An O(1) algorithm for implementing the LEU
cache eviction scheme

Prof. Ketan Shah Anirban Mitra Dhruv Matani
August 16, 2010

Abstract

Cache eviction algorithms are used widely in operating systems, databases
and other systems that use caches to speed up execution by caching data
that is used by the application. There are many policies such as MRU
(Most Recently Used), MFU (Most Frequently Used), LRU (Least Re-
cently Used) and LFU (Least Frequently Used) which each have their
advantages and drawbacks and are hence used in specific scenarios. By
far, the most widely used algorithm is LRU, both for its O(1) speed of
operation as well as its close resemblance to the kind of behaviour that
is expected by most applications. The LFU algorithm also has behaviour
desirable by many real world workloads. However, in many places, the
LRU algorithm is is preferred over the LFU algorithm because of its lower
run time complexity of O(1) versus O(logn). We present here an LFU
cache eviction algorithm that has a runtime complexity of O(1) for all of
its operations, which include insertion, access and deletion(eviction).

1 Introduction

The paper is organized as follows.

e A description of the use cases of LFU where it can prove to be superior
to other cache eviction algorithms

e The dictionary operations that should be supported by a LFU cache im-
plementation. These are the operations which determine the strategy’s
runtime complexity

e A description of how the currently best known LFU algorithm along with
its runtime complexity

e A description of the proposed LFU algorithm; every operation of which
has a runtime complexity of O(1)

2 Uses of LFU

Consider a caching network proxy application for the HTTP protocol. This
proxy typically sits between the internet and the user or a set of users. It
ensures that all the users are able to access the internet and enables sharing
of all the shareable resources for optimum network utiliization and improved
responsiveness. Such a caching proxy should try to maximize the amount of
data that it can cache in the limited amount of storage or memory that it has
at its disposal [[4, 8, 7]].

Typically, lots of static resources such as images, CSS style sheets and
javascript code can very easily be cached for a fairly long time before it is
replaced by newer versions. These static resources or ”assets” as programmers
call them are included in pretty much every page, so it is most beneficial to cache
them since pretty much every request is going to require them. Furthermore,
since a network proxy is required to serve thousands of requests per second, the
overhead needed to do so should be kept to a minimum.

To that effect, it should evict only those resources that are not used very
frequently. Hence, the frequently used resources should be kept at the expence
of the not so frequently used ones since the former have proved themselves to be
useful over a period of time. Of course, there is a counter argument to that which
says that resources that may have been used extensively may not be required in
the future, but we have observed this not to be the case in most situations. For
example, static resources of heavily used pages are always requested by every
user of that page. Hence, the LFU cache replacement strategy can be employed
by these caching proxies to evict the least frequently used items in its cache
when there is a dearth of memory.

LRU might also be an applicable strategy here, but it would fail when the
request pattern is such that all requested items don’t fit into the cache and the
items are requested in a round robin fashion. What will happen in case of LRU
is that items will constantly enter and leave the cache, with no user request ever

hitting the cache. Under the same conditions however, the LFU algorithm will
perform much better, with most of the cached items resulting in a cache hit.

Pathological behaviour of the LFU algoithm is not impossible though. We
are not trying to present a case for LFU here, but are instead trying to show
that if LFU is an applicable strategy, then there is a better way to implement
it than has been previously published.

3 Dictionary operations supported by an LFU
cache

When we speak of a cache eviction algorithm, we need to concern ourselves
primarily with 3 different operations on the cached data.

e Set (or insert) an item in the cache

e Retrieve (or lookup) an item in the cache; simultaneously incrementing
its usage count (for LFU)

e Evict (or delete) the Least Frequently Used (or as the strategy of the
eviction algorithm dectates) item from the cache

4 The currently best known complexity of the
LFU algorithm

As of this writing, the best known runtimes for each of the operations mentioned
above for an LFU cache eviction strategy are as follows:

e Insert: O(logn)
e Lookup: O(logn)
e Delete: O(logn)

These complexity values folllow directly from the complexity of the binomial
heap implementation and a standard collision free hash table. An LFU caching
strategy can be easily and efficiently implemented using a min heap data struc-
ture and a hash map. The min heap is created based on the usage count (of the
item) and the hash table is indexed via the element’s key. All operations on a
collision free hash table are of order O(1), so the runtime of the LFU cache is
governed by the runtime of operations on the min heap [[5, 6, 9, 1, 2]].

When an element is inserted into the cache, it enters with a usage count of
1 and since insertion into a min heap costs O(logn), inserts into the LFU cache
take O(logn) time [[3]].

When an element is looked up, it is found via a hashing function which hashes
the key to the actual element. Simultaneously, the usage count (the count in the
max heap) is incremented by one, which results in the reorganization of the min

heap and the element moves away from the root. Since the element can move
down up to logn levels at any stage, this operation too takes time O(logn).

When an element is selected for eviction and then eventually removed from
the heap, it can cause significant reorganization of the heap data structure.
The element with the least usage count is present at the root of the min heap.
Deleting the root of the min heap involves replacing the root node with the last
leaf node in the heap, and bubbling this node down to its correct position. This
operation too has a runtime complexity of O(logn).

5 The proposed LFU algorithm

The proposed LFU algorithm has a runtime complexity of O(1) for each of the
dictionary operations (insertion, lookup and deletion) that can be performed on
an LFU cache. This is achieved by maintaining 2 linked lists; one on the access
frequency and one for all elements that have the same access frequency.

A hash table is used to access elements by key (not shown in the diagram
below for clarity). A doubly linked list is used to link together nodes which rep-
resent a set of nodes that have the same access frequency (shown as rectangular
blocks in the diagram below). We refer to this doubly linked list as the frequency
list. This set of nodes that have the same access frequency is actually a doubly
linked list of such nodes (shown as circular nodes in the diagram below). We
refer to this doubly linked list (which is local to a particular frequency) as a
node list. Each node in the node list has a pointer to its parent node in the
fregency list (not shown in the diagram for clarity). Hence, nodes x and y will
have a pointer back to node 1, nodes z and a will have a pointer back to node
2 and so on...

head‘ - < - < -.5 .-9

S

Figure 1: The LFU dict with 6 elements

The pseudocode below shows how to initialize an LFU Cache. The hash
table used to locate elements by key is indicated by the variable bykey. We use
a SET in lieu of a linked list for storing elements with the same access frequency
for simplicitly of implementation. The variable items is a standard SET data

head L 2

3 9
o ol
Figure 2: After element with key 'z’ has been accessed once more

structure which holds the keys of such elements that have the same access fre-
quency. Its insertion, lookup and deletion runtime complexity is O(1).

Creates a new frequency node with a access frequency value of 0 (zero)
NEW-FREQ-NODE()

01 Object o

02 o.value < 0

03 o.items + SET()

04 o.prev <o

05 o.next <o

06 return o

Creates a new LFU Item which is stored in the lookup table bykey
NEW-LFU-ITEM(data, parent)

01 Object o

02 o.data < data

03 o.parent < parent

04 returno

Creates a new LFU Cache
NEW-LFU-CACHE()

01 Object o

02 o.bykey + HASH-MAP()

03 o.freq_head <~ NEW-FREQ-NODE
04 returno

The LFU cache object is accessible via the lfu_cache variable
lfu_cache + NEW-LFU-CACHE()

We also define some helper functions that aid linked list manipulation

Create a new new and set its previous and next pointers to prev and next

GET-NEW-NODE(value, prev, next)
01 nn «+ NEW-FREQ-NODE()

02 nn.value < value

03 nn.prev < prev

04 nn.next < next

05 prev.next < nn

06 next.prev < nn

07 return nn

Remove (unlink) a node from the linked list
DELETE-NODE(node)

01 node.prev.next <— node.next

02 node.next.prev < prev

Initially, the LFU cache starts off as an empty hash map and an empty fre-
quency list. When the first element is added, a single element in the hash map
is created which points to this new element (by its key) and a new frequency
node with a value of I is added to the frequency list. It should be clear that the
number of elements in the hash map will be the same as the number of items in
the LFU cache. A new node is added to 1’s frequency list. This node actually
points back to the frequency node whose member it is. For example, if x was
the node added, then the node x will point back to the frequency node 1. Hence
the runtime complexity of element insertion is O(1).

Access (fetch) an element from the LFU cache, simultaneously incrementing its
usage count

ACCESS(key)

01 tmp + lfu_cache.bykeyl[key]

02 if tmp equals null then

03 throw Exception(”No such key”)

04 freq < tmp.parent

05 next_freq + freq.next

06

07 if next_freq equals Ifu_cache.freq_head or

08 next_freq.value does not equal freq.value + 1 then

08 next_freq + GET-NEW-NODE(freq.value + 1, freq, next_freq)
09 next_freq.items.add(key)

10 tmp.parent < next_freq

11

12 freq.items.remove(key)

13 if freq.items.length equals 0 then

14 DELETE-NODE(freq)

15 return tmp.data

When this element is accessed once again, the element’s frequency node is
looked up and its next sibbling’s value is queried. If its sibbling does not exist

or its next sibbling’s value is not 1 more than its value, then a new frequency
node with a value of 1 more than the value of this frequency node is created
and inserted into the correct place. The node is removed from its current set
and inserted into the new frequency list’s set. The node’s frequency pointer
is updated to point to its new frequency node. For example, if the node z is
accessed once more (1) then it is removed from the frequency list having the
value of 2 and added to the frequency list having the value of 3 (2). Hence the
runtime complexity of element access is O(1).

Insert a new element into the LFU cache

INSERT (key, value)

01 if key in lfu_cache.bykey then

02 throw Exception(”Key already exists”)

03

04 freq < lfu_cache.freq_head.next

05 if freq.value does not equal 1 then

06 freq < GET-NEW-NODE(1, lfu_cache.freq_head, freq)
07

08 freq.items.add(key)

09 lfu_cache.bykey[key] + NEW-LFU-ITEM(value, freq)

When an element with the least access frequency needs to be deleted, any
element from the 1% (leftmost) frequency list is chosen and removed. If this fre-
quency list’s node list becomes empty due to this deletion, then the frequency
node is also deleted. The element’s reference from the hash map is also deleted.
Hence the runtime complexity of deleting the least frequently used element is

o(1).

Fetches an item with the least usage count (the least frequently used item,) in the
cache

GET-LFU-ITEM()

01 if lfu_cache.bykey.length equals 0 then

02 throw Exception(”The set is empty”)

03 return lfu_cache.bykey| Ifu_cache.freq_-head.next.items|0] |

Thus, we see that the runtime complexity of each of the dictionary operations
on an LFU cache is O(1).

References

1]

Hyokyung Bahn, Sang Lyul Min Sam H. Noh, and Kern Koh, Using full
reference history for efficient document replacement in web caches, usenix
(1999).

Sorav Bansal and Dharmendra S. Modha, Car: Clock with adaptive replace-
ment, usenix (2004).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to algorithms, second edition, (2002), 130-132.

G. Karakostas and D. N. Serpanos, Practical Ifu implementation for web
caching, (June 19, 2000).

Donghee Lee, Jongmoo Choi, Jong hun Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong sang Kim, Lrfu: A spectrum of policies that sub-
sumes the least recently used and least frequently used policies, (March 10,
2000).

Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum, An optimality
proof of the lru-k page replacement algorithm, (1996).

Junho Shim, Peter Scheuermann, and Radek Vingralek, Prozy cache de-
sign: Algorithms, implementation and performance, IEEE Transactions on
Knowledge and Data Engineering (1999).

Dong Zheng, Differentiated web caching - a differentiated memory allocation
model on proxies, (2004).

Yuanyuan Zhou and James F. Philbin, The multi-queue replacement algo-
rithm for second level buffer caches, usenix (2001).

