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ABSTRACT
MillWheel is a framework for building low-latency data-processing
applications that is widely used at Google. Users specify a directed
computation graph and application code for individual nodes, and
the system manages persistent state and the continuous flow of
records, all within the envelope of the framework’s fault-tolerance
guarantees.

This paper describes MillWheel’s programming model as well as
its implementation. The case study of a continuous anomaly detec-
tor in use at Google serves to motivate how many of MillWheel’s
features are used. MillWheel’s programming model provides a no-
tion of logical time, making it simple to write time-based aggre-
gations. MillWheel was designed from the outset with fault toler-
ance and scalability in mind. In practice, we find that MillWheel’s
unique combination of scalability, fault tolerance, and a versatile
programming model lends itself to a wide variety of problems at
Google.

1. INTRODUCTION
Stream processing systems are critical to providing content to

users and allowing organizations to make faster and better deci-
sions, particularly because of their ability to provide low latency
results. Users want real-time news about the world around them.
Businesses are likewise interested in the value provided by real-
time intelligence sources such as spam filtering and intrusion de-
tection. Similarly, scientists must cull noteworthy results from im-
mense streams of raw data.

Streaming systems at Google require fault tolerance, persistent
state, and scalability. Distributed systems run on thousands of shared
machines, any of which can fail at any time. Model-based stream-
ing systems, like anomaly detectors, depend on predictions that are
generated from weeks of data, and their models must be updated
on-the-fly as new data arrives. Scaling these systems by orders of
magnitude should not cause a commensurate increase in the opera-
tional cost of building and maintaining the system.

Programming models for distributed systems, like MapReduce
[11], hide the framework’s implementation details in the background,
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allowing users to create massive distributed systems that are simply
expressed. By allowing users to focus solely on their application
logic, this kind of programming model allows users to reason about
the semantics of their system without being distributed systems ex-
perts. In particular, users are able to depend on framework-level
correctness and fault-tolerance guarantees as axiomatic, vastly re-
stricting the surface area over which bugs and errors can manifest.
Supporting a variety of common programming languages further
drives adoption, as users can leverage the utility and convenience
of existing libraries in a familiar idiom, rather than being restricted
to a domain-specific language.

MillWheel is such a programming model, tailored specifically to
streaming, low-latency systems. Users write application logic as
individual nodes in a directed compute graph, for which they can
define an arbitrary, dynamic topology. Records are delivered con-
tinuously along edges in the graph. MillWheel provides fault tol-
erance at the framework level, where any node or any edge in the
topology can fail at any time without affecting the correctness of
the result. As part of this fault tolerance, every record in the system
is guaranteed to be delivered to its consumers. Furthermore, the
API that MillWheel provides for record processing handles each
record in an idempotent fashion, making record delivery occur ex-
actly once from the user’s perspective. MillWheel checkpoints its
progress at fine granularity, eliminating any need to buffer pending
data at external senders for long periods between checkpoints.

Other streaming systems do not provide this combination of fault
tolerance, versatility, and scalability. Spark Streaming [34] and
Sonora [32] do excellent jobs of efficient checkpointing, but limit
the space of operators that are available to user code. S4 [26]
does not provide fully fault-tolerant persistent state, while Storm’s
[23] exactly-once mechanism for record delivery, Trident [22], re-
quires strict transaction ordering to operate. Attempts to extend the
batch-processing model of MapReduce and Hadoop [4] to provide
low-latency systems result in compromised flexibility, such as the
operator-specific dependence on Replicated Distributed Datasets
[33] in Spark Streaming. Streaming SQL systems [1] [2] [5] [6]
[21] [24] provide succinct and simple solutions to many streaming
problems, but intuitive state abstractions and complex application
logic (e.g. matrix multiplication) are more naturally expressed us-
ing the operational flow of an imperative language rather than a
declarative language like SQL.

Our contributions are a programming model for streaming sys-
tems and an implementation of the MillWheel framework.
• We have designed a programming model that allows for com-

plex streaming systems to be created without distributed sys-
tems expertise.

• We have built an efficient implementation of the MillWheel



framework that proves its viability as both a scalable and fault-
tolerant system.

The rest of this paper is organized as follows. Section 2 outlines
a motivating example for the development of MillWheel, and the
corresponding requirements that it imposes. Section 3 provides a
high-level overview of the system. Section 4 defines the fundamen-
tal abstractions of the MillWheel model and Section 5 discusses
the API that MillWheel exposes. Section 6 outlines the implemen-
tation of fault tolerance in MillWheel, and Section 7 covers the
general implementation. Section 8 provides experimental results to
illustrate the performance of MillWheel, and Section 9 discusses
related work.

2. MOTIVATION AND REQUIREMENTS
Google’s Zeitgeist pipeline is used to track trends in web queries.

To demonstrate the utility of MillWheel’s feature set, we will exam-
ine the requirements of the Zeitgeist system. This pipeline ingests
a continuous input of search queries and performs anomaly detec-
tion, outputting queries which are spiking or dipping as quickly as
possible. The system builds a historical model of each query, so
that expected changes in traffic (e.g. for “television listings” in the
early evening) will not cause false positives. It is important that
spiking or dipping queries be identified as quickly as possible. For
example, Zeitgeist helps power Google’s Hot Trends service, which
depends on fresh information. The basic topology of this pipeline
is shown in Figure 1.

In order to implement the Zeitgeist system, our approach is to
bucket records into one-second intervals and to compare the ac-
tual traffic for each time bucket to the expected traffic that the
model predicts. If these quantities are consistently different over
a non-trivial number of buckets, then we have high confidence that
a query is spiking or dipping. In parallel, we update the model with
the newly received data and store it for future use.

Persistent Storage: It is important to note that this implementation
requires both short- and long-term storage. A spike may only last
a few seconds, and thus depend on state from a small window of
time, whereas model data can correspond to months of continuous
updates.

Low Watermarks: Some Zeitgeist users are interested in detecting
dips in traffic, where the volume for a query is uncharacteristically

low (e.g. if the Egyptian government turns off the Internet). In
a distributed system with inputs from all over the world, data ar-
rival time does not strictly correspond to its generation time (the
search time, in this case), so it is important to be able to distinguish
whether a flurry of expected Arabic queries at t = 1296167641 is
simply delayed on the wire, or actually not there. MillWheel ad-
dresses this by providing a low watermark for incoming data for
each processing stage (e.g. Window Counter, Model Calculator),
which indicates that all data up to a given timestamp has been re-
ceived. The low watermark tracks all pending events in the dis-
tributed system. Using the low watermark, we are able to distin-
guish between the two example cases – if the low watermark ad-
vances past time t without the queries arriving, then we have high
confidence that the queries were not recorded, and are not sim-
ply delayed. This semantic also obviates any requirement of strict
monotonicity for inputs – out-of-order streams are the norm.

Duplicate Prevention: For Zeitgeist, duplicate record deliveries
could cause spurious spikes. Further, exactly-once processing is a
requirement for MillWheel’s many revenue-processing customers,
all of whom can depend on the correctness of the framework imple-
mentation rather than reinventing their own deduplication mecha-
nism. Users do not have to write code to manually roll back state
updates or deal with a variety of failure scenarios to maintain cor-
rectness.

With the above in mind, we offer our requirements for a stream
processing framework at Google, which are reflected in MillWheel:
• Data should be available to consumers as soon as it is published

(i.e. there are no system-intrinsic barriers to ingesting inputs
and providing output data).

• Persistent state abstractions should be available to user code,
and should be integrated into the system’s overall consistency
model.

• Out-of-order data should be handled gracefully by the system.
• A monotonically increasing low watermark of data timestamps

should be computed by the system.
• Latency should stay constant as the system scales to more ma-

chines.
• The system should provide exactly-once delivery of records.
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Figure 1: Input data (search queries) goes through a series of MillWheel computations, shown as distributed processes. The output of the
system is consumed by an external anomaly notification system.



3. SYSTEM OVERVIEW
At a high level, MillWheel is a graph of user-defined transfor-

mations on input data that produces output data. We call these
transformations computations, and define them more extensively
below. Each of these transformations can be parallelized across an
arbitrary number of machines, such that the user does not have to
concern themselves with load-balancing at a fine-grained level. In
the case of Zeitgeist, shown in Figure 1, our input would be a con-
tinuously arriving set of search queries, and our output would be
the set of queries that are spiking or dipping.

Abstractly, inputs and outputs in MillWheel are represented by
(key, value, timestamp) triples. While the key is a metadata field
with semantic meaning in the system, the value can be an arbi-
trary byte string, corresponding to the entire record. The context
in which user code runs is scoped to a specific key, and each com-
putation can define the keying for each input source, depending
on its logical needs. For example, certain computations in Zeit-
geist would likely select the search term (e.g. “cat videos”) as the
key, in order to compute statistics on a per-query basis, while other
computations might select geographic origin as the key, in order to
aggregate on a per-locale basis. The timestamps in these triples can
be assigned an arbitrary value by the MillWheel user (but they are
typically close to wall clock time when the event occurred), and
MillWheel will calculate low watermarks according to these val-
ues. If a user were aggregating per-second counts of search terms
(as in Zeitgeist, illustrated in Figure 2), then they would want to
assign a timestamp value corresponding to the time at which the
search was performed.

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

Window Counter ...

britney: (10:59:10, 2)
(10:59:11, 1)

carly: (10:59:10, 1)

Model
Calculator

britney:aaaaaaaaa             

carly:aaaaaaaaa

Figure 2: Aggregating web searches into one-second buckets and
updating models using persistent per-key state. Each computation
has access to its own per-key state, which it updates in response to
input records.

Collectively, a pipeline of user computations will form a data
flow graph, as outputs from one computation become inputs for an-
other, and so on. Users can add and remove computations from
a topology dynamically, without needing to restart the entire sys-
tem. In manipulating data and outputting records, a computation
can combine, modify, create, and drop records arbitrarily.

MillWheel makes record processing idempotent with regard to
the framework API. As long as applications use the state and com-
munication abstractions provided by the system, failures and retries
are hidden from user code. This keeps user code simple and under-
standable, and allows users to focus on their application logic. In

the context of a computation, user code can access a per-key, per-
computation persistent store, which allows for powerful per-key
aggregations to take place, as illustrated by the Zeitgeist example.
The fundamental guarantee that underlies this simplicity follows:

Delivery Guarantee: All internal updates within the MillWheel
framework resulting from record processing are atomically check-
pointed per-key and records are delivered exactly once. This guar-
antee does not extend to external systems.

With this high-level concept of the system in mind, we will ex-
pand upon the individual abstractions that make up MillWheel in
the next section.

4. CORE CONCEPTS
MillWheel surfaces the essential elements of a streaming system,

while providing clean abstractions. Data traverses our system via
a user-defined, directed graph of computations (Figure 3), each of
which can manipulate and emit data independently.

computation SpikeDetector {
input_streams {
stream model_updates {

key_extractor = ’SearchQuery’
}
stream window_counts {

key_extractor = ’SearchQuery’
}

}
output_streams {
stream anomalies {

record_format = ’AnomalyMessage’
}

}
}

Figure 3: Definition of a single node in a MillWheel topology.
Input streams and output streams correspond to directed edges in
the graph.

4.1 Computations
Application logic lives in computations, which encapsulate arbi-

trary user code. Computation code is invoked upon receipt of input
data, at which point user-defined actions are triggered, including
contacting external systems, manipulating other MillWheel prim-
itives, or outputting data. If external systems are contacted, it is
up to the user to ensure that the effects of their code on these sys-
tems is idempotent. Computation code is written to operate in the
context of a single key, and is agnostic to the distribution of keys
among different machines. As illustrated in Figure 4, processing is
serialized per-key, but can be parallelized over distinct keys.

4.2 Keys
Keys are the primary abstraction for aggregation and comparison

between different records in MillWheel. For every record in the
system, the consumer specifies a key extraction function, which as-
signs a key to the record. Computation code is run in the context
of a specific key and is only granted access to state for that specific
key. For example, in the Zeitgeist system, a good choice of key for
query records would be the text of the query itself, since we need
to aggregate counts and compute models on a per-query basis. Al-
ternately, a spam detector might choose a cookie fingerprint as a
key, in order to block abusive behavior. Figure 5 shows different
consumers extracting different keys from the same input stream.
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Figure 4: Per-key processing is serialized over time, such that only
one record can be processed for a given key at once. Multiple keys
can be run in parallel.
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"carly"
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Figure 5: Multiple computations can extract different keys from
the same stream. Key extractors are specified by the consumer of a
stream.

4.3 Streams
Streams are the delivery mechanism between different compu-

tations in MillWheel. A computation subscribes to zero or more
input streams and publishes one or more output streams, and the
system guarantees delivery along these channels. Key-extraction
functions are specified by each consumer on a per-stream basis,
such that multiple consumers can subscribe to the same stream and
aggregate its data in different ways. Streams are uniquely identified
by their names, with no other qualifications – any computation can
subscribe to any stream, and can produce records (productions) to
any stream.

4.4 Persistent State
In its most basic form, persistent state in MillWheel is an opaque

byte string that is managed on a per-key basis. The user provides
serialization and deserialization routines (such as translating a rich
data structure in and out of its wire format), for which a variety
of convenient mechanisms (e.g. Protocol Buffers [13]) exist. Per-
sistent state is backed by a replicated, highly available data store
(e.g. Bigtable [7] or Spanner [9]), which ensures data integrity in
a way that is completely transparent to the end user. Common uses
of state include counters aggregated over windows of records and
buffered data for a join.

4.5 Low Watermarks
The low watermark for a computation provides a bound on the

timestamps of future records arriving at that computation.

Definition: We provide a recursive definition of low watermarks
based on a pipeline’s data flow. Given a computation, A, let the
oldest work of A be a timestamp corresponding to the oldest un-
finished (in-flight, stored, or pending-delivery) record in A. Given

this, we define the low watermark of A to be

min(oldest work of A, low watermark of C : C outputs to A)

If there are no input streams, the low watermark and oldest work
values are equivalent.

Low watermark values are seeded by injectors, which send data
into MillWheel from external systems. Measurement of pending
work in external systems is often an estimate, so in practice, com-
putations should expect a small rate of late records – records behind
the low watermark – from such systems. Zeitgeist deals with this
by dropping such data, while keeping track of how much data was
dropped (empirically around 0.001% of records). Other pipelines
retroactively correct their aggregates if late records arrive. Though
this is not reflected in the above definition, the system guarantees
that a computation’s low watermark is monotonic even in the face
of late data.

By waiting for the low watermark of a computation to advance
past a certain value, the user can determine that they have a com-
plete picture of their data up to that time, as previously illustrated
by Zeitgeist’s dip detection. When assigning timestamps to new or
aggregate records, it is up to the user to pick a timestamp no smaller
than any of the source records. The low watermark reported by the
MillWheel framework measures known work in the system, shown
in Figure 6.

t = timestamp

W
all Tim

e

Pending Work

Completed Work

Figure 6: The low watermark advances as records move through
the system. In each snapshot, pending records are shown above
the timestamp axis, and completed records are shown below. New
records appear as pending work in successive snapshots, with
timestamp values ahead of the watermark. Data is not necessar-
ily processed in-order, and the low watermark reflects all pending
work in the system.

4.6 Timers
Timers are per-key programmatic hooks that trigger at a specific

wall time or low watermark value. Timers are created and run in
the context of a computation, and accordingly can run arbitrary
code. The decision to use a wall time or low watermark value is
dependent on the application – a heuristic monitoring system that



wants to push hourly emails (on the hour, regardless of whether
data was delayed) might use wall time timers, while an analytics
system performing windowed aggregates could use low watermark
timers. Once set, timers are guaranteed to fire in increasing times-
tamp order. They are journaled in persistent state and can survive
process restarts and machine failures. When a timer fires, it runs
the specified user function and has the same exactly-once guaran-
tee as input records. A simple implementation of dips in Zeitgeist
would set a low watermark timer for the end of a given time bucket,
and report a dip if the observed traffic falls well below the model’s
prediction.

The use of timers is optional – applications that do not have the
need for time-based barrier semantics can skip them. For example,
Zeitgeist can detect spiking queries without timers, since a spike
may be evident even without a complete picture of the data. If the
observed traffic already exceeds the model’s prediction, delayed
data would only add to the total and increase the magnitude of the
spike.

5. API
In this section, we give an overview of our API as it relates to

the abstractions in Section 4. Users implement a custom subclass
of the Computation class, shown in Figure 7, which provides meth-
ods for accessing all of the MillWheel abstractions (state, timers,
and productions). Once provided by the user, this code is then run
automatically by the framework. Per-key serialization is handled at
the framework level, and users do not need to construct any per-key
locking semantics.

class Computation {
// Hooks called by the system.
void ProcessRecord(Record data);
void ProcessTimer(Timer timer);

// Accessors for other abstractions.
void SetTimer(string tag, int64 time);
void ProduceRecord(

Record data, string stream);
StateType MutablePersistentState();

};

Figure 7: The MillWheel API consists of a parent Computation
class with access to per-key timers, state, and productions. Users
implement application logic by overriding ProcessRecord and Pro-
cessTimer.

5.1 Computation API
The two main entry points into user code are provided by the Pro-

cessRecord and ProcessTimer hooks, depicted in Figure 8, which
are triggered in reaction to record receipt and timer expiration, re-
spectively. Collectively, these constitute the application logic of a
computation.

Within the execution of these hooks, MillWheel provides system
functions to fetch and manipulate per-key state, produce additional
records, and set timers. Figure 9 illustrates the interaction between
these mechanisms. It draws upon our Zeitgeist system to show
the use of persistent state and timers in detecting dips in the query
stream. Again, note the absence of failure-recovery logic, which is
all handled automatically by the framework.

5.2 Injector and Low Watermark API

MillWheel System Binary

User Code: Computation

State 
API

Timer 
API

Produce 
API

ProcessRecord

ProcessTimer

Persistent State

RPCs

RPCs

Figure 8: The MillWheel system invokes user-defined processing
hooks in response to incoming RPCs. User code accesses state,
timers, and productions through the framework API. The frame-
work performs any actual RPCs and state modifications.

At the system layer, each computation calculates a low water-
mark value for all of its pending work (in-progress and queued de-
liveries). Persistent state can also be assigned a timestamp value
(e.g. the trailing edge of an aggregation window). This is rolled up
automatically by the system in order to provide API semantics for
timers in a transparent way – users rarely interact with low water-
marks in computation code, but rather manipulate them indirectly
through timestamp assignation to records.

Injectors: Injectors bring external data into MillWheel. Since in-
jectors seed low watermark values for the rest of the pipeline, they
are able to publish an injector low watermark that propagates to
any subscribers among their output streams, reflecting their poten-
tial deliveries along those streams. For example, if an injector were
ingesting log files, it could publish a low watermark value that cor-
responded to the minimum file creation time among its unfinished
files, as shown in Figure 10.

An injector can be distributed across multiple processes, such
that the aggregate low watermark of those processes is used as the
injector low watermark. The user can specify an expected set of in-
jector processes, making this metric robust against process failures
and network outages. In practice, library implementations exist
for common input types at Google (log files, pubsub service feeds,
etc.), such that normal users do not need to write their own injec-
tors. If an injector violates the low watermark semantics and sends
a late record behind the low watermark, the user’s application code
chooses whether to discard the record or incorporate it into an up-
date of an existing aggregate.

6. FAULT TOLERANCE

6.1 Delivery Guarantees
Much of the conceptual simplicity of MillWheel’s programming

model hinges upon its ability to take non-idempotent user code and
run it as if it were idempotent. By removing this requirement from
computation authors, we relieve them of a significant implementa-
tion burden.

6.1.1 Exactly-Once Delivery
Upon receipt of an input record for a computation, the MillWheel

framework performs the following steps:



// Upon receipt of a record, update the running
// total for its timestamp bucket, and set a
// timer to fire when we have received all
// of the data for that bucket.
void Windower::ProcessRecord(Record input) {

WindowState state(MutablePersistentState());
state.UpdateBucketCount(input.timestamp());
string id = WindowID(input.timestamp())
SetTimer(id, WindowBoundary(input.timestamp()));

}

// Once we have all of the data for a given
// window, produce the window.
void Windower::ProcessTimer(Timer timer) {

Record record =
WindowCount(timer.tag(),

MutablePersistentState());
record.SetTimestamp(timer.timestamp());
// DipDetector subscribes to this stream.
ProduceRecord(record, "windows");

}

// Given a bucket count, compare it to the
// expected traffic, and emit a Dip event
// if we have high enough confidence.
void DipDetector::ProcessRecord(Record input) {

DipState state(MutablePersistentState());
int prediction =

state.GetPrediction(input.timestamp());
int actual = GetBucketCount(input.data());
state.UpdateConfidence(prediction, actual);
if (state.confidence() >

kConfidenceThreshold) {
Record record =

Dip(key(), state.confidence());
record.SetTimestamp(input.timestamp());
ProduceRecord(record, "dip-stream");

}
}

Figure 9: ProcessRecord and ProcessTimer definitions for compu-
tations which compute window counts and dips based on an exist-
ing model using low watermark timers.

• The record is checked against deduplication data from previous
deliveries; duplicates are discarded.

• User code is run for the input record, possibly resulting in pend-
ing changes to timers, state, and productions.

• Pending changes are committed to the backing store.
• Senders are ACKed.
• Pending downstream productions are sent.

As an optimization, the above operations may be coalesced into
a single checkpoint for multiple records. Deliveries in MillWheel
are retried until they are ACKed in order to meet our at-least-once
requirement, which is a prerequisite for exactly-once. We retry be-
cause of the possibility of networking issues and machine failures
on the receiver side. However, this introduces the case where a re-
ceiver may crash before it has a chance to ACK the input record,
even if it has persisted the state corresponding to successful pro-
cessing of that record. In this case, we must prevent duplicate pro-
cessing when the sender retries its delivery.

The system assigns unique IDs to all records at production time.
We identify duplicate records by including this unique ID for the
record in the same atomic write as the state modification. If the
same record is later retried, we can compare it to the journaled
ID, and discard and ACK the duplicate (lest it continue to retry in-

// Upon finishing a file or receiving a new
// one, we update the low watermark to be the
// minimum creation time.
void OnFileEvent() {
int64 watermark = kint64max;
for (file : files) {
if (!file.AtEOF())

watermark =
min(watermark, file.GetCreationTime());

}
if (watermark != kint64max)
UpdateInjectorWatermark(watermark);

}

Figure 10: A simple file injector reports a low watermark value
that corresponds to the oldest unfinished file.

definitely). Since we cannot necessarily store all duplication data
in-memory, we maintain a Bloom filter of known record finger-
prints, to provide a fast path for records that we have provably never
seen before. In the event of a filter miss, we must read the backing
store to determine whether a record is a duplicate. Record IDs for
past deliveries are garbage collected after MillWheel can guarantee
that all internal senders have finished retrying. For injectors that
frequently deliver late data, we delay this garbage collection by a
corresponding slack value (typically on the order of a few hours).
However, exactly-once data can generally be cleaned up within a
few minutes of production time.

6.1.2 Strong Productions
Since MillWheel handles inputs that are not necessarily ordered

or deterministic, we checkpoint produced records before delivery
in the same atomic write as state modification. We call this pat-
tern of checkpointing before record production strong productions.
Take the example of a computation that aggregates by wall time,
that is emitting counts downstream. Without a checkpoint, it would
be possible for that computation to produce a window count down-
stream, but crash before saving its state. Once the computation
came back up, it might receive another record (and add it to the
count) before producing the same aggregate, creating a record that
was bit-wise distinct from its predecessor but corresponded to the
same logical window! In order to handle this case correctly, the
downstream consumer would need complex conflict resolution logic.
With MillWheel, however, the simple solution just works, because
the user’s application logic has been made into an idempotent op-
eration by the system guarantees.

We use a storage system such as Bigtable [7], which efficiently
implements blind writes (as opposed to read-modify-write opera-
tions), making checkpoints mimic the behavior of a log. When
a process restarts, the checkpoints are scanned into memory and
replayed. Checkpoint data is deleted once these productions are
successful.

6.1.3 Weak Productions and Idempotency
Taken together, the combination of strong productions and exactly-

once delivery makes many computations idempotent with regard to
system-level retries. However, some computations may already be
idempotent, regardless of the presence of these guarantees (which
come with a resource and latency cost). Depending on the seman-
tic needs of an application, strong productions and/or exactly-once
can be disabled by the user at their discretion. At the system level,
disabling exactly-once can be accomplished simply by skipping the
deduplication pass, but disabling strong productions requires more
attention to performance.



For weak productions, rather than checkpointing record produc-
tions before delivery, we broadcast downstream deliveries optimisti-
cally, prior to persisting state. Empirically, this introduces a new
problem, in that the completion times of consecutive stages of the
pipeline are now strictly coupled as they wait for downstream ACKs
of records. Combined with the possibility of machine failure, this
can greatly increase end-to-end latency for straggler productions as
pipeline depth increases. For example, if we assume (rather pes-
simistically) that there is a 1% chance that any machine will fail
during a given minute, then the probability that we will be waiting
on at least one failure increases disastrously with pipeline depth –
for a pipeline of depth 5, a given production could have nearly a 5%
chance of experiencing a failure every minute! We ameliorate this
by checkpointing a small percentage of straggler pending produc-
tions, allowing those stages to ACK their senders. By selectively
checkpointing in this way, we can both improve end-to-end latency
and reduce overall resource consumption.

In Figure 11, we show this checkpointing mechanism in action.
Computation A produces to Computation B, which immediately
produces to Computation C. However, Computation C is slow to
ACK, so Computation B checkpoints the production after a 1-second
delay. Thus, Computation B can ACK the delivery from Computa-
tion A, allowing A to free any resources associated with the produc-
tion. Even when Computation B subsequently restarts, it is able to
recover the record from the checkpoint and retry delivery to Com-
putation C, with no data loss.

Computation A Computation CComputation B

Produce
Produce 

checkpoint
ACK 

ACK

 delete 
checkpoint

1 sec

1.3 sec X B restarts

Replay production

Figure 11: Weak production checkpointing prevents straggler pro-
ductions from occupying undue resources in the sender (Computa-
tion A) by saving a checkpoint for Computation B.

The above relaxations would be appropriate in the case of a
pipeline with idempotent computations, since retries would not af-
fect correctness, and downstream productions would also be retry-
agnostic. A real-world example of an idempotent computation is a
stateless filter, where repeated deliveries along input streams will
not change the result.

6.2 State Manipulation
In implementing mechanisms to manipulate user state in Mill-

Wheel, we discuss both the “hard” state that is persisted to our
backing store and the “soft” state which includes any in-memory
caches or aggregates. We must satisfy the following user-visible
guarantees:
• The system does not lose data.
• Updates to state must obey exactly-once semantics.

• All persisted data throughout the system must be consistent at
any given point in time.

• Low watermarks must reflect all pending state in the system.
• Timers must fire in-order for a given key.

To avoid inconsistencies in persisted state (e.g. between timers,
user state, and production checkpoints), we wrap all per-key up-
dates in a single atomic operation. This results in resiliency against
process failures and other unpredictable events that may interrupt
the process at any given time. As mentioned previously, exactly-
once data is updated in this same operation, adding it to the per-key
consistency envelope.

As work may shift between machines (due to load balancing,
failures, or other reasons) a major threat to our data consistency
is the possibility of zombie writers and network remnants issuing
stale writes to our backing store. To address this possibility, we
attach a sequencer token to each write, which the mediator of the
backing store checks for validity before allowing the write to com-
mit. New workers invalidate any extant sequencers before start-
ing work, so that no remnant writes can succeed thereafter. The
sequencer is functioning as a lease enforcement mechanism, in a
similar manner to the Centrifuge [3] system. Thus, we can guaran-
tee that, for a given key, only a single worker can write to that key
at a particular point in time.

This single-writer guarantee is also critical to the maintenance
of soft state, and it cannot be guaranteed by depending on transac-
tions. Take the case of a cache of pending timers: if a remnant write
from another process could alter the persisted timer state after said
cache was built, the cache would be inconsistent. This situation is
illustrated by Figure 12, where a zombie process (B) issues a trans-
action that is delayed on the wire, in response to a production from
A. Before the transaction begins, B’s successor, B-prime, performs
its initial scan of pending timers. After this scan completes, the
transaction is applied and A is ACKed, leaving B-prime with in-
complete timer state. The lost timer could be orphaned indefinitely,
delaying any of its output actions by an arbitrary amount of time.
Clearly, this is unacceptable for a latency-sensitive system.

Furthermore, this same situation could occur with a checkpointed
production, where it would remain unknown to the system by elud-
ing an initial scan of the backing store. This production would then
not be accounted for in the low watermark until it was discovered,
and in the intervening time, we might be reporting an erroneous
low watermark value to consumers. Furthermore, since our low
watermarks are monotonically increasing, we are unable to correct
an erroneous advancement in the value. By violating our low wa-
termark guarantees, a variety of correctness violations could occur,
including premature timer firings and incomplete window produc-
tions.

In order to quickly recover from unplanned process failures, each
computation worker in MillWheel can checkpoint its state at an
arbitrarily fine granularity (in practice, sub-second or per-record
granularity is standard, depending on input volume). Our use of
always-consistent soft state allows us to minimize the number of
occasions when we must scan these checkpoints to specific cases
– machine failures or load-balancing events. When we do perform
scans, these can often be asynchronous, allowing the computation
to continue processing input records while the scan progresses.

7. SYSTEM IMPLEMENTATION

7.1 Architecture
MillWheel deployments run as distributed systems on a dynamic

set of host servers. Each computation in a pipeline runs on one or
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Figure 12: Transactions cannot prevent inconsistencies in soft state.
Orphaned transactions may commit after a read-only scan has com-
pleted, causing inconsistent state in MillWheel’s timer system.

more machines, and streams are delivered via RPC. On each ma-
chine, the MillWheel system marshals incoming work and manages
process-level metadata, delegating to the appropriate user compu-
tation as necessary.

Load distribution and balancing is handled by a replicated mas-
ter, which divides each computation into a set of owned lexico-
graphic key intervals (collectively covering all key possibilities)
and assigns these intervals to a set of machines. In response to in-
creased CPU load or memory pressure (reported by a standard per-
process monitor), it can move these intervals around, split them, or
merge them. Each interval is assigned a unique sequencer, which is
invalidated whenever the interval is moved, split, or merged. The
importance of this sequencer was discussed in Section 6.2.

For persistent state, MillWheel uses a database like Bigtable [7]
or Spanner [9], which provides atomic, single-row updates. Timers,
pending productions, and persistent state for a given key are all
stored in the same row in the data store.

MillWheel recovers from machine failures efficiently by scan-
ning metadata from this backing store whenever a key interval is
assigned to a new owner. This initial scan populates in-memory
structures like the heap of pending timers and the queue of check-
pointed productions, which are then assumed to be consistent with
the backing store for the lifetime of the interval assignment. To
support this assumption, we enforce single-writer semantics (per
computation worker) that are detailed in Section 6.2.

7.2 Low Watermarks
In order to ensure data consistency, low watermarks must be im-

plemented as a sub-system that is globally available and correct.
We have implemented this as a central authority (similar to OOP
[19]), which tracks all low watermark values in the system and jour-
nals them to persistent state, preventing the reporting of erroneous
values in cases of process failure.

When reporting to the central authority, each process aggregates
timestamp information for all of its owned work. This includes any
checkpointed or pending productions, as well as any pending timers
or persisted state. Each process is able to do this efficiently by de-
pending on the consistency of our in-memory data structures, elim-
inating the need to perform any expensive queries over the backing
data store. Since processes are assigned work based on key inter-
vals, low watermark updates are also bucketed into key intervals,
and sent to the central authority.

To accurately compute system low watermarks, this authority
must have access to low watermark information for all pending

and persisted work in the system. When aggregating per-process
updates, it tracks the completeness of its information for each com-
putation by building an interval map of low watermark values for
the computation. If any interval is missing, then the low watermark
corresponds to the last known value for the missing interval until it
reports a new value. The authority then broadcasts low watermark
values for all computations in the system.

Interested consumer computations subscribe to low watermark
values for each of their sender computations, and thus compute
the low watermark of their input as the minimum over these val-
ues. The reason that these minima are computed by the workers,
rather than the central authority, is one of consistency: the central
authority’s low watermark values should always be at least as con-
servative as those of the workers. Accordingly, by having workers
compute the minima of their respective inputs, the authority’s low
watermark never leads the workers’, and this property is preserved.

To maintain consistency at the central authority, we attach se-
quencers to all low watermark updates. In a similar manner to our
single-writer scheme for local updates to key interval state, these
sequencers ensure that only the latest owner of a given key interval
can update its low watermark value. For scalability, the authority
can be sharded across multiple machines, with one or more compu-
tations on each worker. Empirically, this can scale to 500,000 key
intervals with no loss in performance.

Given a global summary of work in the system, we are able to
optionally strip away outliers and offer heuristic low watermark
values for pipelines that are more interested in speed than accu-
racy. For example, we can compute a 99% low watermark that
corresponds to the progress of 99% of the record timestamps in the
system. A windowing consumer that is only interested in approxi-
mate results could then use these low watermark values to operate
with lower latency, having eliminated its need to wait on stragglers.

In summary, our implementation of low watermarks does not re-
quire any sort of strict time ordering on streams in the system. Low
watermarks reflect both in-flight and persisted state. By establish-
ing a global source of truth for low watermark values, we prevent
logical inconsistencies, like low watermarks moving backwards.

8. EVALUATION
To illustrate the performance of MillWheel, we provide exper-

imental results that are tailored towards key metrics of stream-
processing systems.

8.1 Output Latency
A critical metric for the performance of streaming systems is

latency. The MillWheel framework supports low latency results,
and it keeps latency low as the distributed system scales to more
machines. To demonstrate the performance of MillWheel, we mea-
sured record-delivery latency using a simple, single-stage MillWheel
pipeline that buckets and sorts numbers. This resembles the many-
to-many shuffle that occurs between successive computations that
are keyed differently, and thus is a worst case of sorts for record
delivery in MillWheel. Figure 13 shows the latency distribution
for records when running over 200 CPUs. Median record delay
is 3.6 milliseconds and 95th-percentile latency is 30 milliseconds,
which easily fulfills the requirements for many streaming systems
at Google (even 95th percentile is within human reaction time).

This test was performed with strong productions and exactly-
once disabled. With both of these features enabled, median latency
jumps up to 33.7 milliseconds and 95th-percentile latency to 93.8
milliseconds. This is a succinct demonstration of how idempotent
computations can decrease their latency by disabling these two fea-
tures.



Figure 13: A histogram of single-stage record latencies between
two differently-keyed stages.

To verify that MillWheel’s latency profile scales well with the
system’s resource footprint, we ran the single-stage latency exper-
iment with setups ranging in size from 20 CPUs to 2000 CPUs,
scaling input proportionally. Figure 14 shows that median latency
stays roughly constant, regardless of system size. 99th-percentile
latency does get significantly worse (though still on the order of
100ms). However, tail latency is expected to degrade with scale –
more machines mean that there are more opportunities for things to
go wrong.

Figure 14: MillWheel’s average latency does not noticeably in-
crease as the system’s resource footprint scales.

8.2 Watermark Lag
While some computations (like spike detection in Zeitgeist) do

not need timers, many computations (like dip detection) use timers
to wait for the low watermark to advance before outputting aggre-
gates. For these computations, the low watermark’s lag behind real
time bounds the freshness of these aggregates. Since the low wa-
termark propagates from injectors through the computation graph,
we expect the lag of a computation’s low watermark to be propor-
tional to its maximum pipeline distance from an injector. We ran
a simple three-stage MillWheel pipeline on 200 CPUs, and polled
each computation’s low watermark value once per second. In Fig-
ure 15, we can see that the first stage’s watermark lagged real time
by 1.8 seconds, however, for subsequent stages, the lag increased

per stage by less than 200ms. Reducing watermark lag is an active
area of development.

Figure 15: Low watermark lag in a 3-stage pipeline. Breakdown:
{stage1: mean 1795, stdev 159. stage2: mean 1954, stdev 127.
stage3: mean 2081, stdev 140}

8.3 Framework-Level Caching
Due to its high rate of checkpointing, MillWheel generates sig-

nificant amounts of traffic to the storage layer. When using a stor-
age system such as Bigtable, reads incur a higher cost than writes,
and MillWheel alleviates this with a framework-level cache. A
common use case for MillWheel is to buffer data in storage until
the low watermark has passed a window boundary and then to fetch
the data for aggregation. This usage pattern is hostile to the LRU
caches commonly found in storage systems, as the most recently
modified row is the one least likely to be fetched soon. MillWheel
knows how this data is likely to be used and can provide a bet-
ter cache-eviction policy. In Figure 16 we measure the combined
CPU usage of the MillWheel workers and the storage layer, relative
to maximum cache size (for corporate-secrecy reasons, CPU usage
has been normalized). Increasing available cache linearly improves
CPU usage (after 550MB most data is cached, so further increases
were not helpful). In this experiment, MillWheel’s cache was able
to decrease CPU usage by a factor of two.

Figure 16: Aggregate CPU load of MillWheel and storage layer
v.s. framework cache size.



8.4 Real-world Deployments
MillWheel powers a diverse set of internal Google systems. It

performs streaming joins for a variety of Ads customers, many of
whom require low latency updates to customer-visible dashboards.
Billing pipelines depend on MillWheel’s exactly-once guarantees.
Beyond Zeitgeist, MillWheel powers a generalized anomaly-detection
service that is used as a turnkey solution by many different teams.
Other deployments include network switch and cluster health moni-
toring. MillWheel also powers user-facing tools like image panorama
generation and image processing for Google Street View.

There are problems that MillWheel is poorly suited for. Mono-
lithic operations that are inherently resistant to checkpointing are
poor candidates for inclusion in computation code, since the sys-
tem’s stability depends on dynamic load balancing. If the load bal-
ancer encounters a hot spot that coincides with such an operation,
it must choose to either interrupt the operation, forcing it to restart,
or wait until it finishes. The former wastes resources, and the latter
risks overloading a machine. As a distributed system, MillWheel
does not perform well on problems that are not easily parallelized
between different keys. If 90% of a pipeline’s traffic is assigned
a single key, then one machine must handle 90% of the overall
system load for that stream, which is clearly inadvisable. Compu-
tation authors are advised to avoid keys that are high-traffic enough
to bottleneck on a single machine (such as a customer’s language
or user-agent string), or build a two-phase aggregator.

If a computation is performing an aggregation based on low wa-
termark timers, MillWheel’s performance degrades if data delays
hold back low watermarks for large amounts of time. This can
result in hours of skew over buffered records in the system. Often-
times memory usage is proportional to skew, because an application
depends on low watermarks to flush this buffered data. To prevent
memory usage from growing without bound, an effective remedy
is to limit the total skew in the system, by waiting to inject newer
records until the low watermarks have advanced.

9. RELATED WORK
Our motivation for building a general abstraction for streaming

systems was heavily influenced by the success seen by MapReduce
[11] in transforming the world of batch processing, as illustrated by
the widespread adoption of Apache Hadoop [4]. Comparing Mill-
Wheel to existing models for streaming systems, such as Yahoo!
S4 [26], Storm [23], and Sonora [32], we find that their models
are insufficiently general for our desired class of problems. In par-
ticular, S4 and Sonora do not address exactly-once processing and
fault-tolerant persistent state, while Storm has only recently added
such support through Trident [22], which imposes strict ordering
requirements on transaction IDs in order to function. Logothetis, et
al, make similar arguments for the necessity of first-class user state
[20]. Ciel [25] targets general data processing problems, while dy-
namically generating the dataflow graph. Like MapReduce Online
[8], we see tremendous utility in making “early returns” available to
the user. Google’s Percolator [27] also targets incremental updates
to large datasets, but expects latencies on the order of minutes.

In evaluating our abstraction, we note that we fulfill the require-
ments for a streaming system as enumerated by Stonebraker, et
al [30]. Our flexibility toward out-of-order data is similar to the
OOP approach [19], which makes compelling arguments for the
necessity of a global low watermark calculation (rather than an
operator-level one) and convincingly denies the viability of static
slack values as a means of compensating for out-of-order data.
While we appreciate the operator-specific unification of streaming
and batch systems proposed by Spark Streaming [34], we believe

that MillWheel addresses a more general set of problems, and that
the microbatch model is not tenable without restricting users to
pre-defined operators. Specifically, this model depends heavily on
RDDs [33], which limit users to rollback-capable operators.

Checkpointing and recovery is a crucial aspect of any streaming
system, and our approach echoes many that came before it. Our
use of sender-side buffering resembles “upstream backup” in [14],
which also defines recovery semantics (precise, rollback, and gap)
that mirror our own flexible options for data delivery. While naı̈ve
upstream backup solutions can consume undue resources, as men-
tioned in Spark Streaming [34], our use of checkpoints and persis-
tent state eliminates these disadvantages. Furthermore, our system
is capable of significantly finer checkpoints than Spark Streaming
[34], which proposes backups every minute, and depends on ap-
plication idempotency and system slack for recovery. Similarly, S-
Guard [17] utilizes checkpoints more infrequently than MillWheel
(again, once per minute), though its operator partitioning scheme
resembles our key-based sharding.

Our low watermark mechanism parallels the punctuation [31] or
heartbeats [16] used in other streaming systems, like Gigascope
[10]. However, we do not interleave heartbeats with standard tu-
ples in our system, opting instead for a global aggregator, as in the
OOP system [19]. Our concept of low watermarks is also similar
to the low watermarks defined in OOP. We agree with their analy-
sis that aggregating heartbeats at individual operators is inefficient
and is better left to a global authority. This inefficiency is high-
lighted by Srivastava, et al, in [29], which discusses the mainte-
nance of per-stream heartbeat arrays at every operator. Addition-
ally, it establishes a similar distinction between the concepts of
user-defined timestamps (“application time”) and wall-clock time
(“system time”), which we have found to be tremendously useful.
We note the work of Lamport [18] and others [12] [15] in develop-
ing compelling time semantics for distributed systems.

Much of the inspiration for streaming systems can be traced back
to the pioneering work done on streaming database systems, such
as TelegraphCQ [6], Aurora [2], and STREAM [24]. We observe
similarities between components of our implementation and their
counterparts in streaming SQL, such as the use of partitioned op-
erators in Flux [28] for load balancing. While we believe our low
watermark semantic to be more robust than the slack semantic in
[2], we see some similarities between our concept of percentile low
watermarks and the QoS system in [1].
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[30] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. ACM SIGMOD
Record, 34(4):42–47, 2005.

[31] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in continuous data streams.
Knowledge and Data Engineering, IEEE Transactions on,
15(3):555–568, 2003.

[32] F. Yang, Z. Qian, X. Chen, I. Beschastnikh, L. Zhuang,
L. Zhou, and J. Shen. Sonora: A platform for continuous
mobile-cloud computing. Technical report, Technical Report.
Microsoft Research Asia.



[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, 2011.

[34] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: an efficient and fault-tolerant model for
stream processing on large clusters. In Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Ccomputing,
pages 10–10. USENIX Association, 2012.


