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ABSTRACT pletely new family of periodic motion filters which have wide
Imaging vector fields has applications in science, art, image pro-application (see section 4.1). It represents a confluence of signal
cessing and specialfetts. An efective new approach is to use and image processing and a variety of previous work done in com-
linear and curvilinear filtering techniques to locally blur textures puter graphics and scientific visualization.
along a vector field. This approach builds on several previous tex-
ture generation and filtering techniques[8, B, 14, 15, 17, 23]. It 2. BACKGROUND
is, howeverunique because it is local, one-dimensional and inde- There are currently few techniques which image vector fields in
pendent of any predefined geometry or texture. The technique ia general mannefhese techniques can be quiteetive for visu-
general and capable of imaging arbitrary two- and three-dimen-alizing vector data. Howevethey break down when operating on
sional vector fields. The local one-dimensional nature of the algo-very dense fields and do not generalize to other applications. In
rithm lends itself to highly parallel andfiefent implementations.  particular large vector fields (512x512 or greater) strain existing
Furthermore, the curvilinear filter is capable of rendering detail on algorithms.
very intricate vector fields. Combining this technique with other ~ Most vector visualization algorithms use spatial resolution to
rendering and image processing techniques — like periodic motionrepresent the vector field. These include sampling the field, such as
filtering — results in richly informative and striking images. The with stream lines[12] or particle traces, and using icons[19] at
technique can also produce novel special effects. every vector field coordinate. Stream lines and particle tracing
CR categories and subject descriptors:1.3.3 [Computer techniques depend critically on the placement of the “streamers” or
Graphics]: Picture/lmage generation; 1.3.7 [Computer Graphics]: the particle sources. Depending on their placement, eddies or cur-
Three-Dimensional Graphics and Realism; 1.4.3 [Image Process+ents in the data field can be missed. Icons, on the other hand, do

ing]: Enhancement. not miss data, but use up a considerable amount of spatial resolu-
Keywords: convolution, filtering, rendering, visualization, tex- tion limiting their usefulness to small vector fields.
ture synthesis, flow fields, specidlegtts, periodic motion filtering. Another general approach is to generate textures via a vector

field. Van Wijk’s spot noisealgorithm[23] uses a vector field to
control the generation of bandlimited noise. The time complexity
of the two types of implementation techniques presentedaby V
Wijk are relatively high. Furthermore the technique, by definition,
depends heavily on the form of the texture (spot noise) itself. Spe-
cifically, it does not easily generalize to other forms of textures that

1. INTRODUCTION

Upon first inspection, imaging vector fields appears to have lim-
ited application — confined primarily to scientific visualization.
However much of the form and shape in our environment is a
function of not only image intensity and cqltwt also of direc-
tional information such as edges. Painters, sculptors, photogray ight be better suited to a particular class of vector data (such as
phers, image processors[16] and computer graphics researchers][. id flow versus electromagnetic)
have recognized the importance of direction in the process of Reaction difusion techni ues[zb 24] also provide an avenue
image creation and form. Hence, algorithms that can image sucr} sualizi fiold q h’ I p diential
directional information have wide application across both scien- or visualizing vector fields since the contro |ngf ntial equa-
tific and artistic domains. tions are inherently vector in nature. It is possible to map vector

Such algorithms should possess a number of desirable an(flhj.ata lc_mtf[)_ thtfsehcﬂg‘rentlal eql:atlohns tow;:ortne up W'trll a vecftor
sometimes conflicting properties including: accurdogality of visualization technique. Here too howewee time complexity o

calculation, simplicitycontrollability and generality_ine Integral these algo_nthms_ limit their gen_eral usefulness._ .

Convolution (LIC) is a new technique that possesses many of these 1hree-dimensional vector fields can be visualized by three-

properties. Its generality allows for the introduction of a com- dimensional texture generation techniques such as texels and
hypertextures described inl[115]. Both techniques take a texture

on a geometrically defined surface and project the texture out some
* Authors’ current e-mail addresses azebral@Iinl.govand distance from the surface. By definition these techniques are bound
casey@gauss.linl.gov to the surface and do not compute an image for the entire field as is
done by n Wjk[23]. This is limiting in that it requires a priori
knowledge to place the surface. Like particle streams and vector
streamers these visualization techniques are critically dependent
on the placement of the sampling surface.
The technique presented by Haeberli[9] for algorithmicly gener-
ating “paintings” via vectalike brush strokes can also be thought
of as a vector visualization technique. Crawfis and Max[5]




describe a three-dimensional variation on this in which blurred cyl
inders represent three-dimensional brush strokes whose directio
and colors are controlled by a three-dimensional vector field. Both!
techniques represent a conceptual extension of traditional icor
placement, where the icons are more sophisticated shapes. Hovy
ever these techniques break down as the density of the fieldj
increases since they require spatial resolution to work. 1

What is needed is a technique that can image dense vector field
is independent of both predefined sampling placement constraint#
and texture generation techniques and can work in two and thr
dimensions. Such a technique would be very general and have
wide application.

Figure 2: Circular and turbulent fluid dynamics vector fields
3. DDA CONVOLUTION imaged using DDA convolution over white noise.
One approach is a generalization of traditional DDA line draw- traight line. For points in vector fields where the local radius of
ing techniques[1] and the spatial convolution algorithms described> 9 : P

by Van Wijk[23] and Perlin[14]. Each vector in a field is used to curvaturel Is lage, this assurrl}ptlor? IS \r']al'ld' Hohwef,v?]mere thlgzre h
define a long, narrovDDA generated filter kernel tangential to the are complex structures smaller than the length of the DDA line, the

vector and going in the positive and negative vector direction someIocal radius of curvature is small and is not well approximated by a

fixed distancel. A texture is then mapped one-to-one onto the straight line. In a sense, DDA convolution renders the vector field
vector field. The input texture pixels under the filter kernel are une\llenrl]y treatlnﬁ Ilnelar portions oft;[_fre \t/:_ector flelfdlmore accu-
summed, normalized by the length of the filter ker@él, and rately than small scale vortices. While this graceful degradation

placed in an output pixel image for the vector positon. Figure 1,58, 2% 26 & Gab RS, HALe e S0 RO e
illustrates this operation for a single vector in a field.

. . ) - . 2, since detail in the small scale structures is lost.
This efectively filters the underlying texture as a function of the van Wijk's spot noise algorithm[23] also far from this prob-
vector field. The images in figure 2 are rendered using the DDA ) P 9 p

convolution algorithm. On the left is a simple circular vector field; liﬁ;gc?ilgr?eomﬁes?gé; a;ireeldellllfpttlr(]::"é/” ist;ztcmhz% rafxr?g :Xélggdlsn tthhee
to its right is the result of a computational fluid dynamics code. Thelocal lenath scale of the \./ector fieldp the s Jot noise will inaccu-
input texture image in these examples is white noise. Although the tel 9 tth tor field. A ’ tp f local field
description above implies a box filt@ny arbitrary filter shape can rately represent the vector fie'd. An accurate measure ot local lié

be used for the filter convolution kernel. It is important to note that gier:f(‘a\g?:ru\pr,gm? raec:]ﬁIc:teeé;(igtl?g:iggari]ﬁzgigtg?efi;g?'v\%tcl:g :ﬁgg{
this algorithm is very sensitive to symmetry of the DDA algorithm q y y ’

and filter If the algorithm weights the forward direction more than Irlgsggrléﬁ[?e]xpenswe to calculate[13] and are an area of active
the backward direction, the circular field in figure 2 appears to spi- )
ral inward |mply|ng a vortical behavior that is not present in the 4. LINE INTEGRAL CONVOLUTION

vector field. The local behavior of the vector field can be approximated by
3.1 LOCAL FIELD BEHAVIOR computing a local stream line that starts at the center of pixgl (
and moves out in the positive and negative directiofise for-
gvard coordinate advection is given by equation (1).

Py = (x+05y+0.5

The DDA approach, while #&ient, is inherently inaccurate. It
assumes that the local vector field can be approximated by
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L-Vector field lattice and image coordinates are usually specified in a left-
handed coordinate system while vector components are usually specified in
a right-handed coordinate system. In this casey-t@mponent of the lat-

tice coordinate in equation (1) must be reflected about the vertical center of
Figure 1: The mapping of a vector onto a DDA line and input the lattice to operate in a consistent coordinate system. This reflection has
pixel field generating a single output pixel. been omitted to preserve simplicity of presentation.




bined with LIFK to form a Line Integral Convolution (LIC). This
SN SN N N NN\ NN NN results in a variation of the DDA approach that locally follows the

vector field and captures small radius of curvature features. For
NN NN TN TN TN AN AN \ N\ each continuous segmentan exact integral of a convolution ker-

nel k(w) is computed and used as a weight in the LIC as shown in
SN N I N I NN ININNUN NN equation (4).

s +As
— |~ |~NINIXN NN \\'\ A hy = [ k(w)dw 4
S i T 1 1 O e W W O O where K
s =0
e =N NN N A \'\ A S =s_,+tAs_,
/| //\\ RS S \\ 1 The entire LIC for output pixe¥'(x, y) is given by equation (5).
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VIN N I SN S ST5T 2 A o F (L PJ) is the input pixel corresponding to

the vector at positiom|_ PXJ , |_ PyJ )
Figure 3: A two-dimensional vector field showing the local — <l <s
stream line starting in cell (x, y). The vector field is the upper | = Psuchthats <L <s,, ®)

left corner of the fluid dynamics field in figures 2 and 4. The numerator of equation (5) represents the line integral of the fil-

Only the directional component of the vector field is used in this ter kernel times the input pixel fiele, The denominator is the line
advection. The magnitude of the vector field can be used later inintegral of the convolution kernel and is used to normalize the out-

post processing steps as explained in section 4§.k the posi- put pixel weight (see section 4.2).
tive parametric distance along a line parallel to the vector field The length of the local stream lingl,, is given in unit pixels.
from P; to the nearest cell edge. Depending on the input pixel fiel&, if L is too lage, all the

As with the DDA algorithm, it is important to maintain symme- resulting LICs will return values very close together for all coordi-
try about a cell. Hence, the local stream line is also advected backnates %, y). On the other hand, lif is too small then an indidient
wards by the negative of the vector field as shown in equation (3). amount of filtering occurs. Since the value lofdramatically

Py =P affects the performance of the algorithm, the smallefgicife
V(L P_.]) ) value is desired. For most of the figures, a value of 10 was used.
P, =P,_;- % s, Singularities in the vector field occur when vectors in two adja-
[ (|_ i—lJ) l cent local stream line cells geometrically “point” at a shared cell

Primed variables represent the negative direction counterparts t§9ge. This results ias values equal to zero leavihgn equation
the positive direction variables and are not repeated in subsequer{f) Undefined. This situation can easily be detected and the advec-
definitions. As abovAs’;, is always positive. thI_’] algorithm terml_nate_d. If th_e vector fl_eld goes to zero at any

The calculation oAs in the stream line advection is sensitive to POINt, the LIC algorithm is terminated as in the case of a field sin-
round of errors.As must produce advected coordinates that lie 9ularity. Both of these cases generate truncated stream lines. If a
within thei+1" cell, taking the stream line segment out of the cur- Z&ro field vector lies in the starting cell of the LIC, the input pixel
rent cell. In the implementation of the algorithm a small roufid of Value for that cell, a constant or any other arbitrary value can be
term is added to eadks to insure that entry into the adjacent cell T€turned as the value of the LIC depending on the vistedtef
occurs. This local stream line calculation is illustrated in figure 3. desired for null vectors.
Each cell is assumed to be a unit square. All spatial quantities (e.g., Using adjacent stream line vectors to detect singularities can
As) are relative to this measurement. Howetlee cells need not  however result in false singularities. False singularities occur when
be square or even rectangular (see section 6) for this approximathe vector field is nearly parallel to an edge, but causes the LIC to
tion to work. So, without loss of generalitiescriptions are given  cross over that edge. Similarthe cell just entered also has a near
relative to a cubic lattice with unit spacing. parallel vector which points to this same shared edge. This artifact

Continuous sections of the local stream line — i.e. the straightcan be remedied by adjusting the parallel vector/edge test found in
line segments in figure 3 — can be thought of as parameterizedequation (2), to test the angle formed between the vector and the
space curves is and the input texture pixel mapped to a cell can edge against some small antiteta instead of zero. Any vector
be treated as a continuous scalar function of x antt is then which forms an angle less thtretawith some edge is deemed to
possible to integrate over this scalar field along each parameterizetle “parallel” to that edge. Using a value 6ff8r thetaremoves
space curve. Such integrals can be summed in a pied@ash- these artifacts.
ion and are known as line integrals of the first kind (LIFK)[2]. The  The images in figure 4 were rendered using LIC and correspond
convolution concept used in the DDA algorithm can now be com-to the same two vector fields rendered in figure 2. Note the

increased amount of detail present in these images versus their

2 Bilinear, cubic or Bezier splines are viable alternatives to straight line DDA counterparts. In particular the image of the fluid dynamics
segments. Howevgthese higher order curves are more expensive to com- vector field in figure 4 shows detail incorrectly rendered or absent
pute. in figure 2.




straight line elliptical stretching, each spot could be warped so that
the major axis follows the local stream line. Furthermore, the
minor axis could either be perpendicular to the warped major axis
or itself could be warped along transverse field lines. Howawer
algorithm to perform this task for an arbitrary local stream line
would be inherently more expensive and complex than the LIC
algorithm.

Sims[18] describes an alternative technique which produces
results similar to LIC. This alternative approach warps or advects
texture coordinates as a function of a vector field. The similarity
between the two techniques is predictable even though the tech-
niques are quite didrent. The dilation and contraction of the tex-
Figure 4: Circular and turbulent fluid dynamics vector fields ture coordinate system warping has the visufgcefof blurring
imaged using LIC over white noise. and sharpening the warped image. This is due to the resampling
The images in figure 5 show thdeet of varyingL. The input and r_econstruction process necessary _when warping from one
texture is a photograph of flowers. The input vector field was Cre_poordlr!ate system to anothdihus, for_ regions where the source.
ated by taking the gradient of a bandlimited noise image and rotat!Mage 1S gtretched along the vector field an apparent blurring will
ing each of the gradient vectors by’ 9producing vectors which  0Ccur similar to those seen with LIC. Howeuixe techniques are
follow the contours of the soft hills and valleys of the bandlimited completely different in two fundamental ways. First, LIC is a local
noise With L equal to 0, the input image is passed through operatoy meaning no information outside of aflxeq area qf interest
unchanged. As the value bfincreases, the input image is blurred 'S "€€ded. \&kping even when done locally requires maintaining
to a greater extent, giving an impressionistic result. Here, a biase Io_ba}I consistency to avou_j tearing hole_s in the vyarped Image.
ramp filter[10] is used to roughly simulate a brush stroke. his increases the comple)glty of thg warping operation when com-

) ) - T pared to LIC. Second, LIC is a spatially varying filtering operation
~ Figures 2, 4, 8, 9 and Were generated using white noise input and does not warp or transform any texture coordinates.
images. Aliasing can be a serious problem when using LIC with a

high frequency source image such as white noise. The aliasing igt.1 PERIODIC MOTION FILTERS
caused by the one-dimensional point sampling of the infinitely thin  The LIC algorithm visualizes local vector field tangents, but not
LIC filter. This aliasing can be removed by either creating a thick their direction. Freeman, et al[8] describe a technique which simu-
LIC filter with a low-pass filter cross section or by low-pass filter- |ates motion by use of special convolutions. A similar technique is
ing the input image. This second alternative is preferable since itysed by ¥n Gelder and Wielms[22] to show vector field flaw
comes at no additional cost to the LIC algorithm. The images in This technique can be extended and used to represent the local vec-
figure 6 show the &ct of running LIC over 256x256 white noise tor field direction via animation of successive LIC imaged vector
which has been |OW-paSS filtered using a fourth order BUtterVVOI’thﬁe|ds using varying phase shifted periodic filter kernels.
filter with cutoff frequencies of 128, 84, 64, and 32. The success of this technique depends on the shape of the filter
It is worth noting that ¥n Wijk’s spot noise algorithm[23] can  In the previous examples (figures 2 and 4), a constant or box filter
be adapted to use the local stream line approximation to mords used. If the filter is periodic like the filters used in [8], by chang-
accurately represent the behavior of a vector field. Instead ofing the phase of such filters as a function of time, apparent motion

fl v d i r
Figure 5: Photograph of flowers processed using LIC with L Figure 6: The upper left hand quarter of the circular vector
equal to 0, 5, 10 and 20 (left to right, top to bottom). field is convolved using LIC over Butterworth low-pass filtered

white noise with cutoff frequencies of 128, 86, 64, and 32 (left
to right, top to bottom).



in the direction of the vector field is created. Howgetlee filters
used in [8] were, by design, high-pass Laplacian edge enhancing
filters. Using this filter over a bandlimited noise texture produces
very incoherent images since the high frequency components of
the noise are accentuated. Instead, it is possible, and desirable, 1
create periodic low-pass filters to blur the underlying texture in the j
direction of the vector field. A Hanning filtd/2(1 + cosi+()),
has this propertyit has low band-pass filter characteristics, it is
periodic by definition and has a simple analytic form. This func-
tion will be referred to as thipple filter function.
Since the LIC algorithm is by definition a local operation, any
filter used must be windowed. That is, it must be made local even
if it has infinite extent. In the previous section we used a constant
filter implicitly windowed by a box of height one. Using this same N
box window on a phase shifted Hanning filter we get a filter with /\J/\

abrupt cutoffs, as illustrated in the top row of figure 7.

This abrupt cutdfis noticeable as spatio-temporal artifacts in
animations that vary the phase as a function of time. One solutior
to this problem is to use a Gaussian window as suggested by
Gabor[4].3 By multiplying, or windowing, the Hanning function

by a Gaussian, these cutoare smoothly attenuated to zero. How-
ever, a Gaussian windowed Hanning function does not have a sim
ple closed form integral. An alternative is to find a windowing Figure 7: Phase shifted Hanning ripple functions(top), a Han-

function with windowing properties similar to a Gaussian and Ning windowing function(middle), and Hanning ripple func-

which has a simple closed form integral. Interestirtjly Hanning ~ tons multiplied by the Hanning window function(bottom).

function itself meets these two criteria. In the bottom row of figure apparent motion[3]. A low frequency ripple function results in a
7, the five phase shifted Hanning filter functions in the top row arewindowed filter whose frequency response noticeably changes as a

multiplied by the Hanning window function in the middle rGwe function of phase. This appears as a periodic blurring and sharpen-
general form of this function is shown in equation (7). In this equa- ing of the image as the phase changes. Higher frequency ripple
1+cos(cw) 1+ cos(dw+p) functions produce windowed filters with a nearly constant fre-
k(w) = X ™ guency response since the general shape of the filter tomdin’

2 2 cally change. Howevethe feature size picked up by the ripple
=1 (1+ cos(cw) + cos(dw+ ) +cos(cw) cos(dw+ B)) filter is smaller and the result is less apparent motion. If the ripple
4 frequency exceeds the Nyquist limit of the pixel spacing the appar-
tion ¢ andd represent the dilation constants of the Hanning win- ent motion disappears. Experimentation shows that a ripple func-
dow and ripple functions respectively is the ripple function  tion frequency between 2 and 4 cycles per window period is
phase shift given in radians. The integrak@f) fromatobused  reasonable. One can always achieve both good frequency response

in equation (4) is shown in equation (8). and good feature motion by increasing the spatial resolution. This
b comes, of course, at a cost of increased computation[16].
8
J’k(w)dw ® 4.2 NORMALIZATION
2 sin(bc) - sin(ac) A normalization to the convolution integral is performed in
O -at C O equation (5) to insure that the apparent brightness and contrast of
E in(bd in(ad B the resultant image is well behaved as a function of kernel shape,
0 . Sin(bd+p) —sin(ad+p) 0 phase and length. The numerator in equation (5) is divided by the
_1q d 0 integral of the convolution kernel. This insures that the normalized
“ 40 sin(b(c—d -p) -sin(a(c-d -B) O area under the convolution kernel is always unity resulting in a
ot 2(c-d) O constant overall brightness for the image independent of the filter
d ) ] O shape and LIC length.
B + sin(b(c+d +P) ~sin(a(c+ d +p) B Because the actual length of the LIC may vary from pixel to

2(c+d) pixel, the denominator can not be precomputed. Howanenter-
esting efect is observed if a fixed normalization is usediritated
stream lines are attenuated which highlights singularities. The
images in figure 8 a show another section of the fluid dynamics
vector field imaged with variable and constant kernel normaliza-
tion. The implementation of the LIC algorithm uses precomputed
sum tables for the integral to avoid costly arithmetic in the inner-
énost loop.

A second normalization may be done to insure the output image

3. D. Gabor in 1946 created a localized form of the Fourier transform retains the input |m_agze contrast properties. _The LIC al_gorlthm
known as the Gabor transform. This transform is the Fourier transform of reduces the °Ve“?‘” Image contra_st asa f”“Ct""f:‘ bof fact, n the

an input signal multiplied by a Gaussian window translated along the sig-C8S€ of the box filtgasL goes to _Inflnlty thg entire output image

nal as a function of time. The net result is a signal which is spatially and goes to the average of the input image. This can be ameliorated by
frequency localized. Avelet theory is based on a generalization of this amplifying the input or contrast stretching the output image as a
type of spatial and frequency localization. function ofL. Clearly ad. goes to infinity the amplification or con-

As mentioned above, both the Hanning window and the Han-
ning ripple filter function can be independently dilated by adjust-
ing ¢ andd to have specific local support and periodicithe
window function has a fixed period oft2

Choosing the periodicity of the ripple function represents mak-
ing a design trade-bbetween maintaining a nearly constant fre-
guency response as a function of phase shift and the quality of th




Figure 8: White noise convolved with fluid dynamics vector

field using variable normalization (top) versus fixed normaliza-

tion (bottom).

trast stretching must go to infinity as well. The images in all the
figures are contrast stretched.

4.3 IMPLEMENTATION AND APPLICATION

The LIC algorithm is designed as a function which maps an
input vector field and texture to a filtered version of the input tex-

ture. The dimension of the output texture is that of the vector field.

Figure 9: White noise convolved with checkerboard vector
field using fixed normalization (left), and then gradient shaded
(right) to give the appearance of a rough woven surface tex-
ture.

that the input texture is lge enough so that the periodicity
induced by the coordinate wrapping is not apparent.

The algorithm can be used as a data operator in conjunction with
other operators much like those of Sims[17] and Perlin[14]. Spe-
cifically, both the texture and the vector field can be preprocessed
and combined with post processing on the output image. The LIC
implementation is a module in a data flow system like that found in
a number of public domain and commercial products. This imple-
mentation allows for rapid exploration of various combinations of
operators.

4.3.1 POST PROCESSING

The output of the LIC algorithm can be operated on in a variety
of ways. In this section several standard techniques are used in
combination with LIC to produce novel results.

An interesting example of constant kernel normalization is
shown in figure 9. A simple basket weave pattern is generated by
alternating vector directions in a checkerboard fashion. Each
checker is surrounded by null vectors. This vector field is then
used to convolve white noise. The LIC is truncated as it nears the
edges of the checkers which results in a gradual attenuation. When
that output is gradient shaded, the basket weave becomes very
realistic. While other techniques could be used to generate such a
texture, the simplicity of the source data illustrates the versatility

If the input texture is smaller than the vector field the implementa- of |_|C.

tion of the algorithm wraps the texture using a toroidal topology

A surface wind velocity field is imaged in figure 10 using LIC to

That is, the right and left edges wrap as do the top and bottomy)yr 1£ noise. The resulting image is composed over an image of

edges. If the texture is too ¢g it is cropped to the vector field

North America to present scale and location. The LIC algorithm is

dimensions. Careful attention must be paid to the size of the inputsjightly modified to image vector magnitude by varying the length

texture relative to that of the vector field. If too small a texture is
used, the periodicity induced by the texture tiling will be visible.

Ve
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Figure 10: A wind velocity visualization is created by composit-
ing an image of North America under an image of the veloc-
ity field rendered using variable length LIC over 1/f noise.

For scientific applications this is unacceptable. One must insuretures where the wind velocity field is small.

of the line integral, 2, as a function of the vector field magnitude.
In figure 10 this déct is seen as clumpiness if dibud-like struc-

Figure 11: The fixed normalization fluid dynamics field imaged
in figure 8 is multiplied by a color image of the magnitude of
the vector field.



4.4 THREE-DIMENSIONAL LIC

The LIC algorithm easily generalizes to higher dimensions.
Equations (1), (3) and (5) trivially extend to three dimensions. In
the three-dimensional case, cell edges are replaced with cell faces.
Both the input vector field and input texture must be three-dimen-
sional. The output of the three-dimensional LIC algorithm is a
three-dimensional image or scalar field. This field is rendered
using volume rendering techniques such as those found in [21] and
[6].

Figure 14 is a three-dimensional rendering of an electrostatic
field with two point chages placed a fixed distance apart from one
another In this volumetric rendering, the magnitude of the vector
field is used to control the opacity transfer functions. Grdat ef
ciency gains can be achieved if the LIC algorithm exploits this by
avoiding rendering for vector field cells whose magnitude is out-
side of the volume renderer’s min/max threshold window.

5. PERFORMANCE

There is a distinct performance and quality tradebetween
the DDA convolution algorithm and LIC. LIC is roughly an order
of magnitude slower than the DDA method. Both algorithms were
timed using cells processed per second (CPS) as the figure of
merit. The tests were run on an unloaded IBM 550 RISC 6000. The
DDA algorithm averages about 30,000 CPS while LIC averages
about 3,000 CPS.

The three-dimensional algorithm only memally degrades in
performance with the increase in dimensionaptpcessing some
1,200 CPS. Since the algorithm remains one-dimensional in
nature, the cost per cell only increases by a factor of three as a
function of dimension. Using the thresholding described above, the
performance of the three-dimensional LIC algorithm has exceeded
30,000 CPS.

Figure 12: A photograph (top) of the Flavian Amphitheater is
used to create a vector field. The field is then used to image a
“painted” version of the same photograph (bottom).

Another method to add vector magnitude information is seen in6. FUTURE WORK
figure 1. The [fixed normalization] fluid dynamics field of figure 8 A number of research directions relating to LIC remain out-
is multiplied by a color image of the vector magnitude. The advan- standing.
tage of this approach over variable length LIC is that the fine  Currently no methods exist for determining the accuracy of a
grained detail generated by fixed length LIC is retained even invector field representation, such as those created by LIC or any
low magnitude areas. other method. These accuracy metrics would necessarily be related
The LIC algorithm can be used to process an image using a vec
tor field generated from the image itself. In figure 12, a vector field
is generated from the input image by low-pass filtering the image,
taking the gradient of the resulting image and rotating the vectors
by 9C.

The LIC algorithm can also be used to post process images tc
generate motion bluA rendering algorithm or paint system can
easily specify a pixel by pixel velocity field for objects. By using a
biased triangle filter[10] and variable length LIC the input image
can be motion blurred in the direction of apparent motion. This has
precisely the desired results for motion blurring as seen in figure
13.

Figure 13: The original photo on the left shows no motion blur- Figure 14: A three-dimensional 5122 electrostatic field is
ring The photo on the right uses variable length LIC to motion imaged by volumetrically ray tracing a three-dimensional sca-

blur Boris Yeltsin’s waving arm, simulating a slower shutter lar field produced using LIC over white noise.



to the diferential topology of the entire vector field. As mentioned ures 2, 4, 8 andlland for using the algorithm in their work. Dean
above, much work in theoretical and applied mathematics has beeiwilliams and Jerry Potter provided the North America wind veloc-
done in this area. This work needs to be studied and appli€d to ef ity data. Lastlythanks to John Zych who helped with the rendering

cient vector field imaging algorithms.
LIC is conceptually independent of the advection algorithm

of the North America image.

used to define the parametric support used by the convolutiofREFERENCES

operation. The method described here might be best characterized:
as a variable step Eulsermethod. Other techniques such as a
fourth order Runge-Kutta could producefeliing or improved 2.
results. A thorough investigation into this issue is beyond the
scope of this papelt does, howeverepresent an area deserving 3.
special attention.

Visualizing the orthogonal complement of a two-dimensional
vector field is accomplished by rotating the individual vectofs 90
However in three-dimensional vector fields the orthogonal com-
plement of a vector is a plane. This suggests that a generalization
of the one-dimensional LIC filter would be a two-dimensional sur- S
face filter This filter would have as its geometric support gedhf
ential surface whose normals would be defined by the vector field,
thus creating a Surface Integral Convolution (SIC). As with the
LIC, an arbitrary two-dimensional filter could then be used to filter 6.
the three-dimensional input image.

Another direction for generalization is to develop versions of the 7.
algorithm which operate directly on curvilinear and arbitrarily
grided vector fields without resampling the input data. The LIC
algorithm could easily be modified to handle arbitrary line inter-
sections and topologies of both type of grids. As with the rectilin- ~*
ear LIC, it would have an analogous three-dimensional
generalization. Wo additional problems remain however: generat-
ing curvilinear and arbitrarily girded textures and output resam-
pling.

One possible image processing application of LIC is the deblur-

ring of motion blurred images. Images acquired with a moving 11,

CCD camera often exhibit such blurring. If the CCD frequency
response curves and the camera motion are known, one-dimen;
sional deconvolution techniques could be used in conjunction with
LIC to deblur the images.

The local nature of the LIC algorithm suggests a parallel imple-
mentation. Such an implementation could, in principle, compute1
all pixels simultaneouslyrhis would allow for interactive genera-
tion of periodic motion animations and special effects.

15.

7. SUMMARY
Line integral convolution represents a new and general method

for imaging two- and three-dimensional vector fields. The algo- 16.

rithm filters an input image along local stream lines defined by an

input vector field and generates an output image. The one-dimeni?7.

sional filter shape is independent of either input and can be arbi-

trary. To indicate directional flow of the vector field, a whole 1g

family of continuous motion filters has been introduced. These fil-
ters give apparent motion in the direction of the vector field. The
technique can also be used to create spedadtef Additionally

the local nature of the algorithm lends itself tiice#nt and simple
implementations.

20.
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