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Figure 1: There are multiple challenges when a PushPull operation is performed on a face or edge. Case (a): New faces can either be
inserted for all edges (left) or not at all by adjusting adjacent faces (middle). In addition, our solution can adaptively add new faces where
needed (right). New faces are blue and modified adjacent faces are green. In (b-d), the left figure is the input, the middle is the degenerate
result by previous approaches, and the right is our result. Non-planar or self-intersecting faces are red and edge collapses are blue dots.

Abstract

PushPull tools are implemented in most commercial 3D modeling
suites. Their purpose is to intuitively transform a face, edge, or ver-
tex, and then to adapt the polygonal mesh locally. However, pre-
vious approaches have limitations: Some allow adjustments only
when adjacent faces are orthogonal; others support slanted surfaces
but never create new details. Moreover, self-intersections and edge-
collapses during editing are either ignored or work only partially
for solid geometry. To overcome these limitations, we introduce
the PushPull++ tool for rapid polygonal modeling. In our solution,
we contribute novel methods for adaptive face insertion, adjacent
face updates, edge collapse handling, and an intuitive user interface
that automatically proposes useful drag directions. We show that
PushPull++ reduces the complexity of common modeling tasks by
up to an order of magnitude when compared with existing tools.
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1 Introduction

3D models of plane-dominant man-made objects are widely used in
areas such as architecture, engineering, and design. Therefore, tools
enabling intuitive creation and editing of such models are vital. One
popular and widespread class of tools is what we call the PushPull
techniques. Variants of these are implemented in most commercial
modeling suites such as AutoCad [Autodesk 2014a] or Sketchup
[Trimble 2013]. Their idea is for the user to transform a face or edge
and then automatically adapt the model locally, possibly inserting
new faces and modifying adjacent ones. We identified three main
challenges for mesh adaption, as explained below.

The first challenge is to decide when new faces should be inserted.
On the one hand, inserting new faces is important to add details. On
the other hand, the user might want to adjust the existing adjacent
faces without inserting new ones. However, sometimes adjusting is
not possible, for example when the adjacent face is parallel to the
transformed one. Therefore it is tricky to decide when to add de-
tails and when to adjust, especially with slanted surfaces as shown
in Figure 1(a). The second challenge is how vertices and adjacent
faces should be updated. Moving one face affects all the neighbor-
ing faces. Care must be taken to keep them planar. This is partic-
ularly challenging when the valence of a moved vertex is greater
than three, which requires calculating and adding new vertices to
neighboring faces, as shown in Figure 1(b). The third challenge is
how edge or face collapses should be handled. Moving a face can
cause adjacent edges or faces to collapse. Such collapses must be
handled to maintain a valid mesh, as seen in Figure 1(c).

PushPull++ is a novel tool for the rapid modeling of polygonal ob-
jects. It is the first method that provides solutions for all three main
challenges. Essentially it is a generalization of common PushPull
practices, supporting both existing and new editing operations. This
is achieved using the following contributions:
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• An Adaptive Face Insertion method that decides where to in-
sert new faces based on angular thresholds between planes
(Section 3.1).

• A Generalized Mesh Update Algorithm to calculate new ver-
tex positions, handle adjacent faces, and efficiently update the
local mesh topology (Section 3.2).

• A Stepwise Modification approach to handle edge collapses
without resorting to constructive solid geometry (Section 3.3).

• The PushPull++ User Interface that automatically proposes
useful drag directions for an intuitive user experience and
rapid modeling operations (Section 4).

The PushPull++ tool requires up to an order of magnitude fewer
mouse clicks compared with state-of-the-art modeling suites, as
shown in our results (Section 5).

2 Related Work

In our review, we focus on modeling tools for polygonal mesh mod-
eling of man-made objects. We refer the reader to the excellent
work by Botsch et al. [2007] for a general overview of polygonal
mesh processing.

PushPull Techniques One of the simplest approaches to handle
a transformed face is extrusion [Baumgart 1974], by inserting a new
face for every edge. Extensions include scaling, direction and offset
parameters [Havemann and Fellner 2005] as implemented in, e.g.,
Maya [Autodesk 2014b], and sketched extrusion paths [Zeleznik
et al. 1996]. SketchUp [Schell et al. 2003; Trimble 2013] modi-
fies faces orthogonal to the move direction instead of inserting new
ones. This enables dimension adjustments of orthogonal meshes,
but it does not support slanted ones. Kelly and Wonka [2011] in-
troduce procedural extrusions based on weighted straight skeletons,
essentially controlling the offsets of the extrusion along a path.

AutoCAD [Kripac 2005; Autodesk 2014a] implements a con-
strained move: Instead of inserting new faces, the vertices of a
moved face are constrained to lie on the adjacent faces, ensuring
planarity. This enables the adjustment of slanted surfaces, but no
new details are added because no new faces are created. By em-
ploying boolean operations on solid objects [Shapiro 2002], Auto-
CAD supports valence changes and edge collapses to some degree:
It performs a boolean subtraction of the volume between the orig-
inal and the transformed face from the model. However, this only
works for water-tight meshes and can fail when the transformed
face has self-intersections, as seen in the middle of Figure 1(c), for
example.

We consider the editing operations in AutoCAD, Maya and
SketchUp as the closest related work and we give extensive com-
parisons in the results section.

Global Approaches There has been a lot of recent work in
constraint-based modeling for rapid polygonal shape manipulation:
Cabral et al. [2009] introduce a method to modify lengths of edges,
while constraining angles. Kraevoy et al. [2008] show how global
deformations can be distributed non-homogeneously by protect-
ing vulnerable regions. Support for nonlinear constraints was in-
troduced by Habbecke and Kobbelt [2012]. An internal structure
of the model called iWIRES was used by Gal et al. [2009] for
rapid structure-preserving deformations. Zheng et al. [2011] used
shape analysis to find a hierarchy of controllers that also enabled
structure-preserving editing. Bouaziz et al. [2012] used a single
energy formulation for interactive shape exploration.

Methods exploiting patterns in the shape were proposed by Bokeloh
et al. [2011; 2012]. They detected repeating patterns and removed
or inserted elements during deformation. Multiple methods em-
ploying global variational optimization on the surface were intro-
duced for mesh deformation [Botsch and Sorkine 2008]. These
methods are best suited for organic objects. Multi-resolution edit-
ing approaches on a coarse to fine-grained scale are also applicable
[Zorin et al. 1997; Kobbelt et al. 1998]. Adding holes to non-solid
meshes is possible by using global collision detection [Bernstein
and Wojtan 2013]. Sasaki et al. [2013] used unconnected planes
as the model representation, and employed global heuristics to de-
termine connectivity and bounded faces. As a result, even a slight
change of planes can cause a large difference in the output mesh.

Planar Quad (PQ) Meshes Recent work shows how to explore
shape spaces [Yang et al. 2011] of PQ meshes, and how to model
them using affine maps [Vaxman 2012] or with varying levels of
locality [Deng et al. 2013]. Those methods are restricted to quad or
circular meshes, in contrast to our method in which we use arbitrary
planar polygons.

3 Plane-Driven Face Modification

In this section, we introduce the mesh modification method that un-
derlies our novel modeling tool, PushPull++ . This robust method
operates on arbitrary polygonal meshes; i.e., in contrast to previ-
ous work, no watertight meshes nor constructive solid geometry
representations with boolean operations are required. In the fol-
lowing, we first explain the core concept and how faces can be
adaptively inserted. Second, we present the local mesh update al-
gorithm that computes the new geometry resulting from a push-
or pull-operation. Third, we show how self-intersections are pre-
vented, and finally, we describe how the method can be extended to
work with simultaneous face modifications.

Our method applies the most widely used polygonal mesh repre-
sentation, the so-called face-vertex meshes, consisting of a simple
list of vertices and a set of faces that point to their vertices [Foley
1996]. Hence, our input mesh M is represented by vertices v ∈ V ,
and planar faces f ∈ F where a face f is defined as a list of coun-
terclockwise oriented vertices {vi, vj , . . . , vk}, and a face normal
f.n̂. For each two connected vertices in f , we define an edge e as
the pair {vi, vj}. The mesh can be of arbitrary topology, e.g., it can
contain boundaries or non-manifold edges.

3.1 Adaptive Face Insertion

The core concept of our face modification method is to transform a
selected face fm onto a user-defined target plane pm as depicted in
Figure 2. The first constraint is that all vertices of fm have to lie on
pm. The second constraint is that these vertices need to be coplanar
to the corresponding faces that are edge-adjacent to fm. Thus, in
the trivial case, a new vertex position is computed by interesecting
three planes, i.e., pm with the two adjacent face planes.

Figure 2: The core concept of our mesh modification method. Left:
The user selects a face fm and defines a target plane pm. Middle:
New vertex positions are computed by intersecting the adjacent face
planes with pm. Right: The resulting mesh with modified face fm.



As stated above, the face planes that are edge-adjacent to fm are
used to compute the new vertex positions. However, this might
lead to degenerate cases, e.g., when a face plane is parallel to pm,
the planes cannot be intersected. To solve this problem, we present
a novel method that adaptively determines - using an angle thresh-
old θ - if the planes of the adjacent faces can be used (green faces
in Figure 3) or if new faces have to be inserted (blue faces). In the
latter case, the user-defined direction vector ~d specifies the orienta-
tion of the new face. Note that only zero-area faces are inserted at
this stage, and the computation of the new vertices is described in
Section 3.2.

Algorithm 1 explains the face insertion method in detail. In Line 1
and following, we loop over each edge of fm to get its adjacent face
fadj and then check if a new face needs to be inserted. The latter
is the case if no adjancent face exists (mesh boundary) or if fadj

is approximately parallel (within the threshold of 90◦ − θ) to pm.

Figure 3: Left: An initial mesh with face modification. Middle
left: The resulting mesh with 30◦ as the angle threshold θ, which
determines if existing planes can be used (green) or if new faces
have to be inserted (blue). Middle right: The resulting mesh with
θ = 70◦. Right: In case θ is 0◦, a traditional extrude operation
results.
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Figure 4: Two example meshes with their face modification oper-
ation depicted in the top row. The middle part presents the face
insertion strategies, i.e., Example B requires the insertion of a new
face. In the bottom row, the resulting meshes are shown.

Example B of Figure 4 shows such a case where the angle between
face plane and pm is too small. Note that (1) the function 6 (~v1, ~v2)
always returns values smaller than or equal to 90◦; i.e., if ~v1 · ~v2
is negative, then the complementary angle is returned; (2) planes
are specified in the Hessian normal form, i.e., n̂ is the normal of
a plane and d is its distance to the origin; and (3) in the case of a
non-manifold mesh, we might have to handle ambiguities when de-
termining fadj . Hence, to choose one of the multiple possibilities,
we pick the face most orthogonal to fm.

In Lines 4 and 5, we insert the new face consisting of the two ver-
tices of edge e only (later in Section 3.2, more vertices are added)
and set its normal to the cross product of the edge’s direction and
the user-defined direction vector ~d.

3.2 Mesh Update Algorithm

In the following, we introduce an efficient algorithm to compute
the new geometry resulting from a face modification. The mesh is
updated locally by computing new vertex positions for fm and up-
dating the topology in its 1-neighborhood, i.e., its edge- and vertex-
adjacent faces. The novel method is presented in Algorithm 2 and
Examples C-G in Figure 5 illustrate it.

Example C shows the simple modification case where the new po-
sition for a vertex v is computed by intersecting pm with its two
adjacent faces. In more complex cases such as Example D, v has
to be replaced with multiple vertices. Therefore we create the set
Ffan which contains the faces around v (sorted counterclockwise
and without fm). The new vertices can then be computed by inter-
secting pm with the face planes of each subsequent tuple in Ffan .

Algorithm 1 insertFaces(fm, pm, ~d, θ)

1: for each edge e in fm do
2: fadj = get face adjacent to fm on e
3: if 6 ∃fadj or 6 (pm.n̂, fadj .n̂)) < 90◦ − θ then
4: insert zero face fnew at e in F
5: fnew .n̂ = normalize(~e× ~d)

Algorithm 2 updateMesh(fm, pm)

1: for each vertex v in fm do
2: # determine affected faces
3: Ffan = get fan of faces ccw around v (without fm)
4: Faff = ∅
5: for each face fi in Ffan do
6: if i=0 || i=last || fi intersects pm then add fi to Faff

7: # compute new vertices
8: Vnew = ∅
9: for each except last face fi in Faff do

10: add intersect(pm, p(fi), p(fi+1)) to V and Vnew

11: # update vertex indices of faces
12: replace v with Vnew in fm
13: for each face fi in Faff do
14: if i=0 then Vsel = first vertex of Vnew

15: else if i=last then Vsel = last vertex of Vnew

16: else Vsel = vertices vi−1 and vi of Vnew

17: fn = get next face to fi in Ffan (modulo)
18: fp = get previous face to fi in Ffan (modulo)
19: if fn 6∈ Faff then insert Vsel after v in fi
20: else if fp 6∈ Faff then insert Vsel before v in fi
21: else replace v with Vsel in fi
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Figure 5: On the left, the meshes before the modification operation
are shown. In the middle, the faces around v are listed and the
dots highlight which face planes are used for the intersection to
compute the new vertices vi; i.e., an arrow illustrates how three
planes create one vertex. On the right, the resulting meshes are
shown. Note that f1 in Example G is a zero-area face inserted by
Algorithm 1.

However, as shown in Examples E-G, not all faces in Ffan might
be affected by the modification. Thus, to compute the new vertices,
we only use the subset Faff ⊆ Ffan consisting only of the two faces
edge-adjacent to fm and faces that are intersected by pm. The edge-
adjacent faces are always affected because they share vertices with
the modified face.

The new vertices Vnew are computed in Line 10 of Algorithm 2
where the intersection of pm with two face planes takes place. Note
that (1) the function p(f) returns the plane coplanar with face f ,
and (2) the function intersect() also handles coplanar input planes
by replacing one of them with an orthogonal plane through v.

The modified face fm is then updated by replacing v with all new
vertices in Vnew (Line 12). Next, the affected faces around v are

updated. Therefore, in Lines 14-16, we first determine which of the
new vertices belong to an affected face and store them in Vsel . As
shown in Example D, the faces that are edge-adjacent to fm (i.e.,
the first and last face in Faff ) need to update only one vertex while
the other affected faces require two new vertices.

In simple cases such as Examples C or D, the old vertex v in an
affected face can now be replaced with the vertices in Vsel (Line
21). However, if not all faces in Ffan are affected, then the old ver-
tex v cannot be removed because it is still used by the non-affected
faces. Thus, we need to detect the border between affected and non-
affected faces and ensure that the border edges are preserved. The
face f0 in Example E shows such a case where its next neighbor
fa is not in Faff . Hence, to update f0, we do not replace v with
the new vertex, but instead keep v and insert the new vertex after
v in the face’s counterclockwise ordered list of vertices (Line 19).
Similarly, f1 needs to keep v since it is adjacent to the non-affected
face fd. But because it is on the other side of the border, the new
vertex needs to be inserted before v (Line 20). The same case is
shown in face f1 of Example F: the previous face fb is non-affected
and therefore f1 keeps v and inserts its new vertices Vsel before v
(Vsel consists of two vertices since f1 is not edge-adjacent to fm;
see previous paragraph). Note that this approach works also in the
case of zero-faces inserted by Algorithm 1, i.e., because a new ver-
tex is added before/after both existing vertices, the resulting face
has valence 4 (see Example G).

Texture coordinates are updated as follows: Every vertex v in every
modified face f is projected onto the original plane of f , resulting
in vp. Then, we use mean-value coordinates of vp to extrapolate the
texture coordinate. For new faces, the coordinates of the adjacent
face are copied and scaled to the same relative size.

3.3 Intersection Handling with Stepwise Modification

A face modification can lead to self-intersecting meshes as shown
in the second row of Figure 6. To prevent these local self-
intersections, we introduce a plane sweep approach in which we
iteratively identify the next conflict event (Algorithm 3) and con-
secutively apply the modification with corresponding intermediate
planes until the user-given target plane pm is reached (Algorithm
4). The approach is illustrated in the third row of Figure 6.

The first type of conflict event is edges connected with fm that
shrink to zero length (Example H of Figure 6). The event posi-
tions correspond to the vertices neighboring fm (Algorithm 3, Line
2). The second type are collapsing edges on fm itself, as shown in
Example I. Their positions can be found by intersecting planes of
three consecutive faces adjacent to fm (Line 3). Afterwards, in Line

Algorithm 3 getNextStep(fm, pm)

1: for each face fi edge-adjacent to fm do
2: add vertices in fi neighboring fm to Vev

3: add intersect(p(fi	1), p(fi), p(fi⊕1)) to Vev

4: Vev = get all vertices in Vev between p(fm) and pm
5: if Vev= ∅ then
6: p = pm
7: else if pm parallel to fm then
8: v = get vertex in Vev nearest to p(fm)
9: p = plane through v and parallel to pm

10: else
11: l = intersect(p(fm), pm)
12: P = get all planes through line l and each vev in Vev

13: p = plane in P most parallel with fm
14: return p
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Figure 6: Modifying a face can result in self intersections as ex-
emplified in the second row. To solve this, we identify the conflict
events (green dots in the third row) and apply a step-by-step modi-
fication with corresponding intermediate planes.

4, the resulting set of events Vev is reduced to only the ones located
between the start and end plane, e.g., in case of a push operation,
the vertices above p(fm) and below pm are removed.

If any events are remaining, the intermediate plane is determined by
Lines 7-13. In case pm is parallel to fm, the plane through the event
nearest to p(fm) is returned. Otherwise, as shown in Example J, we
have to interpolate planes. Thus, a set P with planes through the
intersection line l is constructed and the plane with the smallest
angle to fm is returned. Note that the first event in Example J is not
the nearest one but its plane has the smallest angle.

Algorithm 4 describes the stepwise modification that continues un-
til the applied target plane corresponds to the user input (or fm col-
lapses). In each loop, the face insertion needs to be applied anew
(e.g., note how a new face is inserted in event 3 of Example H) and a
local mesh cleanup within the 1-neighborhood of fm is performed,
e.g., to remove zero edges, zero faces or unused vertices.

Algorithm 4 mainSingle(fm, pm, ~d, θ)
1: while ptmp 6= pm and fm ∈ F do
2: insertFaces(fm, pm, ~d, θ)
3: ptmp = getNextStep(fm, pm)
4: updateMesh(fm, ptmp)
5: cleanupMesh(fm)

3.4 Simultaneous Modification of Multiple Faces

So far, the modification operation has been applied to one face only.
But in our PushPull++ tool, we also want to enable push- and pull-
operations on an edge or a vertex. This requires the simultaneous
modification of multiple neighboring faces. In the following, we
explain the challenges with simultaneous modification and their so-
lution.

Figure 7 shows examples where two faces are modified at once. The
second row demonstrates that a simultaneous modification cannot
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Figure 7: Comparison of sequential and simultaneous application
in case multiple faces are modified at once. Example K shows a
situation where no new face needs to be inserted, in contrast to Ex-
amples L and M. The latter also has identical directions. In the
sequential case, the result depends on the application order and is
therefore ambiguous. In the simultaneous case, the result is only
ambiguous in Example L. Thus, we allow simultaneous modifica-
tions with only one global direction.

be serialized into two independent modifications unambiguously.
Depending on the order of application, two different results emerge;
e.g., in Example K, inconsistent face insertions are performed or a
modification results in a face collapse. The third row depicts the
simultaneous modification, which is ambiguous only when a face
insertion is performed with different ~d directions. This is shown in
Example L where which ~d should construct the new face is unde-
fined. As a consequence, a simultaneous modification is limited to
one global direction only. Note that even with this limitation the
sequential application is still ambiguous (see Example M).

To facilitate an unambiguous simultaneous modification, we intro-
duce simple changes in Algorithms 1 to 3. First, we add in each
algorithm an outer loop that iterates over each tuple 〈fm, pm〉 in
sets Fm and Pm, which contain all modification faces and their
corresponding target planes. Second, in Line 3 of Algorithm 1, we
do not check the angle of pm against fadj but against its target plane
in Pm (if fadj ∈ Fm). This ensures that the face insertion decision
is consistent regardless of the order in Fm, i.e., only the angle be-
tween the two target planes determines if a face needs to be inserted
on their edge. Third, we alter Algorithm 3 so that it returns a set of
planes; i.e., for each pm in Pm, the algorithm returns its next plane.

Finally, we replace Algorithm 4 with Algorithm 5. In contrast to
Algorithm 4, the main loop in Algorithm 5 iterates until the modi-
fication face set Fm is empty (decremented by Lines 6 - 8) and the
subroutine calls operate on sets Fm and Pm instead of a single face
with its target plane only.



Algorithm 5 mainMultiple(Fm, Pm, ~d, θ)

1: while Fm 6= ∅ do
2: insertFaces(Fm, Pm, ~d, θ)
3: Ptmp = getNextStep(Fm, Pm)
4: updateMesh(Fm, Ptmp)
5: cleanupMesh(Fm)
6: for each 〈fm, pm, ptmp〉 in 〈Fm, Pm, Ptmp〉 do
7: if ptmp=pm or fm 6∈ F then
8: remove fm in Fm and pm in Pm

4 The PushPull++ Tool

One way to create a straightforward user-interface for our method
is to map the parameters fm, pm, ~d, and θ directly to user-interface
elements. We have implemented this in the direct plane modifica-
tion tool (Figure 8) as follows: When the user clicks on a face fm, a
3D gizmo is shown. This gizmo has three orthogonal arrows. Drag-
ging them defines the direction ~d. It also has three circles that allow
the user to specify the orientation of the target plane pm.

The threshold angle θ is specified with a settings slider. The choice
of θ mainly depends on the modeling task. To model the new ge-
ometry, a threshold below 30◦ is preferable, as this often leads to
newly created faces. When deforming the existing geometry, a high
threshold of about 60◦ is better suited, because existing faces are
often used instead of creating new ones.

While this tool allows full control, it can be difficult get a desired
result, because the many degrees of freedom and the face plane
snapping behavior do not intuitively map to the output. For exam-
ple, if no new faces need to be inserted, changes in ~d might have
no impact, i.e., a drag along the target plane does not impact the
resulting model. Therefore, we introduce methods to automatically
find good parameters and propose useful directions.

Figure 8: In direct plane modification tool 3D gizmos are mapped
to method parameters pm and ~d. θ is adjusted with a slider.

4.1 Finding Useful Parameters

Instead of defining the planes unintuitively with a three axis rota-
tion gizmo, we calculate them from component drag operations.
This means, that when a user performs a push- or pull-operation on
a face, the target plane is simply offset by the drag distance. To
rotate planes, the user can drag edges or vertices. When an edge is
dragged, the adjacent faces are tilted.

Directions Depending on the modeling task and component type,
different directions can be useful. Possible directions for faces in-
clude, in order of priority: the face normal n̂, the vector ~nproj which
is n̂ projected on the horizontal plane, the world coordinate axis ~ay ,
and the set Dadj of directions along adjacent faces (including aver-
ages between them). Directions in Dadj are calculated by the cross
product of the adjacent face normal with the edge direction. When
moving an edge, we use ~ay , ~ax, ~az and its set of adjacent directions

Dadj . For vertices, we use ~ay , ~ax, ~az as well as Dadj containing
the directions of the adjacent edges.

The system automatically maps threshold values θ to the different
directions, suitable for most modeling tasks. In our implementation,
we use 60◦ for all directions in Dadj , because they are mainly used
to adjust meshes, and 15◦ for the other directions. No additional
setup by the user is required, and the user simply chooses between
them interactively by hovering over corresponding arrows. If the
user wants full control, he/she can override the automatic value with
the angle threshold settings slider.

Figure 9(left) shows an example with proposed directions for a
face. As seen, showing all those directions creates a cluttered result.
Moreover, some of them actually create the same mesh. Hence, to
present only the useful directions to the user, we have to filter them.

First, we analyze the potential outcome of Algorithm 1 for each
possible direction. In case mutliple directions create the same out-
put, i.e., no new faces are inserted or zero faces with identical nor-
mals are generated, we use only the direction with the highest pri-
ority. Note that the priority is defined by the ordering of directions
in the last paragraphs. Second, as there can be a lot of directions in
Dadj , we use k-means clustering with a dot product distance func-
tion to filter them.

Finally, starting with the highest priority, the directions are added
as arrows displayed to the user, provided no direction is already
in this set with an angle below a certain threshold (we use 10◦),
or the maximum number of directions is reached (here we use 5).
When there are similar directions with different thresholds during
filtering, we keep them both and display them next to each other. A
reduced set is shown in Figure 9(right).

Figure 9: Unfiltered and filtered choices for the direction ~d. The
normal is orange, adjacent directions Dadj are blue, global axes
and the horizontally projected normal are green.

Plane Equations When an edge or a vertex is dragged, mul-
tiple faces are modified simultaneously. To determine the tar-
get plane pm for every adjacent face fadj , we constrain the ver-
tex vf in fadj furthest away from the edge not to move. This
lets us calculate the new plane equations: If ~e is the edge direc-
tion, and if ve is a vertex of e, then the new plane is given by
pn = normalize(normalize((ve + ~d) − vf ) × ~e) with distance
d = pn · vf , as illustrated in Figure 10 . For vertex moves, all
adjacent faces are tilted in a similar fashion to the edge move tool.
For an adjacent face f , given the vertex position v, the new plane is
calculated with pn = normalize((v+ ~d)−vf ))×(normalize(v−
vf )× f.n̂).

Using a hotkey, the user can also restrict the modification to only
one of the adjacent faces, allowing quick modeling of dormer win-
dows. Alternatively to the vertex furthest away, the vertex with the
highest height coordinate can be used as vf .



Figure 10: Examples of the edge drag (top) and vertex drag (bot-
tom) operations. Left: The initial meshes with drag directions ~d.
Middle: Resulting target planes with vertices vf that are furthest
away. Right: Final mesh with calculated plane normals pn.

4.2 PushPull++ User Interface

In this subsection, we introduce the user interface of PushPull++ .
It is based on the useful parameters found in the previous section,
combined with polyline drawing and polygon splitting, enabling
comprehensive mesh modeling with a single tool.

The interface is shown in Figure 11: While hovering over a mesh,
a small sphere handle is shown to highlight the mesh component
located under the cursor. When the user drags the sphere, this com-
ponent is selected, defining fm. Useful directions d are calculated
as explained previously and shown as arrows. While dragging, the
arrow nearest to the mouse is selected and highlighted. For im-
proved controllability, switching between arrows is disabled when
the move amount is very small or in the negative direction.

Clicking on the mesh outside of a sphere handle inserts a vertex and
starts a polyline drawing operation: every click adds a new vertex
to the polyline, snapping guides are shown to increase precision,
and existing faces are automatically split when intersected by the
polyline using a face loop finding algorithm. The operation stops
either after a split or when the polyline is closed to form a polygon.
For convenience, a rectangle drawing mode is also available with a
hotkey. To allow starting a polyline under a sphere handle, handles
disappear when the mouse remains stationary for longer than three
seconds.

Figure 11: PushPull++ tool: A sphere can be dragged along ar-
rows to define the parameters (left). Additionally, polyline drawing
can be used to split and create polygons (right).

5 Evaluation

Our method and the PushPull++ tool were implemented in Java and
combined with standard 3D editor features like camera control, ba-
sic transformations, and texture assignment tools. Examples cre-
ated using the PushPull++ tool are shown in Figure 12.

Figure 12: Results created in 5 to 15 minutes using our Push-
Pull++ tool combined with texturing and standard transformations.

Comparison We compared our method with AutoCAD [Au-
todesk 2014a], SketchUp [Trimble 2013], and Maya [Autodesk
2014b] for every modeling step shown in Figure 13. Two metrics
were employed: The first was the minimum amount of mouse and
keyboard interactions (clicks or drags) required by expert users for
those modeling steps. Camera controls were ignored. This met-
ric compares the efficiency of each entire software package. For
the second metric, we attempted to eliminate the influence of the
user interface as much as possible and just measure the effect of
the modeling operations. Therefore, we only counted interactions
directly causing a change in the geometry or drawing planes. Tool
changes, menu clicks, selections and camera controls were ignored.

To determine those interaction counts, one expert user per software
package performed the modeling steps shown in Figure 13. The
user had unrestricted time to find a modeling approach with the
minimum amount of interactions and was allowed to use all tools
provided by the software. The best effort was recorded and all in-
teractions were counted. The results are shown in Table 1.

Discussion One important observation from Table 1 is that our
method allows all adjustment operations (a-h) steps with just one
mouse drag, enabling direct interactive adjustments. AutoCAD re-
quires additional clicks for selection and setup, although it also re-
quires only one geometry-changing interaction. This is because
these operations essentially degenerate to a constrained move, al-
ways following existing faces. The other tools require much higher
click counts, because they do not have a mechanism to maintain
planarity. Essentially the user has to fix non-planar faces manually
with low-level transform tools and snapping.



 

(a)                                   (b)                                   (c)

(d)                                   (e)                                   (f)

(g)                                   (h)                                   (I)

(j)                                    (k)                                   (l)

(m)                                  (n)                                   (o)

Figure 13: Editing examples used for evaluation. The orange ar-
row indicates moved components; the blue indicates added details.

Op. Ours AutoCAD SketchUp Maya
a 1 1 5 1 17 8 17 4
b 1 1 5 1 14 6 36 5
c 1 1 5 1 15 7 14 5
d 1 1 5 1 24 10 26 7
e 1 1 7 1 12 5 15 6
f 1 1 5 1 10 3 10 3
g 1 1 4 1 11 3 8 3
h 1 1 14 2 24 13 26 8
i 3 2 20 3 5 2 6 2
j 7 4 16 4 10 4 48 14
k 4 1 17 3 27 7 26 8
l 3 1 22 6 33 10 9 4
m 9 4 43 9 31 11 54 18
n 9 4 28 7 24 7 66 21
o 8 5 33 7 28 8 21 7
rel. 1 1 5.5 1.7 10.5 5.3 12.4 4.6

Table 1: Minimum number total clicks (left columns) and
geometry-changing interactions (right columns) required by expert
users to complete the steps in Figure 13. rel.: relative to ours, av-
eraged.

Our low counts in examples (i) and (j) are mainly because we allow
extrusions and splitting without tool change. SketchUp holds up
well in (j), because it has a specific polygon splitting tool. Such
splits are more involved in AutoCAD; due to the solid modeling
nature, they always require an imprint step. Maya only has a line-
split, and thus requires many more steps in (j).

In the complex modeling steps (k-o), our tool significantly out-
performs the other tools. This is mainly caused by the adaptive
face insertion, as it allows efficiently adding details to meshes with
slanted surfaces. Such steps have to be emulated in AutoCAD with
boolean operations and global plane splits, in Sketchup with man-
ual inference-based constructions and in Maya with manual vertex
movements.

The last row in the table shows the averaged metrics relative to our
tool. AutoCAD holds up quite well for the second metric (1.7), but
falls significantly behind for the total clicks (5.5). SketchUp and
Maya perform five to ten times worse than our approach.

Performance All examples in this paper can be edited interac-
tively with at least 30 updates per second on mainstream hardware
(e.g., Intel Core i5). The method scales linearly with the number
of affected faces. Depending on the used data structure, finding the
adjacent faces may require an initial setup cost. For a vertex-edge-
face structure, this requires just constant time [Foley 1996]. The
outer loop in Algorithm 5 depends on the number of edge collapse
events, which has an upper bound in the number of edges.

6 Conclusion

Limitations and Future Work Currently, only local self-
intersections are prevented. It would be interesting to extend the
algorithms for global intersection handling. While intersection de-
tection can be done with existing methods, crafting an intuitive re-
sponse itself is an interesting avenue for future work. Extending
our approach for curved surfaces would also be interesting.

Conclusion We have introduced the PushPull++ tool for rapid
modeling of plane-dominant objects. We have shown that it sig-
nificantly outperforms commercial state-of-the-art tools, especially
when objects contain slanted surfaces. PushPull++ employs a new
local and efficient method with three novel components: First,
face insertion is adaptive based on threshold values and directions.
Second, adjacent faces are updated to keep them planar, possibly
changing vertex valences. Third, edge collapses are handled with
an efficient stepwise method, without requiring boolean operations.
Our method is a generalization of previous PushPull approaches,
supporting both existing and new editing operations.
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