
ABSTRACT
Imaging vector fields has applications in science, art, image pro-

cessing and special effects. An effective new approach is to use
linear and curvilinear filtering techniques to locally blur textures
along a vector field. This approach builds on several previous tex-
ture generation and filtering techniques[8, 9, 11, 14, 15, 17, 23]. It
is, however, unique because it is local, one-dimensional and inde-
pendent of any predefined geometry or texture. The technique is
general and capable of imaging arbitrary two- and three-dimen-
sional vector fields. The local one-dimensional nature of the algo-
rithm lends itself to highly parallel and efficient implementations.
Furthermore, the curvilinear filter is capable of rendering detail on
very intricate vector fields. Combining this technique with other
rendering and image processing techniques — like periodic motion
filtering — results in richly informative and striking images. The
technique can also produce novel special effects.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism; I.4.3 [Image Process-
ing]: Enhancement.

Keywords: convolution, filtering, rendering, visualization, tex-
ture synthesis, flow fields, special effects, periodic motion filtering.

1. INTRODUCTION
Upon first inspection, imaging vector fields appears to have lim-

ited application — confined primarily to scientific visualization.
However, much of the form and shape in our environment is a
function of not only image intensity and color, but also of direc-
tional information such as edges. Painters, sculptors, photogra-
phers, image processors[16] and computer graphics researchers[9]
have recognized the importance of direction in the process of
image creation and form. Hence, algorithms that can image such
directional information have wide application across both scien-
tific and artistic domains.

Such algorithms should possess a number of desirable and
sometimes conflicting properties including: accuracy, locality of
calculation, simplicity, controllability and generality. Line Integral
Convolution (LIC) is a new technique that possesses many of these
properties. Its generality allows for the introduction of a com-

pletely new family of periodic motion filters which have wide
application (see section 4.1). It represents a confluence of signal
and image processing and a variety of previous work done in com-
puter graphics and scientific visualization.

2. BACKGROUND
There are currently few techniques which image vector fields in

a general manner. These techniques can be quite effective for visu-
alizing vector data. However, they break down when operating on
very dense fields and do not generalize to other applications. In
particular, large vector fields (512x512 or greater) strain existing
algorithms.

Most vector visualization algorithms use spatial resolution to
represent the vector field. These include sampling the field, such as
with stream lines[12] or particle traces, and using icons[19] at
every vector field coordinate. Stream lines and particle tracing
techniques depend critically on the placement of the “streamers” or
the particle sources. Depending on their placement, eddies or cur-
rents in the data field can be missed. Icons, on the other hand, do
not miss data, but use up a considerable amount of spatial resolu-
tion limiting their usefulness to small vector fields.

Another general approach is to generate textures via a vector
field. Van Wijk’ s spot noise algorithm[23] uses a vector field to
control the generation of bandlimited noise. The time complexity
of the two types of implementation techniques presented by Van
Wijk are relatively high. Furthermore the technique, by definition,
depends heavily on the form of the texture (spot noise) itself. Spe-
cifically, it does not easily generalize to other forms of textures that
might be better suited to a particular class of vector data (such as
fluid flow versus electromagnetic).

Reaction diffusion techniques[20, 24] also provide an avenue
for visualizing vector fields since the controlling differential equa-
tions are inherently vector in nature. It is possible to map vector
data onto these differential equations to come up with a vector
visualization technique. Here too however, the time complexity of
these algorithms limit their general usefulness.

Three-dimensional vector fields can be visualized by three-
dimensional texture generation techniques such as texels and
hypertextures described in [11, 15]. Both techniques take a texture
on a geometrically defined surface and project the texture out some
distance from the surface. By definition these techniques are bound
to the surface and do not compute an image for the entire field as is
done by Van Wijk[23]. This is limiting in that it requires a priori
knowledge to place the surface. Like particle streams and vector
streamers these visualization techniques are critically dependent
on the placement of the sampling surface.

The technique presented by Haeberli[9] for algorithmicly gener-
ating “paintings” via vector-like brush strokes can also be thought
of as a vector visualization technique. Crawfis and Max[5]

Imaging Vector Fields Using Line Integral Convolution

Brian Cabral

Leith (Casey) Leedom*

Lawrence Livermore National Laboratory

* Authors’ current e-mail addresses are:cabral@llnl.gov and
casey@gauss.llnl.gov.

describe a three-dimensional variation on this in which blurred cyl-
inders represent three-dimensional brush strokes whose directions
and colors are controlled by a three-dimensional vector field. Both
techniques represent a conceptual extension of traditional icon
placement, where the icons are more sophisticated shapes. How-
ever, these techniques break down as the density of the field
increases since they require spatial resolution to work.

What is needed is a technique that can image dense vector fields,
is independent of both predefined sampling placement constraints
and texture generation techniques and can work in two and three
dimensions. Such a technique would be very general and have
wide application.

3. DDA CONVOLUTION
One approach is a generalization of traditional DDA line draw-

ing techniques[1] and the spatial convolution algorithms described
by Van Wijk[23] and Perlin[14]. Each vector in a field is used to
define a long, narrow, DDA generated filter kernel tangential to the
vector and going in the positive and negative vector direction some
fixed distance,L. A texture is then mapped one-to-one onto the
vector field. The input texture pixels under the filter kernel are
summed, normalized by the length of the filter kernel,2L, and
placed in an output pixel image for the vector position. Figure 1,
illustrates this operation for a single vector in a field.

This effectively filters the underlying texture as a function of the
vector field. The images in figure 2 are rendered using the DDA
convolution algorithm. On the left is a simple circular vector field;
to its right is the result of a computational fluid dynamics code. The
input texture image in these examples is white noise. Although the
description above implies a box filter, any arbitrary filter shape can
be used for the filter convolution kernel. It is important to note that
this algorithm is very sensitive to symmetry of the DDA algorithm
and filter. If the algorithm weights the forward direction more than
the backward direction, the circular field in figure 2 appears to spi-
ral inward implying a vortical behavior that is not present in the
vector field.

3.1 LOCAL FIELD BEHAVIOR
The DDA approach, while efficient, is inherently inaccurate. It

assumes that the local vector field can be approximated by a

straight line. For points in vector fields where the local radius of
curvature is large, this assumption is valid. However, where there
are complex structures smaller than the length of the DDA line, the
local radius of curvature is small and is not well approximated by a
straight line. In a sense, DDA convolution renders the vector field
unevenly, treating linear portions of the vector field more accu-
rately than small scale vortices. While this graceful degradation
may be fine or even desirable for special effects applications, it is
problematic for visualizing vector fields such as the ones in figure
2, since detail in the small scale structures is lost.

Van Wijk’s spot noise algorithm[23] also suffers from this prob-
lem since the spots are elliptically stretched along a line in the
direction of the local field. If the ellipse major axis exceeds the
local length scale of the vector field, the spot noise will inaccu-
rately represent the vector field. An accurate measure of local field
behavior would require a global analysis of the field. Such tech-
niques currently do not exist for arbitrary vector fields, would most
likely be expensive to calculate[13] and are an area of active
research[7].

4. LINE INTEGRAL CONVOLUTION
The local behavior of the vector field can be approximated by

computing a local stream line that starts at the center of pixel (x, y)
and moves out in the positive and negative directions.1 The for-
ward coordinate advection is given by equation (1).

1. Vector field lattice and image coordinates are usually specified in a left-
handed coordinate system while vector components are usually specified in
a right-handed coordinate system. In this case, they-component of the lat-
tice coordinate in equation (1) must be reflected about the vertical center of
the lattice to operate in a consistent coordinate system. This reflection has
been omitted to preserve simplicity of presentation.

P0 x 0.5 y 0.5+,+()=

Pi Pi 1−

V Pi 1−()

V Pi 1−()
∆si 1−+=

V P() the vector from the input vector=
field at lattice point Px Py,()

(1)

si∆ min stop s, bottomsleft, sright,()=

se

∞�if� V�| |�e�����������������

0�if�
Pc Pc−

Vc
0���<

Pc Pc−

Vc
�otherwise









= for e c,()

top y,()
bottom y,()

left x,()
right x,() 

 
 
 
 

∈ (2)

Figure 2: Circular and turbulent fluid dynamics vector fields
imaged using DDA convolution over white noise.

Figure 1: The mapping of a vector onto a DDA line and input
pixel field generating a single output pixel.

Output image

Input texture

DDA line

Vector field

Only the directional component of the vector field is used in this
advection. The magnitude of the vector field can be used later in
post processing steps as explained in section 4.3.1.∆si is the posi-
tive parametric distance along a line parallel to the vector field
from Pi to the nearest cell edge.

As with the DDA algorithm, it is important to maintain symme-
try about a cell. Hence, the local stream line is also advected back-
wards by the negative of the vector field as shown in equation (3).

Primed variables represent the negative direction counterparts to
the positive direction variables and are not repeated in subsequent
definitions. As above∆s’i, is always positive.

The calculation of∆si in the stream line advection is sensitive to
round off errors.∆si must produce advected coordinates that lie
within thei+1th cell, taking the stream line segment out of the cur-
rent cell. In the implementation of the algorithm a small round off
term is added to each∆si to insure that entry into the adjacent cell
occurs. This local stream line calculation is illustrated in figure 3.
Each cell is assumed to be a unit square. All spatial quantities (e.g.,
∆si) are relative to this measurement. However, the cells need not
be square or even rectangular (see section 6) for this approxima-
tion to work. So, without loss of generality, descriptions are given
relative to a cubic lattice with unit spacing.

Continuous sections of the local stream line — i.e. the straight
line segments in figure 3 — can be thought of as parameterized
space curves ins and the input texture pixel mapped to a cell can
be treated as a continuous scalar function of x and y.2 It is then
possible to integrate over this scalar field along each parameterized
space curve. Such integrals can be summed in a piecewiseC1 fash-
ion and are known as line integrals of the first kind (LIFK)[2]. The
convolution concept used in the DDA algorithm can now be com-

2. Bilinear, cubic or Bezier splines are viable alternatives to straight line
segments. However, these higher order curves are more expensive to com-
pute.

P' i P' i 1−

V P' i 1−()

V P' i 1−()
∆s' i 1−−=

P' 0 P0=
(3)

bined with LIFK to form a Line Integral Convolution (LIC). This
results in a variation of the DDA approach that locally follows the
vector field and captures small radius of curvature features. For
each continuous segment,i, an exact integral of a convolution ker-
nel k(w) is computed and used as a weight in the LIC as shown in
equation (4).

The entire LIC for output pixelF’(x, y) is given by equation (5).

The numerator of equation (5) represents the line integral of the fil-
ter kernel times the input pixel field,F. The denominator is the line
integral of the convolution kernel and is used to normalize the out-
put pixel weight (see section 4.2).

The length of the local stream line,2L, is given in unit pixels.
Depending on the input pixel field,F, if L is too large, all the
resulting LICs will return values very close together for all coordi-
nates (x, y). On the other hand, ifL is too small then an insufficient
amount of filtering occurs. Since the value ofL dramatically
affects the performance of the algorithm, the smallest effective
value is desired. For most of the figures, a value of 10 was used.

Singularities in the vector field occur when vectors in two adja-
cent local stream line cells geometrically “point” at a shared cell
edge. This results in ∆si values equal to zero leavingl in equation
(6) undefined. This situation can easily be detected and the advec-
tion algorithm terminated. If the vector field goes to zero at any
point, the LIC algorithm is terminated as in the case of a field sin-
gularity. Both of these cases generate truncated stream lines. If a
zero field vector lies in the starting cell of the LIC, the input pixel
value for that cell, a constant or any other arbitrary value can be
returned as the value of the LIC depending on the visual effect
desired for null vectors.

 Using adjacent stream line vectors to detect singularities can
however result in false singularities. False singularities occur when
the vector field is nearly parallel to an edge, but causes the LIC to
cross over that edge. Similarly, the cell just entered also has a near
parallel vector which points to this same shared edge. This artifact
can be remedied by adjusting the parallel vector/edge test found in
equation (2), to test the angle formed between the vector and the
edge against some small angletheta, instead of zero. Any vector
which forms an angle less thantheta with some edge is deemed to
be “parallel” to that edge. Using a value of 3° for theta removes
these artifacts.

The images in figure 4 were rendered using LIC and correspond
to the same two vector fields rendered in figure 2. Note the
increased amount of detail present in these images versus their
DDA counterparts. In particular the image of the fluid dynamics
vector field in figure 4 shows detail incorrectly rendered or absent
in figure 2.

hi k w() dw

si

si ∆si+

∫=

where
s0 0=
si si 1− ∆si 1−+=

(4)

F' x y,()

F Pi() hi F P' i() h' i
i 0=

l '

∑+
i 0=

l

∑

hi h' i
i 0=

l '

∑+
i 0=

l

∑
=

where
F P() is�the�input�pixel�corresponding�to

the�vector�at�position Px Py,()
l i �such�that�si L si 1+<≤=

(5)

(6)Figure 3: A two-dimensional vector field showing the local
stream line starting in cell (x, y). The vector field is the upper
left corner of the fluid dynamics field in figures 2 and 4.

(x,y)

The images in figure 5 show the effect of varyingL. The input
texture is a photograph of flowers. The input vector field was cre-
ated by taking the gradient of a bandlimited noise image and rotat-
ing each of the gradient vectors by 90°, producing vectors which
follow the contours of the soft hills and valleys of the bandlimited
noise. With L equal to 0, the input image is passed through
unchanged. As the value ofL increases, the input image is blurred
to a greater extent, giving an impressionistic result. Here, a biased
ramp filter[10] is used to roughly simulate a brush stroke.

Figures 2, 4, 8, 9 and 11 were generated using white noise input
images. Aliasing can be a serious problem when using LIC with a
high frequency source image such as white noise. The aliasing is
caused by the one-dimensional point sampling of the infinitely thin
LIC filter. This aliasing can be removed by either creating a thick
LIC filter with a low-pass filter cross section or by low-pass filter-
ing the input image. This second alternative is preferable since it
comes at no additional cost to the LIC algorithm. The images in
figure 6 show the effect of running LIC over 256x256 white noise
which has been low-pass filtered using a fourth order Butterworth
filter with cutoff frequencies of 128, 84, 64, and 32.

It is worth noting that Van Wijk’ s spot noise algorithm[23] can
be adapted to use the local stream line approximation to more
accurately represent the behavior of a vector field. Instead of

straight line elliptical stretching, each spot could be warped so that
the major axis follows the local stream line. Furthermore, the
minor axis could either be perpendicular to the warped major axis
or itself could be warped along transverse field lines. However, an
algorithm to perform this task for an arbitrary local stream line
would be inherently more expensive and complex than the LIC
algorithm.

Sims[18] describes an alternative technique which produces
results similar to LIC. This alternative approach warps or advects
texture coordinates as a function of a vector field. The similarity
between the two techniques is predictable even though the tech-
niques are quite different. The dilation and contraction of the tex-
ture coordinate system warping has the visual effect of blurring
and sharpening the warped image. This is due to the resampling
and reconstruction process necessary when warping from one
coordinate system to another. Thus, for regions where the source
image is stretched along the vector field an apparent blurring will
occur similar to those seen with LIC. However, the techniques are
completely different in two fundamental ways. First, LIC is a local
operator, meaning no information outside of a fixed area of interest
is needed. Warping even when done locally requires maintaining
global consistency to avoid tearing holes in the warped image.
This increases the complexity of the warping operation when com-
pared to LIC. Second, LIC is a spatially varying filtering operation
and does not warp or transform any texture coordinates.

4.1 PERIODIC MOTION FILTERS
The LIC algorithm visualizes local vector field tangents, but not

their direction. Freeman, et al[8] describe a technique which simu-
lates motion by use of special convolutions. A similar technique is
used by Van Gelder and Wilhelms[22] to show vector field flow.
This technique can be extended and used to represent the local vec-
tor field direction via animation of successive LIC imaged vector
fields using varying phase shifted periodic filter kernels.

The success of this technique depends on the shape of the filter.
In the previous examples (figures 2 and 4), a constant or box filter
is used. If the filter is periodic like the filters used in [8], by chang-
ing the phase of such filters as a function of time, apparent motion

Figure 4: Circular and turbulent fluid dynamics vector fields
imaged using LIC over white noise.

Figure 5: Photograph of flowers processed using LIC with L
equal to 0, 5, 10 and 20 (left to right, top to bottom).

Figure 6: The upper left hand quarter of the circular vector
field is convolved using LIC over Butterworth low-pass filtered
white noise with cutoff frequencies of 128, 86, 64, and 32 (left
to right, top to bottom).

in the direction of the vector field is created. However, the filters
used in [8] were, by design, high-pass Laplacian edge enhancing
filters. Using this filter over a bandlimited noise texture produces
very incoherent images since the high frequency components of
the noise are accentuated. Instead, it is possible, and desirable, to
create periodic low-pass filters to blur the underlying texture in the
direction of the vector field. A Hanning filter, 1/2(1 + cos(w+β)),
has this property. It has low band-pass filter characteristics, it is
periodic by definition and has a simple analytic form. This func-
tion will be referred to as theripple filter function.

Since the LIC algorithm is by definition a local operation, any
filter used must be windowed. That is, it must be made local even
if it has infinite extent. In the previous section we used a constant
filter implicitly windowed by a box of height one. Using this same
box window on a phase shifted Hanning filter we get a filter with
abrupt cutoffs, as illustrated in the top row of figure 7.

This abrupt cutoff is noticeable as spatio-temporal artifacts in
animations that vary the phase as a function of time. One solution
to this problem is to use a Gaussian window as suggested by
Gabor[4].3 By multiplying, or windowing, the Hanning function
by a Gaussian, these cutoffs are smoothly attenuated to zero. How-
ever, a Gaussian windowed Hanning function does not have a sim-
ple closed form integral. An alternative is to find a windowing
function with windowing properties similar to a Gaussian and
which has a simple closed form integral. Interestingly, the Hanning
function itself meets these two criteria. In the bottom row of figure
7, the five phase shifted Hanning filter functions in the top row are
multiplied by the Hanning window function in the middle row. The
general form of this function is shown in equation (7). In this equa-

tion c andd represent the dilation constants of the Hanning win-
dow and ripple functions respectively. β is the ripple function
phase shift given in radians. The integral ofk(w) from a to b used
in equation (4) is shown in equation (8).

As mentioned above, both the Hanning window and the Han-
ning ripple filter function can be independently dilated by adjust-
ing c and d to have specific local support and periodicity. The
window function has a fixed period of 2π.

Choosing the periodicity of the ripple function represents mak-
ing a design trade-off between maintaining a nearly constant fre-
quency response as a function of phase shift and the quality of the

3. D. Gabor in 1946 created a localized form of the Fourier transform
known as the Gabor transform. This transform is the Fourier transform of
an input signal multiplied by a Gaussian window translated along the sig-
nal as a function of time. The net result is a signal which is spatially and
frequency localized. Wavelet theory is based on a generalization of this
type of spatial and frequency localization.

k w()
1 cw()cos+

2

1 dw β+()cos+
2

×=

�=
1
4

1 cw() dw β+() �+ cw() dw β+()coscoscos+cos+()

(7)

k w() dw

a

b

∫

1
4

b a
bc() ac()sin−sin

c
+−

�
bd β+() ad β+()sin−sin

d
+

�
b c d−() β−() a c d−() β−()sin−sin

2 c d−()
+

�
b c d+() β+() a c d+() β+()sin−sin

2 c d+()
+ 

 
 
 
 
 
 
 
 
 

=

(8)

apparent motion[3]. A low frequency ripple function results in a
windowed filter whose frequency response noticeably changes as a
function of phase. This appears as a periodic blurring and sharpen-
ing of the image as the phase changes. Higher frequency ripple
functions produce windowed filters with a nearly constant fre-
quency response since the general shape of the filter doesn’t radi-
cally change. However, the feature size picked up by the ripple
filter is smaller and the result is less apparent motion. If the ripple
frequency exceeds the Nyquist limit of the pixel spacing the appar-
ent motion disappears. Experimentation shows that a ripple func-
tion frequency between 2 and 4 cycles per window period is
reasonable. One can always achieve both good frequency response
and good feature motion by increasing the spatial resolution. This
comes, of course, at a cost of increased computation[16].

4.2 NORMALIZATION
A normalization to the convolution integral is performed in

equation (5) to insure that the apparent brightness and contrast of
the resultant image is well behaved as a function of kernel shape,
phase and length. The numerator in equation (5) is divided by the
integral of the convolution kernel. This insures that the normalized
area under the convolution kernel is always unity resulting in a
constant overall brightness for the image independent of the filter
shape and LIC length.

Because the actual length of the LIC may vary from pixel to
pixel, the denominator can not be precomputed. However, an inter-
esting effect is observed if a fixed normalization is used. Truncated
stream lines are attenuated which highlights singularities. The
images in figure 8 a show another section of the fluid dynamics
vector field imaged with variable and constant kernel normaliza-
tion. The implementation of the LIC algorithm uses precomputed
sum tables for the integral to avoid costly arithmetic in the inner-
most loop.

A second normalization may be done to insure the output image
retains the input image’s contrast properties. The LIC algorithm
reduces the overall image contrast as a function ofL. In fact, in the
case of the box filter, asL goes to infinity the entire output image
goes to the average of the input image. This can be ameliorated by
amplifying the input or contrast stretching the output image as a
function ofL. Clearly asL goes to infinity the amplification or con-

Figure 7: Phase shifted Hanning ripple functions(top), a Han-
ning windowing function(middle), and Hanning ripple func-
tions multiplied by the Hanning window function(bottom).

trast stretching must go to infinity as well. The images in all the
figures are contrast stretched.

4.3 IMPLEMENTATION AND APPLICATION
The LIC algorithm is designed as a function which maps an

input vector field and texture to a filtered version of the input tex-
ture. The dimension of the output texture is that of the vector field.
If the input texture is smaller than the vector field the implementa-
tion of the algorithm wraps the texture using a toroidal topology.
That is, the right and left edges wrap as do the top and bottom
edges. If the texture is too large it is cropped to the vector field
dimensions. Careful attention must be paid to the size of the input
texture relative to that of the vector field. If too small a texture is
used, the periodicity induced by the texture tiling will be visible.
For scientific applications this is unacceptable. One must insure

that the input texture is large enough so that the periodicity
induced by the coordinate wrapping is not apparent.

The algorithm can be used as a data operator in conjunction with
other operators much like those of Sims[17] and Perlin[14]. Spe-
cifically, both the texture and the vector field can be preprocessed
and combined with post processing on the output image. The LIC
implementation is a module in a data flow system like that found in
a number of public domain and commercial products. This imple-
mentation allows for rapid exploration of various combinations of
operators.

4.3.1 POST PROCESSING
The output of the LIC algorithm can be operated on in a variety

of ways. In this section several standard techniques are used in
combination with LIC to produce novel results.

An interesting example of constant kernel normalization is
shown in figure 9. A simple basket weave pattern is generated by
alternating vector directions in a checkerboard fashion. Each
checker is surrounded by null vectors. This vector field is then
used to convolve white noise. The LIC is truncated as it nears the
edges of the checkers which results in a gradual attenuation. When
that output is gradient shaded, the basket weave becomes very
realistic. While other techniques could be used to generate such a
texture, the simplicity of the source data illustrates the versatility
of LIC.

A surface wind velocity field is imaged in figure 10 using LIC to
blur 1/f noise. The resulting image is composed over an image of
North America to present scale and location. The LIC algorithm is
slightly modified to image vector magnitude by varying the length
of the line integral, 2L, as a function of the vector field magnitude.
In figure 10 this effect is seen as clumpiness in 1/f cloud-like struc-
tures where the wind velocity field is small.

Figure 8: White noise convolved with fluid dynamics vector
field using variable normalization (top) versus fixed normaliza-
tion (bottom).

Figure 9: White noise convolved with checkerboard vector
field using fixed normalization (left), and then gradient shaded
(right) to give the appearance of a rough woven surface tex-
ture.

Figure 10: A wind velocity visualization is created by composit-
ing an image of North America under an image of the veloc-
ity field rendered using variable length LIC over 1/f noise.

Figure 11: The fixed normalization fluid dynamics field imaged
in figure 8 is multiplied by a color image of the magnitude of
the vector field.

Another method to add vector magnitude information is seen in
figure 11. The [fixed normalization] fluid dynamics field of figure 8
is multiplied by a color image of the vector magnitude. The advan-
tage of this approach over variable length LIC is that the fine
grained detail generated by fixed length LIC is retained even in
low magnitude areas.

The LIC algorithm can be used to process an image using a vec-
tor field generated from the image itself. In figure 12, a vector field
is generated from the input image by low-pass filtering the image,
taking the gradient of the resulting image and rotating the vectors
by 90°.

The LIC algorithm can also be used to post process images to
generate motion blur. A rendering algorithm or paint system can
easily specify a pixel by pixel velocity field for objects. By using a
biased triangle filter[10] and variable length LIC the input image
can be motion blurred in the direction of apparent motion. This has
precisely the desired results for motion blurring as seen in figure
13.

4.4 THREE-DIMENSIONAL LIC
The LIC algorithm easily generalizes to higher dimensions.

Equations (1), (3) and (5) trivially extend to three dimensions. In
the three-dimensional case, cell edges are replaced with cell faces.
Both the input vector field and input texture must be three-dimen-
sional. The output of the three-dimensional LIC algorithm is a
three-dimensional image or scalar field. This field is rendered
using volume rendering techniques such as those found in [21] and
[6].

Figure 14 is a three-dimensional rendering of an electrostatic
field with two point charges placed a fixed distance apart from one
another. In this volumetric rendering, the magnitude of the vector
field is used to control the opacity transfer functions. Great effi-
ciency gains can be achieved if the LIC algorithm exploits this by
avoiding rendering for vector field cells whose magnitude is out-
side of the volume renderer’s min/max threshold window.

5. PERFORMANCE
There is a distinct performance and quality trade-off between

the DDA convolution algorithm and LIC. LIC is roughly an order
of magnitude slower than the DDA method. Both algorithms were
timed using cells processed per second (CPS) as the figure of
merit. The tests were run on an unloaded IBM 550 RISC 6000. The
DDA algorithm averages about 30,000 CPS while LIC averages
about 3,000 CPS.

The three-dimensional algorithm only marginally degrades in
performance with the increase in dimensionality, processing some
1,200 CPS. Since the algorithm remains one-dimensional in
nature, the cost per cell only increases by a factor of three as a
function of dimension. Using the thresholding described above, the
performance of the three-dimensional LIC algorithm has exceeded
30,000 CPS.

6. FUTURE WORK
A number of research directions relating to LIC remain out-

standing.
Currently no methods exist for determining the accuracy of a

vector field representation, such as those created by LIC or any
other method. These accuracy metrics would necessarily be related

Figure 12: A photograph (top) of the Flavian Amphitheater is
used to create a vector field. The field is then used to image a
“painted” version of the same photograph (bottom).

Figure 13: The original photo on the left shows no motion blur-
ring The photo on the right uses variable length LIC to motion
blur Boris Yeltsin’s waving arm, simulating a slower shutter

Figure 14: A three-dimensional 5123 electrostatic field is
imaged by volumetrically ray tracing a three-dimensional sca-
lar field produced using LIC over white noise.

to the differential topology of the entire vector field. As mentioned
above, much work in theoretical and applied mathematics has been
done in this area. This work needs to be studied and applied to effi-
cient vector field imaging algorithms.

LIC is conceptually independent of the advection algorithm
used to define the parametric support used by the convolution
operation. The method described here might be best characterized
as a variable step Euler’s method. Other techniques such as a
fourth order Runge-Kutta could produce differing or improved
results. A thorough investigation into this issue is beyond the
scope of this paper. It does, however, represent an area deserving
special attention.

Visualizing the orthogonal complement of a two-dimensional
vector field is accomplished by rotating the individual vectors 90°.
However, in three-dimensional vector fields the orthogonal com-
plement of a vector is a plane. This suggests that a generalization
of the one-dimensional LIC filter would be a two-dimensional sur-
face filter. This filter would have as its geometric support a differ-
ential surface whose normals would be defined by the vector field,
thus creating a Surface Integral Convolution (SIC). As with the
LIC, an arbitrary two-dimensional filter could then be used to filter
the three-dimensional input image.

Another direction for generalization is to develop versions of the
algorithm which operate directly on curvilinear and arbitrarily
grided vector fields without resampling the input data. The LIC
algorithm could easily be modified to handle arbitrary line inter-
sections and topologies of both type of grids. As with the rectilin-
ear LIC, it would have an analogous three-dimensional
generalization. Two additional problems remain however: generat-
ing curvilinear and arbitrarily girded textures and output resam-
pling.

One possible image processing application of LIC is the deblur-
ring of motion blurred images. Images acquired with a moving
CCD camera often exhibit such blurring. If the CCD frequency
response curves and the camera motion are known, one-dimen-
sional deconvolution techniques could be used in conjunction with
LIC to deblur the images.

The local nature of the LIC algorithm suggests a parallel imple-
mentation. Such an implementation could, in principle, compute
all pixels simultaneously. This would allow for interactive genera-
tion of periodic motion animations and special effects.

7. SUMMARY
Line integral convolution represents a new and general method

for imaging two- and three-dimensional vector fields. The algo-
rithm filters an input image along local stream lines defined by an
input vector field and generates an output image. The one-dimen-
sional filter shape is independent of either input and can be arbi-
trary. To indicate directional flow of the vector field, a whole
family of continuous motion filters has been introduced. These fil-
ters give apparent motion in the direction of the vector field. The
technique can also be used to create special effects. Additionally,
the local nature of the algorithm lends itself to efficient and simple
implementations.

8. ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory
under contract W-7405-ENG-48. The SIGGRAPH ‘93 reviewers
provided many helpful comments and suggestions. Thanks to Nel-
son Max who suggested using higher order functions within a cell
and who provided critical assessment all along the way. Roger
Crawfis deserves special thanks for various conversations over the
past couple of years on the topic of vector visualization. Chuck
Grant provided helpful suggestions clarifying the language used to
discuss periodic motion filters. John Bell and Jeff Greenough pro-
vided the turbulent computational fluid dynamics data used in fig-

ures 2, 4, 8 and 11 and for using the algorithm in their work. Dean
Williams and Jerry Potter provided the North America wind veloc-
ity data. Lastly, thanks to John Zych who helped with the rendering
of the North America image.

REFERENCES
1. Bresenham, J. Algorithm for Computer Control of a Digital

Plotter. InIBM Systems Journal 4, 1 (1965), 25-30.

2. Bronstein, I. and Semendyayev, K. Handbook of Mathemat-
ics. Van Norstrand Reinholt (1985), 291-293.

3. Chang, S.Fundamentals Handbook of Electrical Engineering
and Computer Engineering. John Wiley & Sons, Inc. (1982),
264-266.

4. Chui, K. An Introduction to Wavelets. Academic Press, Inc.
(1992), 49-60.

5. Crawfis, R. and Max, M. Direct Volume Visualization of
Three-Dimensional Vector Fields.Proceedings of the Work-
shop on Volume Visualization, Kaufman and Lorensen Eds
(1992).

6. Drebin, R., Carpenter, L. and Hanaran, P. Volume Rendering.
Computer Graphics 22, 4 (August 1988), 65-74.

7. Dumortier, F., Roussarie, R., Sotomayor, J. and Zoladek, H.,
Study of Field Bifurcations.Lecture Notes in Mathematics,
Springer-Verlag (1991).

8. Freeman, W., Adelson, E. and Heeger, D. Motion without
Movement.Computer Graphics 25, 4 (July 1991), 27-30.

9. Haeberli, P. Paint By Numbers: Abstract Image Representa-
tion. Computer Graphics 24, 4 (August 1990), 207-214.

10. Heckbert, P. Filtering by Repeated Integration.Computer
Graphics 20, 4 (August 1986), 315-321.

11. Kajiya, J. and Kay, T. Rendering Fur with Three Dimensional
Textures.Computer Graphics 23, 3 (July 1989), 271-280.

12. Kenwright, D. and Mallinson, G. A 3-D Streamline Tracking
Algorithm Using Dual Stream Functions.IEEE Visualization
‘92 Conference Proceedings (October 1992), 62-68.

13. Max, Nelson. Personal Communication (1992).

14. Perlin, K. An Image Synthesizer. Computer Graphics 19, 3
(August 1985), 287-296.

15. Perlin, K. Hypertexture.Computer Graphics 23, 3 (July
1989), 253-262.

16. Pratt, W. Digital Image Processing. 2nd ed. John Wiley &
Sons, Inc. (1991), 243-245.

17. Sims, K. Artificial Evolution for Computer Graphics.Com-
puter Graphics 25, 4 (August 1991), 319-328.

18. Sims, K. Choreographed Image Flow. The Journal of Visual-
ization and Computer Animation 3, 1 (January-March 1992),
31-43.

19. Tufte, E. The Visual Display of Quantitative Information.
Chesire, CT: Graphics Press (1983).

20. Turk, G. Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion Textures.Computer Graphics 25, 4 (July
1991), 289-298.

21. Upson, C. and Keeler, M. V-Buffer: Visible Volume Render-
ing. Computer Graphics 22, 4 (August 1988), 59-64.

22. Van Gelder, A. and Wilhelms, J. Interactive Animated Visual-
ization of Flow Fields.Proceedings of the Workshop on Vol-
ume Visualization, Kaufman and Lorensen Eds. (1992).

23. Van Wijk, J. Spot Noise Texture Synthesis for Data Visualiza-
tion. Computer Graphics 25, 4 (July 1991), 309-318.

24. Witkin, A. and Kass, M. Reaction-Diffusion Textures.Com-
puter Graphics25, 4 (July 1991), 299-308.

