beget Char >>= \c -> put Char (toUpper c), and no rule matches that. The context simply
reaches down the left-branching chain(ef>=) combinators to reach the left-most action that is ready to
execute.
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What next? We use the (LUNIT) law of Section 2.7, expressetdraaw transition rule:
{E[return N>>=M|} — {E[MN]} (LUNIT)
Using this rule, we make the transition

{return 'w >>=\c -> putChar (toUpper c)}

{(\c -> putChar (toUpper c)) 'wW}

Now we need to do some ordinary, purely-functional evatmatvork. We express this by ‘“lifting” the
inner denotational semantics into our transition systém,this (the “(FUN)” stands for “functional”):

EM] =V M=%V
{E[M]} — {E[V]}

That is, if the termM/ has valud/, as computed by the denotational semanticdfofnamelyE[M], then

we can replac@/ by V at the active site. The functidf{] is a mathematical function that given a tefith
returns its valug [ M]. This function defines the semantics of theely-functionapart of the language —
indeed £[] is called thedenotational semantiasf the language. Denotational semantics is well described
in many books [43, 1], so we will not study it here; meanwhjieu can simply think of [M] as the value
obtained by evaluating/*.

(FUN)

The side condition\/ # V is just there to prevent the rule firing repeatedly withouking progress,
becaus€[V] = V for anyV. Rule (FUN) allows us to make the following transition, usimormal beta
reduction:

{(\c -> putChar (toUpper c)) 'wW} — {putChar 'W}

In making this transition, notice that’[] produced the valueput Char W, and not
put Char (toUpper ’'w ). As we discussed towards the end of Section 3.2, we nfoateChar as
astrict constructor.

Now we can use thput Char rule to emit the character:

putchar *w} ~ W freturn ()}

And now the program is finished.

Referring back to the difficulties identified in Section 3ae can now distinguish a progranoop that
simply loops forever, from prograimoopX that repeatedly printsx’ forever. These programs both have
denotationl in a (simple) denotational semantics (Section 3.1), but tave different behaviours in our
operational semantics.oopX will repeatedly make a transition with the ladet. But what happens to

| oop? To put it another way, what happens in rule (FUN¥[M] = L? The simplest thing to say is
that then there is no valué such that[M] = V, and so (FUN) cannot fire. So no rule applies, and the
program is stuck. This constitutes an observably diffesequence of transitions thawopX°®.

Lastly, before we leave the topic of evaluation contextsygenote that the termy/ in rule (FUN) always
has typd Ot for some typer; that is, an evaluation conteki:] always has an I/O action in its hole. (Why?
Because the hole in an evaluation context is either the wirolgram, of typé O (), or the left argument
of a(>>=), of typel O for somer.) So there is no need to explain how the program (§ay)ue}
behaves, because it is ill-typed.

4l am being a bit sloppy here, because a denotational seragigicls a mathematical value, not a term in the original lzug,
but in fact nothing important is being swept under the caheee. From a technical point of view it may well be simplerthie end,
to adopt an operational semantics for the inner purelytfanal part too, but that would be a distraction here. Notioe, that the
valuation function of a denotational semantics would Ugleve an environmenp. But the rule (FUN) only requires the value of a
closed term, so the environment is empty.

5By “observable” | mean “observableoking only at the labelled transitiofisthe labelled transitions constitute the interaction
of the program with its environment. You may argue that weutthaot say that oop gets “stuck” when actually it is in an infinite
loop. For example, the prografror ever (return ()) is also an infinite loop with no external interactions, anthitkes an
infinite sequence of (unlabelled) transitions. If you pref@e can instead add a variant of (FUN) that makes an uti¢dtieansition
to an unchanged statedffM] = L. Thenl oop would also make an infinite sequence of un-labelled tramsiti It's just a matter
of taste.
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r € |ORef

V u= ...|witel ORef » N |readl ORef r | newl ORef M | r
PQ,R {M} The main program
(M),  Anl ORef namedr, holding M

P | @ Parallel composition
va.P Restriction

Yo — A{E[return M]} | (M), (READIO)
Yo — A{E[return ()]} |(N), (WRITEIO)

{E[r eadl ORef 7]} | (
I

M
{Ewritel ORef » N|} | (M

rdfm(E,M)
{E[newi ORef M]} — vr.({E[returnr|} | (M)

) (NEWIO)

Figure 4: Extensions fdrORef s

3.5 Dealing withl ORef s
Let us now add ORef s to our operational semantics. The modifications we neediaea ¢n Figure 4:
e We add a new sort ofalue for eachl ORef primitive; namelynewl ORef , r eadl ORef , and
writel ORef.

e We add a new sort of value forORef identifiers,r. An | ORef identifier is the value returned by
newl ORef — you can think of it as the address of the mutable cell.

e We extend a program state to be a main thrghll}, as before, together with zero or mdréRef s,
each associated with a reference identifier

The syntax for program states in Figure 4 might initially bepsising. We use a vertical bar to join the
main thread and thiORef s into a program state. For example, here is a program stadéegimgram that
has (so far) allocated twioORef s, calledr; andr, respectively:

{M} [(N1)r, | (N2)r,

If you like, you can think of running the (active) prograh in parallel with two (passive) containers
andrs, containingNV; and N, respectively.

Here is the rule fonewl ORef , which creates a new reference cell:

ré fn(E,M)
{E[newi ORef M]} — vr.({E[returnr|} | (M)

) (NEWIO)

If the next I/O action in the main program is to create a n@Ref , then it makes a transition to a new
state in which the main program is in parallel with a newlgated (and suitably initialised)ORef named
r. What isr? It is an arbitrary name whose only constraint is that it rmagtalready be used if/, or in
the evaluation conte)f. That is what the side condition¢ fn (E, M) means —fn (E, M) means “the
free names of and ™.

The new formur. P, shown in the syntax of programs in Figure 4, means:leé the name of a reference
cell, in program staté”. The v is the binding for all the occurrencesoin P — it's always a good thing
to know where a variable is bound. Another way to understaadide conditiom ¢ fn (E, M) is this: if
the side condition did not hold, then the old occurrencesiof(say) M would erroneously be captured by
thev.
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PlQ = Q|P (COMM)
PI@QIR) = (P|Q)I|R (AS5500)
vevy. P = vyve.P (SWAP)
wz.P) | Q = va(P|Q), ¢ ¢ fn(Q) (EXTRUDE)

ve.P = wvy.Ply/z], y ¢ fn(P) (ALPHA)
() P9 )

P|R—Q|R ve.P = ve.Q

P=pP P o, Q/ Q/ — Q
EQUIV
g (BQuIV)

Figure 5: Structural congruence, and structural transstio

Here are the rules for reading and writih@Ref s:

{E[r eadl ORef 7]} | (M), — {E[return M]} | (M), (READIO)
{E[writel ORef » N|} | (M), — {E[return ()]} | (N), (WRITEIO)

The rule forr eadl ORef says that if the next I/O action in the main program &adl ORef r, and the
main program is parallel with ahORef namedr containingM, then the actiom eadl ORef r can be
replaced by et ur n M 8. This transition is quite similar to that fgret Char , except that the transition
is unlabelled because it is internal to the program — remertiia only labelled transitions represent
interaction with the external environment.

We have several tiresome details to fix up. First, we origynsaid that the transitions were for whole
program states, but these two are for opbrt of a program state; there might be othddRef s, for
example. Second, what if the main program was not adjacethietoelevant ORef ? We want to say
somehow that it can become adjacent to whichéw@Ref it pleases. To formalise these matters we have
to give several “structural” rules, given in Figure 5. RURAR), for example, says that iP can move
to @, thenP in parallel with anything R) can move taQ in parallel with the same anything — in short,
non-participating pieces of the program state are unaftecthe equivalence rules (COMM), (ASSOC)
say that| is associative and commutative, while (EQUIV) says that reefeee to use these equivalence
rules to bring parts of the program state together. In theles rwe takey to range over both events, such
as! ¢ and?¢, and also over the empty label. (In the literature, you wién see the empty event written
7.) Finally, (SWAP), (EXTRUDE), and (ALPHA) allow you to moués around so that they don't get in
the way.

It's all a formal game. If you read papers about operatioeadantics you will see these rules over and over
again, so it's worth becoming comfortable with them. Thegrétroptional though; if you want to conduct
water-tight proofs about what can happen, it's importarsidecify the whole system in a formal way.

Here is an example of working through the semantics for theviing program:

main = new ORef 0 >>=\ v ->
readl ORef v >=\ n ->
witel ORef v (n+1)

The program allocates a ndvORef , reads it, increments its contents and writes back the navevahe
semantics works like this, where | have saved space by alaltirey“newl ORef " to “new’ and similarly
forr eadl ORef andwri t el ORef :

8The alert reader will notice that (READIO) duplicates thertél/, and hence modetsall-by-namerather thatcall-by-need It
is straightforward to model call-by-need, by addingempto the operational semantics, as Launchbury first showeld [2dwever,
doing so adds extra notational clutter that is nothing doitb the main point of this tutorial. In this tutorial | takedtsimpler path
of modelling call-by-name.
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{new 0 >>=\v ->read v >>=\n -> wite v (n+l)}
vr.{returnr>>=\v ->read v >>=\n -> wite v (n+l)} [(0),) (NEWIO)
vr.({(\v ->read v >>=\n -> wite v (n+l)) r} | (0),) (LUNIT)
vr.{readr>>= \n -> witer(n+l))} | (0),) (FUN)
vr.({return 0 >>=\n -> witer(n+l))} | (0),) (READIO)
vr.({(\n -> witer(n+l)) 0} |(0),) (LUNIT)
vr.({writer (0+1))} | (0).) (FUN)
vr.({return ()} | (0+1),) (WRITEIO)

LLblblbd

S o o~~~

It should be clear that naming a név@Ref with a name that is already in use would be a Bad Thing. That
is the reason for the side condition on rule (NEWIO) says tt@nnot be mentioned ib or M. But what

if » was in use somewhemdsein the program state — remember that there may be other threading

in parallel with the one we are considering? That is the psepd the %" part: it restricts the scope of
Having introduced in this way, we need a number of structural rules (Figure 3#tos mover around.
Notably, (EXTRUDE) lets us move all thes to the outside. Before we can use (EXTRUDE), though, we
may need to use (ALPHA) to change our mind about the name wsedhwe come across a name-clash.
Once all the/'s are at the outside, they don't get in the way at alll.

4 Concurrency

A web server works by listening for connection requests oartiqular socket. When it receives a request,
it establishes a connection and engages in a bi-directmmalersation with the client. Early versions of
the HTTP protocol limited this conversation to one uttemimceach direction (“please send me this page”;
“ok, here it is”), but more recent versions of HTTP allow niplk exchanges to take place, and that is what
we do here.

If a web server is to service multiple clients, it must deat@arrently with each client. It is simply not
acceptable to deal with clients one at a time. The obvioustto do is to fork a newhreadof some kind
for each new client. The server therefore must lbercurrentHaskell program.

I make a sharp distinction betweparallelismandconcurrency

e A parallel functional program uses multiple processors to gain perémce. For example, it may be
faster to evaluate; + e; by evaluating:; ande, in parallel, and then add the results. Parallelism has
no semantic impact at all: the meaning of a program is unoddndpether it is executed sequentially
orin parallel. Furthermore, the results are determinigtiere is no possibility that a parallel program
will give one result in one run and a different result in aeliéint run.

e In contrast, aconcurrentprogram has concurrency as part of its specification. Thgrpm must
run concurrent threads, each of which can independentfpierinput/output. The program may
be run on many processors, or on one — that is an implementetioice. The behaviour of the
program is, necessarily and by design, non-deterministence, unlike parallelism, concurrency
has a substantial semantic impact.

Of these two, my focus in these notes is exclusively on caeoay, not parallelism. For those who are
interested, a good introduction to parallel functionalgreonming is [46], while a recent book gives a
comprehensive coverage [12].

Concurrent Haskell [35] is an extension to Haskell 98 desipio support concurrent programming, and
we turn next to its design.
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4.1 Threads andf or kl O

Here is the main loop of the web server:

accept Connections :: Config -> Socket -> 10 ()
accept Connecti ons config socket
= forever (do { conn <- accept socket ;
forkl O (serviceConn config conn) })

(We defined or ever in Section 2.4.) This infinite loop repeatedly calscept , a Haskell function that
calls the Unix procedure of the same namia mechanisms we will discuss in Section 6), to accept a new
connection.accept returns, as part of its result,landl| e that can be used to communicate with the
client.

accept :: Socket -> 1O Connection
type Connection = (Handl e, -- Read from here
SockAddr) -- Peer details

Having established a connectiaxcept Connect i ons then uses or ki Oto fork off a fresh thread,
(serviceConn config conn), to service that connection. The typefar kI Qis this:

forklO:: IOa -> 10 Threadld

It takes an I/O action and arranges to run it concurrenthhhie “parent” thread. The call toor kI O
returns immediately, returning as its result an identifeerthe forked thread. We will see in Section 5.3
what thisThr eadl d can be used for.

Notice that the forked thread doesn’t need to be passed aayngters, as is common in C threads packages.
The forked action is a full closure that captures the valdié@s free variables. In this case, the forked action
is(servi ceConn config conn), which obviously captures the free variabtesnf i g andconn.

A thread may go to sleep for a specified number of microsecbyndsillingt hr eadDel ay:
threadDelay :: Int -> 10 ()

f or kI Ois dangerous in a similar way thahsaf ePer f or ml Ois dangerous (Section 2.6). I/O actions
performed in the parent thread may interleave in an arliti@hion with 1/0 actions performed in the
forked thread. Sometimes that is fine (e.g. the threads anérngadifferent windows on the screen), but
at other times we want the threads to co-operate more clo3elgupport such co-operation we need a
synchronisation mechanism, which is what we discuss next.

4.2 Communication andMar s

Suppose we want to add some sort of throttling mechanisnhaoathen there are more than N threads
running the server does something different (e.g. stopspditey new connections or something). To
implement this we need to keep track of the total number di@cforked threads. How can we do this?
The obvious solution is to have a counter that the forkedatthiecrements when it begins, and decrements
when it is done. But we must of course be careful! If there at®df threads all hitting on the same counter
we must make sure that we don't get race hazards. The inctermed decrements must be indivisible.

To this end, Concurrent Haskell supports a synchronisesiarenf anl ORef called anwWar :

data Mvar a -- Abstract

newEnpt yMvar :: 10 (Mar a)

t akeMvar . War a ->10a

put Mvar :: MWar a ->a ->10/()

Like anl ORef , anMvar is (a reference to) a mutable location that either can cortaialue of typea,
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or can instead be emptyike new ORef , newEnpt yMar creates atWar but, unlike anl ORef , the
Mar is created empty.

put Mvar fills an emptyWar with a value, and akeMar takes the contents of dWwar out, leaving it
empty. If it was empty in the first place, the callttakeMVar blocks until another thread fills it by calling
put Mvar . A call toput Mvar on anWar that is already full blocks until theVar becomes empfy

With the aid ofwar s it is easy to implement our counter:

accept Connections :: Config -> Socket -> 10 ()
accept Connections config socket
= do { count <- neweEnptyMar ;
put War count O ;
forever (do { conn <- accept socket ;
forkl O (do { inc count ;
servi ceConn config conn ;
dec count})

P}

inc,dec :: Mar Int -> 10 ()
i nc count do { v <- takeMvar count; putMWWar count (v+1) }
dec count do { v <- takeMvar count; putMWar count (v-1) }

Presumably there would also be some extra codecinept Connect i ons to inspect the value of the
counter, and take some action if it gets too large.

The update of the counter, performed ibgc anddec is indivisible because, during the brief moment
while i nc has read the counter but not yet written it back, the couoigation is empty. So any other
thread that tries to usenc or dec at that moment will simply block.

4.3 Semantics

One of the advantages of the operational semantics we set3grtion 3 is that it can readily be extended
to support concurrency aridvVar s. The necessary extensions are given in Figure 6:

e We add new values to represent (a) each new primit®®peration; (b) the name of awar m,
and a thread; (c) the integer argument oftehr eadDel ay, d.

e We extend program states by adding a form folvar , both in the full statg M),,,, and in the
empty state),,,; and a form for a named thredd/}.

e We provide transition rules for the new primitives.

Rules (FORK) and (NEWM) work in a very similar way as the (NEMIrule that we described in Sec-
tion 3.5. In particular, they usein an identical fashion to control the new names that areirequRules
(PUTM) and (TAKEM) are similar to (WRITEIO) and (READIO), e&pt that (TAKEM) leaves thiEVar
empty, while (PUTM) fills it.

For the first time, the semantics of the program has becomealatarministic. If there are two threads
both of which want to take the contents of ar , the semantics leaves deliberately unspecified which
one “wins”. Once it has emptied thévar with rule (TAKEM), however, the other thread can make no
progress until some other thread fills it.

The rule (DELAY) deals witht hr eadDel ay. To express the delay, | have invented an extra e$ént
which means & microseconds elapse”. Recall that an event indicatesaictien with the external world

"This represents a change from an earlier version of Conuurtaskell, in whichput MVar on a full MVar was a program error.
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{E[t hr eadDel ay d]}+ 54, {E[return ()]} (DELAY)

Figure 6: Extensions to support concurrency

(Section 3.3), so | am modelling a delay as an interactioh ait external clock. This is not very satis-
factory (e.g. I/O events are presumably queued up, but dlok& should not be), but it gives the general
idea.

Notice that there is no explicit rule for “blocking” a threadhen it tries to take the contents of &War
that is empty. All that happens is that there is no valid fiteors rule involving that thread, so it stays
unchanged in the program state until téar it is trying to take is filled.

4.4 Channels

The thread created Hyor kI Oand its parent thread can each independently perform imploatput. We
can think of the state of the world as a shared, mutable qlgadtrace conditions can, of course, arise. For
example, if two threads are foolish enough to write to theeséila, say, bad things are likely to happen.

But what if wewantto have two threads write to the same file, somehow merging wrées, at some
suitable level of granularity? Precisely this behaviourégded in our web server, because we want to log
errors found by the client-service threads to a single dowffile. The simplest thing to do is to create a
single thread whose business is to write to the error-log tildog an error, a client-service thread need
only send a message to the error-logging thread. But we hiat@ijished the problem to a different place:
what does it mean to “send a message”?

UsingWar s we can define a new type of buffered channels, which we willémgnt in this section:

type Channel a = ...given later...
newChan :: 10O (Channel a)
put Chan :: Channel a ->a -> 10 ()
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Figure 7: A channel with unbounded buffering

getChan :: Channel a -> 10 a

A Channel permits multiple processes to write to it, and read fromafely. The error-logging thread
can now repeatedly dget Chan, and write the value it receives into the file; meanwhile ardliservice
thread wanting to log an error can yset Chan to send the error message to the error logger.

One possible implementation @hannel is illustrated in Figure 7. The channel is represented byila pa
of Mvar s (drawn as small boxes with thick borders), that hold thd sxad and write end of the buffer:

type Channel a = (Mar (Stream a), -- Read end
MWar (Stream a)) -- Wite end (the hole)

TheMvar s in aChannel are required so that channel put and get operations canctymnodify the
write and read end of the channels respectively. The dataeibaffer is held in &t r eany that is, an
Mar which is either empty (in which case there is no data inrSheean), or holds arl t em(a data type
we will define shortly):

type Streama = MJar (ltem a)

An | t emis just a pair of the first element of tI& r eamtogether with &t r eamholding the rest of the
data:

data Itema = MkItema (Stream a)

A St r eamcan therefore be thought of as a list, consisting of altémgatt ens and fullMar s, terminated
with a “hole” consisting of an emptiyVar . The write end of the channel points to this hole.

Creating a new channel is now just a matter of creating thet @ed writeMvar s, plus one (emptyyVar
for the stream itself:

newChan = do { read <- newkEnptyMWar ;
wite <- newEmptyMWar ;
hole <- newEnptyMar ;
put War read hole ;
put War write hole ;
return (read,wite) }
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Putting into the channel entails creating a new engity eamto become the hole, extracting the old hole
and replacing it with the new hole, and then puttind amin the old hole.

put Chan (read,wite) val
= do { new_hol e <- newEnptyMWar ;
old hole <- takeWar write ;
put War wite new hole ;
put War old _hole (Mltemval new hole) }

Getting an item from the channel is similar. In the code tdbivs, notice thaget Chan may block at
the second akeMWar if the channel is empty, until some other process dggstaChan.

get Chan (read,wite)
= do { head_var <- takeMvar read ;
Mkl tem val new head <- takeWar head var ;
put M\ar read new_head ;
return val }

It is worth noting that any number of processes can safelievimto the channel and read from it. The
values written will be merged in (non-deterministic, sahl@th-dependent) arrival order, and each value
read will go to exactly one process.

Other variants are readily programmed. For example, censidnulti-cast channel, in which there are
multiple readers, each of which should see all the valuegemrto the channel. All that is required is to
add a new operation:

dupChan :: Channel a -> 10 (Channel a)

The idea is that the channel returneddiypChan can be read independently of the original, and sees all
(and only) the data written to the channel after thgChan call. The implementation is simple, since it
amounts to setting up a separate read pointer, initialiséokt current write pointer:

dupChan (read,wite)
= do { new read <- newkEnptyMWar ;
hol e <- readWar wite ;
put Mar new read hol e ;
return (new read, wite) }

To make the code clearer, | have used an auxiliary functieadMar , which reads the value of awar ,
but leaves it full

readWar :: MWar a -> 10 a

readWar var = do { val <- takeMvar var ;
put Mar var val ;
return val }

But watch out! We need to modifget Chan as well. In particular, we must change the call
“t akeMvar head_var”to “readMvar head_var”. The MVars in the bottom row of Figure 7 are
used to block the consumer when it catches up with the praodii¢bere are two consumers, it is essential
that they can both march down the stream without inteferiit ®ach other. Concurrent programming is
tricky!

Another easy modification, left as an exercise for the reaslér add an inverse et Chan:
unGet Chan :: Channel a ->a -> 10 ()

4.5 Summary

Adding f or kIl OandMvar s to Haskell leads to a qualitative change in the sorts ofiegpdns one can
write. The extensions are simple to describe, and our dpesdtsemantics was readily extended to de-
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forkl O :: 10a->10 Threadld

threadDelay :: Int -> 10 () -- Sleep for n mcroseconds
data Mar a -- Abstract

neweEmptyMar :: 10 (MWar a) -- Created empty

newWwar ;o a->10 (MWar a) -- Initialised

t akeMvar 1 MWar a ->10a -- Bl ocking take

put Mvar ;. MWar a->a->10() -- Bl ocki ng put

t ryTakeMvar .. MWar a -> 10 (Maybe a) -- Non-bl ocking take

t r yPut Mar 1 Mar a->a ->10Bool -- Non-blocking put

i SEnpt yMWar .. MWar a -> 10 Bool -- Test for enptiness

Figure 8: The most important concurrent operations

scribe them. Figure 8 lists the main operations in Concaitdaskell, including some that we have not
discussed.

You will probably have noticed the close similarity betwele@Ref s (Section 2.5) andWar s (Sec-
tion 4.2). Are they both necessary? Probably not. In praatie find that we seldom udeORef s at
all:

e Although they have slightly different semantics (a@Ref cannot be empty) it is easy to simulate
anl ORef with anMvar (but not vice versa).

e An Mvar is not much more expensive to implement thari @Ref .

e An | ORef is fundamentally unsafe in a concurrent program, unlesscagouprove that only one
thread can access it at a time.

I introduced ORef s in these notes mainly as a presentational device; theyedlone to discuss the idea
of updatable locations, and the operational machineryppart them, before getting into concurrency.

While the primitives are simple, they are undoubtedly ptivei MVar s are surprisingly often useful “as
is”, especially for holding shared state, but they are aemdihw-level device. Nevertheless, they provide
the raw material from which one can fashion more sophigtabstractions, and a higher-order language
like Haskell is well suited for such a purpogghannel s are an example of such an abstraction, and we
give several more in [35]. Einar Karlsen’s thesis descriégsry substantial application (a programming
workbench) implemented in Concurrent Haskell, using nwmgrconcurrency abstractions [22].

It is not the purpose of these notes to undertake a proper aa@tiye survey of concurrent programming,
but | cannot leave this section without mentioning two otivefl-developed approaches to concurrency
in a declarative setting. Erlang is a (strict) functionaldaage developed at Ericsson for programming
telecommunications applications, for which purpose it tesn extremely successful [3]. Erlang must be
the most widely-used concurrent functional language intbdd. Concurrent ML (CML) is a concurrent
extension of ML, with a notion of first-class events and syoalsation constructs. CML'gsventsare
similar, in some ways, to HaskelllsOactions. CML lays particular emphasis on concurrency abstms,
and is well described in Reppy’s excellent book [41].
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5 Exceptions and timeouts

The next member of the Awkward Squad is robustness and extowery. A robust program should not

collapse if something unexpected happens. Of course, msatdrwrite programs in such a way that they
will not fail, but this approach alone is insufficient. Flystprogrammers are fallible and, secondly, some
failures simply cannot be avoided by careful programming.

Our web server, for example, should not cease to work if

o A file write fails because the disk is full.

A client requests a seldom-used service, and that code th&dsead of an empty list or divides by
zero.

e A client vanishes, so the client-service thread should tioteand log an error.

An error in one thread makes it go into an infinite recursioth grow its stack without limit.

All these events are (hopefully) rare, but they are all udjatable. In each case, though, we would like
our web server to recover from the error, and continue ta sffevice to existing and new clients.

We cannot offer this level of robustness with the facilities have described so far. We could check for
failure on every file operation, though that would be ratleeidus. We could try to avoid dividing by zero
— but we will never know that we have found every bug. And tiniseand loops are entirely inaccessible.

This is, of course, exactly what exceptions were inventedAm exception handler can enclose an arbi-
trarily large body of code, and guarantee to give the prognama chance to recover from errors arising
anywhere in that code.

5.1 Exceptions in Haskell 98

Like many languages, Haskell¥Dmonad offers a simple form of exception handling. I/O opgerat may
raise an exception if something goes wrong, and that exceptiorbeaaughtby a handler. Here are the
primitives that Haskell 98 offers:

userError :: String -> | CError
i oOError :: I CError ->10 a
catch 2 10a -> (1Cerror ->104a) ->10a

You can raise an exception by callim@Er r or passing it an argument of tydeOEr r or. You can
construct anh OEr r or from a string usingiser Er r or . Finally, you can catch an exception witat ch.
The call( cat ch a h) is an action that, when performed, attempts to perform thieraa and return its
results. However, if performing raises an exception, thens abandoned, and inste@t e) is returned,
wheree is thel OEr r or in the exception.
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e € [Exception
V == ...|ioErrore|catchM N
E == []|E>>=M|catchEM
{E[i oError e>>= M]}; {E[i oError €]}; (IOERROR)

{E[cat ch (i oError e) M]}: : {E[M e]}: (CATCH1)
{E[catch (return N) M]}; — {E[returnN]}; (CATCH?2)

Figure 9: Extensions for exceptions

Here is an example of how we might extend our main web-seoggy: |

accept Connections :: Config -> Socket -> 10 ()
accept Connections config socket
= forever (do { conn <- accept socket ;
forkl O (service conn) }
wher e
service :: Connection -> 10 ()
service conn = catch (serviceConn config conn)
(handl er conn)

handl er :: Connection -> Exception -> 10 ()
handl er conn e = do { logError config e ;
hCl ose (fst conn) }

Now the forked threaflser vi ce conn) has an exception handler wrapped around it, so that if amythi
goes wronghandl| er will be invoked. This handler logs the error (presumably bgding a message to
the error-logging thread through a channel heldamf i g), and closes the connection hantlle

Figure 9 gives the extra semantics required to support He@&exceptions, in a style that by now will
be familiar. The extra evaluation context says that we sheuéluate inside aat ch. Rule (IOERROR)
says that a call to oEr r or is propagated by >>=) ; this is what corresponds to “popping the stack” in
a typical implementation. Rules (CATCH1) describes whaid®s when the exception meetsat ch:

it is passed on to the handler. Lastly, (CATCH2) explaing ttet ch does nothing if execution of the
protected code terminates normally witet ur n V.

The Haskell 98 design falls short in two ways:

¢ It does not handle things that might go wrong in purely-fiortal code, because an exception can
only be raised in thé O monad. A pattern-match failutgor division by zero, brings the entire
program to a halt. We address this problem in Section 5.2

¢ It does not deal witlasynchronougxceptions. A synchronous exception arises as a diredt mdsu
executing some piece of code — opening a non-existent fitee¥ample. Synchronous exceptions
can be raised only at well-defined places. An asynchronooeption, in contrast, is raised by
something in the thread’s environment: a timeout or userinpt is an asynchronous exception.
It is useful to treat resource exhaustion, such as stacKlowein the same way. An asynchronous
exception can strike at any time, and this makes them mudeh#r deal with than their synchronous
cousins. We tackle asynchronous exceptions in Section 5.3

8A pattern-match failure occurs when a function defined byepatmatching is applied to a value for which no pattern imesc
Example: taking the head of an empty list.
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5.2 Synchronous exceptions in pure code

Why does Haskell 98 not allow the program to raise an exceptiigurely-functional code? The reason
is that, as with input/output, Haskell's unconstrainedeordf evaluation makes it hard to say what the
program means. Suppose we invented a new primitive to raisg@eption:

throw :: Exception -> a

(t hr owdiffers fromi oEr r or in that it lacks arl Oon its result type.) There are two difficulties:

(a) Consider the following expression:
I ength [throw ex1]

Does the expression raise excepteil? Sincel engt h does not evaluate the elements of its argu-
ment list, the answer is presumably “no”. Sdether an exception is raised depends on how much
evaluation takes place

(b) Which exception does the following expression ragsel orex2?
throw ex1 + throw ex2

The answer clearly depends on the order in which the argunerft+) are evaluated. Swhich
exception is raised depends on evaluation order

As with input/output (right back in Section 1), one possibils to fully define evaluation order and, as
before, we reject that alternative.

5.2.1 Imprecise exceptions

The best approach is to take the hint from denotational séesarThe purely-functional part of the lan-
guage should have a straightforward denotational sensamtied that requires us to answer the question:
“what value does$ hr ow e return?”. The answer must be “an exceptional value”. So wigldithe world

of values (or denotations) intardinary valueglike " @’ or Tr ue or 132) andexceptional valuesThis is

not a new idea. The IEEE Floating Point standard definesindgitapatterns as “not-a-numbers”, or NaNs.
A NaN is returned by a floating point operation that fails imsoway, such as division by zero. Intel's
IA-64 architecture extends this idea to arbitrary data $ypsing “not-a-thing” (NaT) values to represent
the result of speculative operations that have failed. Interminology, a NaN or NaT is an exceptional
value.

Sot hr owsimply constructs an exceptional value. It is a perfectiiAvehaved value provided you never
actually evaluate it; only then is the exception raised. Jitgation is very similar to that for a divergent
(non-terminating) expression in a lazy language. Usefogpams may contain such values; the program
will only diverge if it actually evaluates the divergentrer

That deals with point (a) above, but how about (b)? A goodtgwius to say that the denotation of an
expression is

e A single ordinary value, or

e A setof exceptions.

By making the denotation intosetof exceptions we can finesse the question of which exceicaised
if many could be. Let us return to our troublesome example

throw ex1 + throw ex2
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The denotation of this expression is now an exceptionalevatinsisting of a set of two exceptiore 1
andex?2. In saying this, we do not need to say anything about evalnatider.

| amnot suggesting that an implementation should actuadiystructthe set of exceptions. The idea is that
an implementation can use an entirely conventional exaegtandling mechanism: when it evaluates an
exceptional value, it rolls back the stack looking for a Handn effect it chooses a single member of the
set of exceptions to act as its representative [16].

5.2.2 Catching an imprecise exception

| describe this scheme as using “imprecise” exceptiongumEwe are deliberately imprecise about which
exception is chosen as the representative. How, then, carateh and handle an exception? At first we
might try a nont Oversion ofcat ch:

bogusCatch :: a -> (Exception -> a) -> a -- Bogus

bogusCat ch evaluates its first argument; if it is an ordinary valnegus Cat ch just returnsit; if itis an
exceptional valuehogusCat ch applies the hander to the exception. BatgusCat ch is problematic

if the exceptional value contains a set of exceptions — whielmber of the set should be chosen? The
trouble is that if the compiler decided to change evaluaticater (e.g. optimisation is switched on) a
different exception might be encountered, and the behawibihe program would change.

A better approach is to separate the choice of which exaeptithrow from the exception-catching busi-
ness:

evaluate :: a -> 10 a

eval uat e x evaluates its argumenrt if the resulting value is an ordinary valueyal uat e behaves
justliker et ur n, and just returns the value.)finstead returns an exceptional valagal uat e chooses
an arbitrary member, say, from the set of exceptions, and then behaves justilidr r or e; that is, it
throws the exceptioa. So, for example, consider these four actions:

al, a2, a3, a4 :: 10 ()

al = do { x <- evaluate 4; print x }

a2 do { evaluate (head []); print "no" }

a3 do { return (head []); print "yes" }

a4 = do { xs <- evaluate [1 ‘div‘ 0]; print (length xs) }

The first simply evaluates, binds it tox, and prints it; we could equally well have writtém et urn 4)
instead. The second evaluatdsead []), finds an exceptional value, and throws an exception in the
I O monad; the followingpr i nt never executes. In contrag8 instead returns the exceptional value,
ignores it, and printyes. Lastly,a4 evaluates the list1 * di v* 0], binds it toxs, takes its length,
and prints the result. The list contains an exceptionalejdbuteval uat e only evalutes the top level of
its argument, and does not look inside its recursive streduif. thel engt h example in Section 5.2).

Now consider the case where the argumerg\odil uat e is a set of exceptions; for example
eval uate (throw exl + throw ex2)

Sinceeval uat e x is an I/O action (of typd O t if x has typet ), there is no reason to suppose that
it will choose the same member from the set of exceptions &ashyou run the program. It is free to
perform input/output, so it can consult some external er@ehether it is raining, say) to decide which
member of the set to choose. More concretely, suppose wie ttet@xception like this:

catch (evaluate (throw ex1 + throw ex2)) h

(Recall thatcat ch and its semantics was defined in Section 5.1.) The hahdél be applied to either
ex1 orex2, and there is no way to tell which. It is up &val uat e to decide. This is different from
bogusCat ch, because the non-deterministic choice is made by an l/@raval uat e) and not by a
pure function fogusCat ch). I/O actions are not required to return the same resulingive same input,
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V u= ... |evaluate M

E[M] = Ok V
{Eleval uate M)}, — {E[returnV]},

(EVALI)

E[M]=BadS e€S
{E[eval uat e M]}; — {E[i oError e]};

(EVAL2)

EIM]=0kV M=%V
{E[M]}; — {E[V]}

(FUN1)

E[M]=BadS e€S
{E[M]}: — {E[i oError e]};

(FUN2)

M # (N1 >>=Ny) M # (catch Ny Ny)
{E;[throwTo te]}s | {E2[M]}+ — {Ei[return ()]}s | {E2[i OError e]};

(INT)

Figure 10: Further extensions for exceptions

whereas pure functions are. In practiegal uat e will not really be non-deterministic; the decision is
really taken by the evaluation order chosen by the compilerwit compiles the argumentéwal uat e.

Notice what we have done:

e An exception can beaised anywhere, including in purely-functional code. This isntendously
useful. For example, pattern-match failure can now raisexaeption rather than bringing execution
to a halt. Similarly, Haskell 98 provides a functienr or :

error :: String -> a

Whener r or is called, the string is printed, and execution comes to ta hmbur extended version
of Haskell,er r or instead raises an exception, which gives the rest of thergno@ chance to
recover from the failure.

e An exception can only beaughtby cat ch, which is in thel Omonad. This confines recovery to
the monadic-1/O layer of the program, unlike ML (say) wheo& gan catch an exception anywhere.
In my view, this restriction is not irksome, and has greataetic benefits. In particulaby confining
the non-deterministic choice to th&@monad we have prevented non-determinism from infecting the
entire language

5.2.3 Semantics of imprecise exceptions

This approach to synchronous exceptions in Haskell is destin much more detail in [37]. In partic-
ular, the paper describes how to extend a standard dermmhiemantics to include exceptional values,
something we have not treated formally here. We will not uléscthat here, for lack of space, but will
content ourselves with saying that the meaning funcfiph/] returns eitheOk v for an ordinary value
v, or Bad S for an exceptional value, wheteis a non-empty set of exceptions. For example, here is the
semantics of addition:

5[[81"‘62]] = 5[[81]] —|—I 5[[82]]
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where+’ is an addition function defined over the semantic domain hfes thus:

(Ok v1) +" (Okwvg) = OF (v1 + v2)
(Okv1) +' (Bad s3) = Bad s9
(Bad s1) +' (Okwve) = Bad s

(Bad s1) +' (Bad s2) = Bad (51U s2)

The first equation deals with the normal case. The secondhamtdeal with the case when one or other
of the arguments throws an exception. The last equationléatite case when both arguments throw an
exception; in this case’ takes the union of the exceptions that can be thrown by theatggoments. The
whole point is thatt’ is commutative, so that[e; +es] = E[eates].

Given this, Figure 10 gives the extra semanticsefoal uat e. If the argument t@val uat e is an ordi-
nary valuegeval uat e just returns that value (EVALL); if the value is an excep#ibvalue,eval uat e
chooses an arbitrary member of the set of exceptions, and/shthat exception usingoEr r or . This
deliberately-unconstrained choice is where the non-getesm shows up in the operational semantics.

Since&[] has changed we must do something to rule (FUN). This is a pldege our semantics forces
us to recognise something we might otherwise have forgoRetes (FUN1) and (FUN2) replace (FUN).
(FUNZ2) says that if the next action to perform is itself aneptional value, then we should just propagate
that as arl O-monad exception usingoEr r or . If it is not, then we behave just like (FUN). Here is an
example that shows the importance of this change:

catch (if (1/0) then al else a2) recovery_code

Beforecat ch can perform the action that is its first argument, it musteae it; in this case, evaluating
it gives divide-by-zero exception, and rule (FUN2) propgagahat into am oEr r or .

TheExcept i on data type is really the same BSEr r or , except thatI' OEr r or ” does not seem an ap-
propriate name any more. To keep things simple, we just sdy @Er r or is a synonym foExcepti on.
To summarise, we now have the following primitives:

type | OError = Exception

t hr ow :: Exception -> a

evaluate :: a ->10a

ioEBrror :: IOEBrror ->10a

catch :: 10a -> (Exception ->10a) ->10a

5.3 Asynchronous exceptions

We now turn our attention to asynchronous exceptions. Rar@sonous exceptions, we add the following
new primitive:

throwTo :: Threadld -> Exception -> 10 ()

This allows one thread to interrupt another. So far as therinpted thread is concerned, the situation is
just as if it abruptly called oEr r or ; an exception is raised and propagated to the innermosbgng|
cat ch. This is where th@hr eadl d of a forked thread becomes really useful: we can use it asdidan
to send an interrupt to another thread. One thread can naisecaption in another only if it has the latter’s
Thr eadl d, which is returned by or kI O. So a thread is in danger of interruption only from its parent
unless its parent passes onTitsr eadl d to some other thread.

5.3.1 Using asynchronous exceptions

Usingt hr owTo we can implement a variety of abstractions that are otherimeccessible. For example,
we can program the combinatpar | O, which “races” its two argument actions against each other i
parallel. As soon as one terminates, it kills the other, dredaverall result is the one returned by the
“winner”.
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parlO:: 10Oa->10a->10a

How can we implement this? We can use an MVar to contain theativesult. We spawn two threads, that
race to fill the result MVar; the first will succeed, while thecend will block. The parent takes the result
from the MVar, and then kills both children:

parlO:: IOa->10a->10a
parl O al a2
= do { m<- newkEnptyWar ;
cl <- forklO (child mal) ;
c2 <- forklO (child ma2) ;
r <- takeMvar m;
throwTo cl1 Kill ;
throwTo c2 Kill ;
returnr
}
wher e
child ma=do{r < a; putWwar mr }

Usingpar | Owe can implement a simple timeout:
tinmeout :: Int ->10a -> 10 (Maybe a)

The idea here is thtt i meout n a) returnsNot hi ng if a takes longer than microseconds to com-
plete, andlust r otherwise, where is the value returned by:

timeout :: Int ->10a -> 10 (Muybe a)
timeout na = parlO (do { r <- a; return (Just r) })
(do { threadDelay n; return Nothing })

Now we might want to answer questions like this: what hapjfemthread is interrupted (viatahr owTo)
while it is executing under a timeout? We can’t say for suril wre give a semantics tohr owTo, which
is what we do next.

5.3.2 Semantics of asynchronous exceptions
We can express the behaviourntdfr owTo nicely in our semantics: &hr owTo in one thread makes the
target thread abandon its current action and replace itivater r or :

M # (N1 >>=Ny) M # (catch Ny Ny)
{Eq[t hrowTo te]}s | {E2[M]}: — {Ei[return ()]}s | {Ez[i oError e]},

(INT)

(“(INT)" is short for “interrupt”.) The conditions above #hline are essential to ensure that the conkgxt
is maximal; that is, it includes all the actieat ches.

It should be clear that external interrupts, such as thepressing Control-C, can also be modeled in this
way. Before we can write the semantics we have to answeraeyaestions. Does a Control-C interrupt
every thread, or just a designated thread? If the latter, dmes a thread get designated? These are good
guestions to be forced to answer, because they really do endifkerence to the programmer.

Having a semantics is very helpful in answering questides livhat happens if a thread is interrupted when
it is blocked waiting for ariwar ? In the semantics, such a thread is simply stuck, witlakeMWar at
the active site, so (INT) will cause theakeMvar to be replaced with oEr r or . So being blocked on an
MWar doesn’t stop a thread receiving an interrupt.

Now we can say what happens to a thread that executes a syh#adion using i meout , but is inter-
rupted byt hr owTo while it is waiting for the sub-computation to complete. Tagent thread receives the
interrupt while it is blocked on thet‘akeMar nf inside par | O(Section 5.3.1); so it abandons the wait
and proceeds to the innermasit ch handler. But that means that the two threads spawnqubly O
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are not killed, and we probably want them to be. So we have toagé& to fix uppar | Osomehow. In fact
this turns out to be tricky to do: we have to make sure thaktieno “window” in which the parent has
spawned a child thread but has not set up a handler that Withki child if the parent is interrupted.

Indeed, programming in the presence of asynchronous égosps$ notoriously difficult, so much so that
Modula-3, for example, simply outlaws them. (Instead, vieelhaved threads regularly poll atert flag,
and commit suicide if it is set [33].) Haskell differs from Mola in two ways that are relevant here. First,
there are fewer side effects, so there are fewer windows lofevability to worry about. Second, there
are large parts of purely-functional code that we would tikdoe able to interrupt — and can indeed do
so safely — but where any polling mechanism would be very sindlele. These considerations led us to
define new primitive combinators to allow a thread to maskamanask external interrupts. This further
complicates the semantics, but as a result we can write chdeawve have a chance ovingthat it has
no race hazards. The details are in [29].

5.4 Summary

This section on exceptions is the most experimental of oun themes. Two papers, [37, 29], give a great
deal more detail on the design, which | have introduced helgio outline. Indeed, some aspects of the
asynchronous-exceptions design are still in flux at the tineriting.

Adding exceptions undoubtedly complicates the languageitarsemantics, and that is never desirable.
But they allow a qualitative change in the robustness of giaim. Now, if there is a pattern match failure
almost anywhere in the code of the web server, the systenecaner cleanly. Without exceptions, such a
failure would be fatal.

6 Interfacing to other programs

In the programming-language world, one rule of survivalimpe: dance or die. It is not enough to
make a beautiful language. You must also make it easy forrarog written in your beautiful language
to interact with programs written in other languages. J&#at, and C all have huge, and hugely useful,
libraries available. For example, our web server makeseite use of socket I/O libraries written in C. It
is fruitless to reproduce many of these libraries in Haslkeditead, we want to make it easy to call them.
Similarly, if we want to plug a small Haskell program into aga project, it is necessary to enable other
programs to call Haskell. It is hubristic to expect the Hélghart to always be “on top”.

Haskell 98 does not specify any way to call foreign-langupgecedures, but there has been a lot
of progress on this front in the last few years, which | surieythis section. In particular, a pro-
posal has emerged for a Haskell language extension to sufpeign-language interfacing. We
will call this proposalthe Haskell Foreign Function Interface (FFI) proposalt is documented at
http://haskell.org/definition/ffi.

6.1 Calling C from Haskell, and Haskell from C

Here is how you can call a C procedure from Haskell, under fHepFoposal:
foreign inport ccall putChar :: Char -> 10 ()

Thef or ei gn declaration brings into scope a Haskell functpunt Char with the specified type. When
this function is called, the effect is to call a C procedutsg&alledput Char . Simple, eh? The complete
syntax is given in Figure 11. The following points are wortiing:

e As usual, we use theO monad in the result type gfut Char to indicate thatput Char may
perform I/O, or have some other side effect. However, somgidga procedures may have purely-
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decl == foreign inport callconv [safety] imp-entity varid: : ftype
| foreign export callconv [safety] exp-entity varid : : ftype

callconv = ccall | stdcall | ...othercalling conventions...
safety == safe | unsafe
imp-entity = [string]
exp-entity = [string]
ftype = () | | Ofatype | fatype | fatype -> ftype

Int | Fl oat | Doubl e | Char | Bool
Ptr type | FunPtr type | St abl ePtr type
Int8 | Int16 | Int32 | I nt64

Word8 | Wrd16 | Word32 | Wor d64

A Haskellnewt ype of a fatype

A Haskell type synonym for gatype

fatype

Figure 11: The Haskell FFI proposal syntax

functional semantics. For example, thesCn function really is a function: it has no side effects. In
this case it is extremely tiresome to force it to be inltli@monad. So the Haskell FFI allows one to
omit the 1 O’ from the return type, thus:

foreign inport ccall sin :: Float -> Float

The nont Otype indicates that the programmer takes on a proof obtigatn this case that foreign
procedure is genuinely functional.

e The keyword tcal | " indicates the calling convention to use; that is, whichuangnts are passed
in which registers, which on the stack, where the result isrned, and so on. The only other
currently-defined calling convention at the momentis tical | 7, used on Win32 platforms.

o If the foreign procedure does not have the same name as itelHasunterpart — for example, it
might start with a capital letter, which is illegal for Hadllieinctions — you can specify the foreign
name directly:

foreign inport ccall "PutChar" putChar :: Char -> 10 ()

e Foreign procedures may take several arguments. Their Hagbe is curried, as is usually the case
for multi-argument Haskell functions, but on the C side thguanents are passed all at once, as is
usual for C:

foreign inport ccall drawtine :: Int ->1Int -> 10 ()

e There is a strictly limited range of Haskell types that carubed in arguments and results, namely
the “atomic” types such dsnt , Fl oat , Doubl e, and so on. So how can we pass structured types,
such as strings or arrays? We address this question in 8&c8o

e An implementation of the FFI proposal must provide a coltetbf new atomic types (Figure 11).
In particular,Pt r ¢ is the type of uninterpretédnachine addresses; for example, a pointer to a
mal | oc'd structure, or to a C procedure. The typis a “phantom type”, which allows the Haskell
programmer to enforce the distinction between (say) thedipr Foo andPtr Baz. No actual
valuesof typeFoo or Baz are involved.

9“Uninterpreted” in the sense that they are treated simphjtgsatterns. The Haskell garbage collector does not fotlampointer.
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“f orei gn i nport”lets you call a C procedure from Haskell. Dually,dr ei gn export ”lets you
expose a Haskell function as a C procedure. For example:

foreign export ccall "Foo" foo :: Int -> Int
foreign export ccall bar :: Float -> IO Fl oat

These declarations are only valid if the same module defard@mports) Haskell functionsoo andbar ,
which have the specified types. An exported function may bhaveDtype, but it does not have to — here,
bar does, and oo does not. When the module is compiled, it will expose two ptheesFoo andbar ,
which can be called from C.

6.2 Dynamic calls

It is quite common to make aimdirect call to an external procedure; that is, one is supplied with t
address of the procedure and one wants to call it. An examapleidynamic dispatch of a method call in
an object-oriented system, indirecting through the methabtk of the object.

To make such an indirect call from Haskell, use dlyani ¢ keyword:

foreign inport ccall "dynam c"
foo :: FunPtr (Int ->101Int) ->1Int -> 10 Int

The first argument must be of typeunPt r ¢, and is taken to be the machine address of the external
procedure to be called. As in the caséPbf ¢, the typet is used simply to express the distinction between
pointers to procedures of different types.

There is also a way to export a dynamic Haskell value:

foreign inport ccall "wapper"”
nkCB :: (Int ->101Int) -> 10 (FunPtr (Int -> 10 1Int)

This declaration defines a Haskell functiohCB. Whennk CB is given an arbitrary Haskell function of
type(I nt->1 O I nt),itreturns a C function pointer (of tygeunPtr (Int -> 10 I nt))thatcan

be called by C. Typically, thifunPt r is then somehow passed to the C program, which subsequently
uses it to call the Haskell function using a C indirect call.

6.3 Marshalling

Transferring control is, in some ways, the easy bit. Tramisfg data “across the border” is much harder.
For “atomic” types, such asnt andFl oat, it is clear what to do, but for structured types, matters are
much murkier.

For example, suppose we wanted to import a function thatad@gion strings:

foreign inport ccall uppercase :: String -> String

e Firstthere is the question of data representation. Oneotdexide either to alter the Haskell language
implementation, so that its string representation is idahto that of C, or to translate the string from
one representation to another at run time. This transléioconventionally callednarshalling

Since Haskell is lazy, the second approach is required.ylitase, it is tremendously constraining to
try to keep common representations between two languagegxmple, C terminates strings with
a null character, but other languages may keep a length figddshalling, while expensive, serves
to separate the implementation concerns of the two diffdemguages.

e Next come questions of allocation and lifetime. Where stiawd put the translated string? In a static
piece of storage? (But how large a block should we allocatefskfe to re-use the same block on
the next call?) Or in Haskell's heap? (But what if the calledgedure does something that triggers
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garbage collection, and the transformed string is moved?? tla called procedure hold on to the
string after it returns?) Or in Csal | oc’d heap? (But how will it get deallocated? Amal | oc
is expensive.)

e C procedures often accept pointer parameters (such agsstthrat can b&ULL. How is that to be
reflected on the Haskell side of the interface? For examiplgper case did something sensible
when called with aNULL string (e.g. returns &ULL string) we might like the Haskell type for
upper case to be

foreign inport ccall uppercase :: Maybe String -> Maybe String

so that we can mod®&ULL by Not hi ng.

The bottom line is this: there are many somewhat-arbitrhojaes to make when marshalling parameters
from Haskell to C and vice versa. And that's only C! There areremore choices when we consider
arbitrary other languages.

What are we to do? The consensus in the Haskell communitjsts th

We define danguage extensiahat is as small as possible, and bu@parate toolso generate
marshalling code.

Thef oreign i nport andf orei gn export declarations constitute the language extension. They
embody just the part of foreign-language calls that caneotldne in Haskell itselfand no more For
example, suppose you want to import a procedure that drawe awhose C prototype might look like
this:

void DrawLi ne( float x1, float yl1l, float x2, float y2)
One might ideally like to import this procedure with the talling Haskell signature.

type Point = (Float, Fl oat)
drawLine :: Point -> Point -> 10 ()

The FFI proposal does not let you do this directly. Insteadl yave to do some marshalling yourself (in
this case, unpacking the pairs):

type Point = (Float, Fl oat)

drawLine :: Point -> Point -> 10 ()
drawLi ne (x1,y1l) (x2,y2) = dl _help x1 yl1 x2 y2

foreign inport ccall "DrawLine"
dl _help :: Float -> Float -> Float -> Float -> 10 ()

Writing all this marshalling code can get tedious, espéciahen one adds arrays, enumerations, in-out
parameters passed by reference, NULL pointers, and so @me Hine now several tools available that take
some specification of the interface as input, and spit oukélasode as output. Notably:

Green Card [34] is a pre-processor for Haskell that reads directivebeided in a Haskell module and
replaces these directives with marshalling code. UsingfBf&ard one could write

type Point = (Float, Fl oat)

drawLine :: Point -> Point -> 10 ()

%all (float x1, float yl1) (float x2, float y2)
%ode Drawli ne( x1, yl1l, x2, y2)

Green Card is C-specific, and doesn’'t handle the foreigromsie of things at all.
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C- >Haskel | [8]reads both a Haskell module with special directives @ntling hooks”) and a standard
C header file, and emits new Haskell module with all the mdlislgacode added. The advantage
comparedto Green Card is that less information need bef@akiti the binding hooks than in Green
Card directives.

H/Direct [10] instead reads a description of the interface writtemtarface Definition Languag@DL),
and emits a Haskell module containing the marshalling ctidleis a huge and hairy language, but
it is neither Haskell-specific nor C-specific. H/Direct dealith both import and export, can read
Java class files as well as IDL files, and can generate codéettaioe to C, COM, and Java.

Itis well beyond the scope of these notes to give a detaikeddnction to any of these tools here. However,
in all cases the key point is the samany of these tools can be used with any Haskell compiler that
implements théor ei gn declaration The very fact that there are three tools stresses the rdpgssible
design choices, and hence the benefit of a clear separation.

6.4 Memory management

One of the major complications involved in multi-languagegrams is memory management. In the
context of the Haskell FFI, there are two main issues:

Foreign objects. Many C procedures return a pointer or “handle”, and expecttlient tofinaliseit when
it is no longer useful. For example: opening a file returnseatfdndle that should later be closed;
creating a bitmap may allocate some memory that shouldbaténeed; in a graphical user interface,
opening a new window, or a new font, returns a handle thatldHater be closed. In each case,
resources are allocated (memory, file descriptors, windesciptors) that can only be released
when the client explicitly says so. The tefinalisationis used to describe the steps that must be
carried out when the resource is no longer required.

The problem is this: if such a procedure is imported into akdbgrogram, how do we know when
to finalise the handle returned by the procedure?

Stable pointers. Dually, we may want to pass a Haskell value into the C worltheziby passing it as a
parameter to &or ei gn i nport, or by returning it as a result offaor ei gn export. Here,
the danger is not that the value will live too long, but thaill die too soon: how does the Haskell
garbage collector know that the value is still needed? leantlore, even if it does know, the garbage
collector might move live objects around, which would beseadter if the address of the old location
of the object is squirreled away in a C data structure.

In this section we briefly survey solutions to these diffiadt

6.4.1 Foreign objects

One “solution” to the finalisation problem is simply to repputhe Haskell programmer to call the ap-
propriate finalisation procedure, just as you would in C.sTikifine, if tiresome, for I1/O procedures, but
unacceptable for foreign libraries that have purely funtal semantics.

For example, we once encountered an application that usetitea®y to manipulate bit-maps [39]. It
offered operations such as filtering, thresholding, andhlinimng; for example, to ‘and’ two bit-maps to-
gether, one used the C procedared_bnp:

bitmap *and_bnp( bitmap *bl, bitmap *b2 )

Here,and_bnp allocates a new bit-map to contain the combined image, higdvl andb2 unaffected.
We can imporeaind_brp into Haskell like this:
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data Bitmap = Bitmap -- A phantom type
foreign inport ccall
and _bmp :: Ptr Bitmap -> Ptr Bitmap -> 10 (Ptr Bitnap)

Notice the way we use the fresh Haskell tyigiet map to help ensure that we only give &md_bnp an
address that is the address of a bitmap.

The difficulty is that there is no way to know when we have fiedhvith a particular bit-map. The result
of a call toand_bnp might, for example, be stored in a Haskell data structuréafer use. The only time
we can be sure that a bitmap is no longer needed is when theslHgakbage collector finds that & r

is no longer reachable.

Rather than ask the garbage collector to trackPall s, we wrap up th@t r in aforeign pointer thus:
newrForei gnPtr :: Ptr a -> 10 () -> 10 (ForeignPtr a)

newror ei gnPt r takes a C-world address, and a finalisation action, andneakor ei gnPt r . When
the garbage collector discovers that thigr ei gnPt r is no longer accessible, it runs the finalisation
action.

To unwrap a foreign pointer we uge t hFor ei gnPt r:
wi t hForei gnPtr :: ForeignPtr a -> (Ptr a ->10Db) ->10Db

(We can’t simply unwrap it with a function of typeor ei gnPtr a -> 10 Ptr a because then the
foreign pointer itself might be unreferenced after the wapping call, and its finaliser might therefore be
called before we are done with tRer )

So now we can impoddd_bnp like this:

foreign inport ccall "and_bnp"
and_bnp_help :: Ptr Bitmap -> Ptr Bitmap -> 10 (Ptr Bitnap)

foreign inport ccall free bnmp :: Ptr Bitmap -> 10 ()

and _bnmp :: ForeignPtr Bitnmap -> ForeignPtr Bitmap -> |1 O (Forei gnPtr Bitnmap)
and _bmp bl b2 = withForeignPtr bl (\ p1 ->
wi t hForei gnPtr b2 (\ p2 ->
do { r <- and_bnp_help pl p2
newrorei gnQbj r (free_bnmp r) }))

The functionand_bnp unwraps its argumerfor ei gnPt r s, callsand_bnp_hel p to get the work
done, and wraps the result back up i@ ei gnPt r .

6.4.2 Stable pointers

If one wants to write a Haskell library that can be called by arGgram, then the situation is reversed
compared to foreign objects. The Haskell library may carcdtHaskell values and return them to the C
caller. There is not much the C program can do with them dirésince their representation depends on
the Haskell implementation), but it may manipulate thermgsither Haskell functions exported by the
library.

As we mentioned earlier, we cannot simply return a pointer the Haskell heap, for two reasons:
e The Haskell garbage collector would not know when the obgenb longer required. Indeed, if the

C program holds thenly pointer to the object, the collector is likely to treat thgeai as garbage,
because it has no way to know what Haskell pointers are hetdd¢ program.

e The Haskell garbage collector may move objects around (GHGllector certainly does), so the
address of the object is not a stable way to refer to the abject
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The straightforward, if brutal, solution to both of theselglems is to provide a way to convert a Haskell
value into astable pointer

newSt abl ePt r o a->10(StablePtr a)
deRef StablePtr :: StablePtr a -> 10 a
freeStablePtr :: StablePtr a -> 10 ()

The functiommewSt abl ePt r takes an arbitrary Haskell value and turns it into a stabietpg which has
two key properties:

o First, it is stable; that is, it is unaffected by garbageexiibn. ASt abl ePtr can be passed to
C as a parameter or result tof@r ei gn i nport or af orei gn export. From the C side,
a St abl ePtr looks like ani nt. The C program can subsequently pass the stable pointer to a
Haskell function, which can get at the original value usiteiRef St abl ePt r .

e Second, callinghewSt abl ePt r v registers the Haskell value as a garbage-collection rgat)-b
stalling a pointer tov in the Stable Pointer TabléSPT). Once you have callegewSt abl ePt r v,
the valuev will be kept alive indefinitely by the SPT, evenuf or even theSt abl ePt r itself are
no longer reachable.

How, then, carv ever die? By callind r eeSt abl ePt r : This removes the entry from the SPT, so
v can now die unless it is referenced some other way.

Incidentally, the alert reader may have noticed fhatei gn i mport "wrapper", described in Sec-
tion 6.2, must use stable pointers. Taking the example irsthaionnk CB turns a Haskell function value
into a plainAddr , the address of a C-callable procedure. It follows tHaEB f must registef as a stable
pointer so that the code pointed to by #edr (which the garbage collector does not follow) can refer to
it. Wait a minute! How can we free the stable pointer that ibedded inside thakddr ? You have to use
this function:

freeHaskel | FunctionPtr :: Addr -> 10 ()

6.5 Implementation notes

It is relatively easy to implement thieor ei gn i nmport declaration. The code generator needs to be
taught how to generate code for a call, using appropriatimgalonventions, marshalling parameters from
the small, fixed range of types required by the FFI. @y@mani c variant off or ei gn i nport is no
harder.

A majorimplementation benefit is that all the I/O librariesde built on top of suchor ei gn i nports;
there is no need for the code generator to tggatChar , say, as a primitive.

Matters are not much harder fdror ei gn export; here, the code generator must produce a
procedure that can be called by the foreign language, agairshalling parameters appropriately.
foreign inmport "w apper" is tricker, though, because we have to generate a singkic ath
dress that encapsulates a full Haskell closure. The onlytwvalp this is to emit a little machine code at
run-time; more details are given in [19]

6.6 Summary and related work

So far | have concentrated exclusively on interfacing tagpams written in C. Good progress has also been
made for other languages and software architectures:

10| that paperf or ei gn i nport "wrapper" is called f orei gn export dynami c”; the nomenclature has changed
slightly.
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COM is Microsoft's Component Object Model, a language-indejeen, binary interface for composing
software components. Because of its language independ&bkis a very attractive target for
Haskell. H/Direct directly supports both calling COM okefrom Haskell, and implementing COM
objects in Haskell [36, 10, 11, 26].

CORBA addresses similar goals to COM, but with a very differenabeé of design choices. H/Direct
can read CORBA's flavour of IDL, but cannot yet generate thevemt marshalling and glue code.
There is a good CORBA interface for the functional/logiogdaage Mercury, well described in [20].

Lambada [30] offers a collection of Haskell libraries that makes dtsg to write marshalling code for
calling, and being called by, Java programs. Lambada afevsod tool that reads Java class files
and emits IDL that can then be fed into H/Direct to generagentlarshalling code. There is ongoing
work on extending théor ei gn declaration construct to support Java calling conventions

The actual Haskell FFI differs slightly from the one givedign particular, there are many operations over
the typesAddr , For ei gnCbj andSt abl ePt r that | have omitted. Indeed, some of the details are still
in flux.

Finalisation can be very useful even if you are not doing mhileerguage working, and many languages
support it, including Java, Dylan, Python, Scheme, and nahgrs. Hayes gives a useful survey [13],
while a workshop paper gives more details about the Glasgaskéll Compiler’'s design for finalisers
[28].

This section is notably less thorough and precise thanegasictions. | have given a flavour of the issues
and how they can be tackled, rather than a detailed treatriéetplain fact is that interfacing to foreign
languages is a thoroughly hairy enterprise, and no mattettaod we work to build nice abstractions, the
practicalities are undoubtedly complicated. There areynatails to be taken care of; important aspects
differ from operating system to operating system; thereaavariety of interface definition languages (C
header files, IDL, Java class files etc); you have to use atyasfeools; and the whole area is moving
quickly (e.g. the recent announcement of Microsoft's .NEdhiecture).

7 Have we lost the plot?

Now that we have discussed the monadic approach in somé, getaimay well be asking the following
guestion: once we have added imperative-looking inpuplatitoncurrency, shared variables, and excep-
tions, have we not simply re-invented good old proceduragjamming? Have we “lost the plot” — that
is, forgotten what the original goals of functional prograing were?

| believe not. The differences between conventional procgrogramming and the monadic functional
style remain substantial:

e There is a clear distinction, enforced by the type systenwéenactionswhich may have side
effects, andunctionswhich may not. The distinction is well worth making from a teedre engi-
neering point of view. A function can be understood as anpedeéent entity. It can only affect its
caller through the result it returns. Whenever it is callethuhe same arguments it will deliver the
same result. And so on.

In contrast, the interaction of an action with its calleranplex. It may read or writbNar s, block,
raise exceptions, fork new threads... and none of thesgdtaire explicit in its type.

e No reasoning laws are lost when monadic I/O is added. For phkaritremains unconditionally true
that
let z=cind = ble/x]

There are no side conditions, such asriust not have side effects”. (There is an important caveat,
though: | am confident that this claim is true, but | have notpd it.)
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¢ In our admittedly-limited experience, most Haskell pragsaconsist almost entirely of functions,
not actions: a small monadic-1/O “skin” surrounds a largdyof purely-functional code. While it
is certainly possible to write a Haskell program that cassidmost entirely of 1/O, it is unusual to
do so.

e Actions are first class values. They can be passed as argsitoefunctions, returned as results,
stored in data structures, and so on. This gives unusuabiliexio the programmer.

Another good question is this: is th@©monad a sort of “sin-bin”, used whenever we want to do somgthi
that breaks the purely-functional paradigm? Could we be abre refined about it? In particular, if we
argue that it is good to know from the type of an expressiohith@as no side effects, would it not also
be useful to express in the type some limits on the side effiéchay cause? Could we have a variant
of | Othat allowed exceptions but not I/0? Or I/O but not concury@n The answer is technically, yes
of course. There is a long history of research into so-caféztt systemghat track what kind of effects
an expression can have [21]. Such effect systems can besseggrén a monadic way, or married with a
monadic type system [51]. However, the overhead on the progrer becomes greater, and | do not know
of any language that uses such a sysfemAn interesting challenge remains, to devise a more refined
system that is still practical; there is some promising workhis direction [6, 51, 45, 5]. Meanwhile |
argue that a simple pure-or-impure distinction offers aceignt cost/benefit tradeoff.

8 Summary

We have surveyed Haskell’s monadic 1/0 system, along witbetlsignificant language extensidhdt is
easy to extend a language, though! Are these extensionsa?dAre they just aad hocset of responses
to anad hocset of demands? Will every new demand lead to a new extens§ion®l the same effect be
achieved with something simpler and more elegant?

| shall have to leave these judgments to you, gentle reati@sé notes constitute a status report on devel-
opments in the Haskell community at the time of writing. Thteasions | have described cover the needs
of a large class of applications, so | believe we have reaahkzhst a plateau in the landscape. Neverthe-
less the resulting language is undeniably complicated{tamdhonadic parts have a very imperative feel. |
would be delighted to find a way to make it simpler and moreatetive.

The extensions are certainly practical — everything | déscis implemented in the Glasgow Haskell
compiler — and have been used to build real applications.

You can find a great deal of information about Haskell on thé Ve

http://haskell.org

There you will find the language definition, tutorial matértzook reviews, pointers to free implementa-
tions, details of mailing lists, and more besides.
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