
Cross-Layer Scheduling in Cloud Systems

Hilfi Alkaff, Indranil Gupta and Luke M. Leslie
Department of Computer Science,

University of Illinois at Urbana-Champaign
Email: {alkaff2, indy, lmlesli2}@illinois.edu

Abstract—Today, cloud computing engines such as stream-
processing Storm and batch-processing Hadoop are being increas-
ingly run atop software-defined networks (SDNs). In such cloud
stacks, the scheduler of the application engine (which allocates
tasks to servers) remains decoupled from the SDN scheduler
(which allocates network routes). We propose 1 a new approach
that performs cross-layer scheduling between the application
layer and the networking layer. This coordinated scheduling
orchestrates the placement of application tasks (e.g., Hadoop
maps and reduces, or Storm bolts) in tandem with the selection
of network routes that arise from these tasks. We present results
from both cluster deployment and simulation, and using two
representative network topologies: Fat-tree and Jellyfish. Our
results show that cross-layer scheduling can improve throughput
of Hadoop and Storm by between 26% to 34% in a 30-host
cluster, and it scales well.

Keywords—Cloud computing, Hadoop, Storm, SDN, Cross-layer

I. INTRODUCTION

Real-time data analytics is a quickly-growing segment of
industry. This includes, for instance, processing data from
advertisement pipelines at Yahoo!, Twitter’s real-time search,
Facebook’s trends, real-time traffic information, etc. In all
these applications, it is critical to optimize throughput as this
metric is correlated with revenues (e.g., in ad pipelines), with
user satisfaction and retention (e.g., for real-time searches),
and with safety (e.g., for traffic).

Today, industry uses two categories of data analytics en-
gines for real-time data analytics. The first category consists
of cloud batch-processing systems such as Hadoop [14], [6],
Hive [49], Pig [38], DryadLinq [54], etc. The second genera-
tion includes new stream-processing engines such as Storm [3].

Inside datacenters, these data analytics engines are run
atop a variety of networks. Some datacenters use hierarchical
network topologies like the Fat-tree [31], while others use
newer networks like Jellyfish [46], Scafida [24], VL2 [19],
DCell [22], etc. Yet, the scheduler of the application engine
(which allocates tasks to servers) remains decoupled from the
SDN scheduler (which allocates network routes). Concretely,
while the application scheduler performs task placement in
a manner that is aware of the data placement at servers, or
it might adapt network flows in an end-to-end manner, e.g.,
[12], it does not usually coordinate with the network layer
underneath.

In this paper, we explore a cross-layer approach to schedul-
ing in such cloud stacks. To achieve generality across cloud

1This work was supported in part by AFOSR/AFRL grant FA8750-11-2-
0084, NSF grant CCF 0964471, NSF grant CNS 1319527, and NSF grant
CNS 1409416.

stacks, we need to be general both: i) across cloud engines, as
well as ii) across multiple types of networks. To address the
first challenge, we observe that, as far as real-time processing
is concerned, both batch and streaming cloud engines can be
represented as dataflow graphs. Figure 1 shows a sample Storm
application graph, where each vertex is a computation node,
called a bolt in Storm (source bolts are called spouts). Edges
represent the flow of data, and data takes the form of tuples.
Each bolt processes the tuples by, e.g., filtering, mapping,
joining, etc. The overall Storm graph for an application, called
a Storm topology, is allowed have to cycles. At the same time,
Figure 2 shows that Hadoop, either single stage or in multiple
stages as in Hive or Pig, can also be represented as a dataflow
graph from map tasks to reduce tasks (and, if necessary, to
another level of map tasks, then reduce tasks, and so forth).

We call each vertex of the dataflow graph a Computation
Node. A Computation Node is a bolt in Storm, while in
Hadoop it is a map task or reduce task. We observe that
dataflow graphs arising from batch-processing frameworks like
Hadoop are more structured than, and are thus a subset of,
those from stream-processing engines like Storm, e.g., the
former are constrained to be acyclic and staged.

To address the second challenge (generality across net-
works), we leverage the abstraction of Software-Defined Net-
working (SDN), manifested in popular systems like Open-
Flow [34]. The SDN approach to managing networks splits
the control plane from the data plane, and allows the former
to live in a centralized server called the SDN Controller. The
controller installs forwarding rules inside the routers, monitors
flow status, and can change these rapidly [9].

The SDN controller allows us to generally handle any
topology in the underlying network. Our only requirement
is that there be multiple paths between any given pair of
end hosts. To be representative, we evaluate our cross-layer
approach on two topologies that lie at opposite ends of
the diversity spectrum. Our first topology, the Fat-tree, is
structured, and allows diversity for only a limited number of
routes, i.e., routes traversing closer to the root. Our second
topology, Jellyfish [46], uses a random graph for the network,
thus offering an extremely high diversity of route choices
for all host pairs. Any other network topology would lie in-
between Fat-tree and Jellyfish on this diversity spectrum, and
its behavior with our cross-layer approach can be interpreted
from our results for Fat-tree and Jellyfish.

The goal of our cross-layer approach is a placement of tasks
and a selection of routes that together achieves high throughput
for the application. Our approach involves the application-level
scheduler using available end-to-end bandwidth information to
schedule tasks at servers. The application scheduler calls the



Fig. 1: Stream-processing engines such as Storm can be
represented using a dataflow graph. Each vertex is a bolt
processing data, and edges show the flow of data.

Fig. 2: Batch-processing engines such as Hadoop, Hive, and
Pig can be represented as a dataflow graph.

SDN controller which finds the best routes for those end-to-end
paths. This is done iteratively. While making their decisions,
each of the application scheduler and the SDN scheduler need
to deal with a very large state space. There are combinatorially
many ways of assigning tasks to servers, as well as routes to
each end-to-end flow.

To address the state space challenge, we use Simulated An-
nealing. Inspired by metallurgy, this approach [50] probabilis-
tically explores the state space and converges to an optimum
that is close to the global optimum. It avoids getting stuck
in local optima by utilizing a small probability of jumping
away from it – for convergence, this probability decreases over
time. We realize the simulated annealing approach in both the
application level and in the SDN level.

The technical contributions of this paper are as follows:

• We design a novel cross-layer scheduling framework
enabling cloud applications to coordinate with the
underlying SDN network scheduler.

• We show how to quickly locate near-optimal cross-
layer scheduling decisions via Simulated Annealing.

• We show generality by implementing our approach
for Hadoop and Storm at the application level, and in
Fat-tree and Jellyfish network topologies.

• We perform real deployment as well as simulated
cluster experiments. In a 30-host cluster, our approach

improves throughput for Hadoop by 26-31% and for
Storm by 30-34% (ranges depend on network topol-
ogy).

This paper is structured as follows. Section II presents our
Simulated Annealing-based approach to scheduling. Section III
discusses implementation details for both Storm and Hadoop.
Section IV presents our experiments. We present related work
in Section V, and conclude in Section VI.

II. DESIGN

In this section, we present our cross-layer scheduling
approach inspired by Simulated Annealing (SA).

Our cross-layer scheduling framework is run whenever a
new job arrives. Our approach computes good placement and
routing paths for the new job. For already-running jobs, their
task placement and routing paths are left unchanged – this is
due to three motivating reasons: i) it reduces the effect of the
new job on already-running jobs; ii) migrating already-running
tasks may be prohibitive, especially since real-time analytics
jobs are typically short; and iii) the state space is much larger
when considering all running jobs, instead of just the newly
arrived job. At the same time, our SA approach uses a utility
function that considers the throughput for all jobs in the cluster.

Notation: For a network topology graph, G, its vertex set,
V , comprises both the physical servers (i.e., servers) and the
routers. Its edge set, E, consists of the links between servers.
Each job Ji that is running on this topology contains Ti tasks.
We denote a server as Mi.

Pre-Computation of the Topology Map: When our data
processing framework starts, we run a modified version of the
Floyd-Warshall Algorithm [16] in order to compute, for each
pair of hosts, the k shortest paths between that pair. The results
of this computation are then cached in a hash table, which we
call the Topology Map. The keys of the Topology Map consist
of a pair of servers, (Mi,Mj), where Mi,Mj ∈ V and i < j.
The values associated with each key are the k shortest paths,
which we call K1,K2, · · · ,Kk. Each path is stored along with
the available bandwidth on each of its constituent links. The
available bandwidth is updated periodically by the SDN layer.

We argue that the Topology Map hash table is small in size.
For instance, in a 1000 server-cluster, we found that topologies
such as Jellyfish and Fat-tree (with an appropriate number of
routers) have at most 10-hop acyclic paths between any two
nodes. Setting k = 10 implies that the number of entries that
need to be stored is at most = 10002/2 nodes × 10 hops/node
pair × 10 different paths = 50 Million. With a few bytes for
each entry, this is still O(GB), which can be maintained in-
memory in a typical commercial off-the-shelf (COTS) server.

This hash table can be further compacted because the k
shortest paths for (Mi,Mj), are likely to overlap in their
intermediate routers. Thus, instead of storing K1,K2, · · · ,Kk

individually, we store the subgraph G
′

i,j that is a union of
these k paths. For the above example with 1000 servers, this
compacted hash table was only 6 MB.

Finally, creating this hash table is fast – for our running
example above, creation takes around 3 minutes.



States: The SA approach requires us to define the notions
of states and state neighborhood. Since our framework works
at two levels, these mean different things at each level. In the
routing level, each state S consists of all the k-shortest paths
P1, P2, · · · in G whose end-points are a pair of servers. Thus,
each Pi is obtained from the Topology Map. We define the
neighbors of a state S as those states that differ from S in
exactly one path Pi.

At the application level, a state S consists of the current
placements of the worker tasks across servers Mi ∈ V . The
neighbors of a state S are defined as those states that differ
from S in the placement of exactly one worker task.

State Space Exploration: Simulated Annealing (SA) [50] is
an iterative approach to reach an optimum in a state space.
Given the current state S, the core SA heuristic considers
some of its neighboring states S ′, and probabilistically decides
between either: i) moving the system to a neighbor state S ′,
or ii) staying in state S. This is executed iteratively until a
convergence criterion is met.

When a user submits a job (Hadoop job or Storm appli-
cation topology), our system runs in two phases. In the first
phase, our application-level scheduler consults the Topology
Map to determine the servers on which placement will yield
the best throughput, along with the network paths that are the
best matches for the end-to-end flows in that placement. As
mentioned earlier, we neither change the task placement for
already-running jobs, nor their allocated paths. In the second
phase, the SDN controller sets up the requested paths.

We discuss the first phase in more detail. During this phase,
Algorithm 1 is run at both the application and routing levels.
The former level calls the functions INITSTATE and GENSTATE
from Algorithm 2, while the latter calls them from Algorithm
3. The primary SA works at the application level, and drives
the network-level SA. This means that every iteration of the
SA at the application level calls the routing-level SA as a black
box (line 16 in GENSTATE of Algorithm 2), which in turn runs
SA on the network paths for the end hosts in the current state,
converges to a good set of paths, and then returns. When the
application-level SA converges, we have a new state and the
new job can be scheduled accordingly.

Algorithm 1 begins by initializing the state in the function
INITSTATE. Thereafter, in each iteration (step) it first runs
GENSTATE to generate the neighboring states of the current
state and selects one prospective next-state from among these.
Then, the utility of this prospective state is computed by the
COMPUTEUTIL function.

To calculate a potential next-state, the application-level
SA (GENSTATE) uses a de-allocation heuristic to select one
Computation Node. Then, it de-allocates it from its current
server, and then allocates it to new server chosen at random.

Our de-allocation heuristic works as follows. From Sec-
tion I, recall that a real-time data analytics application is a
graph of Computation Nodes. A Computation Node which is
adjacent to either a source Computation Node (called a spout in
Storm) or a sink Computation Node is more likely (than other
Computation Nodes) to directly affect the overall throughput of
the new job. Hence, for each Computation Node, Ci, we first
calculate its priority, PCi

= number of source Computation

Algorithm 1 Simulated Annealing Algorithm (for both Appli-
cation Level and Routing Level)

1: function MAIN(graph, hosts)
2: bestUtil← 0
3: bestState← Null
4: for i← 1 to 5 do
5: t← initialTemperature
6: currState←INITSTATE(graph, hosts)
7: currUtil← 0
8: for j ← 1 to maxStep do
9: newState←GENSTATE(graph, hosts, currState)

10: newUtil←COMPUTEUTIL(graph, newState)
11: r ← random()
12: if TRANSITION(currUtil, newUtil, t)>r then
13: currState← newState
14: currUtil← newUtil
15: end if
16: if currUtil ≥ bestUtil then
17: bestState← currState
18: bestUtil← currUtil
19: end if
20: t← t0.95

21: end for
22: end for
23: return bestState
24: end function
25:
26: function TRANSITION(oldUtil, newUtil, temperature)
27: if newUtil > oldUtil then
28: return 1
29: else
30: return e

newUtil−oldUtil
temperature

31: end if
32: end function
33:
34: function COMPUTEUTIL(graph, state)
35: util← 0
36: jobs← existing jobs + new job
37: for Each sink Computation Node s in jobs do
38: sUtil← inf
39: for Each root Computation Node of s do
40: path← TopologyMap.get(sink, root)
41: sUtil← min(sUtil, min bandwidth in path)
42: end for
43: util← util + sUtil
44: end for
45: return util
46: end function

Nodes adjacent to Ci + number of sink Computation Nodes
adjacent to Ci. Then, we probabilistically select a Computation
Node with probability = PCi∑

j PCj
.

At the routing-level, our system uses a de-path heuristic
that selects one host pair and removes its route, and then a path
heuristic to assign this host pair a new route. These appear in
GENSTATE in Algorithm 3.

We first describe our path heuristic. We prefer to allocate
paths that have the lowest number of hops. This has two ad-
vantages: i) it minimizes the latency and maximizes bandwidth



Algorithm 2 Simulated Annealing Functions at the Applica-
tion Level (Task Placement)

1: function INITSTATE(graph, servers)
2: currAllocation← {}
3: for Each task t in graph.ComputationNode() do
4: server ← random(servers)
5: currAllocation[server].add(t)
6: end for
7: return currAllocation
8: end function
9:

10: function GENSTATE(graph, servers, currAllocation)
11: task ← de-alloc heuristic(graph.ComputationNode())
12: server ← currAllocation.find(task)
13: DEALLOCATE(task, server)
14: newMachine← random(servers)
15: currAllocation[newMachine]← task
16: routes← MAIN(graph, servers) // routing level SA
17: Set the routes for currAllocation
18: return currAllocation
19: end function

Algorithm 3 Simulated Annealing Functions at the Routing
Level (SDN Routes)

1: function INITSTATE(graph, commMachines)
2: currRoutes← {}
3: for Each pair in commMachines do
4: routes← TopologyMap.get(pair)
5: currRoutes[pair] = random(routes)
6: end for
7: return currRoutes
8: end function
9:

10: function GENSTATE(graph, commMachines, currRoutes)
11: commPair ← de-path heuristic(currRoutes)
12: routes← TopologyMap.get(commPair)
13: newRoute← path heuristic(routes)
14: currRoutes[commPair]← newRoute
15: return currRoutes
16: end function

between the end hosts, and ii) it intersects and interferes with
the least number of other network routes. However, there might
be multiple such lowest-hop paths. Among these, we select that
path which has the highest available bandwidth (thereafter, ties
are broken randomly).

The de-path heuristic is the inverse of the path heuristic.
That is, we prefer to de-allocate the route which has highest
number of hops. We break ties by selecting the path with the
lowest available bandwidth.

Utility Function and Transitions: The utility function for a
given state (in the SA algorithm) is calculated by the COMPU-
TEUTIL function. The utility function estimates the effective
throughput across all jobs in the cluster, both already-running
and the new job. It does so by iterating across all the sink
Computation Nodes of these jobs. For each sink, s, it finds all
its parent Computation Nodes, t, and the network bandwidth
(in the currently chosen network paths) from t to s. It then
calculates the minimum bandwidth among all the parents of s.

This is the utility of s. We use minimum bandwidth because
an application’s overall throughput is bottlenecked by the
minimum bandwidth between source and sink nodes. The total
utility of a state is then computed as the sum of utilities of
all sink Computation Nodes, across all the existing jobs in the
cluster along with sink Computation Nodes of the new job.

Next, the SA approach decides in the TRANSITION function
whether to transition to the new state or stay in the old
state. If the new total utility (overall throughput) of the new
proposed state, newUtil, is greater than the current total utility,
currUtil, we always transition to the new state. If the new
utility is lower, however, we transition with a probability that
is related to both the difference in utilities and how long the
SA algorithm has been running. First, if the utility difference is
large, then the probability of transitioning is small. However,
if the utility difference is small, meaning the prospective new
state is worse in utility but not too far below the current status,
then there is a good probability of transitioning. Second, the
SA algorithm has a higher probability of making such jumps
early on – later on, the temperature of the SA would have
grown small and the probability of transitioning would thus be
small. This ensures eventual convergence of the SA algorithm.
Finally, to make our SA exploration more robust, we repeat
the entire SA exploration 5 additional times: this helps ensure
that we are not stuck in a local optima.

While our current utility function accounts only for band-
width, COMPUTEUTIL can be extended by considering other
metrics, such as CPU utilization, I/O utilization, etc., for the
constituent tasks. As a result, our approach can be combined
with existing approaches such as Mesos [25], Spark [56], etc.

Fault-tolerance and Dynamism: Upon a failure or change
in the network, the SA algorithm can be re-run quickly. The
SDN controller monitors the link status in the background.
Upon an update to any link’s bandwidth, or addition or removal
of links, the SDN controller calls the application scheduler,
which then updates its Topology Map. Thereafter, we run the
SA algorithm, but only at the routing level, and only for flows
that use the updated link. This reduces the explored state space.
Upon a server failure, the application-level SA scheduler runs
only for the affected tasks (and it calls the routing-level SA).

To support faster indexing for link failures, our approach
also maintains a parallel hash table to the Topology Map,
wherein the key is an edge Ei from the network topology
graph, and the associated value is the set of end host pairs
who are using Ei in at least one of their k shortest paths. This
facilitates fast edge updates upon network changes.

III. IMPLEMENTATION

In this section, we discuss implementation details of how
we integrated our cross-layer scheduling approach into the
Storm scheduler and the Hadoop YARN scheduler.

A. Storm

Background: Storm processes streams, defined as unbounded
sequences of tuples. As shown in Figure 1, there are five
main abstractions in Storm: bolts (Computation Node in the
dataflow graph), spouts (source Computation Nodes), sink
bolts, topologies (the entire dataflow graph for one job), and



stream groupings (how tuples are grouped before being sent to
a bolt). Thus, in the case of Figure 1, by the above definitions,
V1 and V2 are spouts, V1-V5 are bolts, and V5 is a sink.

Storm allows the user to specify a parallelism level for each
bolt: the bolt is then parallelized into that many tasks. Our SA
approach treats these tasks as our schedulable tasks. (Within a
bolt, stream grouping decides which data goes to which tasks,
e.g., hash-based, range-sharded by key, etc..)

When the Storm cluster first starts, each of the Storm
master nodes runs a daemon called Nimbus [3], which is
responsible for distributing code and monitoring the status of
the worker servers. Each server (worker) runs a daemon called
the Supervisor, which listens for commands from Nimbus. In
order to remain stateless and fail-fast, Nimbus and Supervisor
servers do not communicate directly. Instead, they utilize
Zookeeper [26], a centralized service that provides distributed
synchronization and group services.

Cross-Layer Scheduling Implementation: We modified
Nimbus to contact the centralized SDN controller and obtain
information about the underlying topology. This is done at start
time, as well as upon changes in the system (e.g., upon a new
job arrival, or when a link is added or removed). When a new
job is submitted, our SA Algorithm from Section II is called
first, which then places the bolts (including sinks) and spouts
accordingly on the servers. The algorithm then asks the SDN
controller to allocate the chosen paths for each host pair.

B. Hadoop

Background: The latest versions of Hadoop (2.x) use the new
YARN scheduler [51]. YARN decouples cluster scheduling
from job-related functions: the former lives in a Resource
Manager (RM), while the latter is in a per-job Application
Master (AM). The AM negotiates with the RM for each
resource request (e.g., a container for a task). Each server also
runs a daemon called the Node Manager (NM) for monitoring
and local resource allocation. When an AM has been granted
resources by the RM on a server, the AM forwards this
information to the server’s NM, which starts the task.

Cross-Layer Scheduling Implementation: We modified the
RM to contact the SDN controller and obtain information about
the underlying topology. This is done at start time, as well as
upon changes in the system (as with Storm). When a new job
is submitted, the RM receives from the AM the number of map
tasks and reduce tasks in that job. With this information, our
cross-layer scheduling framework places these tasks by using
our SA Algorithm from Section II.

In MapReduce/Hadoop, the predominant network traffic is
the “shuffle” traffic, which carries data from the map tasks
to the appropriate reduce tasks. HDFS nodes also become a
server node in our approach, which is then considered as a
parameter during our SA algorithm. In either case, once the
task placement has been done using our SA algorithm, the RM
asks the SDN controller to allocate the paths for each pair of
communicating tasks (map to reduce in MapReduce, and map
to reduce and reduce to map in Hive/Pig).

IV. EVALUATION

In this section, we evaluate the following questions about
our cross-layer scheduling approach implemented in Hadoop

Fig. 3: Cross-layer Approach’s Throughput and Improvement
in Fat-tree topology for Storm. Our SA approach improves
throughput of vanilla Storm up to 30.0%.

Fig. 4: Cross-layer Approach’s Throughput and Improvement
in Jellyfish topology for Storm. Our SA approach improves
throughput of vanilla Storm up to 34.1%.

and Storm:

1) What is the effect on throughput due to the adaptive
SA algorithm running at the routing level, at the
application level, and the cross-layer scheduling?

2) How does the system scale with number of servers?
3) How fast does our system make scheduling decisions?
4) How much are job completion times affected?

We use two representative network topologies to perform
our experiments: Fat-tree [31] and Jellyfish [46]. These two
choices are conveniently located at opposite ends of a spec-
trum – Fat-tree is a structured (and hierarchical) topology
with limited route diversity, while Jellyfish is an unstructured
(and random) topology with high route diversity. Most other
existing networks would fall in between these two ends of
the spectrum. Thus, our experimental results with these two



topologies should not be seen as merely samples in the
space of topologies, but rather, given any other topology,
its performance under our approach would lie somewhere in
between that of Fat-tree and that of Jellyfish.

We present both deployment experiments on Emulab [53],
and simulation results. For the former, due to the paucity
of SDN testbeds, we wrote our own software router using
ZeroMQ [4] and Thrift [2], and deployed it in Emulab.

For a given number of servers, we create the network
topologies as follows. To create a Fat-tree topology, we create
a large enough network topology that can accommodate the
number of servers. Then, any non-core routers of the Fat-tree
topology not connected to any server are pruned. In general,
the Fat-tree topology can support m3

4 nodes, where m is the
number of links per routers. We use m = 5 links per router.
Thereafter, we set up the Jellyfish topology using the same
number of per-router links as the Fat-tree topology (m = 5).

A. Storm Deployment Experiments

Setup: Our Storm experiments are run on Emulab servers
with a single 3 GHz processor, 2 GB of RAM and 200 GB
disk, running Ubuntu 12.04. Network links are 100 MBps.

We generate Storm application topologies (dataflow
graphs) as follows. Each topology has two root nodes. There
are a total of 10 bolts in the system. The spouts and bolts are
allocated a random number of children sample from a Gaussian
distribution with µ = 2 = σ. Each spout generates between
1 MB to 100 MB of data – these tuples are of size 100 B.
In order to measure raw network performance, bolts do not
perform any processing but instead merely forward tuples they
receive. This allows us to focus on the systems impact rather
than be application-dependent.

Storm jobs (topologies) are submitted to the cluster at the
rate of 10 jobs/minute, and each trial runs for 10 minutes.
Each spout attempts to push tuples as fast as possible, thus
saturating the system throughput.

Throughput Results: Figures 3 and 4 show how the
throughput scales with increasing Emulab cluster size in two
topologies. Four systems are shown: “Random” uses random
placement and routing 2, “Routing” uses SA at only the routing
level, “Application” uses SA at only the application level, and
“Both” uses the cross-layer scheduler. The bar graphs plot the
raw throughput achieved by the system, while the lines plot
the percentage improvement over the random routing.

In Fat-tree (Figure 3), at 10 hosts, without any of our
scheduling, the average job throughput is 20 MBps. When we
turn on the application-level scheduler, the average throughput
of the jobs rises by only 7.5%. Using only the routing-level
scheduler, the improvement is 9.1%. When we have both of
them turned on at the same time, the throughput improvement
is 13.0%. This shows that the cross-layer approach is better
than application-only or routing-only approaches.

As the number of hosts, routers, and links are increased, we
observe that the percentage throughput improvement steadily

2We compare against Random since: i) existing schedulers are not network-
aware; and ii) our techniques can be orthogonally combined with CPU- and
I/O-aware scheduling (Section II).

Fig. 5: Fault-tolerance of SA in Storm: Average task through-
put intervals during one run of 5 topologies running in a
Jellyfish cluster of 30 machines. 10% links failed at 500 s.
Links brought back up at 800 s.

increases with scale. At 30 hosts, the throughput improvement
of Application, Routing and Both rise to 21.1%, 22.7% and
30.0%, respectively.

Figure 4 shows similar results for the Jellyfish network.
When the number of hosts is 10, the percentage throughput
improvement offered by Application, Routing and Both are
10.9%, 14.5% and 18.1%, respectively. When we increase the
number of hosts to 30, the throughput improvement of the
three increases to 21.2%, 23.1% and 34.1%, respectively.

From these two figures, we observe two trends. Firstly,
since Jellyfish has a larger diversity of routes than Fat-tree,
the improvement offered by each of Application, Routing
and Both schedulers are higher for Jellyfish. Secondly, the
throughput improvement scales with the number of hosts and
routers. Essentially, more hosts and routers implies more route
possibilities for the network scheduler to choose among.

Fault-tolerance: We run 5 topologies in a Jellyfish cluster
of 30 servers and 30 routers. Figure 5 shows that at 500 s,
we fail 10% of the links among the ones being used by at
least one topology. At 800 s, these links are brought back up.
Right after the failure, the throughput plummets but recovers
quickly (within 0.4 s) to within 6.8% of the pre-failure value.
After link recovery, the scheduler recovers quickly to within
2% of the pre-failure throughput.

B. Hadoop YARN Deployment Experiments

Setup: Our Hadoop YARN deployment experiments use the
same Emulab clusters and network topologies as Section IV-A.

We inject a job workload from the Facebook workload pro-
vided by the SWIM benchmark [5], with mappers forwarding
data to reducers. Jobs are injected at the rate of 1 job/s, while
map to reduce shuffle traffic ranges from 100 B to 10 GB.

Throughput Results: Figures 6 and 7 show the throughput
and improvement due to application, routing, and cross-layer



Fig. 6: Cross-layer Approach’s Throughput and Improvement
in Fat-tree topology for Hadoop. Our SA approach improves
throughput of vanilla Hadoop by up to 26.0%.

Fig. 7: Cross-layer Approach’s Throughput and Improvement
in Jellyfish topology for Hadoop. Our SA approach improves
throughput of vanilla Hadoop by up to 31.9%.

(“Both” bars and lines) under the Fat-tree and Jellyfish topolo-
gies respectively (same meanings as Section IV-A).

In Fat-tree (Figure 6), at 10 hosts, without any of our
scheduling, the average job throughput is 20 MBps. When we
turn on the routing and application level SA, the throughput
increases by 7.5% and 5% respectively. With cross-layer
scheduling, the throughput improvement is 9%. At 30 hosts,
the cross-layer’s throughput improvement grows to 26%.

Similar performance benefits are also seen in jobs running
under the Jellyfish topology (Figure 7) as we scale the number
of hosts. With 30 hosts running in the cluster, throughput of
the jobs rises by 25.5% and 18.8% as we turn on the routing-
level and application-level scheduler, respectively. When we
have the scheduler running at both levels, the throughput of
the jobs rises by 31.9%.

Fig. 8: Fault-tolerance of SA in Hadoop: Average task through-
put intervals during one run of 5 WordCount programs running
in a Jellyfish cluster. 10% of links are failed at 500 s. Links
brought back up at 810 s.

Similar to the Storm results of Section IV-A, we observe
that the throughput improvements for each of the three ap-
proaches (Application, Routing, Both) are higher in Jellyfish
than in Fat-tree – once again, this is because of the higher route
diversity in Jellyfish. Further, the throughput improvement also
scales with the number of hosts and routers. However, unlike
its Storm results, we observe that the throughput improvement
offered by the application-level scheduler is slightly lower
for Hadoop. This is because in our workload the MapReduce
jobs have only one stage of map and reduce tasks. Thus, the
application-level heuristics of Section II play a smaller part. If
MapReduce jobs are chained (e.g., in Hive [49] or Pig [38]),
the throughput improvement would approach that with Storm.

Fault-tolerance: We run 5 WordCount MapReduce jobs, each
with 4 mappers and 4 reducers, in a Jellyfish cluster of 30
servers and 30 routers. In Figure 8, at 500 s we fail 10% of
the utilized links. Upon failure, our scheduler reroutes affected
paths within 0.35 s, returning throughput to within 4.7% of
the pre-failure value. After the links recover at 810 s, the
throughput is within 1.5% of the pre-failure throughput.

C. Simulations

In order to evaluate scalability, we perform simulation
experiments run on a single server with a 4-core 2.50 GHz
processor, with each link’s bandwidth at 100 MBps. Each
router has 15 links.

Scheduling Overhead: It is imperative for real-time jobs to
be scheduled quickly. Figures 9 and 10 show that, for both Fat-
tree and Jellyfish networks, the time to schedule a new job is
small (under a second for 1000 servers), and it scales linearly
with cluster size. The linear scaling is expected because of the
linear increase in state space at the routing level.

Figure 9 shows for Storm-like dataflow graphs, scheduling
decisions take 0.28 s in a 200-host Jellyfish topology. At 1000
hosts, scheduling decisions take 0.74 s on average. In Fat-tree,



Fig. 9: Scheduling time for a new job for stream-processing
dataflow graphs. At 1000 nodes, it takes only 0.53 s and 0.74 s
per scheduling decision in Fat-tree and Jellyfish, respectively.

Fig. 10: Scheduling time for a new job for MapReduce/Hadoop
dataflow graphs. At 1000 nodes, it takes only 0.48 s and 0.67 s
per scheduling decision in Fat-tree and Jellyfish respectively.

scheduling decisions take 0.20 s on average. At 1000 hosts, the
scheduling time only grows to 0.53 s. For Hadoop/Mapreduce-
like dataflow graphs, Figure 10 shows that at 1000 hosts,
scheduling can be completed in 0.48 s.

Overall, scheduling time is slightly higher in Jellyfish than
in Fat-tree because it offers more routes for the SA exploration.
We conclude that our cross-layer scheduling algorithm scales
well with a large number of hosts in the cluster, and makes sub-
second scheduling decisions with 1000 hosts. Furthermore, we
note that jobs can be batch-scheduled if arrival rates become
too high and that simulated annealing is agnostic to the number
of jobs to be scheduled because it takes as input only the
number of hosts and communication patterns between hosts.

Fig. 11: CDF of job completion time improvements in Hadoop
at 1000 hosts under cross-layer scheduling framework.

Fig. 12: CDF of job completion time improvements in Storm
at 1000 hosts under cross-layer scheduling framework.

Effect on Job Completion Times: Figures 11 and 12 show
CDF plots of job completion time improvements, compared to
a scheduler that picks random routes. Cross-layer scheduling
improves Hadoop by 34% (38%) at the 50th (75th) percentile,
and Storm by 34% (41%) at the 50th (75th) percentile.

About 27% of Hadoop jobs and 24% of Storm jobs suffer
degradation in completion time in Fat-tree (18% and 16%
respectively in Jellyfish). However, our approaches do not
cause starvation. The worst-case degradation is under 20% for
Hadoop and 30% for Storm. By investigating our logs, we
found that these are either larger jobs, or jobs submitted im-
mediately after larger jobs. In essence, our heuristics schedule
smaller jobs along network paths that have fewer hops. Thus,
when a larger job arrives, its many flows are placed along
longer routes. This slows it down, and affects future jobs until
the large job is done. However, such large jobs would be rare



in real-time analytics workloads.

We conclude that our cross-layer scheduling algorithm
improves completion of a large majority of jobs in both
Storm and Hadoop, and for network topologies that are both
structured (Fat-tree) and unstructured (Jellyfish).

Finally, we clarify that we do not show plots varying the
number of jobs since scheduling time does not depend on the
number of running jobs; state spaces at both layers depend
only on the network and the new job. We also do not show
job size variation because: i) for Hadoop real-time analytics,
jobs are small, thus there is limited variability in job size; ii)
for Storm, our experiments already saturate system throughput.

V. RELATED WORK

Computation Scheduling: There has been significant work
in improving scheduling of Mapreduce [14] and Hadoop [6].
Some systems improve job scheduling by preserving data
locality [7], [27], [28], [55]. Others address fairness across
multiple tenants for CPU and memory resources [17], [30], or
heterogeneous tasks [44]. Systems like Jockey [15] compute
job profiles using a simulator, and use the resulting dependency
information to dynamically adjust resource allocation. Systems
like Mantri [8] mitigate stragglers in Mapreduce jobs. These
systems are orthogonal to our work. Further they also largely
target long batch jobs, while we target shorter real-time jobs.

Sparrow [39] proposes decentralized scheduling that is
within 12% of an ideal scheduler’s performance, by using the
power of two choices. We believe this idea can be applied to
our work to design decentralized cross-layer SA scheduling.

Many streaming frameworks have been proposed such as
Storm [3], Spark [56], Naiad [36], and TimeStream [41]. None
of these schedulers expose or use information about the un-
derlying network topology. Further, our cross-layer techniques
are amenable with any of these systems.

Routing-Level Scheduling: Orchestra [12] and Seawall [45]
create TCP sockets/connections in a weighted-fair manner
in order to make Mapreduce’s shuffle phase efficient. Ok-
topus [10] and SecondNet [21] proposed static reservations
throughout the network to implement bandwidth guarantees for
the hose and pipe models respectively. Gatekeeper [43] pro-
poses a per-VM hose model with work conservation, however
its hypervisor-based mechanism works only for full bisection-
bandwidth networks. FairCloud [40] introduces policies to
achieve link-proportionality or congestion-proportionality. All
of these systems are orthogonal to our work, and can be
combined with our techniques.

Software-Defined Networking (SDN): Before SDNs,
some systems provided custom routing protocols to applica-
tions [11], or allowed applications to embed code in network
devices [48]. SDNs provide more fine-grained control of the
network. Much of the existing work on SDNs is targeted
at improving SDN scalability (e.g., enabling a hierarchy of
policies to the SDN controller [42]), or enforcing correctness
in the SDN (e.g., enabling consistent updates in SDN [42]), or
enabling the SDN to work with various protocols [20], [32].

Cross-Layer Scheduling: The two-level optimization ap-
proach has been explored in some data processing frameworks,

e.g., [52] proposed batching intervals of job submissions for
scheduling. However, they did not consider concrete appli-
cations in their experiments, and address neither streaming
frameworks nor what should happen in the case of failures.
Flowcomb [13] improved Hadoop performance by sending
application-level hints to the SDN centralized controller. This
only exploits routing-level optimizations, but not cross-layer
techniques.

Previously, cross-layer scheduling has been used in the
HPC community (e.g., [47]) and in OSs (e.g., [18], [33]).
Isolation is used widely to improve performance in virtualized
clouds such as AWS EC2 [1] and Eucalyptus [37] and in
generic schedulers like YARN [51] and Mesos [25]. Our cross-
layer approach can be integrated into systems like Mesos.

VM Placement: In the virtualized setting, some systems
migrate virtual servers by using Markov approximation to
minimize VM migrations [29], [35]. However, combinatorial
optimization for VM placement [23] may be expensive for
short jobs that process real-time data.

VI. SUMMARY

We have proposed, implemented, and evaluated a cross-
layer scheduling framework for cloud computation stacks
running real-time analytics engines. We have integrated our
Simulated Annealing-based algorithm into both a batch-
processing system (Hadoop YARN) and a stream-processing
system (Storm). Our evaluations have used both structured
network topologies (Fat-tree) and unstructured ones (Jellyfish).
Our cross-layer approaches provide combined benefits from
both the application-level and SDN-level schedulers. Our de-
ployment experiments showed that our approaches improve
throughput for Hadoop by 26-31% and for Storm by 30-34%.
The throughput improvements are higher in network topologies
with more route diversity, and our cross-layer scheduling
approach allows improvements to be maintained in the case
of link failure.

REFERENCES

[1] Amazon EC2, http://aws.amazon.com/ec2.
[2] Apache Thrift, https://thrift.apache.org/.
[3] Storm: Distributed and fault-tolerant realtime computation, http://storm-

project.net/.
[4] Zeromq: Code Connected, http://storm-project.net/.
[5] Statistical workload injector for mapreduce (SWIM), Aug. 2013,

https://github.com/SWIMProjectUCB/SWIM/wiki.
[6] Apache Hadoop, Oct. 2013, http://www.hadoop.apache.org/.
[7] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,

D. Harlan, and E. Harris. Scarlett: coping with skewed content
popularity in Mapreduce clusters. In Proc. 6th ACM Eurosys, pages
287–300, 2011.

[8] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in Map-Reduce clusters
using Mantri. In Proc. 7th Usenix OSDI, volume 10, page 24, 2010.

[9] M. Appelman and M. de Boer. Performance analysis of OpenFlow
hardware, 2012.

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In ACM SIGCOMM CCR, volume 41,
pages 242–253, 2011.

[11] P. Chandra, A. Fisher, C. Kosak, T. E. Ng, P. Steenkiste, E. Takahashi,
and H. Zhang. Darwin: Customizable resource management for value-
added network services. In Proc. 6th IEEE ICNP, pages 177–188, 1998.



[12] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing
data transfers in computer clusters with Orchestra. ACM SIGCOMM
CCR, 41(4):98, 2011.

[13] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu.
Transparent and flexible network management for big data processing
in the cloud. In Proc. 5th Usenix HotCloud, 2013.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. CACM, 51(1):107–113, 2008.

[15] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proc. 7th
ACM Eurosys, pages 99–112, 2012.

[16] R. W. Floyd. Algorithm 97: shortest path. CACM, 5(6):345, 1962.
[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and

I. Stoica. Dominant resource fairness: fair allocation of multiple
resource types. In Proc. 11th Usenix NSDI, 2011.

[18] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler for
multimedia operating systems. In Proc. 2nd Usenix OSDI, volume 96,
pages 107–121, 1996.

[19] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data
center network. In ACM SIGCOMM CCR, volume 39, pages 51–62,
2009.

[20] A. Gudipati, D. Perry, L. E. Li, and S. Katti. Softran: Software defined
radio access network. In Proc. 2nd ACM HotSDN, pages 25–30, 2013.

[21] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. Secondnet: a data center network virtualization architecture
with bandwidth guarantees. In Proc. 6th ACM Conf. on Emerging
Networking Experiments and Technologies, page 15, 2010.

[22] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a
scalable and fault-tolerant network structure for data centers. In ACM
SIGCOMM CCR, volume 38, pages 75–86, 2008.

[23] Y. Guo, A. L. Stolyar, and A. Walid. Shadow-routing based dynamic
algorithms for virtual machine placement in a network cloud. In Proc.
32nd IEEE Infocom, pages 620–628, 2013.

[24] L. Gyarmati and T. A. Trinh. Scafida: a scale-free network inspired
data center architecture. ACM SIGCOMM CCR, 40(5):4–12, 2010.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In Proc. 8th Usenix NSDI, pages
22–22, 2011.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free
coordination for internet-scale systems. In Proc. Usenix ATC, volume 8,
page 11, 2010.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. ACM SIGOPS
OSR, 41(3):59–72, 2007.

[28] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. Quincy: fair scheduling for distributed computing clusters. In
Proc. 22nd ACM SOSP, pages 261–276, 2009.

[29] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint VM
placement and routing for data center traffic engineering. In Proc. 31st
IEEE Infocom, pages 2876–2880, 2012.

[30] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. In Proc. 31st
IEEE Infocom, pages 1206–1214, 2012.

[31] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Computers, 34(10):892–901, Oct. 1985.

[32] L. E. Li, Z. M. Mao, and J. Rexford. Toward software-defined cellular
networks. In Proc. IEEE European Wshop. on SDN, pages 7–12, 2012.

[33] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatowicz.
Tessellation: Space-time partitioning in a manycore client OS. Proc. 1st
Usenix HotPar, 3:2009.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. ACM SIGCOMM CCR, 38(2):69–74, 2008.

[35] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data

center networks with traffic-aware virtual machine placement. In Proc.
29th IEEE Infocom, pages 1–9, 2010.

[36] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In Proc. 24th ACM SOSP,
pages 439–455, 2013.

[37] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The Eucalyptus open-source cloud-computing
system. In Proc. 9th IEEE/ACM Intnl. Symp. Cluster Computing and
the Grid, pages 124–131, 2009.

[38] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:
a not-so-foreign language for data processing. In Proc. ACM SIGMOD,
pages 1099–1110, 2008.

[39] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
distributed, low latency scheduling. In Proc. 24th ACM SOSP, pages
69–84, 2013.

[40] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica. Faircloud: sharing the network in cloud computing. In
Proc. ACM SIGCOMM, pages 187–198, 2012.

[41] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang. Timestream: Reliable stream computation in the cloud. In
Proc. 8th ACM Eurosys, pages 1–14, 2013.

[42] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent updates
for software-defined networks: Change you can believe in! In Proc.
10th ACM HotNets, page 7, 2011.

[43] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks. Proc. 3rd Usenix Wshop. I/O Virtualization, 2011.

[44] T. Sandholm and K. Lai. Mapreduce optimization using regulated
dynamic prioritization. In Proc. 11th ACM Intnl. Joint Conf. on
Measurement and Modeling of Computer Systems, pages 299–310,
2009.

[45] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall: performance
isolation for cloud datacenter networks. In Proc. 2nd Usenix HotCloud,
page 1, 2010.

[46] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: networking
data centers randomly. In Proc. 9th Usenix NSDI, page 17, 2012.

[47] G. Staples. Torque resource manager. In Proc. 2006 ACM/IEEE
Conference on Supercomputing, page 8, 2006.

[48] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80–86, 1997.

[49] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proc. VLDB Endowment, 2(2):1626–1629, 2009.

[50] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer,
1987.

[51] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proc. 4th ACM SoCC, page 5,
2013.

[52] G. Wang, T. Ng, and A. Shaikh. Programming your network at run-time
for big data applications. In Proc. 1st ACM HotSDN, pages 103–108,
2012.

[53] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental
environment for distributed systems and networks. ACM SIGOPS OSR,
36(SI):255–270, 2002.

[54] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In Proc. 8th Usenix
OSDI, volume 8, pages 1–14, 2008.

[55] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. 5th ACM Eurosys, pages
265–278, 2010.

[56] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In
Proc. 24th ACM SOSP, pages 423–438, 2013.


	Introduction
	Design
	Implementation
	Storm
	Hadoop

	Evaluation
	Storm Deployment Experiments
	Hadoop YARN Deployment Experiments
	Simulations

	Related Work
	Summary
	References

