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Abstract. Several ideal-lattice-based cryptosystems have been broken
by recent attacks that exploit special structures of the rings used in those
cryptosystems. The same structures are also used in the leading propos-
als for post-quantum lattice-based cryptography, including the classic
NTRU cryptosystem and typical Ring-LWE-based cryptosystems.

This paper proposes NTRU Prime, which tweaks NTRU to use rings
without these structures; proposes Streamlined NTRU Prime, which op-
timizes NTRU Prime from an implementation perspective; finds high-
security post-quantum parameters for Streamlined NTRU Prime; and op-
timizes a constant-time implementation of those parameters. The perfor-
mance results are surprisingly competitive with the best previous speeds
for lattice-based cryptography.
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1 Introduction

This paper presents an efficient implementation of high-security prime-degree
large-Galois-group inert-modulus ideal-lattice-based cryptography. “Prime
degree” etc. are defenses against potential attacks; see Appendix A. The reader
can skip the appendix and simply remember the following facts:
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– Rings of the form (Z/q)[x]/(xp − 1), where p is a prime and q is a power
of 2, are used in the classic NTRU cryptosystem, and have none of our
recommended defenses.

– Rings of the form (Z/q)[x]/(xp + 1), where p is a power of 2 and q ∈ 1 + 2pZ
is a prime, are used in typical “Ring-LWE-based” cryptosystems, and have
none of our recommended defenses.

– Fields of the form (Z/q)[x]/(xp−x−1), where p is prime, are used in “NTRU
Prime”, introduced in this paper, and have all of our recommended defenses.

Specifically, we use only about 50000 cycles on one core of an Intel Haswell CPU
for constant-time multiplication in the field (Z/9829)[x]/(x739−x−1). We de-
fine a public-key cryptosystem “Streamlined NTRU Prime 9829739” using this
field. Our in-depth security analysis indicates that this cryptosystem provides
more than 2128 post-quantum security, while eliminating the annoying possi-
bility of “decryption failures” that appear in most lattice-based cryptosystems.

Multiplication is the main bottleneck in both encryption and decryption,
so we easily outperform, e.g., pre-quantum Curve25519 as a public-key cryp-
tosystem. We take advantage of Haswell’s vectorized multiplier, but modern
Curve25519 implementations such as [22] and [30] also do this, so we also expect
to outperform Curve25519 on other platforms.

Our public keys are field elements, easily squeezed into 1232 bytes. We explain
how to further squeeze ciphertexts (transporting 256-bit session keys) into just
1141 bytes. Obviously these sizes are not competitive with 256-bit ECC key sizes,
but they are small enough for many applications: for example, our ciphertexts
fit into the 1500-byte Ethernet MTU for plaintexts up to a few hundred bytes,
avoiding the implementation hassle of packet fragmentation.

1.1. Comparison to previous multiplication speeds. The previous state of
the art in implementations of lattice-based cryptography was last year’s paper
“Post-quantum key exchange: a new hope” [3] by Alkim, Ducas, Pöppelmann,
and Schwabe. Most of the implementations before [3] are, in our view, obvi-
ously unsuitable for deployment because they access the CPU cache at secret
addresses, taking variable time and allowing side-channel attacks. We are also
not aware of anything faster than [3] at a high security level. For example, [11]
reports 134136 Haswell cycles for ntruees787ep1 encryption; almost all of this
time is for multiplication in (Z/2048)[x]/(x787 − 1) using variable-time sparse-
polynomial-multiplication algorithms.

Like our paper, [3] targets the Haswell CPU, requires constant-time imple-
mentations, and aims for more than 2128 post-quantum security. Unlike our
paper, [3] follows the classic NTRU/Ring-LWE tradition of using cyclotomic
rings. More precisely, [3] uses the same type of ring (Z/q)[x]/(xp+1) as previous
Ring-LWE papers, specifically with p = 1024 and q = 12289 = 12 · 1024 + 1.

The conventional wisdom is that rings of this type are particularly efficient.
These rings allow multiplication at the cost of three “number-theoretic trans-
forms” (NTTs), i.e., fast Fourier transforms over finite fields, with only a small
overhead for “pointwise multiplication”. This multiplication strategy relies crit-
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defenses constant cycles ring technique source

yes yes 50000 (Z/9829)[x]/(x739 − x− 1) Toom etc. this paper
no yes 40000 (Z/12289)[x]/(x1024 + 1) NTT “new hope” [3]
no no >100000 (Z/2048)[x]/(x787 − 1) sparse input ntruees787ep1 [29]

Fig. 1.1. Comparison of multiplication results. “Defenses” means that the ring has this
paper’s defenses against potential attacks. “Constant” means that the software runs
in constant time. “Cycles” is approximate multiplication time on an Intel Haswell; see
text for calculations. All rings are used in public-key cryptosystems aiming for ≥2128

post-quantum security.

ically on choosing an NTT-friendly polynomial such as x1024 + 1 and choosing
an NTT-friendly prime such as 12289.

Tweaking the polynomial and prime, as required by our conservative security
recommendations, would make the NTTs several times more expensive. The
best NTT-based method known to multiply in, e.g., (Z/8819)[x]/(x1021−x− 1)
requires replacing x1021−x− 1 with x2048 + 1, and also replacing 8819 with two
or three NTT-friendly primes. The conventional wisdom therefore implies that
we pay a very large penalty for requiring a large Galois group (NTT-friendly
polynomials always have small Galois groups) and an inert modulus (NTT-
friendly primes are never inert).

We do much better by scrapping the NTTs and multiplying in a completely
different way, using an optimized combination of several layers of Karatsuba’s
method and Toom’s method. This approach does not need NTT-friendly poly-
nomials, and it does not need NTT-friendly primes. We do not claim that our
50000-cycle speed outperforms the multiplications in [3], but it is quite close:
one multiplication in [3] takes about 40000 cycles. (Each forward NTT in [3]
takes 10948 cycles; each reverse NTT takes 11896 cycles; the time for pointwise
multiplication is not stated in [3] but can be extrapolated from [34] to take about
5000 cycles.) To summarize, our security recommendations do not create a large
speed penalty.

1.2. Public-key encryption vs. unauthenticated key exchange. The cryp-
tographic operations in [3] actually sound significantly less efficient: 126236 cycles
for the client (sending 2048 bytes) and 107534 + 22104 = 129638 cycles for the
server (also sending 2048 bytes). The main reason for this gap is that we are
targeting traditional public-key encryption while [3] is targeting unauthenticated
key exchange, a larger operation.

This distinction reflects two completely different approaches to securing com-
munication. Both approaches support the most urgent goal of post-quantum
cryptography, namely encrypting today’s data in a way that will not be de-
crypted by future quantum computers. Both approaches can also be used for
post-quantum server authentication, and for fast key erasure (often called “for-
ward secrecy”), protecting against key theft. However, the details and costs are
quite different.
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total bytes client bytes server bytes key erasure source

1141 1141 0 no this paper
3514 1141+1141 1232 yes this paper
3514 1141+1232 1141 yes this paper

4096+signature 2048 2048+signature yes [3]+signature

Fig. 1.2. Bandwidth used by different techniques of authenticated-server key exchange,
assuming client already knows server’s long-term key. In first line, long-term key is
encryption key; client sends ciphertext; session key is hash of plaintext. In second line,
server also sends short-term encryption key; client sends another ciphertext to that
key; session key is hash of two plaintexts. In third line, short-term encryption key is
generated by client rather than server. In fourth line, long-term key is signature key,
and server signs hash of unauthenticated key exchange.

In the first approach, the server’s long-term identifier is a public key for a
signature system. To start a secure session, the client and server perform an unau-
thenticated post-quantum key exchange (as in [3]), obtaining a shared secret key
used to authenticate and encrypt subsequent messages by standard symmetric
techniques. The server signs a hash of the key exchange, so the client knows that
it is talking to the server. At the end of the session, the client and server erase
the shared secret key.

In the second approach, the server’s long-term identifier is a public key for an
encryption system. To start a secure session, the client sends a ciphertext to the
server. Decryption provides both the client and the server with a shared secret
key used to authenticate and encrypt subsequent messages; see our discussion
of KEMs in Section 3.4. The client knows that it is talking to the server since
nobody else has the shared secret key.

The second approach is less expensive for several reasons:

– The client cost for public-key encryption is less expensive than the client
side of unauthenticated key exchange.

– The server cost for decryption is less expensive than the server side of unau-
thenticated key exchange.

– The signature is skipped entirely: the server avoids the cost of generating it,
the client avoids the cost of verifying it, and both sides avoid the network
traffic.

On the other hand, if key erasure is desired, then the second approach needs
another layer. The simplest protocol allowing key erasure is as follows. The
server maintains a long-term post-quantum public key and also a short-term
post-quantum public key (e.g., a key discarded 60 seconds after its first use and
replaced by a new key). The client sends a ciphertext to each of these keys, and
the two plaintexts are hashed to produce the shared secret key. An attacker who
later steals the server’s secrets does not know the short-term secret key (the key
has been erased), cannot decrypt the ciphertext sent to that key, and cannot
compute the shared secret.
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With this protocol, the client has to perform two public-key encryption op-
erations, and the server has to perform two decryption operations. This is the
same amount of computation as a naive unauthenticated key-exchange protocol
in which the client sends a ciphertext to a short-term server key and the server
sends a ciphertext to a short-term client key, assuming key-generation costs are
amortized; one would expect an optimized unauthenticated key-exchange proto-
col to be somewhat faster than this.

More importantly, the server also has to send its short-term post-quantum
public key to the client. This could be more expensive than handling the sig-
nature in the first approach, depending on which signature system is in use.
Post-quantum signatures are not cheap, but [3] considers the current world of
pre-quantum signatures. This provides transitional security: if the signature is
verified before the attacker has a quantum computer then both integrity and
confidentiality are protected, even against future quantum computers; otherwise
neither integrity nor confidentiality is protected.

This analysis gives us two basic reasons for focusing on the traditional data
flow in public-key encryption. First, we see clear value in understanding the
lowest possible costs for post-quantum public-key encryption. Users who can
afford to deploy post-quantum encryption on top of their current pre-quantum
systems should do so, even if they cannot afford the extra costs of post-quantum
key erasure. Of course, it might still be possible for an attacker to use key theft
to break the post-quantum system and a quantum computer to break the pre-
quantum systems, so users who can afford post-quantum key erasure should
deploy it.

Second, the combination of pre-quantum signatures and post-quantum unau-
thenticated key exchange in [3] might cost slightly less CPU time than using two
layers of post-quantum public-key encryption without signatures, but it does not
seem to be competitive in bandwidth. See Figure 1.2. Furthermore, users will
have to move to post-quantum signatures before attackers have quantum com-
puters, and all known post-quantum signature systems add considerable expense
in CPU time or bandwidth or both. A pure post-quantum encryption solution,
without signatures, avoids the need for this upgrade and appears to minimize
long-term costs.

Acknowledgements We wish to thank John Schanck for detailed discussion of
the security of NTRU and for suggesting the “transitional security” terminology.

2 Streamlined NTRU Prime: an optimized cryptosystem

This section specifies “Streamlined NTRU Prime”, a public-key cryptosystem.
The next section compares Streamlined NTRU Prime to alternatives.

We caution potential users that many details of Streamlined NTRU Prime
are new and require careful security review. We have not limited ourselves to
the minimum changes that would be required to switch to NTRU Prime from
an existing version of the NTRU public-key cryptosystem; we have taken the
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p = 739; q = 9829; t = 204
Zx.<x> = ZZ[]; R.<xp> = Zx.quotient(x^p-x-1)
Fq = GF(q); Fqx.<xq> = Fq[]; Rq.<xqp> = Fqx.quotient(x^p-x-1)
F3 = GF(3); F3x.<x3> = F3[]; R3.<x3p> = F3x.quotient(x^p-x-1)

import itertools
def concat(lists): return list(itertools.chain.from_iterable(lists))

def nicelift(u):
  return lift(u + q//2) - q//2

def nicemod3(u): # r in {0,1,-1} with u-r in {...,-3,0,3,...}
  return u - 3*round(u/3)

def int2str(u,bytes):
  return ''.join([chr((u//256^i)%256) for i in range(bytes)])

def str2int(s):
  return sum([ord(s[i])*256^i for i in range(len(s))])

def encodeZx(m): # assumes coefficients in range {-1,0,1,2}
  m = [m[i]+1 for i in range(p)] + [0]*(-p % 4)
  return ''.join([int2str(m[i]+m[i+1]*4+m[i+2]*16+m[i+3]*64,1) for i in range(0,len(m),4)])

def decodeZx(mstr):
  m = [str2int(mstr[i:i+1]) for i in range(len(mstr))]
  m = concat([[m[i]%4,(m[i]//4)%4,(m[i]//16)%4,m[i]//64] for i in range(len(m))])
  return Zx([m[i]-1 for i in range(p)])

def encodeRq(h):
  h = [lift(h[i]) for i in range(p)] + [0]*(-p % 3)
  h = ''.join([int2str(h[i]+h[i+1]*10240+h[i+2]*10240^2,5) for i in range(0,len(h),3)])
  return h[0:1232]

def decodeRq(hstr):
  h = [str2int(hstr[i:i+5]) for i in range(0,len(hstr),5)]
  h = concat([[h[i]%10240,(h[i]//10240)%10240,h[i]//10240^2] for i in range(len(h))])
  if max(h) >= q: raise Exception("pk out of range")
  return Rq(h)

def encoderoundedRq(c):
  c = [1638 + nicelift(c[i]/3) for i in range(p)] + [0]*(-p % 2)
  c = ''.join([int2str(c[i]+c[i+1]*4096,3) for i in range(0,len(c),2)])
  return c[0:1109]

def decoderoundedRq(cstr):
  c = [str2int(cstr[i:i+3]) for i in range(0,len(cstr),3)]
  c = concat([[c[i]%4096,c[i]//4096] for i in range(len(c))])
  if max(c) > 3276: raise Exception("c out of range")
  return 3*Rq([c[i]-1638 for i in range(p)])

Fig. 2.1. Complete non-constant-time reference implementation of Streamlined NTRU
Prime 9829739 using the Sage computer-algebra system, part 1: auxiliary functions for
encoding and decoding of polynomials as byte strings.

opportunity to rethink and reoptimize all of the details of NTRU from an im-
plementation perspective.

2.1. Parameters. Streamlined NTRU Prime is actually a family of cryptosys-
tems parametrized by positive integers (p, q, t) subject to the following restric-



NTRU Prime 7

def randomR(): # R element with 2t coeffs +-1
  L = [2*randrange(2^31) for i in range(2*t)]
  L += [4*randrange(2^30)+1 for i in range(p-2*t)]
  L.sort()
  L = [(L[i]%4)-1 for i in range(p)]
  return Zx(L)

def keygen():
  while True:
    g = Zx([randrange(3)-1 for i in range(p)])
    if R3(g).is_unit(): break
  f = randomR()
  h = Rq(g)/(3*Rq(f))
  pk = encodeRq(h)
  return pk,encodeZx(f) + encodeZx(R(lift(1/R3(g)))) + pk

import hashlib
def hash(s): h = hashlib.sha512(); h.update(s); return h.digest()

def encapsulate(pk):
  h = decodeRq(pk)
  r = randomR()
  hr = h * Rq(r)
  m = Zx([-nicemod3(nicelift(hr[i])) for i in range(p)])
  c = Rq(m) + hr
  fullkey = hash(encodeZx(r))
  return fullkey[:32] + encoderoundedRq(c),fullkey[32:]

def decapsulate(cstr,sk):
  f,ginv,h = decodeZx(sk[:185]),decodeZx(sk[185:370]),decodeRq(sk[370:])
  confirm,c = cstr[:32],decoderoundedRq(cstr[32:])
  f3mgr = Rq(3*f) * c
  f3mgr = [nicelift(f3mgr[i]) for i in range(p)]
  r = R3(ginv) * R3(f3mgr)
  r = Zx([nicemod3(lift(r[i])) for i in range(p)])
  hr = h * Rq(r)
  m = Zx([-nicemod3(nicelift(hr[i])) for i in range(p)])
  checkc = Rq(m) + hr
  fullkey = hash(encodeZx(r))
  if sum([r[i]==0 for i in range(p)]) != p-2*t: return False
  if checkc != c: return False
  if fullkey[:32] != confirm: return False
  return fullkey[32:]

for keys in range(5):
  pk,sk = keygen()
  for ciphertexts in range(5):
    c,k = encapsulate(pk)
    assert decapsulate(c,sk) == k

print len(pk),'bytes in public key'
print len(sk),'bytes in secret key'
print len(c),'bytes in ciphertext'
print len(k),'bytes in shared secret'

Fig. 2.2. Complete non-constant-time reference implementation of Streamlined NTRU
Prime 9829739 using the Sage computer-algebra system, part 2: key generation, encap-
sulation, decapsulation, tests.

tions: p is a prime number; q is a prime number; p ≥ max{2t, 3}; q ≥ 48t + 1;
xp − x− 1 is irreducible in the polynomial ring (Z/q)[x].
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We abbreviate the ring Z[x]/(xp−x− 1), the ring (Z/3)[x]/(xp−x− 1), and
the field (Z/q)[x]/(xp − x− 1) as R, R/3, and R/q respectively. We refer to an
element of R as small if all of its coefficients are in {−1, 0, 1}. We refer to a
small element as t-small if exactly 2t of its coefficients are nonzero.

Our case study in this paper is Streamlined NTRU Prime 9829739. This spe-
cific cryptosystem has parameters p = 739, q = 9829, and t = 204. The following
subsections specify the algorithms for general parameters but the reader may
wish to focus on these particular parameters. Figures 2.1 and 2.2 show complete
algorithms for key generation, encapsulation, and decapsulation in Streamlined
NTRU Prime 9829739, using the Sage [56] computer-algebra system.

2.2. Key generation. The receiver generates a public key as follows:

– Generate a uniform random small element g ∈ R. Repeat this step until g
is invertible in R/3.

– Generate a uniform random t-small element f ∈ R. (Note that f is nonzero
and hence invertible in R/q, since t ≥ 1.)

– Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so
3 is invertible in R/q, so 3f is invertible in R/q.)

– Encode h as a string h. The public key is h.
– Save the following secrets: f in R; and 1/g in R/3.

See keygen in Figure 2.2.
The encoding of public keys as strings is another parameter for Streamlined

NTRU Prime. Each element of Z/q is traditionally encoded as dlog2 qe bits, so
the public key is traditionally encoded as pdlog2 qe bits. If q is noticeably smaller
than a power of 2 then one can easily compress a public key by merging adjacent
elements of Z/q, with a lower limit of p log2 q bits. For example, an element of
Z/q for q = 9829 is traditionally encoded as 14 bits, but three such elements are
easily encoded together as 40 bits, saving 5% of the space; 739 elements of Z/q
would traditionally take 10346 bits, but 246 triples and a final element take just
9856 bits. See Figure 2.1 for further encoding details.

2.3. Encapsulation. Streamlined NTRU Prime is actually a “key encapsulation
mechanism” (KEM). This means that the sender takes a public key as input and
produces a ciphertext and session key as output. See Section 3.4 for comparison
to older notions of public-key encryption.

Specifically, the sender generates a ciphertext as follows:

– Decode the public key h, obtaining h ∈ R/q.
– Generate a uniform random t-small element r ∈ R.
– Compute hr ∈ R/q.
– Round each coefficient of hr, viewed as an integer between −(q − 1)/2

and (q − 1)/2, to the nearest multiple of 3, producing c ∈ R. (If q ∈
1 + 3Z, as in our case study q = 9829, then each coefficient of c is in
{−(q − 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2 + 3Z then each coef-
ficient of c is in {−(q + 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q + 1)/2}.)

– Encode c as a string c.
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– Hash r, obtaining a left half C (“key confirmation”) and a right half K.
– The ciphertext is the concatenation Cc. The session key is K.

See encapsulate in Figure 2.1.
The hash function for r is another parameter for Streamlined NTRU Prime.

We encode r as a byte string by adding 1 to each coefficient, obtaining an element
of {0, 1, 2} encoded as 2 bits in the usual way, and then packing 4 adjacent
coefficients into a byte, consistently using little-endian form. See encodeZx in
Figure 2.1. We hash the resulting byte string with SHA-512, obtaining a 256-bit
key confirmation C and a 256-bit session key K.

The encoding of ciphertexts c as strings c is another parameter for Stream-
lined NTRU Prime. This encoding can be more compact than the encoding of
public keys because each coefficient of c is in a limited subset of Z/q. Concretely,
for q = 9829 and p = 739, we use 12 bits for each coefficient of c and thus 8872
bits (padded to a byte boundary) for c, saving 10% compared to the size of a
public key and 15% compared to separately encoding each element of Z/q. See
encoderoundedRq in Figure 2.1. Key confirmation adds 256 bits to ciphertexts.

2.4. Decapsulation. The receiver decapsulates a ciphertext Cc as follows:

– Decode c, obtaining c ∈ R.
– Multiply by 3f in R/q.
– View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and

(q − 1)/2, and then reduce modulo 3, obtaining a polynomial e in R/3.
– Multiply by 1/g in R/3.
– Lift e/g in R/3 to a small polynomial r′ ∈ R.
– Compute c′, C ′,K ′ from r′ as in encapsulation.
– If r′ is t-small, c′ = c, and C ′ = C, then output K ′. Otherwise output False.

See decapsulate in Figure 2.1.
If Cc is a legitimate ciphertext then c is obtained by rounding the coefficients

of hr to the nearest multiples of 3; i.e., c = m+hr in R/q, where m is small. All
coefficients of the polynomial 3fm+ gr in R are in [−24t, 24t] by Theorem 2.1
below, and thus in [−(q−1)/2, (q−1)/2] since q ≥ 48t+1. Viewing each coefficient
of 3fc = 3fm+ gr as an integer in [−(q− 1)/2, (q− 1)/2] thus produces exactly
3fm+ gr ∈ R, and reducing modulo 3 produces gr ∈ R/3; i.e., e = gr in R/3,
so e/g = r in R/3. Lifting now produces exactly r since r is small; i.e., r′ = r.
Hence (c′, C ′,K ′) = (c, C,K). Finally, r′ = r is t-small, c′ = c, and C ′ = C, so
decapsulation outputs K ′ = K, the same session key produced by encapsulation.

Theorem 2.1 Fix integers p ≥ 2 and t ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials
of degree at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r
each have at most 2t nonzero coefficients. Then 3fm + gr mod xp − x − 1 has
each coefficient in the interval [−24t, 24t].

Proof. Write fm as a0 +a1x+ · · ·+a2p−2x
2p−2. Each coefficient aj has the form∑

i fimj−i; each term fimj−i here is in [−1, 1], and there are at most 2t nonzero
terms, so aj ∈ [−2t, 2t]. Now fm mod xp−x−1 = (a0+ap)+(a1+ap+ap+1)x+
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(a2 + ap+1 + ap+2)x2 + · · ·+ (ap−2 + a2p−3 + a2p−2)xp−2 + (ap−1 + a2p−2)xp−1,
with each coefficient visibly in [−6t, 6t]. Similar reasoning for gr implies that
each coefficient of gr mod xp − x − 1 is in [−6t, 6t]. Hence each coefficient of
3fm+ gr mod xp − x− 1 is in [−24t, 24t]. ut

3 The design space of lattice-based encryption

There are many different ideal-lattice-based public-key encryption schemes in
the literature, including many versions of NTRU, many Ring-LWE-based cryp-
tosystems, and now Streamlined NTRU Prime. These are actually many different
points in a high-dimensional space of possible cryptosystems. We give a unified
description of the advantages and disadvantages of what we see as the most
important options in each dimension, in particular explaining the choices that
we made in Streamlined NTRU Prime. Beware that there are many interac-
tions between options: for example, using Gaussian errors is incompatible with
eliminating decryption failures.

3.1. The ring. The choice of cryptosystem includes a choice of a monic degree-p
polynomial P ∈ Z[x] and a choice of a positive integer q. As in Section 2, we
abbreviate the ring Z[x]/P as R, and the ring (Z/q)[x]/P as R/q.

The choices of P mentioned in Section 1 include xp − 1 for prime p (classic
NTRU); xp + 1 where p is a power of 2; and xp − x − 1 for prime p (NTRU
Prime). Choices of q include powers of 2 (classic NTRU); split primes q; and
inert primes q (NTRU Prime).

Of course, Streamlined NTRU Prime makes the NTRU Prime choices here.
Most of the optimizations in Streamlined NTRU Prime can also be applied to
other choices of P and q, with a few exceptions noted below.

3.2. The public key. The receiver’s public key, which we call h, is an element
of R/q, secretly computed by dividing two small polynomials. It is invertible in
R/q but has no other publicly visible structure.

An alternative is to transmit the public key h as two elements d, hd ∈ R/q,
where d is chosen as a uniform random invertible element of R/q. This is
what would be called “randomized projective coordinates” in the ECC context,
whereas simply sending h would be called “affine coordinates”. The advantage
of representing h as a fraction (hd)/d is that the receiver can skip all divisions
in the secret computation of the public key h: the receiver simply computes h
as a fraction, and then multiplies the numerator and denominator by a uniform
random invertible element of R/q to hide all information beyond what h would
have revealed. The obvious disadvantage of sending d, hd is that public keys be-
come twice as large; a further disadvantage is that arithmetic on h turns into
arithmetic on both d and hd. Key size is important, and we expect key gen-
eration to be amortized across many uses of h, so we skip this alternative in
Streamlined NTRU Prime. We also skip the idea of supporting both key formats
as a run-time option: this would complicate implementations.
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3.3. Inputs and ciphertexts. Classic NTRU ciphertexts are elements of the
form m+hr ∈ R/q. Here h ∈ R/q is the public key as above, and m, r are small
elements of R chosen by the sender. The multiplication of h by r is the main
bottleneck in encryption and the main target of our implementation work; see
Sections 6 and 7.

The receiver can quickly recover the input (m, r) from the ciphertext m+hr;
see Section 2.4 for Streamlined NTRU Prime and Section 3.5 for a broader
view. We say “input” rather than “plaintext” because in any modern public-
key cryptosystem the input is randomized and is separated from the sender’s
plaintext by some hashing; see Section 3.4.

In the original NTRU specification [37], m was allowed to be any element of
R having all coefficients in a standard range. The range was {−1, 0, 1} for all of
the suggested parameters, with q not a multiple of 3, and we focus on this case
for simplicity (although we note that some other lattice-based cryptosystems
have taken the smaller range {0, 1}, or sometimes larger ranges).

Current NTRU specifications such as [36] prohibit m that have an unusu-
ally small number of 0’s or 1’s or −1’s. For random m, this prohibition applies
with probability <2−10, and in case of failure the sender can try encoding the
plaintext as a new m, but this is problematic for applications with hard real-
time requirements. The reason for this prohibition is that classic NTRU gives
the attacker an “evaluate at 1” homomorphism from R/q to Z/q, leaking m(1).
The attacker scans many ciphertexts to find an occasional ciphertext where the
value m(1) is particularly far from 0; this value constrains the search space for
the corresponding m by enough bits to raise security concerns. In NTRU Prime,
R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which
we call a “rounded ciphertext”. The sender chooses a small r and computes
hr ∈ R/q. The sender obtains the ciphertext by rounding each coefficient of hr,
viewed as an integer between −(q−1)/2 and (q−1)/2, to the nearest multiple of
3. This ciphertext can be viewed as an example of the original ciphertext m+hr,
but with m chosen so that each coefficient of m+ hr is in a restricted subset of
Z/q.

With the original ciphertexts, each coefficient of m+hr leaves 3 possibilities
for the corresponding coefficients of hr and m. With rounded ciphertexts, each
coefficient of m+ hr also leaves 3 possibilities for the corresponding coefficients
of hr and m, except that the boundary cases −(q−1)/2 and (q−1)/2 (assuming
q ∈ 1 + 3Z) leave only 2 possibilities. In a pool of 264 rounded ciphertexts, the
attacker might find one ciphertext that has 15 of these boundary cases out of
739 coefficients; these occasional exceptions have very little impact on known
attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined
entirely by r. It would also be possible to prohibit ciphertexts at the boundaries,
but as above we prefer to avoid restarting the encryption process.

The advantage of choosing m in this way is that ≈q/3 possibilities take less
space than q possibilities. See Section 2.3. Analogous ciphertext compression
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is standard in the context of code-based cryptography, and dates back to a
1986 paper [50] by Niederreiter, but the idea is surprisingly difficult to find in
the literature on lattice-based cryptography. We have borrowed the “rounding”
name from a few recent papers on “learning with rounding” (see [5], [4], and
[15]), but we have not found any mention of the impact on ciphertext sizes.

3.4. Padding and KEMs. In Streamlined NTRU Prime we use the modern
“KEM+DEM” approach introduced by Shoup; see [60]. This approach is much
nicer for implementors than previous approaches to public-key encryption. For
readers unfamiliar with this approach, we briefly review the analogous options
for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s
public key. When RSA was first introduced, its input m was described as the
sender’s plaintext. This was broken in reasonable attack models, leading to the
development of various schemes to buildm as some combination of fixed padding,
random padding, and a short plaintext; typically this short plaintext is used as
a shared secret key. This turned out to be quite difficult to get right, both in
theory (see, e.g., [61]) and in practice (see, e.g., [48]), although it does seem
possible to protect against arbitrary chosen-ciphertext attacks by building m in
a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [60] (also
called “Simple RSA”), is much easier:

– Choose a uniform random integer m modulo n. This step does not even look
at the plaintext.

– To obtain a shared secret key, simply apply a cryptographic hash function
to m.

– Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.
“KEM” means “key encapsulation mechanism”: me mod n is an “encapsula-

tion” of the shared secret key H(m). “DEM” means “data encapsulation mech-
anism”, referring to the encryption and authentication using this shared secret
key. Authenticated ciphers are normally designed to be secure for many mes-
sages, so H(m) can be reused to protect further messages from the sender to
the receiver, or from the receiver back to the sender. It is also easy to combine
KEMs, for example combining a pre-quantum KEM with a post-quantum KEM,
by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender
plaintext m combined with a random r. This is obviously not secure against
chosen-ciphertext attacks. Subsequent NTRU papers introduced various mecha-
nisms to build (m, r) as increasingly convoluted combinations of fixed padding,
random padding, and a short plaintext.

It is easy to guess that KEMs simplify NTRU, the same way that KEMs
simplify RSA; we are certainly not the first to suggest this. However, all the
NTRU-based KEMs we have found in the literature (e.g., [64] and [57]) construct
the NTRU input (m, r) by hashing a shorter input and verifying this hash during
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decapsulation; typically r is produced as a hash of m. These KEMs implicitly
assume that m and r can be chosen independently, whereas rounded ciphertexts
(see Section 3.3) have r as the sole input. Furthermore, it is not clear that
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as
inverting the NTRU map from input to ciphertext: the security theorems are
quite loose.

We instead follow a simple generic KEM construction introduced in the ear-
lier paper [25, Section 6] by Dent, backed by a tight security reduction [25,
Theorem 8] from inversion to generic-hash chosen-ciphertext attacks:

– Like RSA-KEM, this construction hashes the input, in our case r, to obtain
the session key.

– Decapsulation verifies that the ciphertext is the correct ciphertext for this
input, preventing per-input ciphertext malleability.

– The KEM uses additional hash output for key confirmation, making clear
that a ciphertext cannot be generated except by someone who knows the
corresponding input.

Key confirmation might be overkill from a security perspective, since a random
session key will also produce an authentication failure; but key confirmation
allows the KEM to be audited without regard to the authentication mechanism,
and adds only 3% to our ciphertext size.

Dent’s security analysis assumes that decryption works for all inputs. This as-
sumption is not valid for most lattice-based encryption schemes (see Section 3.7),
but it is valid for Streamlined NTRU Prime. This difference appears to account
for most of the complications in subsequent papers on NTRU-based KEMs.

As a spinoff of analyzing KEM options, we found a fast chosen-ciphertext
attack against the code-based KEM proposed in [53]. The problem is that [53]
switches to predictable KEM output if decoding fails. The attacker can easily
modify the ciphertext to flip a small number of bits (e.g., one or two bits) in
the unknown error vector and to generate an authenticator from the predictable
KEM output; decryption will succeed if the flipped error vector is decodable,
and will almost certainly fail otherwise. Repeating these modifications quickly
reveals the unknown error vector from the pattern of decryption failures, sim-
ilarly to Berson’s attack [12] on the plain McEliece system. McBits [10] avoids
this problem, because it uses a separate output bit from the KEM to indicate a
decoding failure.

3.5. Key generation and decryption. Classic NTRU computes the public key
as 3g/f in R/q, where f and g are secret. Decryption computes fc = fm+ 3gr,
reduces modulo 3 to obtain fm, and multiplies by 1/f to obtain m.

The NTRU literature, except for the earliest papers, takes f of the form
1 + 3F , where F is small. This eliminates the multiplication by the inverse of f
modulo 3. In Streamlined NTRU Prime we have chosen to skip this speedup for
two reasons. First, in the long run we expect cryptography to be implemented in
hardware, where a multiplication in R/3 is far less expensive than a multiplica-
tion in R/q. Second, this speedup requires noticeably larger keys and ciphertexts
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for the same security level, and this is important for many applications, while
very few applications will notice the CPU time for Streamlined NTRU Prime.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f)
rather than 3g/f . Decryption computes 3fc = 3fm + gr, reduces modulo 3 to
obtain gr, and multiplies by 1/g to obtain r. This change lets us compute (m, r)
by first computing r and then multiplying by h, whereas otherwise we would first
compute m and then multiply by 1/h. One advantage is that we skip computing
1/h; another advantage is that we need less space for storing a key pair. This 1/h
issue does not arise for NTRU variants that compute r as a hash of m, but those
variants are incompatible with rounded ciphertexts, as discussed in Section 3.4.

It is important for security to compute inverses such as 1/f in constant time.
For Streamlined NTRU Prime, Z/q and R/q are fields of size q and qp respec-
tively, so inversion is the same as computing (q − 2)nd powers and (qp − 2)nd
powers respectively by Fermat’s little theorem, and one can easily build constant-
time exponentiations from our constant-time multiplications. We actually use a
more complicated but much faster approach. We first convert the extended Eu-
clidean algorithm into a one-coefficient-at-a-time Berlekamp–Massey/“almost-
inverse” algorithm (see, e.g., [62]). All of the conditional branches amount to
simple input selections, which we convert into constant-time arithmetic. We com-
pute the maximum number of iterations for the algorithm, and always perform
this number of iterations, again using constant-time arithmetic so that dummy
iterations produce the correct result.

3.6. The shape of small polynomials. As noted in Section 3.3, the coeffi-
cients of m are chosen from the limited range {−1, 0, 1}. The NTRU literature
[37,42,35,36] generally puts the same limit on the coefficients of r, g, and f , ex-
cept that if f is chosen with the shape 1+3F (see Section 3.5) then the literature
puts this limit on the coefficients of F . Sometimes these “ternary polynomials”
are further restricted to “binary polynomials”, excluding coefficient −1.

The NTRU literature further restricts the Hamming weight of r, g, and f .
Specifically, a cryptosystem parameter is introduced to specify the number of
1’s and −1’s. For example, there is a parameter t (typically called “d” in NTRU
papers) so that r has exactly t coefficients equal to 1, exactly t coefficients
equal to −1, and the remaining p− 2t coefficients equal to 0. These restrictions
allow decryption for smaller values of q (see Section 3.7), saving space and time.
Beware, however, that if t is too small then there are attacks; see our security
analysis in Section 4.

We keep the requirement that r have Hamming weight 2t, and keep the
requirement that these 2t nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat
more choices of r. The same comments apply to f . Similarly, we require g to
have all coefficients in {−1, 0, 1} but we do not further limit the distribution of
coefficients. Our security analysis conservatively underestimates the size of the
key space, ignoring these changes.

These changes would affect the conventional NTRU decryption procedure:
they expand the typical size of coefficients of fm and gr, forcing larger choices
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of q to avoid noticeable decryption failures. But we instead choose q to avoid all
decryption failures (see Section 3.7), and these changes do not expand our bound
on the size of the coefficients of fm and gr.

The obvious way to generate t-small polynomials is choose a random position
for a nonzero coefficient and repeat until the weight has reached 2t. This takes
variable time, raising security questions. Here is a constant-time alternative:

– Generate a target list (±1, . . . ,±1, 0, . . . , 0) starting with 2t nonzero entries,
each chosen randomly as either 1 or −1.

– Use a constant-time algorithm to sort a list of p random numbers, and at
the same time apply the same permutation to the target list.

This is theoretically perfect when the numbers do not collide. We generate 32-bit
random numbers, replace the bottom 2 bits with the target list, sort the num-
bers, and extract the bottom 2 bits. (This produces 30-bit collisions once every
few thousand ciphertexts, making smaller coefficients marginally more likely to
appear near the beginning of the list. We could check for these collisions and
restart if they occur, but the information leak is negligible.) Modern stream ci-
phers take only a few thousand cycles to generate 739 random 32-bit numbers,
and a constant-time size-1024 sorting network (Batcher’s “odd-even sorting net-
work” [6]) takes just 24064 constant-time compare-exchange steps, which we
note are easily vectorizable.

NTRU papers starting with [38] have used “product-form polynomials”, i.e.,
polynomials of the form AB + C. The weight of AB + C is generally higher
than the total weight of A,B,C (since the terms of A and B cross-multiply),
and a rather small total weight of A,B,C maintains security against all known
attacks. To multiply by AB + C one can multiply by A, then multiply by B,
then multiply the original input by C. This saves time for non-constant-time
sparse-polynomial-multiplication algorithms, but it loses time for constant-time
algorithms, so we ignore this idea. (Even with this idea, the best speeds for NTRU
using sparse polynomial multiplication are not competitive with our speeds.)

Elsewhere in the literature on lattice-based cryptography one can find larger
coefficients: consider, e.g., the quinary polynomials in [26], and the even wider
range in [3]. In [65], the coefficients of f and g are sampled from a very wide dis-
crete Gaussian distribution, allowing a proof regarding the distribution of g/f .
However, this appears to produce worse security for any given key size. Specif-
ically, there are no known attack strategies blocked by a Gaussian distribution,
while the very wide distribution forces q to be very large to enable decryption
(see Section 3.7), producing a much larger key size (and ciphertext size) for the
same security level.

3.7. Choosing q. In Streamlined NTRU Prime we require q ≥ 48t+ 1. Recall
that decryption sees 3fm + gr in R/q and tries to deduce 3fm + gr in R;
the condition q ≥ 48t + 1 guarantees that this works, since each coefficient of
3fm + gr in R is between −(q − 1)/2 and (q − 1)/2 by Theorem 2.1. Taking
different shapes of m, r, f, g, or changing the polynomial P = xp − x− 1, would
change the bound 48t + 1; for example, replacing g by 1 + 3G would change
48t+ 1 into 72t+ 3.
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In lattice-based cryptography it is standard to take somewhat smaller values
of q. The idea is that coefficients in 3fm+ gr are produced as sums of many +1
and −1 terms, and these terms usually cancel, rather than conspiring to produce
the maximum conceivable coefficient. But this approach raises several questions:

– Will users randomly encounter decryption failures?
– Can attackers trigger decryption failures by generating many more cipher-

texts?
– Can attackers tweak these ciphertexts to trigger decryption failures?
– What should implementors do if decryption does fail?

The literature on the first two questions is already quite complicated, and it
is difficult to find literature on the third and fourth questions. The only safe
assumption is that decryption failures compromise security, allowing attackers
to learn f from the pattern of decryption failures; see [40], and see also the
discussion of NTRU complications in Section 3.4. We prefer to guarantee that
decryption works, making the security analysis simpler and more robust.

4 Security of Streamlined NTRU Prime

In this section we adapt existing pre-quantum NTRU attack strategies to the
context of Streamlined NTRU Prime and quantify their effectiveness. In partic-
ular, we account for the impact of changing xp−1 to xp−x−1, and using small
f rather than f = 1 + 3F with small F .

4.1. Meet-in-the-middle attack. Odlyzko’s meet-in-the-middle attack [41,39]
on NTRU works by splitting the space of possible keys F into two parts such
that F = F1 ⊕ F2. Then in each loop of the algorithm partial keys are drawn
from F1 and F2 until a collision function (defined in terms of the public key h)
indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the
private key.

The number of choices of f is
(
p
t

)(
p−t
t

)
, so a first estimate is that the number

of loops in the algorithm is
√(

p
t

)(
p−t
t

)
. However, in classic NTRU, a key (f, g)

is equivalent to all of the rotated keys (xif, xig), and the algorithm succeeds if
it finds any of these rotated keys. The p rotations are almost always distinct,
producing a speedup factor very close to

√
p.

The structure of the NTRU Prime ring is less friendly to this attack. Say
f has degree p − c; typically c is around p/2t, since there are 2t terms in f .
Multiplying f by x, x2, . . . , xc−1 produces elements of F , but multiplying f by
xc replaces xp−c with xp mod xp − x− 1 = x+ 1, changing its weight and thus
leaving F . It is possible but rare for subsequent multiplications by x to reenter
F . Similarly, one expects only about p/2t divisions by x to stay within F , for a
total of only about p/t equivalent keys. We have confirmed these estimates with
experiments.

One could modify the attack to use a larger set F , but this seems to lose
more than it gains. Furthermore, similar wraparounds for g compromise the
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effectiveness of the collision function. To summarize, the extra term in xp−x−1
seems to increase the attack cost by a factor around

√
t, compared to classic

NTRU; i.e., the rotation speedup is only around
√
p/t rather than

√
p.

On the other hand, some keys f allow considerably more rotations. We have
decided to conservatively assume a speedup factor of

√
p− t, even though we do

not know how to achieve this speedup for random keys f . This means that the
number of loops before this attack is expected to find f is

L =

√(
p
t

)(
p−t
t

)
√
p− t

. (1)

In each loop t vectors of size p are added and their coefficients are reduced
modulo q. We thus estimate the attack cost as L log2(pt). The storage require-
ment of the attack is L log2

(
p
t

)
.

We can reduce this storage by applying collision search to the meet-in-the-
middle attack (see [51,66]). In this case we can reduce the storage capacity by a
factor w at the expense of increasing the running time by a factor

√
w.

4.2. Streamlined NTRU Prime lattice. As with NTRU we can embed the
problem of recovering the private keys f, g into a lattice problem. Saying 3h =
g/f in R/q is the same as saying 3hf + qk = g in R for some polynomial k; in
other words, there is a vector (k, f) of length 2p such that

(
k f
)(qI 0

H I

)
=
(
k f
)
B =

(
g f
)
,

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp−x− 1
and I is the p × p identity matrix. We will call B the Streamlined NTRU
Prime public lattice basis. This lattice has determinant qp. The vector (g, f)
has norm approximately (2 bp/3c + 2t)1/2. According to the Gaussian heuris-
tic, which states the length of the shortest vector can be approximated by
det(B)1/(2p)

√
πep =

√
πepq, we expect this vector to be the shortest nonzero

vector in the lattice.
Finding the secret keys is thus equivalent to solving the Shortest Vector

Problem (SVP) for the Streamlined NTRU Prime public lattice basis. The fastest
currently known methods to solve SVP in the NTRU public lattice are the hybrid
attack and sieving algorithms, which we will discuss in the next sections.

A similar lattice can be constructed to instead try to find the input pair
(m, r). However, there is no reason to expect the attack against (m, r) to be easier
than the attack against (g, f): r has the same range as f , and m has essentially
the same range as g. Recall that Streamlined NTRU Prime does not have classic
NTRU’s problem of leaking m(1). There are occasional boundary constraints on
m (see Section 3.3), and there is also an R/3 invertibility constraint on g, but
these effects are minor.

4.3. Hybrid security. The best known attack against the NTRU lattice is the
hybrid lattice-basis reduction and meet-in-the-middle attack described in [39].
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The attack works in two phases: the lattice basis reduction phase and the meet-
in-the-middle phase.

In the lattice reduction step it is observed that applying lattice reduction
techniques will mostly reduce the middle vectors of the basis [58]. Therefore
the strategy is to apply lattice-basis reduction, for example BKZ 2.0 [20], to a
submatrix B′ of the public basis B. We then get a reduced basis T = UBY :

 Iw 0 0
0 U ′ 0
0 0 Iw′

 ·
 qIw 0 0
∗ B′ 0
∗ ∗ Iw′

 ·
 Iw 0 0

0 Y ′ 0
0 0 Iw′

 =

 qIw 0 0
∗ T ′ 0
∗ ∗ Iw′


Here Y is orthonormal and T ′ is again in lower triangular form.

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm
to guess options for the last w′ coordinates of the key by guessing halves of the
key and looking for collisions. If the lattice basis was reduced sufficiently in the
first phase, a collision resulting in the private key will be found by applying a
rounding algorithm to the half-key guesses. More details on how to do this can
be found in [39].

To estimate the security against this attack we follow the approach of [36].
Let w be the dimension of Iw and w′ be the dimension of Iw′ . For a sufficiently
reduced basis the meet-in-the-middle phase will require on average

− 1/2

log2(p− t) +
∑

0≤a,b≤t

(
w′

a

)(
w′ − a
b

)
v(a, b) log2(v(a, b))

 (2)

work, where the log2(p− t) term accounts for the correct forms and

v(a, b) =

(
p−w′

t−a
)(
p−w′−t+a

t−b
)(

p
t

)(
p−t
t

) .

The quality of a basis after lattice reduction can be measured by the Hermite
factor δ = ||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among
the rows of B. To be able to recover the key in the meet-in-the-middle phase,
the (2p− w − w′)× (2p− w − w′) matrix T ′ has to be sufficiently reduced. For
given w and w′ this is the case if the lattice reduction reaches the required value
of δ. This Hermite factor has to satisfy

log2(δ) ≤ (p− w) log2(q)

(2p− (w + w′))2
− 1

2p− (w′ + w)
. (3)

We use the BKZ 2.0 simulator of [20] to determine the best BKZ 2.0 parameters,
specifically the “block size” β and the number of “rounds” n, needed to reach a
root Hermite factor δ, To get a concrete security estimate of the work required
to perform BKZ-2.0 with parameters β and n we use the conservative formula
determined by [36] from the experiments of [21]:
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Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (4)

Using these estimates we can determine the optimal w and w′ to attack a
parameter set and thereby estimate its security.

4.4. Sieving algorithms. For very large dimensions, the performance of enu-
meration algorithms [54,31,43] is slightly super-exponential and is known to be
suboptimal. The provable sieving algorithms of Pujol and Stehlé [55] solve SVP
in time 22.465p+o(p) and space 21.233p+o(p), and more recent SVP algorithms [1]
take time 2p+o(p). More importantly, under heuristic assumptions, sieving is
much faster. The most recent work on lattice sieving (see [7,45]) has pushed the
heuristic complexity down to 20.292p+o(p). A closer look at polynomial factors
indicates that the o(p) here is positive, and the analysis of [49] suggests that
these algorithms are not helpful for cryptographic sizes, but we nevertheless use
20.292p to estimate the speed of sieving attacks.

5 Parameters

Algorithm 1 determines all parameter sets (p, q, t, λ), where the pre-quantum
security level λ is at least ` according to the attack analysis of Section 4. For
example, we estimate pre-quantum security 2215 for our recommended param-
eters (p, q, t) = (739, 9829, 204). We expect post-quantum security levels to be
somewhat lower (e.g., [46] saves a factor 1.1 in the best known asymptotic SVP
exponents) but there is a comfortable security margin above our target 2128.

In the parameter generation algorithm the subroutine nextprime(i) returns
the first prime number >i. The subroutine viableqs(p, qb) returns all primes q
larger than p and smaller than qb for which it holds that xp−x−1 is irreducible
in GF (q). The subroutine mitmcosts uses the estimates from Equation (1) to
determine the bitsecurity level of the parameters against a straightforward meet-
in-the-middle attack. To find w,w′, β, n we choose w = λ3 (initially λ3 = 0)
and do a binary search for w′ such that the two phases of the hybrid attack
are of equal cost. For each K we determine the Hermite factor required with
Equation (3), use the BKZ-2.0 simulator to determine the optimal β and n
to acquire the Hermite factor and use Equations (4) and (2) to determine the
hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of t such that there are no
decryption failures according to Theorem 2.1. Experiments show that decreasing
t to t1 linearly decreases the security level by approximately t− t1.

The results of the algorithm for qb = 10000, [p1, p2] = [672, 1024] and ` = 112
can be found in Appendix B.

6 Polynomial multiplication

The main bottleneck operation in both encryption and decryption is polynomial
multiplication. It is well known that schoolbook multiplication is asymptotically
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Algorithm 1: Algorithm to determine parameter sets for security level
above `.
Data: Upper bound qb for q, range [p1, p2] for p and lower bound ` for the

security level
Result: Viable parameters p, q and t with security level λ.
begin

p← p1 − 1 (the prime we are currently investigating)
while p ≤ p2 do

p← nextprime(p)
Q← viableqs(p, qb)
for q ∈ Q do

t← min (b(q − 1)/48c , bp/3c)
λ1 ← mitmcosts(p, t)
λ2 ← 0.292p
if min (λ1, λ2) ≥ ` then

Find w, w′, β, n such that BKZ-2.0 costs are approximately
equal to meet-in-the-middle costs in the hybrid attack.
λ3 ← max (hybridbkzcost, hybridmitmcost)
return p, q, t,min (λ1, λ2, λ3)

superseded by Karatsuba’s method, Toom’s method, and FFTs. For large input
sizes, it is clear that the FFT is the best. However, for small to medium input
sizes, it is unclear which methods or combinations of methods are best.

We analyzed many different combinations of schoolbook multiplication, re-
fined Karatsuba, the arbitrary-degree variant of Karatsuba for degrees 3, 4, 5,
or 6, and Toom’s method for splitting into 3, 4, 5, or 6 pieces. We considered
sizes up to 1024n× 1024n (where n reflects number of bits, limbs or terms). We
analyzed the resulting ranges of double-precision floating-point numbers (53-bit
mantissa) for various input sizes, making sure to avoid overflow.

After comparing the results of this analysis to the parameter possibilities in
Appendix B, we decided to focus on 768n× 768n. This section explains how we
decompose 768n into 128n using Toom6, then decompose 128n into 4n using
five levels of refined Karatsuba, then use schoolbook multiplication for 4n× 4n.
All 6 pieces of the Toom6 are of the same size, each half of refined Karatsuba at
each level is of the same size, and everything is 4-way vectorizable; we exploit
this in Section 7.

6.1. Top level. At the top level we use Toom6 to decompose 768n into 6 pieces
of 128n. For instance, let one of the 768n polynomials be a(x) = a0 + a1x +
a2x

2 + · · ·+ a767x
767. It is then decomposed into

a(x, y) = A0(x) +A1(x)y +A2(x)y2 +A3(x)y3 +A4(x)y4 +A5(x)y5,
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where y = x128 and

A0(x) = a0 + a1 x+ a2 x2 + · · ·+ a127x
127;

A1(x) = a128 + a129x+ a130x
2 + · · ·+ a255x

127;

A2(x) = a256 + a257x+ a258x
2 + · · ·+ a383x

127;

A3(x) = a384 + a257x+ a258x
2 + · · ·+ a511x

127;

A4(x) = a512 + a257x+ a258x
2 + · · ·+ a639x

127;

A5(x) = a640 + a257x+ a258x
2 + · · ·+ a767x

127.

Let another polynomial be b(x) = b0 + b1x + b2x
2 + · · · + b767x

767. We can
decompose this in a similar way as a, such that the multiplication of a and b
becomes

ab = C0 + C1x
128 + C2x

256 + C3x
384 + C4x

512 + C5x
640

+ C6x
768 + C7x

896 + C8x
1024 + C9x

1152 + C10x
1280,

where

C0 = A0B0;

C1 = A0B1 +A1B0;

C2 = A0B2 +A1B1 +A2B0;

C3 = A0B3 +A1B2 +A2B1 +A3B0;

C4 = A0B4 +A1B3 +A2B2 +A3B1 +A4B0;

C5 = A0B5 +A1B4 +A2B3 +A3B2 +A4B1 +A5B0;

C6 = A1B5 +A2B4 +A3B3 +A4B2 +A5B1;

C7 = A2B5 +A3B4 +A4B3 +A5B2;

C8 = A3B5 +A4B4 +A5B3;

C9 = A4B5 +A5B4;

C10 = A5B5.

Note that we leave out x but Ai and Bi are polynomials in x.

There are 11 values Ci, therefore Toom6 requires 11 multiplications (see
below) in order to interpolate those Ci. We chose to evaluate y at 0, ±1, ±2, ±3,
±4, 5 and∞. One of the advantages of using + and − is that some intermediate
results can be reused to save some computations. For example, to compute s1
= a(x, 1) · b(x, 1) and s−1 = a(x,−1) · b(x,−1), we first compute t0 = A0(x) +
A2(x) + A4(x) and t1 = A1(x) + A3(x) + A5(x), then compute t0 + t1 and t0
− t1 to obtain s1 and s−1 respectively. The 11 multiplications of 128n × 128n
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that we need to compute are

0 : A0 · B0 ;

1 : (A0+ A1+ A2+ A3+ A4+ A5) · (B0+ B1+ B2+ B3+ B4+ B5);

−1 : (A0− A1+ A2− A3+ A4− A5) · (B0− B1+ B2− B3+ B4− B5);

2 : (A0+2A1+22A2+22A3+24A4+25A5) · (B0+2B1+22B2+22B3+24B4+25B5);

−2 : (A0−2A1+22A2−22A3+24A4−25A5) · (B0−2B1+22B2−22B3+24B4−25B5);

3 : (A0+3A1+33A2+33A3+34A4+35A5) · (B0+3B1+33B2+33B3+34B4+35B5);

−3 : (A0−3A1+33A2−33A3+34A4−35A5) · (B0−3B1+33B2−33B3+34B4−35B5);

4 : (A0+4A1+44A2+44A3+44A4+45A5) · (B0+4B1+44B2+44B3+44B4+45B5);

−4 : (A0−4A1+44A2−44A3+44A4−45A5) · (B0−4B1+44B2−44B3+44B4−45B5);

5 : (A0+5A1+55A2+55A3+55A4+55A5) · (B0+5B1+55B2+55B3+55B4+55B5);

∞ : A5 · B5 .

6.2. Middle level. The middle-level 128n × 128n of 11 multiplications inside
Toom6 are computed using 5-level refined Karatsuba. Recall the “refined Karat-
suba identity” from [8, Section 2]:

(F0 + tnF1)(G0 + tnG1) = (1− tn)(F0G0 − tnF1G1) + tn(F0 + F1)(G0 +G1).

Level 1. For the first level of Karatsuba, we split one 128n of f (and one
128n of g) into two 64n’s, namely, F0 and F1, with F = F0 + x64F1 (and into
two 64n’s, namely, G0 and G1, with G = G0 + x64G1) as

F0 = f0+f1x+f2x
2+ · · ·+f63x63; F1 = f64+f65x+f66x

2+ · · ·+f127x63;

G0 = g0+g1x+g2x
2+ · · ·+g63x63; G1 = g64+g65x+g66x

2+ · · ·+g127x63.

Then, we have

fg = (1− x64)(F0G0 − x64F1G1) + x64(F0 + F1)(G0 +G1).

Level 2. For the second level, we further split one 64n of F0 (and those of
F1) into two 32n’s, namely, F00 and F01, with F0 = F00 + x32F01 (and into F10

and F11 with F1 = F10 + x32F11) as

F00=f0 +f1 x+f2 x
2 + · · ·+f31x31; F01=f32+f33x+f34x

2 + · · ·+f63 x31;

F10=f64+f65x+f66x
2 + · · ·+f95x31; F11=f96+f97x+f98x

2 + · · ·+f127x31.

Let F2 = F0+F1, then F2 is further split into F20 and F21 with F2 = F20+x32f21
as

F20 = (f0 + f64) + (f1 + f65)x+ (f2 + f66)x2 + · · ·+ (f31 + f95 )x31;

F21 = (f32 + f96) + (f33 + f97)x+ (f34 + f98)x2 + · · ·+ (f63 + f127)x31.
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Similarly, we split G0, G1 and G2 = G0 +G1 to obtain G00, G01, G10, G11, G20

and G21. Then, we have

F0G0 = (1− x32)(F00G00 − x32F01G01) + x32(F00 + F01)(G00 +G01);

F1G1 = (1− x32)(F10G10 − x32F11G11) + x32(F10 + F11)(G10 +G11);

F2G2 = (1− x32)(F20G20 − x32F21G21) + x32(F20 + F21)(G20 +G21).

Level 3. For the third level, we further split one 32n into two 16n’s, for
instance, F00 is split into F000 and F001 with F00 = F000 + x16F001 as

F000=f0+f1x+f2x
2+ · · ·+f15x15; F001=f16+f17x+f18x

2+ · · ·+f31x15.

Similar splits also apply to F01, F10, F11, F20 and F21.
Let F02 = F00 + F01, then F02 is further split into F020 and F021 with F02 =

F020 + x16F021 as

F020 = (f0 + f32) + (f1 + f33)x+ (f2 + f34)x2 + · · ·+ (f15 + f47)x15;

F021 = (f16 + f48) + (f17 + f49)x+ (f18 + f50)x2 + · · ·+ (f31 + f63)x15.

Similar splits also apply to F12 = F10 + F11 and F22 = F20 + F21.
We do the same for Gij where 0 ≤ i, j ≤ 2. Then, we have

FijGij = (1− x16)(Fij0Gij0 − x16Fij1Gij1) + x16(Fij0 + Fij1)(Gij0 +Gij1);

where 0 ≤ i, j ≤ 2.
Level 4. For the fourth level, we further split one 16n into two 8n’s, for

instance, F000 is split into F0000 and F0001 with F000 = F0000 + x8F0001 as

F0000=f0+f1x+f2x
2+ · · ·+f7x7; F0001=f8+f9x+f10x

2+ · · ·+f15x7.

Similar splits also apply to Fijk and Gijk where 0 ≤ i, j, k ≤ 2. Then we have

FijkGijk=(1−x8)(Fijk0Gijk0−x8Fijk1Gijk1)+x8(Fijk0+Fijk1)(Gijk0+Gijk1);

where 0 ≤ i, j, k ≤ 2.
Level 5. Finally, for the fifth level, we further split one 8n into two 4n’s, for

instance, F0000 is split into F00000 and F00001 with F0000 = F00000 + x4F00001 as

F00000 = f0 + f1x+ f2x
2 + f3x

3; F00001 = f4 + f5x+ f6x
2 + f7x

3.

Similar splits also apply to Fijkl and Gijkl where 0 ≤ i, j, k, l ≤ 2. Then we have

FijklGijkl = (1− x8)(Fijkl0Gijkl0 − x8Fijkl1Gijkl1)

+ x8(Fijkl0 + Fijkl1)(Gijkl0 +Gijkl1);

where 0 ≤ i, j, k, l ≤ 2.
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6.3. Lowest level. The lowest-level multiplication of 4n×4n is computed using
schoolbook multiplication. For instance, F00000G00000 is computed as follows

h0 = f0g0; h4 = f1g3 + f2g2 + f3g1;

h1 = f0g1 + f1g0; h5 = f2g3 + f3g2;

h2 = f0g2 + f1g1 + f2g0; h6 = f3g3.

h3 = f0g3 + f1g2 + f2g1 + f3g0;

Since we use 5-level Karatsuba, we need to perform 35 4n × 4n multiplications
to do one 128× 128 computation.

7 Vectorization

Each Haswell core has two 256-bit floating-point vector multiplication units.
These are 4-way vectorized multiplications which are also integrated with ad-
ditions. This means that in one cycle, Haswell can compute 8 independent
multiply-accumulate instructions ab+ c for 64-bit double-precision inputs a, b, c.

Most of the computations in Section 6 are obviously suitable for vectorization.
We vectorize the computations of Toom6 for decomposing a and b in the top level
(before the 11 multiplications) by taking four consecutive polynomial coefficients
for each vector. For example, to evaluate at y = 1, we have to compute A0 +A1

as part of A0 +A1 +A2 +A3 +A4 +A5. We take a0, a1, a2, a3 as one vector and
a128, a129, a130, a131 as another vector, then add them together. We then move
to the next four coefficients of A0 and A1.

We also vectorize computations of refined Karatsuba for splitting inputs in
the middle level (before the schoolbook multiplication), similarly to the Toom6
decomposition. For example, to compute F20 = F0 + F1 = (f0 + f64) + (f1 +
f65)x+ (f2 + f66)x2 + · · ·+ (f31 + f95)x31, we take f0, f1, f2, f3 as inputs for one
vector and f64, f65, f66, f67 for another vector, then add them together.

The 4n × 4n schoolbook multiplications in the lowest level violate this vec-
tor structure. Each schoolbook multiplication uses 16 multiplications, includ-
ing 9 multiply-accumulate instructions, with extensive communication across
input lanes. Instead of trying to vectorize inside a schoolbook multiplication, we
transpose inputs and vectorize across independent schoolbook multiplications.
Inside a 128n × 128n multiplication there are many (specifically, 35 = 243) of
these independent multiplications. For example, we vectorize 16 multiplications
of F00000G00000, F00001G00001, F00010G00010 and F00011G00011 together.

We transpose the results of schoolbook multiplication back to the original
format. We vectorize the merging of results in refined Karatsuba and the in-
terpolation of Ci in Toom6 in the same way as splitting refined Karatsuba and
decomposing Toom6.

We benchmarked our software on an Intel Haswell CPU, being careful to
disable Turbo Boost. Each multiplication in (Z/9829)[x]/(x739 − x − 1) takes
just 51488 cycles.
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A Avoiding rings with worrisome structure

The October 2014 Campbell–Groves–Shepherd preprint “SOLILOQUY: a cau-
tionary tale” [16] sent shock waves through lattice-based cryptography. What the
preprint claimed, in a nutshell, was a polynomial-time quantum attack against
a lattice-based cryptosystem. This claim led to some disputes, but after various
followup papers it is now generally agreed that there is a polynomial-time quan-
tum attack (and a subexponential-time pre-quantum attack) against, e.g., the
Smart–Vercauteren system [63] from PKC 2010.

This appendix explains how the attack strategy exploits special features of
the usual choices of rings inside ideal-lattice-based cryptography, and how mod-
ifying the choices of rings blocks core elements of the attack strategy. The first
author had already publicly recommended these modifications in February 2014,
to defend against a different attack strategy whose performance is the topic of
ongoing research. See [9].

Switching from the Smart–Vercauteren system to NTRU (or to a typical
Ring-LWE-based system) also stops the attack of [16]. One might speculate that
this is an adequate defense against the attack. However, a recent paper by Al-
brecht, Bai, and Ducas [2] introduces another attack strategy that breaks some
“overstretched NTRU assumptions” and that is also blocked by our modifica-
tions.
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We emphasize that normal NTRU parameters are not affected by any of
the attacks discussed in this appendix. However, we are skeptical of the notion
that the most recent papers are the end of the attack story. We believe that it
is prudent to apply our modifications to NTRU, and to Ring-LWE-based cryp-
tosystems. We suggest the name “NTRU Prime” for the resulting cryptosystems;
the “NTRU” part of the name acknowledges that we are tweaking the classic
NTRU cryptosystem, and “Prime” reflects the fact that our modifications elim-
inate several different types of factorizations.

A.1. The Campbell–Groves–Shepherd attack. The preprint [16] actually
describes a cryptosystem named “SOLILOQUY” that the authors say they pri-
vately developed in 2007, and then attacks the system. However, as mentioned
briefly in [16], the key-recovery problem for this system is identical to the key-
recovery problem for the Smart–Vercauteren system.

In these systems, everyone shares a standard monic irreducible polynomial
P ∈ Z[x] with small coefficients. [63, Section 7] takes a power-of-2 cyclotomic
polynomial, such as the polynomial x1024 + 1; [16] allows any cyclotomic poly-
nomial. The receiver’s public key consists of an integer α and a prime number q
dividing P (α). Note that qR+(x−α)R is a prime ideal of the ring R = Z[x]/P ;
the receiver’s secret key is a small generator g ∈ R of this ideal. The encryption
and decryption procedures are not difficult but are not relevant here.

The first stage of the attack finds some generator of the ideal, expressed
as a product of powers of small ring elements. Biasse and Song questioned the
claimed performance of the algorithm for this stage (and these claims do not
seem to have been defended by the authors of [16]) but subsequently presented
a different polynomial-time quantum algorithm for this stage; see [13] and, for
yet another approach, [14]. Even without quantum computers, well-known tech-
niques complete this stage in subexponential time.

The second stage of the attack reduces the generator to a small generator
(either g or something else that is just as good for decryption, such as −g). This
is a closest-vector problem in what is called the “log-unit lattice”. One normally
expects CVPs to take exponential time, but for cyclotomic polynomials P one
can efficiently write down a very short basis for the log-unit lattice (or at worst a
small-index sublattice). This basis consists of logarithms of various “cyclotomic
units”, as explained very briefly in [16] and in much more detail in the followup
paper [24] by Cramer, Ducas, Peikert, and Regev. For example, for P = x1024+1,
the ring R contains (1−x3)/(1−x) = 1+x+x2, and also contains the reciprocal
(1−x)/(1−x3) = (1−x2049)/(1−x3) = 1 +x3 + · · ·+x2046; so (1−x3)/(1−x)
is a unit in R, a typical example of a cyclotomic unit.

A.2. Recommendations. We recommend taking a standard monic irreducible
polynomial P whose degree is a prime p, and whose “Galois group” is as large as
possible, isomorphic to the permutation group Sp of size p!. Most polynomials of
degree p have Galois group Sp, and we specifically suggest the small polynomial
P = xp − x− 1, which is irreducible and has Galois group Sp; see [59] and [52].
Furthermore, in the context of NTRU and Ring-LWE, we recommend taking a
prime modulus q that is “inert” in R, i.e., where P is irreducible in (Z/q)[x],
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i.e., where (Z/q)[x]/P is a field. This happens with probability approximately
1/p for a “random” q; see Appendix B for many examples of acceptable pairs
(p, q).

One way to define the Galois group is as the group of automorphisms of the
smallest field that contains all the complex roots of P . Consider, for example, the
field Q(ζ) where ζ = exp(2πi/2048). The notation Q(ζ) means the smallest field
containing both Q and ζ; explicitly, Q(ζ) is the set of complex numbers q0+q1ζ+
· · · + q1023ζ

1023 with q0, q1, . . . , q1023 ∈ Q. The complex roots of P = x1024 + 1
are ζ, ζ3, ζ5, . . . , ζ2047, all of which are in Q(ζ), so Q(ζ) is the smallest field that
contains all the complex roots of P . There are exactly 1024 automorphisms of
this field (invertible maps from the field to itself preserving 0, 1,+,−, ·). These
automorphisms are naturally labeled 1, 3, 5, . . . , 2047; the automorphism with
label i maps ζ to ζi, so it maps ζj to ζij . In other words, automorphism i
permutes the complex roots of P the same way that ith powering does; the
Galois group is thus isomorphic to the multiplicative group (Z/2048)∗.

NTRU traditionally takes P = xp − 1 with p prime and q a power of 2,
typically 2048. These choices violate our recommendations in several ways. First
of all, xp − 1 is not irreducible. One can tweak NTRU to work modulo the
cyclotomic polynomial Φp = (xp− 1)/(x− 1), but this polynomial does not have
prime degree. Furthermore, the Galois group of Φp has size only p − 1, vastly
smaller than (p− 1)!. Also, the modulus q is not prime.

Ring-LWE-based systems typically take P = xp + 1 where p is a power of
2 and q is a prime in 1 + 2pZ. These choices also violate our recommendations
in several ways. The polynomial P is irreducible, but it does not have prime
degree. Furthermore, its Galois group has size only p, vastly smaller than p!.
The modulus q is prime, but P is very far from irreducible modulo q: in fact, it
splits into linear factors modulo q.

A.3. How the recommendations stop attacks. The recent attack of [2]
relies on having a large proper subfield of the field Q[x]/P : a subfield of degree
much larger than 1 but smaller than the degree of P . The degree of the field
is a multiple of the degree of every subfield, so by taking a prime degree we
obviously rule out this attack: the only subfields of Q[x]/P are Q and the entire
field Q[x]/P .

Our recommendations might seem to be overkill from this perspective. [2]
recommends eliminating subfields (with credit to us), but it does not join our
recommendation to require very large Galois groups.

To understand why we also require very large Galois groups, consider the
suggestion from [2] to use the field Q(ζ + ζ−1) with ζ = exp(2πi/2p), where
both p and (p− 1)/2 are prime. This field has prime degree (p− 1)/2 and thus
stops the attack of [2]. It does not, however, stop the attack of [16]: one can
easily write down a very short basis consisting of logs of cyclotomic units in this
field, such as (ζ3 − ζ−3)/(ζ − ζ−1).

More generally, if a number field of prime degree p has a Galois group of
size p then the field is a subfield of a cyclotomic field. Even more generally, the
Kronecker–Weber theorem states that any “abelian” number field is a subfield
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of a cyclotomic field. This might not enable an attack along the lines of [16] if
the cyclotomic field has degree much larger than p, but we do not think that it
is wise to rely on this.

Of course, prohibiting minimum size p is not the same as requiring maximum
size p!; there is a large gap between p and p!. But having a Galois group of size,
say, 2p means that one can write down a degree-2p extension field with 2p auto-
morphisms, and one can then try to apply these automorphisms to build many
units, generalizing the construction of cyclotomic units. From the perspective of
algebraic number theory, the fact that, e.g., (ζ3 − ζ−3)/(ζ − ζ−1) is a unit is
not a numerical accident: it is the same as saying that the ideal I generated by
ζ − ζ−1 is also generated by ζ3 − ζ−3, i.e., that I is preserved by the ζ 7→ ζ3

automorphism. This in turn can be seen from the factorization of I into prime
ideals, together with the structure of Galois groups acting on prime ideals—a
rigid structural feature that is not specific to the cyclotomic case.

Having a much larger Galois group means that P will have at most a small
number of roots in any field of reasonable degree. This eliminates all known
methods of efficiently performing computations with more than a small number
of automorphisms.

It is of course still possible to compute a minimum-length basis for the log-
unit lattice, but all known methods are very slow. Cohen’s classic book “A course
in computational algebraic number theory” [23, page 217] describes the task of
computing “a system of fundamental units” (i.e., a basis for the log-unit lattice)
as one of the five “main computational tasks of algebraic number theory”. One
can compute some basis in subexponential time by techniques similar to the
number-field sieve for integer factorization, but for almost all P the resulting
basis elements will not be very short and will not be close to orthogonal, and
finding a very short basis takes exponential time by all known methods. To
summarize: despite intensive research, all known CVP attacks are very difficult.

Finally, we choose q as an inert prime so that there are no ring homomor-
phisms from (Z/q)[x]/P to any smaller nonzero ring. The attack strategies of
[27], [28], and [19] start by applying such homomorphisms; the attacks are re-
stricted in other ways, but we see no reason to provide homomorphisms to the
attacker in the first place. It is sometimes claimed that “modulus switching”
makes the choice of q irrelevant (for example, [47] says “we prove that the arith-
metic form of the modulus q is irrelevant to the computational hardness of LWE
and RLWE”), but an attacker switching from q to another modulus will notice-
ably increase noise, interfering with typical attack algorithms.

A.4. Worst-case-to-average-case reduction. We briefly consider an argu-
ment against our recommendations. The argument says that using cyclotomic
fields with split modulus (i.e., with P splitting into linear factors in (Z/q)[x])
is desirable for security because it allows any attack algorithm against a partic-
ular type of cryptosystem to be converted into an algorithm to solve a “hard”
cyclotomic-ideal-lattice problem in the worst case. The conversion has several
steps, first producing an algorithm to solve Decision-Ring-LWE, then producing
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an algorithm to solve Search-Ring-LWE, then producing an algorithm to solve
the “hard” cyclotomic-ideal-lattice problem.

We have several counterarguments. First, there is actually very little evidence
of serious study of the allegedly “hard” cyclotomic-ideal-lattice problem. It is
entirely possible that the problem is breakable while our recommendations are
secure. The problem is considerably more complicated, and less attractive to
cryptanalysts, than truly well-known problems such as SVP.

Second, attacks against SVP have improved dramatically in the last few
years, reducing the asymptotic security level of d-dimensional lattices from ap-
proximately 0.41d bits to approximately 0.29d bits. See Section 4.4. This does
not mean that there is any loss of security in, e.g., NTRU, but it calls into
question the notion that lattice problems have been thoroughly studied.

Third, the conversion seems to be very far from tight. Even if one assumes
that there are no better attacks against the “hard” cyclotomic-ideal-lattice prob-
lem, the conversion does not guarantee a reasonable cryptographic security level
for any reasonably efficient cryptosystem. We have not found any paper propos-
ing a specific lattice-based cryptosystem for which the conversion is meaningful.

Our work analyzing the tightness of this conversion is less detailed than an
independent analysis very recently posted [18, Section 6] by Chatterjee, Koblitz,
Menezes, and Sarkar. The independent work actually focuses on the simpler but
similar setting of LWE, rather than Ring-LWE; the conclusions are similar to
ours.
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B Parameters

Parameters
p q t λ key size

439 6833 142 112 5592
457 6037 125 118 5740

461
7607 153 118 5944
8779 153 116 6040

467 3911 81 116 5573

463
6481 135 121 5863
6841 142 120 5899
9371 154 116 6109

479
5689 118 126 5976
6089 126 126 6022

491
6287 130 131 6196
8627 163 128 6420
9277 163 127 6472

499
8243 166 132 6492
9029 166 131 6558

503
2879 59 117 5781
8663 167 133 6580

523
3331 69 127 6121
7151 148 142 6697
7159 149 142 6698

541
2297 47 116 6041
2437 50 118 6087

547 3001 62 129 6319

557
4759 99 147 6805
9323 185 153 7345

569 3929 81 144 6794

571
4201 87 147 6873
7177 149 159 7315

577 1861 38 115 6268

587
5233 109 159 7252
8263 172 166 7639

599
7001 145 169 7652
9551 198 170 7920

607 6317 131 170 7664

613
3319 69 149 7170
4363 90 160 7412
9157 190 176 8068

617 1511 31 112 6517

619
2297 47 132 6912
6907 143 176 7895
9397 195 178 8170

Parameters
p q t λ key size

619 9679 201 178 8196

631
2081 43 130 6956
2693 56 141 7191

643 6247 130 182 8108
647 3559 74 160 7633

653
2311 48 140 7297
4621 96 182 7950
8419 175 190 8515

659
2137 44 136 7290
6781 141 189 8388
7481 155 192 8481

673
1493 31 120 7097
9413 196 196 8884

677 3251 67 162 7899
683 5623 117 190 8509

691
1499 31 122 7290
5471 113 191 8581
6449 134 198 8745

719

2087 43 145 7929
2351 48 151 8053
5153 107 197 8867
9133 190 209 9460

727 5827 121 205 9094
739 9829 204 215 9802
743 7541 157 216 9571

751
3067 63 170 8699
3823 79 187 8938

757

1193 24 115 7737
3727 77 188 8981
6869 143 221 9649
7879 164 221 9799

761

1619 33 135 8113
4091 85 194 9131
4591 95 202 9258
7883 164 222 9851

769
1433 29 128 8063
6599 137 224 9758

773

877 18 100 7558
2099 43 153 8531
8317 173 225 10066
9811 204 225 10251

Parameters
p q t λ key size

787 4243 88 203 9485
797 1259 26 124 8208

809
1801 37 148 8749
6113 127 232 10176

811 8543 177 236 10593

823
4513 94 216 9992
8069 168 240 10682

827
7219 150 241 10601
9767 203 241 10961

829 1657 34 145 8866
853 9721 202 249 11300
857 5167 107 234 10572

863
1523 31 143 9125
4111 85 218 10361
8779 182 251 11306

881
3217 67 204 10265
7673 159 257 11370

883 8089 168 257 11463

907
7727 160 264 11715
8807 183 264 11886

937 1823 37 165 10150
941 2521 52 194 10634
947 3917 81 233 11303

953
6343 132 277 12038
8237 171 278 12397

967 8243 171 282 12580

971
1913 39 173 10586
4871 101 258 11895
9551 198 283 12839

977
5783 120 275 12211
7817 162 285 12635

991 9349 194 289 13072
997 5393 112 274 12360

1009
1237 25 141 10366
4219 87 251 12152
4259 88 254 12165

1013
3923 81 245 12093
7177 149 295 12976

1019 6691 139 297 12950

1021
5393 112 281 12658
8819 183 298 13382

Table B.1. Streamlined NTRU Prime parameter sets with 400 < p < 1024 and
q < 10000. The estimated pre-quantum security level is 2λ. Parameter sets with λ < 112
are omitted. The listed key size is dp log2 qe, not pdlog2 qe(see Subsection 3.2).
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