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Abstract

IOMMUs, IO Memory Management Units, are hard-
ware devices that translate device DMA addresses to
machine addresses. An isolation capable IOMMU re-
stricts a device so that it can only access parts of mem-
ory it has been explicitly granted access to. Isolation
capable IOMMUs perform a valuable system service by
preventing rogue devices from performing errant or ma-
licious DMAs, thereby substantially increasing the sys-
tem’s reliability and availability. Without an IOMMU
a peripheral device could be programmed to overwrite
any part of the system’s memory. Operating systems uti-
lize IOMMUs to isolate device drivers; hypervisors uti-
lize IOMMUs to grant secure direct hardware access to
virtual machines. With the imminent publication of the
PCI-SIG’s IO Virtualization standard, as well as Intel
and AMD’s introduction of isolation capable IOMMUs
in all new servers, IOMMUs will become ubiquitous.

Although they provide valuable services, IOMMUs can
impose a performance penalty due to the extra memory
accesses required to perform DMA operations. The ex-
act performance degradation depends on the IOMMU
design, its caching architecture, the way it is pro-
grammed and the workload. This paper presents the
performance characteristics of the Calgary and DART
IOMMUs in Linux, both on bare metal and in a hyper-
visor environment. The throughput and CPU utilization
of several IO workloads, with and without an IOMMU,
are measured and the results are analyzed. The poten-
tial strategies for mitigating the IOMMU’s costs are then
discussed. In conclusion a set of optimizations and re-
sulting performance improvements are presented.

1 Introduction

An I/O Memory Management Unit (IOMMU) creates
one or more unique address spaces which can be used
to control how a DMA operation, initiated by a device,
accesses host memory. This functionality was originally
introduced to increase the addressability of a device or
bus, particularly when 64-bit host CPUs were being in-
troduced while most devices were designed to operate
in a 32-bit world. The uses of IOMMUs were later ex-
tended to restrict the host memory pages that a device
can actually access, thus providing an increased level of
isolation, protecting the system from user-level device
drivers and eventually virtual machines. Unfortunately,
this additional logic does impose a performance penalty.

The wide spread introduction of IOMMUs by Intel [1]
and AMD [2] and the proliferation of virtual machines
will make IOMMUs a part of nearly every computer
system. There is no doubt with regards to the benefits
IOMMUs bring. . . but how much do they cost? We seek
to quantify, analyze, and eventually overcome the per-
formance penalties inherent in the introduction of this
new technology.

1.1 IOMMU design

A broad description of current and future IOMMU
hardware and software designs from various companies
can be found in the OLS ’06 paper entitled Utilizing
IOMMUs for Virtualization in Linux and Xen [3]. The
design of a system with an IOMMU can be broadly bro-
ken down into the following areas:

• IOMMU hardware architecture and design.

• Hardware↔ software interfaces.

• 9 •
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• Pure software interfaces (e.g., between userspace
and kernelspace or between kernelspace and hyper-
visor).

It should be noted that these areas can and do affect each
other: the hardware/software interface can dictate some
aspects of the pure software interfaces, and the hardware
design dictates certain aspects of the hardware/software
interfaces.

This paper focuses on two different implementations
of the same IOMMU architecture that revolves around
the basic concept of a Translation Control Entry (TCE).
TCEs are described in detail in Section 1.1.2.

1.1.1 IOMMU hardware architecture and design

Just as a CPU-MMU requires a TLB with a very high
hit-rate in order to not impose an undue burden on the
system, so does an IOMMU require a translation cache
to avoid excessive memory lookups. These translation
caches are commonly referred to as IOTLBs.

The performance of the system is affected by several
cache-related factors:

• The cache size and associativity [13].

• The cache replacement policy.

• The cache invalidation mechanism and the fre-
quency and cost of invalidations.

The optimal cache replacement policy for an IOTLB
is probably significantly different than for an MMU-
TLB. MMU-TLBs rely on spatial and temporal locality
to achieve a very high hit-rate. DMA addresses from de-
vices, however, do not necessarily have temporal or spa-
tial locality. Consider for example a NIC which DMAs
received packets directly into application buffers: pack-
ets for many applications could arrive in any order and at
any time, leading to DMAs to wildly disparate buffers.
This is in sharp contrast with the way applications ac-
cess their memory, where both spatial and temporal lo-
cality can be observed: memory accesses to nearby ar-
eas tend to occur closely together.

Cache invalidation can have an adverse effect on the
performance of the system. For example, the Calgary

IOMMU (which will be discussed later in detail) does
not provide a software mechanism for invalidating a sin-
gle cache entry—one must flush the entire cache to in-
validate an entry. We present a related optimization in
Section 4.

It should be mentioned that the PCI-SIG IOV (IO Vir-
tualization) working group is working on an Address
Translation Services (ATS) standard. ATS brings in an-
other level of caching, by defining how I/O endpoints
(i.e., adapters) inter-operate with the IOMMU to cache
translations on the adapter and communicate invalida-
tion requests from the IOMMU to the adapter. This adds
another level of complexity to the system, which needs
to be overcome in order to find the optimal caching strat-
egy.

1.1.2 Hardware↔ Software Interface

The main hardware/software interface in the TCE fam-
ily of IOMMUs is the Translation Control Entry (TCE).
TCEs are organized in TCE tables. TCE tables are anal-
ogous to page tables in an MMU, and TCEs are similar
to page table entries (PTEs). Each TCE identifies a 4KB
page of host memory and the access rights that the bus
(or device) has to that page. The TCEs are arranged in
a contiguous series of host memory pages that comprise
the TCE table. The TCE table creates a single unique IO
address space (DMA address space) for all the devices
that share it.

The translation from a DMA address to a host mem-
ory address occurs by computing an index into the TCE
table by simply extracting the page number from the
DMA address. The index is used to compute a direct
offset into the TCE table that results in a TCE that trans-
lates that IO page. The access control bits are then used
to validate both the translation and the access rights to
the host memory page. Finally, the translation is used by
the bus to direct a DMA transaction to a specific location
in host memory. This process is illustrated in Figure 1.

The TCE architecture can be customized in several
ways, resulting in different implementations that are op-
timized for a specific machine. This paper examines the
performance of two TCE implementations. The first one
is the Calgary family of IOMMUs, which can be found
in IBM’s high-end System x (x86-64 based) servers, and
the second one is the DMA Address Relocation Table
(DART) IOMMU, which is often paired with PowerPC
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Figure 1: TCE table

970 processors that can be found in Apple G5 and IBM
JS2x blades, as implemented by the CPC945 Bridge and
Memory Controller.

The format of the TCEs are the first level of customiza-
tion. Calgary is designed to be integrated with a Host
Bridge Adapter or South Bridge that can be paired with
several architectures—in particular ones with a huge ad-
dressable range. The Calgary TCE has the following
format:

The 36 bits of RPN represent a generous 48 bits (256
TB) of addressability in host memory. On the other
hand, the DART, which is integrated with the North
Bridge of the Power970 system, can take advantage of
the systems maximum 24-bit RPN for 36-bits (64 GB)
of addressability and reduce the TCE size to 4 bytes, as
shown in Table 2.

This allows DART to reduce the size of the table by half
for the same size of IO address space, leading to bet-
ter (smaller) host memory consumption and better host

Bits Field Description
0:15 Unused
16:51 RPN Real Page number
52:55 Reserved

56:61 Hub ID
Used when a single TCE table
isolates several busses

62 W* W=1⇒Write allowed
63 R* R=1⇒ Read allowed

*R=0 and W=0 represent an invalid translation

Table 1: Calgary TCE format

cache utilization.

1.1.3 Pure Software Interfaces

The IOMMU is a shared hardware resource, which is
used by drivers, which could be implemented in user-
space, kernel-space, or hypervisor-mode. Hence the
IOMMU needs to be owned, multiplexed and protected
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Bits Field Description
0 Valid 1 - valid
1 R R=0⇒ Read allowed
2 W W=0⇒Write allowed
3:7 Reserved
8:31 RPN Real Page Number

Table 2: DART TCE format

by system software—typically, an operating system or
hypervisor.

In the bare-metal (no hypervisor) case, without any
userspace driver, with Linux as the operating system, the
relevant interface is Linux’s DMA-API [4][5]. In-kernel
drivers call into the DMA-API to establish and tear-
down IOMMU mappings, and the IOMMU’s DMA-
API implementation maps and unmaps pages in the
IOMMU’s tables. Further details on this API and the
Calgary implementation thereof are provided in the OLS
’06 paper entitled Utilizing IOMMUs for Virtualization
in Linux and Xen [3].

The hypervisor case is implemented similarly, with a
hypervisor-aware IOMMU layer which makes hyper-
calls to establish and tear down IOMMU mappings. As
will be discussed in Section 4, these basic schemes can
be optimized in several ways.

It should be noted that for the hypervisor case there
is also a common alternative implementation tailored
for guest operating systems which are not aware of the
IOMMU’s existence, where the IOMMU’s mappings
are managed solely by the hypervisor without any in-
volvement of the guest operating system. This mode
of operation and its disadvantages are discussed in Sec-
tion 4.3.1.

2 Performance Results and Analysis

This section presents the performance of IOMMUs,
with and without a hypervisor. The benchmarks
were run primarily using the Calgary IOMMU, al-
though some benchmarks were also run with the DART
IOMMU. The benchmarks used were FFSB [6] for disk
IO and netperf [7] for network IO. Each benchmark was
run in two sets of runs, first with the IOMMU disabled
and then with the IOMMU enabled. The benchmarks
were run on bare-metal Linux (Calgary and DART) and
Xen dom0 and domU (Calgary).

For network tests the netperf [7] benchmark was used,
using the TCP_STREAM unidirectional bulk data trans-
fer option. The tests were run on an IBM x460 system
(with the Hurricane 2.1 chipset), using 4 x dual-core
Paxville Processors (with hyperthreading disabled). The
system had 16GB RAM, but was limited to 4GB us-
ing mem=4G for IO testing. The system was booted
and the tests were run from a QLogic 2300 Fiber Card
(PCI-X, volumes from a DS3400 hooked to a SAN). The
on-board Broadcom Gigabit Ethernet adapter was used.
The system ran SLES10 x86_64 Base, with modified
kernels and Xen.

The netperf client system was an IBM e326 system,
with 2 x 1.8 GHz Opteron CPUs and 6GB RAM. The
NIC used was the on-board Broadcom Gigabit Ethernet
adapter, and the system ran an unmodified RHEL4 U4
distribution. The two systems were connected through a
Cisco 3750 Gigabit Switch stack.

A 2.6.21-rc6 based tree with additional Calgary patches
(which are expected to be merged for 2.6.23) was
used for bare-metal testing. For Xen testing, the xen-
iommu and linux-iommu trees [8] were used. These are
IOMMU development trees which track xen-unstable
closely. xen-iommu contains the hypervisor bits and
linux-iommu contains the xenolinux (both dom0 and
domU) bits.

2.1 Results

For the sake of brevity, we present only the network re-
sults. The FFSB (disk IO) results were comparable. For
Calgary, the system was tested in the following modes:

• netperf server running on a bare-metal kernel.

• netperf server running in Xen dom0, with dom0
driving the IOMMU. This setup measures the per-
formance of the IOMMU for a “direct hardware ac-
cess” domain—a domain which controls a device
for its own use.

• netperf server running in Xen domU, with dom0
driving the IOMMU and domU using virtual-IO
(netfront or blkfront). This setup measures the per-
formance of the IOMMU for a “driver domain”
scenario, where a “driver domain” (dom0) controls
a device on behalf of another domain (domU).
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The first test (netperf server running on a bare-metal ker-
nel) was run for DART as well.

Each set of tests was run twice, once with the IOMMU
enabled and once with the IOMMU disabled. For each
test, the following parameters were measured or calcu-
lated: throughput with the IOMMU disabled and en-
abled (off and on, respectively), CPU utilization with
the IOMMU disabled and enabled, and the relative dif-
ference in throughput and CPU utilization. Note that
due to different setups the CPU utilization numbers are
different between bare-metal and Xen. Each CPU uti-
lization number is accompanied by the potential maxi-
mum.

For the bare-metal network tests, summarized in Fig-
ures 2 and 3, there is practically no difference between
the CPU throughput with and without an IOMMU. With
an IOMMU, however, the CPU utilization can be as
much as 60% more (!), albeit it is usually closer to 30%.
These results are for Calgary—for DART, the results are
largely the same.

For Xen, tests were run with the netperf server in dom0
as well as in domU. In both cases, dom0 was driving
the IOMMU (in the tests where the IOMMU was en-
abled). In the domU tests domU was using the virtual-
IO drivers. The dom0 tests measure the performance of
the IOMMU for a “direct hardware access” scenario and
the domU tests measure the performance of the IOMMU
for a “driver domain” scenario.

Network results for netperf server running in dom0 are
summarized in Figures 4 and 5. For messages of sizes
1024 and up, the results strongly resemble the bare-
metal case: no noticeable throughput difference except
for very small packets and 40–60% more CPU utiliza-
tion when IOMMU is enabled. For messages with sizes
of less than 1024, the throughput is significantly less
with the IOMMU enabled than it is with the IOMMU
disabled.

For Xen domU, the tests show up to 15% difference in
throughput for message sizes smaller than 512 and up to
40% more CPU utilization for larger messages. These
results are summarized in Figures 6 and 7.

3 Analysis

The results presented above tell mostly the same story:
throughput is the same, but CPU utilization rises when

the IOMMU is enabled, leading to up to 60% more CPU
utilization. The throughput difference with small net-
work message sizes in the Xen network tests probably
stems from the fact that the CPU isn’t able to keep up
with the network load when the IOMMU is enabled. In
other words, dom0’s CPU is close to the maximum even
with the IOMMU disabled, and enabling the IOMMU
pushes it over the edge.

On one hand, these results are discouraging: enabling
the IOMMU to get safety and paying up to 60% more in
CPU utilization isn’t an encouraging prospect. On the
other hand, the fact that the throughput is roughly the
same when the IOMMU code doesn’t overload the sys-
tem strongly suggests that software is the culprit, rather
than hardware. This is good, because software is easy to
fix!

Profile results from these tests strongly suggest that
mapping and unmapping an entry in the TCE table is
the biggest performance hog, possibly due to lock con-
tention on the IOMMU data structures lock. For the
bare-metal case this operation does not cross address
spaces, but it does require taking a spinlock, searching a
bitmap, modifying it, performing several arithmetic op-
erations, and returning to the user. For the hypervisor
case, these operations require all of the above, as well
as switching to hypervisor mode.

As we will see in the next section, most of the optimiza-
tions discussed are aimed at reducing both the number
and costs of TCE map and unmap requests.

4 Optimizations

This section discusses a set of optimizations that have
either already been implemented or are in the process of
being implemented. “Deferred Cache Flush” and “Xen
multicalls” were implemented during the IOMMU’s
bring-up phase and are included in the results presented
above. The rest of the optimizations are being imple-
mented and were not included in the benchmarks pre-
sented above.

4.1 Deferred Cache Flush

The Calgary IOMMU, as it is used in Intel-based
servers, does not include software facilities to invalidate
selected entries in the TCE cache (IOTLB). The only
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Figure 2: Bare-metal Network Throughput

Figure 3: Bare-metal Network CPU Utilization
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Figure 4: Xen dom0 Network Throughput

Figure 5: Xen dom0 Network CPU Utilization
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Figure 6: Xen domU Network Throughput

Figure 7: Xen domU Network CPU Utilization
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way to invalidate an entry in the TCE cache is to qui-
esce all DMA activity in the system, wait until all out-
standing DMAs are done, and then flush the entire TCE
cache. This is a cumbersome and lengthy procedure.

In theory, for maximal safety, one would want to inval-
idate an entry as soon as that entry is unmapped by the
driver. This will allow the system to catch any “use after
free” errors. However, flushing the entire cache after ev-
ery unmap operation proved prohibitive—it brought the
system to its knees. Instead, the implementation trades
a little bit of safety for a whole lot of usability. Entries
in the TCE table are allocated using a next-fit allocator,
and the cache is only flushed when the allocator rolls
around (starts to allocate from the beginning). This op-
timization is based on the observation that an entry only
needs to be invalidated before it is re-used. Since a given
entry will only be reused once the allocator rolls around,
roll-around is the point where the cache must be flushed.

The downside to this optimization is that it is possible
for a driver to reuse an entry after it has unmapped it,
if that entry happened to remain in the TCE cache. Un-
fortunately, closing this hole by invalidating every entry
immediately when it is freed, cannot be done with the
current generation of the hardware. The hole has never
been observed to occur in practice.

This optimization is applicable to both bare-metal and
hypervisor scenarios.

4.2 Xen multicalls

The Xen hypervisor supports “multicalls” [12]. A mul-
ticall is a single hypercall that includes the parameters
of several distinct logical hypercalls. Using multicalls
it is possible to reduce the number of hypercalls needed
to perform a sequence of operations, thereby reducing
the number of address space crossings, which are fairly
expensive.

The Calgary Xen implementation uses multicalls to
communicate map and unmap requests from a domain
to the hypervisor. Unfortunately, profiling has shown
that the vast majority of map and unmap requests (over
99%) are for a single entry, making multicalls pointless.

This optimization is only applicable to hypervisor sce-
narios.

4.3 Overhauling the DMA API

Profiling of the above mentioned benchmarks shows that
the number one culprits for CPU utilization are the map
and unmap calls. There are several ways to cut down on
the overhead of map and unmap calls:

• Get rid of them completely.

• Allocate in advance; free when done.

• Allocate and free in large batches.

• Never free.

4.3.1 Using Pre-allocation to Get Rid of Map and
Unmap

Calgary provides somewhat less than a 4GB DMA ad-
dress space (exactly how much less depends on the sys-
tem’s configuration). If the guest’s pseudo-physical ad-
dress space fits within the DMA address space, one pos-
sible optimization is to only allocate TCEs when the
guest starts up and free them when the guest shuts down.
The TCEs are allocated such that TCE i maps the same
machine frame as the guest’s pseudo-physical address
i. Then the guest could pretend that it doesn’t have an
IOMMU and pass the pseudo-physical address directly
to the device. No cache flushes are necessary because
no entry is ever invalidated.

This optimization, while appealing, has several down-
sides: first and foremost, it is only applicable to a hy-
pervisor scenario. In a bare-metal scenario, getting rid
of map and unmap isn’t practical because it renders the
IOMMU useless—if one maps all of physical memory,
why use an IOMMU at all? Second, even in a hyper-
visor scenario, pre-allocation is only viable if the set
of machine frames owned by the guest is “mostly con-
stant” through the guest’s lifetime. If the guest wishes to
use page flipping or ballooning, or any other operation
which modifies the guest’s pseudo-physical to machine
mapping, the IOMMU mapping needs to be updated as
well so that the IO to machine mapping will again cor-
respond exactly to the pseudo-physical to machine map-
ping. Another downside of this optimization is that it
protects other guests and the hypervisor from the guest,
but provides no protection inside the guest itself.
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4.3.2 Allocate In Advance And Free When Done

This optimization is fairly simple: rather than using the
“streaming” DMA API operations, use the alloc and free
operations to allocate and free DMA buffers and then
use them for as long as possible. Unfortunately this re-
quires a massive change to the Linux kernel since driver
writers have been taught since the days of yore that
DMA mappings are a sparse resource and should only
be allocated when absolutely needed. A better way to
do this might be to add a caching layer inside the DMA
API for platforms with many DMA mappings so that
driver writers could still use the map and unmap API,
but the actual mapping and unmapping will only take
place the first time a frame is mapped. This optimiza-
tion is applicable to both bare-metal and hypervisors.

4.3.3 Allocate And Free In Large Batches

This optimization is a twist on the previous one: rather
than modifying drivers to use alloc and free rather than
map and unmap, use map_multi and unmap_multi wher-
ever possible to batch the map and unmap operations.
Again, this optimization requires fairly large changes
to the drivers and subsystems and is applicable to both
bare-metal and hypervisor scenarios.

4.3.4 Never Free

One could sacrifice some of the protection afforded by
the IOMMU for the sake of performance by simply
never unmapping entries from the TCE table. This will
reduce the cost of unmap operations (but not eliminate
it completely—one would still need to know which en-
tries are mapped and which have been theoretically “un-
mapped” and could be reused) and will have a particu-
larly large effect on the performance of hypervisor sce-
narios. However, it will sacrifice a large portion of
the IOMMU’s advantage: any errant DMA to an ad-
dress that corresponds with a previously mapped and
unmapped entry will go through, causing memory cor-
ruption.

4.4 Grant Table Integration

This work has mostly been concerned with “direct hard-
ware access” domains which have direct access to hard-
ware devices. A subset of such domains are Xen “driver

domains” [11], which use direct hardware access to per-
form IO on behalf of other domains. For such “driver
domains,” using Xen’s grant table interface to pre-map
TCE entries as part of the grant operation will save
an address space crossing to map the TCE through the
DMA API later. This optimization is only applicable to
hypervisor (specifically, Xen) scenarios.

5 Future Work

Avenues for future exploration include support and per-
formance evaluation for more IOMMUs such as Intel’s
VT-d [1] and AMD’s IOMMU [2], completing the im-
plementations of the various optimizations that have
been presented in this paper and studying their effects
on performance, coming up with other optimizations
and ultimately gaining a better understanding of how to
build “zero-cost” IOMMUs.

6 Conclusions

The performance of two IOMMUs, DART on PowerPC
and Calgary on x86-64, was presented, through running
IO-intensive benchmarks with and without an IOMMU
on the IO path. In the common case throughput re-
mained the same whether the IOMMU was enabled or
disabled. CPU utilization, however, could be as much as
60% more in a hypervisor environment and 30% more
in a bare-metal environment, when the IOMMU was en-
abled.

The main CPU utilization cost came from too-frequent
map and unmap calls (used to create translation entries
in the DMA address space). Several optimizations were
presented to mitigate that cost, mostly by batching map
and unmap calls in different levels or getting rid of them
entirely where possible. Analyzing the feasibility of
each optimization and the savings it produces is a work
in progress.
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Abstract

With Linux for the Sony PS3, the IBM QS2x blades
and the Toshiba Celleb platform having hit mainstream
Linux distributions, programming for the Cell BE is be-
coming increasingly interesting for developers of per-
formance computing. This talk is about the concepts of
the architecture and how to develop applications for it.

Most importantly, there will be an overview of new fea-
ture additions and latest developments, including:

• Preemptive scheduling on SPUs (finally!): While it
has been possible to run concurrent SPU programs
for some time, there was only a very limited ver-
sion of the scheduler implemented. Now we have
a full time-slicing scheduler with normal and real-
time priorities, SPU affinity and gang scheduling.

• Using SPUs for offloading kernel tasks: There are a
few compute intensive tasks like RAID-6 or IPsec
processing that can benefit from running partially
on an SPU. Interesting aspects of the implementa-
tion are how to balance kernel SPU threads against
user processing, how to efficiently communicate
with the SPU from the kernel and measurements
to see if it is actually worthwhile.

• Overlay programming: One significant limitation
of the SPU is the size of the local memory that is
used for both its code and data. Recent compil-
ers support overlays of code segments, a technique
widely known in the previous century but mostly
forgotten in Linux programming nowadays.

1 Background

The architecture of the Cell Broadband Engine
(Cell/B.E.) is unique in many ways. It combines a gen-
eral purpose PowerPC processor with eight highly op-
timized vector processing cores called the Synergistic

Processing Elements (SPEs) on a single chip. Despite
implementing two distinct instruction sets, they share
the design of their memory management units and can
access virtual memory in a cache-coherent way.

The Linux operating system runs on the PowerPC Pro-
cessing Element (PPE) only, not on the SPEs, but
the kernel and associated libraries allow users to run
special-purpose applications on the SPE as well, which
can interact with other applications running on the PPE.
This approach makes it possible to take advantage of the
wide range of applications available for Linux, while at
the same time utilize the performance gain provided by
the SPE design, which could not be achieved by just re-
compiling regular applications for a new architecture.

One key aspect of the SPE design is the way that mem-
ory access works. Instead of a cache memory that
speeds up memory accesses in most current designs,
data is always transferred explicitly between the lo-
cal on-chip SRAM and the virtually addressed system
memory. An SPE program resides in the local 256KiB
of memory, together with the data it is working on.
Every time it wants to work on some other data, the
SPE tells its Memory Flow Controller (MFC) to asyn-
chronously copy between the local memory and the vir-
tual address space.

The advantage of this approach is that a well-written
application practically never needs to wait for a mem-
ory access but can do all of these in the background.
The disadvantages include the limitation to 256KiB of
directly addressable memory that limit the set of appli-
cations that can be ported to the architecture, and the
relatively long time required for a context switch, which
needs to save and restore all of the local memory and
the state of ongoing memory transfers instead of just the
CPU registers.
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Figure 1: Stack of APIs for accessing SPEs

1.1 Linux port

Linux on PowerPC has a concept of platform types that
the kernel gets compiled for, there are for example sep-
arate platforms for IBM System p and the Apple Power
Macintosh series. Each platform has its own hardware
specific code, but it is possible to enable combinations
of platforms simultaneously. For the Cell/B.E., we ini-
tially added a platform named “cell” to the kernel, which
has the drivers for running on the bare metal, i.e. with-
out a hypervisor. Later, the code for both the Toshiba
Celleb platform and Sony’s PlayStation 3 platform were
added, because each of them have their own hypervisor
abstractions that are incompatible with each other and
with the hypervisor implementations from IBM. Most
of the code that operates on SPEs however is shared and
provides a common interface to user processes.

2 Programming interfaces

There is a variety of APIs available for using SPEs,
I’ll try to give an overview of what we have and what
they are used for. For historic reasons, the kernel and
toolchain refer to SPUs (Synergistic Processing Units)
instead of SPEs, of which they are strictly speaking a
subset. For practical purposes, these two terms can be
considered equivalent.

2.1 Kernel SPU base

There is a common interface for simple users of an
SPE in the kernel, the main purpose is to make it pos-
sible to implement the SPU file system (spufs). The
SPU base takes care of probing for available SPEs in
the system and mapping their registers into the ker-
nel address space. The interface is provided by the
include/asm-powerpc/spu.h file. Some of the reg-
isters are only accessible through hypervisor calls on
platforms where Linux runs virtualized, so accesses to
these registers get abstracted by indirect function calls
in the base.

A module that wants to use the SPU base needs to re-
quest a handle to a physical SPU and provide interrupt
handler callbacks that will be called in case of events
like page faults, stop events or error conditions.

The SPU file system is currently the only user of the
SPU base in the kernel, but some people have imple-
mented experimental other users, e.g. for acceleration
of device drivers with SPUs inside of the kernel. Do-
ing this is an easy way for prototyping kernel code, but
we are recommending the use of spufs even from inside
the kernel for code that you intend to have merged up-
stream. Note that as in-kernel interfaces, the API of the
SPU base is not stable and can change at any time. All
of its symbols are exported only to GPL-licensed users.

2.2 The SPU file system

The SPU file system provides the user interface for ac-
cessing SPUs from the kernel. Similar to procfs and
sysfs, it is a purely virtual file system and has no block
device as its backing. By convention, it gets mounted
world-writable to the /spu directory in the root file sys-
tem.

Directories in spufs represent SPU contexts, whose
properties are shown as regular files in them. Any in-
teraction with these contexts is done through file oper-
ation like read, write or mmap. At time of this writing,
there are 30 files that are present in the directory of an
SPU context, I will describe some of them as an exam-
ple later.

Two system calls have been introduced for use exclu-
sively together with spufs, spu_create and spu_run. The
spu_create system call creates an SPU context in the ker-
nel and returns an open file descriptor for the directory
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associated with it. The open file descriptor is signifi-
cant, because it is used as a measure to determine the
life time of the context, which is destroyed when the file
descriptor is closed.

Note the explicit difference between an SPU context and
a physical SPU. An SPU context has all the properties of
an actual SPU, but it may not be associated with one and
only exists in kernel memory. Similar to task switching,
SPU contexts get loaded into SPUs and removed from
them again by the kernel, and the number of SPU con-
texts can be larger than the number of available SPUs.

The second system call, spu_run, acts as a switch for a
Linux thread to transfer the flow of control from the PPE
to the SPE. As seen by the PPE, a thread calling spu_run
blocks in that system call for an indefinite amount of
time, during which the SPU context is loaded into an
SPU and executed there. An equivalent to spu_run on
the SPU itself is the stop-and-signal instruction, which
transfers control back to the PPE. Since an SPE does
not run signal handlers itself, any action on the SPE that
triggers a signal or others sending a signal to the thread
also cause it to stop on the SPE and resume running on
the PPE.

Files in a context include

mem The mem file represents the local memory of an
SPU context. It can be accessed as a linear file
using read/write/seek or mmap operation. It is
fully transparent to the user whether the context is
loaded into an SPU or saved to kernel memory, and
the memory map gets redirected to the right loca-
tion on a context switch. The most important use
of this file is for an object file to get loaded into
an SPU before it is run, but mem is also used fre-
quently by applications themselves.

regs The general purpose registers of an SPU can not
normally be accessed directly, but they can be in a
saved context in kernel memory. This file contains
a binary representation of the registers as an array
of 128-bit vector variables. While it is possible to
use read/write operations on the regs file in order
to set up a newly loaded program or for debugging
purposes, every access to it means that the context
gets saved into a kernel save area, which is an ex-
pensive operation.

wbox The wbox file represents one of three mail box
files that can be used for unidirectional communi-

cation between a PPE thread and a thread running
on the SPE. Similar to a FIFO, you can not seek in
this file, but only write data to it, which can be read
using a special blocking instruction on the SPE.

phys-id The phys-id does not represent a feature of a
physical SPU but rather presents an interface to get
auxiliary information from the kernel, in this case
the number of the SPU that a context is loaded into,
or -1 if it happens not to be loaded at all at the point
it is read. We will probably add more files with sta-
tistical information similar to this one, to give users
better analytical functions, e.g. with an implemen-
tation of top that knows about SPU utilization.

2.3 System call vs. direct register access

Many functions of spufs can be accessed through two
different ways. As described above, there are files rep-
resenting the registers of a physical SPU for each con-
text in spufs. Some of these files also allow the mmap()
operation that puts a register area into the address space
of a process.

Accessing the registers from user space through mmap
can significantly reduce the system call overhead for fre-
quent accesses, but it carries a number of disadvantages
that users need to worry about:

• When a thread attempts to read or write a regis-
ter of an SPU context running in another thread, a
page fault may need to be handled by the kernel.
If that context has been moved to the context save
area, e.g. as the result of preemptive scheduling,
the faulting thread will not make any progress un-
til the SPU context becomes running again. In this
case, direct access is significantly slower than indi-
rect access through file operations that are able to
modify the saved state.

• When a thread tries to access its own registers
while it gets unloaded, it may block indefinitely
and need to be killed from the outside.

• Not all of the files that can get mapped on one ker-
nel version can be on another one. When using
64k pages, some files can not be mapped due to
hardware restrictions, and some hypervisor imple-
mentations put different limitation on what can be
mapped. This makes it very hard to write portable
applications using direct mapping.
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• In concurrent access to the registers, e.g. two
threads writing simultaneously to the mailbox, the
user application needs to provide its own lock-
ing mechanisms, as the kernel can not guarantee
atomic accesses.

In general, application writers should use a library like
libspe2 to do the abstraction. This library contains func-
tions to access the registers with correct locking and
provides a flag that can be set to attempt using the di-
rect mapping or fall back to using the safe file system
access.

2.4 elfspe

For users that want to worry as little as possible about
the low-level interfaces of spufs, the elfspe helper is the
easiest solution. Elfspe is a program that takes an SPU
ELF executable and loads it into a newly created SPU
context in spufs. It is able to handle standard callbacks
from a C library on the SPU, which are needed e.g. to
implement printf on the SPU by running some of code
on the PPE.

By installing elfspe with the miscellaneous binary for-
mat kernel support, the kernel execve() implementa-
tion will know about SPU executables and use /sbin/
elfspe as the interpreter for them, just like it calls in-
terpreters for scripts that start with the well-known “#!”
sequence.

Many programs that use only the subset of library func-
tions provided by newlib, which is a C runtime library
for embedded systems, and fit into the limited local
memory of an SPE are instantly portable using elfspe.
Important functionalities that does not work with this
approach include:

shared libraries Any library that the executable needs
also has to be compiled for the SPE and its size
adds up to what needs to fit into the local memory.
All libraries are statically linked.

threads An application using elfspe is inherently
single-threaded. It can neither use multiple SPEs
nor multiple threads on one SPE.

IPC Inter-process communication is significantly lim-
ited by what is provided through newlib. Use of
system calls directly from an SPE is not easily

available with the current version of elfspe, and any
interface that requires shared memory requires spe-
cial adaptation to the SPU environment in order to
do explicit DMA.

2.5 libspe2

Libspe2 is an implementation of the operating-system-
independent “SPE Runtime Management Library” spec-
ification.1 This is what most applications are supposed
to be written for in order to get the best degree of porta-
bility. There was an earlier libspe 1.x, that is not actively
maintained anymore since the release of version 2.1.

Unlike elfspe, libspe2 requires users to maintain SPU
contexts in their own code, but it provides an abstrac-
tion from the low-level spufs details like file operations,
system calls and register access.

Typically, users want to have access to more than one
SPE from one application, which is typically done
through multithreading the program: each SPU context
gets its own thread that calls the spu_run system call
through libspe2. Often, there are additional threads that
do other work on the PPE, like communicating with the
running SPE threads or providing a GUI. In a program
where the PPE hands out tasks to the SPEs, libspe2 pro-
vides event handles that the user can call blocking func-
tions like epoll_wait() on to wait for SPEs request-
ing new data.

2.6 Middleware

There are multiple projects targeted at providing a layer
on top of libspe2 to add application-side scheduling of
jobs inside of an SPU context. These include the SPU
Runtime System (SPURS) from Sony, the Accelerator
Library Framework (ALF) from IBM and the MultiCore
Plus SDK from Mercury Computer Systems.

All these projects have in common that there is no pub-
lic documentation or source code available at this time,
but that will probably change in the time until the Linux
Symposium.

1http://www-306.ibm.com/chips/
techlib/techlib.nsf/techdocs/
1DFEF31B3211112587257242007883F3/$file/
cplibspe.pdf
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3 SPU scheduling

While spufs has had the concept of abstracting SPU con-
texts from physical SPUs from the start, there has not
been any proper scheduling for a long time. An ini-
tial implementation of a preemptive scheduler was first
merged in early 2006, but then disabled again as there
were too many problems with it.

After a lot of discussion, a new implementation of
the SPU scheduler from Christoph Hellwig has been
merged in the 2.6.20 kernel, initially only supporting
only SCHED_RR and SCHED_FIFO real-time priority
tasks to preempt other tasks, but later work was done
to add time slicing as well for regular SCHED_OTHER
threads.

Since SPU contexts do not directly correspond to Linux
threads, the scheduler is independent of the Linux pro-
cess scheduler. The most important difference is that a
context switch is performed by the kernel, running on
the PPE, not by the SPE, which the context is running
on.

The biggest complication when adding the scheduler is
that a number of interfaces expect a context to be in a
specific state. Accessing the general purpose registers
from GDB requires the context to be saved, while ac-
cessing the signal notification registers through mmap
requires the context to be running. The new scheduler
implementation is conceptually simpler than the first at-
tempt in that no longer attempts to schedule in a context
when it gets accessed by someone else, but rather waits
for the context to be run by means of another thread call-
ing spu_run.

Accessing one SPE from another one shows effects of
non-uniform memory access (NUMA) and application
writers typically want to keep a high locality between
threads running on different SPEs and the memory they
are accessing. The SPU code therefore has been able for
some time to honor node affinity settings done through
the NUMA API. When a thread is bound to a given CPU
while executing on the PPE, spufs will implicitly bind
the thread to an SPE on the same physical socket, to the
degree that relationship is described by the firmware.

This behavior has been kept with the new scheduler, but
has been extended by another aspect, affinity between
SPE cores on the same socket. Unlike the NUMA inter-
faces, we don’t bind to a specific core here, but describe

the relationship between SPU contexts. The spu_create
system call now gets an optional argument that lets the
user pass the file descriptor of an existing context. The
spufs scheduler will then attempt to move these contexts
to physical SPEs that are close on the chip and can com-
municate with lower overhead than distant ones.

Another related interface is the temporal affinity be-
tween threads. If the two threads that you want to com-
municate with each other don’t run at the same time,
the special affinity is pointless. A concept called gang
scheduling is applied here, with a gang being a container
of SPU contexts that are all loaded simultaneously. A
gang is created in spufs by passing a special flag to
spu_create, which then returns a descriptor to an empty
gang directory. All SPU contexts created inside of that
gang are guaranteed to be loaded at the same time.

In order to limit the number of expensive operations of
context switching an entire gang, we apply lazy context
switching to the contexts in a gang. This means we don’t
load any contexts into SPUs until all contexts in the gang
are waiting in spu_run to become running. Similarly,
when one of the threads stops, e.g. because of a page
fault, we don’t immediately unload the contexts but wait
until the end of the time slice. Also, like normal (non-
gang) contexts, the gang will not be removed from the
SPUs unless there is actually another thread waiting for
them to become available, independent of whether or
not any of the threads in the gang execute code at the
end of the time slice.

4 Using SPEs from the kernel

As mentioned earlier, the SPU base code in the kernel al-
lows any code to get access to SPE resources. However,
that interface has the disadvantage to remove the SPE
from the scheduling, so valuable processing power re-
mains unused while the kernel is not using the SPE. That
should be most of the time, since compute-intensive
tasks should not be done in kernel space if possible.

For tasks like IPsec, RAID6 or dmcrypt processing of-
fload, we usually want the SPE to be only blocked while
the disk or network is actually being accessed, otherwise
it should be available to user space.

Sebastian Siewior is working on code to make it possi-
ble to use the spufs scheduler from the kernel, with the
concrete goal of providing cryptoapi offload functions
for common algorithms.
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For this, the in-kernel equivalent of libspe is created,
with functions that directly do low-level accesses in-
stead of going through the file system layer. Still, the
SPU contexts are visible to user space applications, so
they can get statistic information about the kernel space
SPUs.

Most likely, there should be one kernel thread per SPU
context used by the kernel. It should also be possible
to have multiple unrelated functions that are offloaded
from the kernel in the same executable, so that when
the kernel needs one of them, it calls into the correct
location on the SPU. This requires some infrastructure
to link the SPU objects correctly into a single binary.
Since the kernel does not know about the SPU ELF file
format, we also need a new way of initially loading the
program into the SPU, e.g. by creating a save context
image as part of the kernel build process.

First experiments suggest that an SPE can do an AES
encryption about four times faster than a PPE. It will
need more work to see if that number can be improved
further, and how much of it is lost as communication
overhead when the SPE needs to synchronize with the
kernel. Another open question is whether it is more ef-
ficient for the kernel to synchronously wait for the SPE
or if it can do something else at the same time.

5 SPE overlays

One significant limitation of the SPE is the size that
is available for object code in the local memory. To
overcome that limitation, new binutils support overlay
to support overlaying ELF segments into concurrent re-
gions. In the most simple case, you can have two func-
tions that both have their own segment, with the two
segments occupying the same region. The size of the re-
gion is the maximum of either segment size, since they
both need to fit in the same space.

When a function in an overlay is called, the calling func-
tion first needs to call a stub that checks if the correct
overlay is currently loaded. If not, a DMA transfer is
initiated that loads the new overlay segment, overwrit-
ing the segment loaded into the overlay region before.
This makes it possible to even do function calls in dif-
ferent segments of the same region.

There can be any number of segments per region, and
the number of regions is only limited by the size of the

local storage. However, the task of choosing the optimal
configuration of which functions to go into what seg-
ment is up to the application developer. It gets specified
through a linker script that contains a list of OVERLAY
statements, each of them containing a list of segments
that go into an overlay.

It is only possible to overlay code and read-only data,
but not data that is written to, because overlay segments
only ever get loaded into the SPU, but never written back
to main memory.

6 Profiling SPE tasks

Support for profiling SPE tasks with the oprofile tool has
been implemented in the latest IBM Software Develop-
ment Kit for Cell. It is currently in the process of getting
merged into the mainline kernel and oprofile user space
packages.

It uses the debug facilities provided by the Cell/B.E.
hardware to get sample data about what each SPE is do-
ing, and then maps that to currently running SPU con-
texts. When the oprofile report tool runs, that data can
be mapped back to object files and finally to source code
lines that a developer can understand. So far, it behaves
like oprofile does for any Linux task, but there are a few
complications.

The kernel, in this case spufs, has by design no knowl-
edge about what program it is running, the user space
program can simply load anything into local storage. In
order for oprofile to work, a new “object-id” file was
added to spufs, which is used by libspe2 to tell opro-
file the location of the executable in the process address
space. This file is typically written when an application
is first started and does not have any relevance except
when profiling.

Oprofile uses the object-id in order to map the local store
addresses back to a file on the disk. This can either be
a plain SPU executable file, or a PowerPC ELF file that
embeds the SPU executable as a blob. This means that
every sample from oprofile has three values: The offset
in local store, the file it came from, and the offset in that
file at which the ELF executable starts.

To make things more complicated, oprofile also needs to
deal with overlays, which can have different code at the
same location in local storage at different times. In order
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to get these right, oprofile parses some of the ELF head-
ers of that file in kernel space when it is first loaded, and
locates an overlay table in SPE local storage with this
to find out which overlay was present for each sample it
took.

Another twist is self-modifying code on the SPE, which
happens to be used rather frequently, e.g. in order to do
system calls. Unfortunately, there is nothing that opro-
file can safely do about this.

7 Combined Debugger

One of the problems with earlier version of GDB for
SPU was that GDB can only operate on either the PPE
or the SPE. This has now been overcome by the work of
Ulrich Weigand on a combined PPE/SPE debugger.

A single GDB binary now understands both instruction
sets and knows how switch between the two. When
GDB looks at the state of a thread, it now checks if it
is in the process of executing the spu_run system call. If
not, it shows the state of the thread on the PPE side using
ptrace, otherwise it looks at the SPE registers through
spufs.

This can work because the SIGSTOP signal is handled
similarly in both cases. When gdb sends this signal to
a task running on the SPE, it returns from the spu_run
system call and suspends itself in the kernel. GDB can
then do anything to the context and when it sends a
SIGCONT, spu_run will be restarted with updated ar-
guments.
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Abstract

This paper will discuss the difficulties and methods in-
volved in debugging the Linux kernel on huge clusters.
Intermittent errors that occur once every few years are
hard to debug and become a real problem when running
across thousands of machines simultaneously. The more
we scale clusters, the more reliability becomes critical.
Many of the normal debugging luxuries like a serial con-
sole or physical access are unavailable. Instead, we need
a new strategy for addressing thorny intermittent race
conditions. This paper presents the case for a new set
of tools that are critical to solve these problems and also
very useful in a broader context. It then presents the de-
sign for one such tool created from a hybrid of a Google
internal tool and the open source LTTng project. Real
world case studies are included.

1 Introduction

Well established techniques exist for debugging most
Linux kernel problems; instrumentation is added, the
error is reproduced, and this cycle is repeated until
the problem can be identified and fixed. Good access
to the machine via tools such as hardware debuggers
(ITPs), VGA and serial consoles simplify this process
significantly, reducing the number of iterations required.
These techniques work well for problems that can be re-
produced quickly and produce a clear error such as an
oops or kernel panic. However, there are some types of
problems that cannot be properly debugged in this fash-
ion as they are:

• Not easily reproducible on demand;

• Only reproducible in a live production environ-
ment;

• Occur infrequently, particularly if they occur in-
frequently on a single machine, but often enough
across a thousand-machine cluster to be significant;

• Only reproducible on unique hardware; or

• Performance problems, that don’t produce any er-
ror condition.

These problems present specific design challenges; they
require a method for extracting debugging information
from a running system that does not impact perfor-
mance, and that allows a developer to drill down on the
state of the system leading up to an error, without over-
loading them with inseparable data. Specifically, prob-
lems that only appear in a full-scale production environ-
ment require a tool that won’t affect the performance
of systems running a production workload. Also, bugs
which occur infrequently may require instrumentation
of a significant number of systems in order to catch the
bug in a reasonable time-frame. Additionally, for prob-
lems that take a long time to reproduce, continuously
collecting and parsing debug data to find relevant infor-
mation may be impossible, so the system must have a
way to prune the collected data.

This paper describes a low-overhead, but powerful, ker-
nel tracing system designed to assist in debugging this
class of problems. This system is lightweight enough to
run on production systems all the time, and allows for an
arbitrary event to trigger trace collection when the bug
occurs. It is capable of extracting only the information
leading up to the bug, provides a good starting point for
analysis, and it provides a framework for easily adding
more instrumentation as the bug is tracked. Typically
the approach is broken down into the following stages:

1. Identify the problem – for an error condition, this
is simple; however, characterization may be more
difficult for a performance issue.

2. Create a trigger that will fire when the problem oc-
curs – it could be the error condition itself, or a
timer that expires.

• 29 •



30 • Linux Kernel Debugging on Google-sized clusters

• Use the trigger to dump a buffer containing
the trace information leading up to the error.

• Log the trigger event to the trace for use as a
starting point for analysis.

3. Dump information about the succession of events
leading to the problem.

4. Analyze results.

In addition to the design and implementation of our trac-
ing tool, we will also present several case studies illus-
trating the types of errors described above in which our
tracing system proved an invaluable resource.

After the bug is identified and fixed, tracing is also ex-
tremely useful to demonstrate the problem to other peo-
ple. This is particularly important in an open source en-
vironment, where a loosely coupled team of developers
must work together without full access to each other’s
machines.

2 Related Work

Before being used widely in such large-scale contexts,
kernel tracers have been the subject of a lot of work
in the past. Besides each and every kernel program-
mer writing his or her own ad-hoc tracer, a number of
formalized projects have presented tracing systems that
cover some aspect of kernel tracing.

Going through the timeline of such systems, we start
with the Linux Trace Toolkit [6] which aimed primarily
at offering a kernel tracing infrastructure to trace a static,
fixed set of important kernel-user events useful to under-
stand interactions between kernel and user-space. It also
provided the ability to trace custom events. User-space
tracing was done through device write. Its high-speed
kernel-to-user-space buffering system for extraction of
the trace data led to the development of RelayFS [3],
now known as Relay, and part of the Linux kernel.

The K42 [5] project, at IBM Research, included a ker-
nel and user-space tracer. Both kernel and user-space
applications write trace information in a shared memory
segment using a lockless scheme. This has been ported
to LTT and inspired the buffering mechanism of LTTng
[7], which will be described in this paper.

The SystemTAP[4] project has mainly been focused on
providing tracing capabilities to enterprise-level users

for diagnosing problems on production systems. It uses
the kprobes mechanism to provide dynamic connection
of probe handlers at particular instrumentation sites by
insertion of breakpoints in the running kernel. System-
TAP defines its own probe language that offers the se-
curity guarantee that a programmer’s probes won’t have
side-effects on the system.

Ingo Molnar’s IRQ latency tracer, Jens Axboe’s blk-
trace, and Rick Lindsley’s schedstats are examples of
in-kernel single-purpose tracers which have been added
to the mainline kernel. They provide useful information
about the system’s latency, block I/O, and scheduler de-
cisions.

It must be noted that tracers have existed in proprietary
real-time operating systems for years—for example,
take the WindRiver Tornado (now replaced by LTTng
in their Linux products). Irix has had an in-kernel tracer
for a long time, and Sun provides Dtrace[1], an open
source tracer for Solaris.

3 Why do we need a tracing tool?

Once the cause of a bug has been identified, fixing it
is generally trivial. The difficulty lies in making the
connection between an error conveyed to the user—an
oops, panic, application error—and the source. In a
complex, multi-threaded system such as the Linux ker-
nel, which is both reentrant and preemptive, understand-
ing the paths taken through kernel code can be difficult,
especially where the problem is intermittent (such as a
race condition). These issues sometimes require power-
ful information gathering and visualization tools to com-
prehend.

Existing solutions, such as statistical profiling tools like
oprofile, can go some way to presenting an overall view
of a system’s state and are helpful for a wide class of
problems. However, they don’t work well for all situa-
tions. For example, identifying a race condition requires
capturing the precise sequence of events that occurred;
the tiny details of ordering are what is needed to iden-
tify the problem, not a broad overview. In these situa-
tions, a tracing tool is critical. For performance issues,
tools like OProfile are useful for identifying hot func-
tions, but don’t provide much insight into intermittent
latency problems, such as some fraction of a query tak-
ing 100 times as long to complete for no apparent rea-
son.
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Often the most valuable information for identifying
these problems is in the state of the system preceding the
event. Collecting that information requires continuous
logging and necessitates preserving information about
the system for at least some previous section of time.

In addition, we need a system that can capture failures
at the earliest possible moment; if a problem takes a
week to reproduce, and 10 iterations are required to col-
lect enough information to fix it, the debugging process
quickly becomes intractable. The ability to instrument a
wide spectrum of the system ahead of time, and provide
meaningful data the first time the problem appears, is
extremely useful. Having a system that can be deployed
in a production environment is also invaluable. Some
problems only appear when you run your application in
a full cluster deployment; re-creating them in a sandbox
is impossible.

Most bugs seem obvious in retrospect, after the cause
is understood; however, when a problem first appears,
getting a general feel for the source of the problem is
essential. Looking at the case studies below, the reader
may be tempted to say “you could have detected that
using existing tool X;” however, that is done with the
benefit of hindsight. It is important to recognize that in
some cases, the bug behavior provides no information
about what subsystem is causing the problem or even
what tools would help you narrow it down. Having a
single, holistic tracing tool enables us to debug a wide
variety of problems quickly. Even if not all necessary
sites are instrumented prior to the fact, it quickly iden-
tifies the general area the problem lies in, allowing a
developer to quickly and simply add instrumentation on
top of the existing infrastructure.

If there is no clear failure event in the trace (e.g. an
OOM kill condition, or watchdog trigger), but a more
general performance issue instead, it is important to be
able to visualize the data in some fashion to see how
performance changes around the time the problem is ob-
served. By observing the elapsed time for a series of
calls (such as a system call), it is often easy to build an
expected average time for an event making it possible
to identify outliers. Once a problem is narrowed down
to a particular region of the trace data, that part of the
trace can be more closely dissected and broken down
into its constituent parts, revealing which part of the call
is slowing it down.

Since the problem does not necessarily present itself at

each execution of the system call, logging data (local
variables, static variables) when the system call executes
can provide more information about the particularities
of an unsuccessful or slow system call compared to the
normal behavior. Even this may not be sufficient—if
the problem arises from the interaction of other CPUs
or interrupt handlers with the system call, one has to
look at the trace of the complete system. Only then can
we have an idea of where to add further instrumentation
to identify the code responsible for a race condition.

4 Case Studies

4.1 Occasional poor latency for I/O write requests

Problem Summary: The master node of a large-
scale distributed system was reporting occasional time-
out errors on writes to disk, causing a cluster fail-over
event. No visible errors or detectable hardware prob-
lems seemed to be related.

Debugging Approach: By setting our tracing tool to
log trace data continuously to a circular buffer in mem-
ory, and stopping tracing when the error condition was
detected, we were able to capture the events preceding
the problem (from a point in time determined by the
buffer size, e.g. 1GB of RAM) up until it was reported
as a timeout. Looking at the start and end times for write
requests matching the process ID reporting the timeout,
it was easy to see which request was causing the prob-
lem.

By then looking at the submissions and removals from
the IO scheduler (all of which are instrumented), it was
obvious that there was a huge spike in IO traffic at the
same time as the slow write request. Through examining
the process ID which was the source of the majority of
the IO, we could easily see the cause, or as it turned out
in this case, two separate causes:

1. An old legacy process left over from 2.2 kernel era
that was doing a full sync() call every 30s.

2. The logging process would occasionally decide to
rotate its log files, and then call fsync() to make
sure it was done, flushing several GB of data.

Once the problem was characterized and understood, it
was easy to fix.
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1. The sync process was removed, as its duties have
been taken over in modern kernels by pdflush, etc.

2. The logging process was set to rotate logs more of-
ten and in smaller data chunks; we also ensured it
ran in a separate thread, so as not to block other
parts of the server.

Application developers assumed that since the individ-
ual writes to the log files were small, the fsync would
be inexpensive; however, in some cases the resulting
fsync was quite large.

This is a good example of a problem that first appeared
to be kernel bug, but was in reality the result of a user-
space design issue. The problem occurred infrequently,
as it was only triggered by the fsync and sync calls co-
inciding. Additionally, the visibility that the trace tool
provided into system behavior enabled us to make gen-
eral latency improvements to the system, as well as fix-
ing the specific timeout issue.

4.2 Race condition in OOM killer

Problem summary: In a set of production clusters,
the OOM killer was firing with an unexpectedly high
frequency and killing production jobs. Existing moni-
toring tools indicated that these systems had available
memory when the OOM condition was reported. Again
this problem didn’t correlate with any particular appli-
cation state, and in this case there was no reliable way
to reproduce it using a benchmark or load test in a con-
trolled environment.

While the rate of OOM killer events was statistically sig-
nificant across the cluster, it was too low to enable trac-
ing on a single machine and hope to catch an event in a
reasonable time frame, especially since some amount of
iteration would likely be required to fully diagnose the
problem. As before, we needed a trace system which
could tell us what the state of the system was in the time
leading up to a particular event. In this case, however,
our trace system also needed to be lightweight and safe
enough to deploy on a significant portion of a cluster
that was actively running production workloads. The
effect of tracing overhead needed to be imperceptible as
far as the end user was concerned.

Debugging Approach: The first step in diagnosing
this problem was creating a trigger to stop tracing when
the OOM killer event occurred. Once this was in place
we waited until we had several trace logs to examine. It
was apparent that we were failing to scan or successfully
reclaim a suitable number of pages, so we instrumented
the main reclaim loop. For each pass over the LRU list,
we recorded the reclaim priority, the number of pages
scanned, the number of pages reclaimed, and kept coun-
ters for each of 33 different reasons why a page might
fail to be reclaimed.

From examining this data for the PID that triggered
the OOM killer, we could see that the memory pres-
sure indicator was increasing consistently, forcing us to
scan increasing number of pages to successfully reclaim
memory. However, suddenly the indicator would be set
back to zero for no apparent reason. By backtracking
and examining the events for all processes in the trace,
we were able to determine see that a different process
had reclaimed a different class of memory, and then set
the global memory pressure counter back to zero.

Once again, with the problem fully understood, the bug
was easy to fix through the use of a local memory pres-
sure counter. However, to send the patch back upstream
into the mainline kernel, we first had to convince the ex-
ternal maintainers of the code that the problem was real.
Though they could not see the proprietary application,
or access the machines, by showing them a trace of the
condition occurring, it was simple to demonstrate what
the problem was.

4.3 Timeout problems following transition from lo-
cal to distributed storage

Problem summary: While adapting Nutch/Lucene to
a clustered environment, IBM transitioned the filesys-
tem from local disk to a distributed filesystem, resulting
in application timeouts.

The software stack consisted of the Linux kernel, the
open source Java application Nutch/Lucene, and a dis-
tributed filesystem. With so many pieces of software,
the number and complexity of interactions between
components was very high, and it was unclear which
layer was causing the slowdown. Possibilities ranged
from sharing filesystem data that should have been lo-
cal, to lock contention within the filesystem, with the
added possibility of insufficient bandwidth.
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Identifying the problem was further complicated by the
nature of error handling in the Nutch/Lucene applica-
tion. It consists of multiple monitor threads running pe-
riodically to check that each node is executing properly.
This separated the error condition, a timeout, from the
root cause. It can be especially challenging to find the
source of such problems as they are seen only in rela-
tively long tests, in this case of 15 minutes or more. By
the time the error condition was detected, its cause is no
longer apparent or even observable: it has passed out of
scope. Only by examining the complete execution win-
dow of the timeout—a two-minute period, with many
threads—can one pinpoint the problem.

Debugging Approach: The cause of this slowdown
was identified using the LTTng/LTTV tracing toolkit.
First, we repeated the test with tracing enabled on each
node, including the user-space application. This showed
that the node triggering the error condition varied be-
tween runs. Next, we examined the trace from this node
at the time the error condition occurred in order to learn
what happened in the minutes leading up to the error.
Inspecting the source code of the reporting process was
not particularly enlightening, as it was simply a moni-
toring process for the whole node. Instead, we had to
look at the general activity on this node; which was the
most active thread, and what was it doing?

The results of this analysis showed that the most active
process was doing a large number of read system calls.
Measuring the duration of these system calls, we saw
that each was taking around 30ms, appropriate for disk
or network access, but far too long for reads from the
data cache. It thus became apparent that the application
was not properly utilizing its cache; increasing the cache
size of the distributed system completely resolved the
problem.

This problem was especially well suited to an investiga-
tion through tracing. The timeout error condition pre-
sented by the program was a result of a general slow-
down of the system, and as such would not present with
any obvious connection with the source of the prob-
lem. The only usable source of information was the
two-minute window in which the slowdown occurred.
A trace of the interactions between each thread and the
kernel during this window revealed the specific execu-
tion mode responsible for the slowdown.

4.4 Latency problem in printk on slow serialization

Problem Summary: User-space applications ran-
domly suffer from scheduler delays of about 12ms.

While some problems can be blamed on user-space de-
sign issues that interact negatively with the kernel, most
user-space developers expect certain behaviors from the
kernel and unexpected kernel behaviors can directly and
negatively impact user-space applications, even if they
aren’t actually errors. For instance, [2] describes a prob-
lem in which an application sampling video streams at
60Hz was dropping frames. At this rate, the application
must process one frame every 16.6ms to remain syn-
chronized with incoming data. When tracing the kernel
timer interrupt, it became clear that delays in the sched-
uler were causing the application to miss samples. Par-
ticularly interesting was the jitter in timer interrupt la-
tency as seen in Figure 1.

A normal timer IRQ should show a jitter lower than the
actual timer period in order to behave properly. How-
ever, tracing showed that under certain conditions, the
timing jitter was much higher than the timer interval.
This was first observed around tracing start and stop.
Some timer ticks, accounting for 12ms, were missing (3
timer ticks on a 250HZ system).

Debugging Approach: Instrumenting each local_
irq_{save,restore,disable,enable} macro
provided the information needed to find the problem,
and extracting the instruction pointer at each call to
these macros revealed exactly which address disabled
the interrupts for too long around the problematic
behavior.

Inspecting the trace involved first finding occurrences
of the problematic out-of-range intervals of the inter-
rupt timer and using this timestamp to search back-
ward for the last irq_save or irq_disable event.
Surprisingly, this was release_console_sem from
printk. Disabling the serial console output made the
problem disappear, as evidenced by Figure 2. Disabling
interrupts while waiting for the serial port to flush the
buffers was responsible for this latency, which not only
affects the scheduler, but also general timekeeping in the
Linux kernel.
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4.5 Hardware problems causing a system delay

Problem Summary: The video/audio acquisition
software running under Linux at Autodesk, while in de-
velopment, was affected by delays induced by the PCI-
Express version of a particular card. However, the man-
ufacturer denied that their firmware was the cause of
the problem, and insisted that the problem was certainly
driver or kernel-related.

Debugging Approach: Using LTTng/LTTV to trace
and analyze the kernel behavior around the experienced
delay led to the discovery that this specific card’s inter-
rupt handler was running for too long. Further instru-
mentation within the handler permitted us to pinpoint
the problem more exactly—a register read was taking
significantly longer than expected, causing the deadlines
to be missed for video and audio sampling. Only when
confronted with this precise information did the hard-
ware vendor acknowledge the issue, which was then
fixed within a few days.

5 Design and Implementation

We created a hybrid combination of two tracing tools—
Google’s Ktrace tool and the open source LTTng tool,
taking the most essential features from each, while try-
ing to keep the tool as simple as possible. The following
set of requirements for tracing was collected from users
and from experience through implementation and use:

• When not running, must have zero effective im-
pact.

• When running, should have low enough impact so
as not to disturb the problem, or impede production
traffic.

• Spooling data off the system should not completely
saturate the network.

• Compact data format—must be able to store large
amounts of data using as little storage as possible.

• Applicability to a wide range of kernel points, i.e.,
able to profile in interrupt context, and preferably
in NMI context.

• User tools should be able to read multiple differ-
ent kernel versions, deal with custom debug points,
etc.

• One cohesive mechanism (and time ordered
stream), not separate tools for scheduler, block
tracing, VM tracing, etc.

The resulting design has four main parts described in
detail in the sections that follow:

1. a logging system to collect and store trace data and
make it available in user-space;

2. a triggering system to identify when an error has
occurred and potentially stop tracing;

3. an instrumentation system that meets the perfor-
mance requirements and also is easily extensible;
and

4. an analysis tool for viewing and analyzing the re-
sulting logs.

5.1 Collection and Logging

The system must provide buffers to collect trace data
whenever a trace point is encountered in the kernel and
have a low-overhead mechanism for making that data
available in user-space. To do this we use preallocated,
per-CPU buffers as underlying data storage and fast data
copy to user-space performed via Relay. When a “trig-
ger” event occurs, assuming the machine is still in a
functional state, passing data to user-space is done via
simple tools reading the Relay interfaces. If the system
has panicked, we may need to spool the data out over
the network to another machine (or to local disk), as in
the the netdump or crashdump mechanisms.

The in-kernel buffers can be configured to operate in
three modes:

• Non-overwrite – when the buffer is full, drop
events and increment an event lost counter.

• Overwrite – use the buffer as a circular log buffer,
overwriting the oldest data.

• Hybrid – a combination of the two where high rate
data is overwritten, but low rate state information
is treated as non-overwrite.
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Each trace buffer actually consists of a group of per-
cpu buffers, each assigned to high, medium, and low
rate data. High-rate data accounts for the most com-
mon event types described in detail below—system call
entry and exits, interrupts, etc. Low-rate data is gen-
erally static throughout the trace run and consists in
part of the information required to decode the resulting
trace, system data type sizes, alignment, etc. Medium-
rate channels record meta-information about the sys-
tem, such as the mapping of interrupt handlers to de-
vices (which might change due to Hotplug), process
names, their memory maps, and opened file descriptors.
Loaded modules and network interfaces are also treated
as medium-rate events. By iterating on kernel data struc-
tures we can record a listing of the resources present at
trace start time, and update it whenever it changes, thus
building a complete picture of the system state.

Separating high-rate events (prone to fill the buffers
quickly) from lower rate events allows us to use the
maximum space for high-rate data without losing the
valuable information provided by the low- and medium-
rate channel. Also, it makes it easy to create a hybrid
mode system where the last few minutes of interrupt or
system call information can be viewed, and we can also
get the mapping of process IDs to names even if they
were not created within that time window.

Multiple channels can also be used to perform fast
user-space tracing, where each process is responsible
for writing the trace to disk by itself without going
through a system call and Xen hypervisor tracing. The
trace merging is performed by the analysis tool in the
same manner in which the multiple CPU buffers are
handled, permitting merging the information sources at
post-processing time.

It may also be useful to integrate other forms of informa-
tion into the trace, in order to get one merged stream of
data—i.e., we could record readprofile-style data (where
the instruction pointer was at a given point in time) ei-
ther in the timer tick event, or as a periodic dump of the
collated hash table data. Also functions to record mem-
info, slabinfo, ps data, user-space and kernel stacks for
the running threads might be useful, though these would
have to be enabled on a custom basis. Having all the
data in one place makes it significantly easier to write
analysis and visualization tools.

5.2 Triggering

Often we want to capture the state of the system in a
short period of time preceding a critical error or event.
In order to avoid generating massive amounts of data
and the performance impact of disk or network writes to
the system, we leave the system logging into a circular
buffer, then stop tracing when the critical event occurs.

To do this, we need to create a trigger. If this event
can easily be recognized by a user-space daemon, we
can simply call the usual tracing interface with an in-
struction to stop tracing. For some situations, a small
in-kernel trigger is more appropriate. Typical trigger
events we have used include:

• OOM kill;

• Oops / panic;

• User-space locks up (processes are not getting
scheduled);

• User application indicates poor response from sys-
tem; or

• Manual intervention from user.

5.3 Instrumentation

When an instrumentation point is encountered, the
tracer takes a timestamp and the associated event data
and logs it to our buffers. Each encountered instrumen-
tation point must have minimum overhead, while pro-
viding the most information.

Section 5.3.1 explains how our system minimizes the
impact of instrumentation and compares and contrasts
static and dynamic instrumentation schemes.

We will discuss the details of our event formats in Sec-
tion 5.3.2 and our approach to timestamping in Sec-
tion 5.3.3.

To eliminate cache-line bouncing and potential race
conditions, each CPU logs data to its own buffer, and
system-wide event ordering is done via timestamps. Be-
cause we would like to be able to instrument reentrant
contexts, we must provide a locking mechanism to avoid
potential race conditions. We have investigated two op-
tions described in Section 5.3.4.
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5.3.1 Static vs. Dynamic Instrumentation Points

There are two ways we can insert trace points—at static
markers that are pre-defined in the source code, or dy-
namically insert them while the system is running. For
standard events that we can anticipate the need for in ad-
vance, the static mechanism has several advantages. For
events that are not anticipated in advance, we can either
insert new static points in the source code, compile a
new kernel and reboot, or insert dynamic probes via a
mechanism such as kprobes. Static vs dynamic markers
are compared below:

• Trace points from static markers are significantly
faster in use. Kprobes uses a slow int3 mecha-
nism; development efforts have been made to cre-
ate faster dynamic mechanisms, but they are not
finished, very complex, cannot instrument fully
preemptible kernels, and they are still significantly
slower than static tracing.

• Static trace points can be inserted anywhere in the
code base; dynamic probes are limited in scope.

• Dynamic trace points cannot easily access local
variables or registers at arbitrary points within a
function.

• Static trace points are maintained within the kernel
source tree and can follow its evolution; dynamic
probes require constant maintenance outside of the
tree, and new releases if the traced code changes.
This is more of a problem for kernel developers,
who mostly work with mainline kernels that are
constantly changing.

• Static markers have a potential performance im-
pact when not being used—with care, they can
be designed so that this is practically non-existent,
and this can be confirmed with performance bench-
marks.

We use a marker infrastructure which is a hook-callback
mechanism. Hooks are our markers placed in the ker-
nel at the instrumentation site. When tracing is enabled,
these are connected to the callback probes—the code ex-
ecuted to perform the tracing. The system is designed to
have an impact as low as possible on the system perfor-
mance, so markers can be compiled into a production
kernel without appreciable performance impact. The

probe callback connection to its markers is done dynam-
ically. A predicted branch is used to skip the hook stack
setup and function call when the marker is “disabled”
(no probe is connected). Further optimizations can be
implemented for each architecture to make this branch
faster.

The other key facet of our instrumentation system is the
ability to allow the user to extend it. It would be im-
possible to determine in advance the complete set of
information that would be useful for a particular prob-
lem, and recording every thing occurring on a system
would be clearly be impractical if not infeasible. In-
stead, we have designed a system for adding instrumen-
tation iteratively from a coarse-grained level including
major events like system calls, scheduling, interrupts,
faults, etc. to a finer grained level including kernel syn-
chronization primitives and important user-space func-
tions. Our tool is capable of dealing with an extensible
set of user-definable events, including merged informa-
tion coming from both kernel and user-space execution
contexts, synchronized in time.

Events can also be filtered; the user can request which
event types should be logged, and which should not. By
filtering only by event type, we get an effective, if not
particularly fine-grained filter, and avoid the concerns
over inserting buggy new code into the kernel, or the
whole new languages that tools like Dtrace and System-
tap invent in order to fix this problem. In essence, we
have chosen to do coarse filtering in the kernel, and push
the rest of the task to user-space. This design is backed
up by our efficient probes and logging, compact logging
format, and efficient data relay mechanism to user-space
(Relay).

5.3.2 Event Formats

It would be beneficial to log as much data about the sys-
tem state as possible, but instrumenting every interrupt
or system call clearly will rapidly generate large vol-
umes of data. To maximize the usefulness of our tool,
we must store our event data in the most efficient way
possible. In Google’s ktrace tool, for the sake of com-
pactness and alignment we chose to make our most com-
mon set of events take up 8 bytes. The best compromise
between data compactness and information complete-
ness within these bytes was to use the first 4 bytes for
type and timestamp information, and the second 4 for an
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type

data

tsc_shifted

27 bits

8 bytes total

5 bits

32 bits

Figure 3: Common event format

event-specific data payload. The format of our events is
shown in Figure 3.

Commonly logged events include:

• System call entry / exit (including system call num-
ber, lower bytes of first argument)

• Interrupt entry / exit

• Schedule a new task

• Fork / exec of a task, new task seen

• Network traffic

• Disk traffic

• VM reclaim events

In addition to the basic compact format, we required a
mechanism for expanding the event space and logging
data payloads larger than 4 bytes. We created an ex-
panded event format, shown in Figure 4, that can be used
to store larger events needing more data payload space
(up to 64K). The normal 32-bit data field is broken into
a major and minor expanded event types (256 of each)
and a 16-bit length field specifying the length of the data
payload that follows.

LTTng’s approach is similar to Ktrace; we use 4-byte
event headers, followed by a variable size payload. The
compact format is also available; it records the times-
tamp, the event ID, and the payload in 4 bytes. It dynam-
ically calculates the minimum number of bits required to
represent the TSC and still detect overflows. It uses the
timer frequency and CPU frequency to determine this
value.

type

length

tsc_shifted

27 bits5 bits

8 bits

minormajor

data

8 bits 16 bits

Figure 4: Expanded event format

5.3.3 Timestamps

Our instrumentation system must provide an accurate,
low-overhead timestamp to associate with each logged
event. The ideal timestamp would be a high-resolution
fixed frequency counter, that has very low cost to re-
trieve, is always monotonic, and is synchronized across
all CPUs and readable from both kernel and user-space.
However, due to the constraints of current hardware, we
are forced to an uncomfortable compromise.

If we look at a common x86-style architecture (32- or
64-bit), choices of time source include PIT, TSC, and
HPET. The only time source with acceptable overhead is
TSC; however, it is not constant frequency, or well syn-
chronized across platforms. It is also too high-frequency
to be compactly logged. The chosen compromise has
been to log the TSC at every event, truncated (both on
the left and right sides)—effectively, in Ktrace:

tsctimestamp = (tsc >> 10)&(227)

On a 2GHz processor, this gives an effective resolution
of 0.5us, and takes 27 bits of space to log. LTTng cal-
culates the shifting required dynamically.

However, this counter will roll over every 128 seconds.
To ensure we can both unroll this information properly
and match it up to the wall time (e.g. to match user-space
events) later, we periodically log a timestamp event:

A new timestamp event must be logged:
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seconds

nanoseconds

tsc_mult

32 bits

12 bytes total

Figure 5: Timestamp format

1. More frequently than the logged timestamp derived
from the TSC rolls over.

2. Whenever TSC frequency changes.

3. Whenever TSCs are resynchronized between
CPUs.

The effective time of an event is derived by comparing
the event TSC to the TSC recorded in the last timestamp
and multiplying by a constant representing the current
processor frequency.

δwalltime = (eventtsc− timestamptsc)∗ ktsc_ f req

eventwalltime = δwalltime + timestampwalltime

5.3.4 Locking

One key design choice for the instrumentation system
for this tool was how to handle potential race condi-
tions from reentrant contexts. The original Google tool,
Ktrace, protected against re-entrant execution contexts
by disabling interrupts at the instrumentation site, while
LTTng uses a lock-less algorithm based on atomic op-
erations local to one CPU (asm/local.h) to take
timestamps and reserve space in the buffer. The
atomic method is more complex, but has significant
advantages—it is faster, and it permits tracing of code
paths reentering even when IRQs are disabled (lock-
dep lock dependency checker instrumentation and NMI
instrumentation are two examples where is has shown
to be useful). The performance improvement of using
atomic operations (local compare-and-exchange: 9.0ns)
instead of disabling interrupts (save/restore: 210.6ns) on

a 3GHz Pentium 4 removes 201.6ns from each probe’s
execution time. Since the average probe duration of
LTTng is about 270ns in total, this is a significant per-
formance improvement.

The main drawback of the lock-less scheme is the
added code complexity in the buffer-space reservation
function. LTTng’s reserve function is based on work
previously done on the K42 research kernel at IBM
Research, where the timestamp counter read is done
within a compare-and-exchange loop to insure that the
timestamps will increment monotonically in the buffers.
LTTng made some improvements in how it deals with
buffer boundaries; instead of doing a separate times-
tamp read, which can cause timestamps of buffer bound-
aries to go backward compared to the last/first events,
it computes the offsets of the buffer switch within
the compare-and-exchange loop and effectively does it
when the compare-and-exchange succeeds. The rest of
the callbacks called at buffer switch are then called out-
of-order. Our merged design considered the benefit of
such a scheme to outweigh the complexity.

5.4 Analysis

There are two main usage modes for the tracing tools:

• Given an event (e.g. user-space lockup, OOM kill,
user-space noticed event, etc.), we want to examine
data leading up to it.

• Record data during an entire test run, sift through
it off-line.

Whenever an error condition is not fatal or recurring,
taking only one sample of this condition may not give a
full insight into what is really happening on the system.
One has to verify whether the error is a single case or
periodic, and see if the system always triggers this error
or if it sometimes shows a correct behavior. In these sit-
uations, recording the full trace of the systems is useful
because it gives a better overview of what is going on
globally on the system.

However, this approach may involve dealing with huge
amounts of data, in the order of tens of gigabytes per
node. The Linux Trace Toolkit Viewer (LTTV) is de-
signed to do precisely this. It gives both a global graphi-
cal overview of the trace, so patterns can be easily iden-
tified, and permits the user to zoom into the trace to get
the highest level of detail.
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Multiple different user-space visualization tools have
been written (in different languages) to display or pro-
cess the tracing data, and it’s helpful for them to share
this pre-processing phase. These tools fall into two cat-
egories:

1. Text printer – one event per line, formatted in a way
to make it easy to parse with simple scripts, and
fairly readable by a kernel developer with some ex-
perience and context.

2. Graphical – easy visualization of large amounts of
data. More usable by non-kernel-developers.

6 Future Work

The primary focus of this work has been on creating a
single-node trace tool that can be used in a clustered en-
vironment, but it is still based on generating a view of
the state of a single node in response to a particular trig-
ger on that node. This system lacks the ability to track
dependent events between nodes in a cluster or to follow
dependencies between nodes. The current configuration
functions well when the problem can be tracked to a sin-
gle node, but doesn’t allow the user to investigate a case
where events on another system caused or contributed to
an error. To build a cluster-wide view, additional design
features would be needed in the triggering, collection,
and analysis aspects of the trace tool.

• Ability to start and stop tracing on across an entire
cluster when a trigger event occurs on one node.

• Low-overhead method for aggregating data over
the network for analysis.

• Sufficient information to analyze communication
between nodes.

• A unified time base from which to do such analysis.

• An analysis tool capable of illustrating the relation-
ships between systems and displaying multiple par-
allel traces.

Relying on NTP to provide said synchronization appears
to be too imprecise. Some work has been started in
this area, primarily aiming at using TCP exchanges be-
tween nodes to synchronize the traces. However, it is re-
strained to a limited subset of network communication:
it does not deal with UDP and ICMP packets.
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Abstract

ltrace is a program that permits you to track runtime
library calls in dynamically linked programs without re-
compiling them, and is a really important tool in the de-
bugging arsenal. This article will focus in how it has
been implemented and how it works, trying to cover
the actual lacks in academic and in-deep documenta-
tion of how this kind of tool works (setting the break-
points, analysing the executable/library symbols, inter-
preting elf, others).

1 Introduction

ltrace is divided into many source files; some of
these contain architecture-dependent code, while some
others are generic implementations.

The idea is to go through the functions, explaining what
each is doing and how it works, beginning from the en-
try point function, main.

2 int main(int argc, char **argv) – ltrace.c

The main function sets up ltrace to perform the rest of
its activities.

It first sets up the terminal using the guess_cols()
function that tries to ascertain the number of columns
in the terminal so as to display the information output
by ltrace in an ordely manner. The column count is
initially queried from the $COLUMNS environment vari-
able (if that is not set, the TIOCGWINSZ ioctl is used
instead). Then the program options are handled using
the process_options() function to processes the
ltrace command line arguments, using the getopt()
and getopt_long() functions to parse them.

It then calls the read_config_file() function on
two possible configuration files.

It calls read_config_file() first with
SYSCONFDIR’s ltrace.conf file. If
$HOME is set, it then calls the function with
$HOME/.ltrace.conf. This function opens
the specified file and reads in from it line-by-line,
sending each line to the process_line() function
to verify the syntax of the config file based on the line
supplied to it. It then returns a function structure based
on the function information obtained from said line.

If opt_e is set, then a list is output by the debug()
function.

If passed a command invocation, ltrace will execute
it via the execute_program() function which takes
the return value of the open_program() function as
an argument.

Ltrace will attached to any supplied pids using the
open_pid() function.

At the end of this function the process_event()
function is called in an infinite loop, receiving the return
value of the wait_for_something() function as
its argument.

3 struct process *open_program(char
*filename, pid_t pid) – proc.c

This function implements a number of important tasks
needed by ltrace. open_program allocates a process
structure’s memory and sets the filename and pid (if
needed), adds the process to the linked-list of processes
traced by ltrace, and most importantly initalizes break-
points by calling breakpoints_init().

4 void breakpoints_init(struct process *proc)
– breakpoints.c

The breakpoints_init() function is responsible
for setting breakpoints on every symbol in the pro-
gram being traced. It calls the read_elf() function

• 41 •
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which returns an array of library_symbol struc-
tures, which it processes based on opt_e. Then it it-
erates through the array of library_symbol struc-
tures and calls the insert_breakpoint() function
on each symbol.

5 struct library_symbol *read_elf(struct
process *proc) – elf.c

This function retrieves a process’s list of symbols to be
traced. It calls do_init_elf() on the executable
name of the traced process and for each library supplied
by the -l option. It loops across the PLT information
found therein.

For each symbol in the PLT information, a GElf_Rel
structure is returned by a call to gelf_getrel(), if
the d_type is ELF_T_REL and gelf_getrela()
if not. If the return value of this call is NULL, or if
the value returned by ELF64_R_SYM(rela.r_info)
is greater than the number of dynamic symbols or the
rela.r_info symbol is not found, then the function
calls the error() function to exit the program with an
error.

If the symbol value is NULL and the PLTs_
initialized_by_here flag is set, then the need_
to_reinitialize_breakpoints member of the
proc structure is set.

The name of the symbol is calculated and this is passed
to a call to in_load_libraries(). If this re-
turns a positive value, then the symbol address is cal-
culated via the arch_plt_sym_val() function and
the add_library_symbol() function is called to
add the symbol to the library_symbols list of
dynamic symbols. At this point if the need_to_
reinitialize_breakpointsmember of the proc
structure is set, then a pt_e_t structure main_cheat
is allocated and its values are set. After this a loop
is made over the opt_x value (passed by the -x
option) and if the PLTs_initialized_by_here
variable matches the name of one of the values, then
main_cheat is freed and the loop is broken. If no
match is found, then opt_x is set to the final value of
main_cheat.

A loop is then made over the symtab, or symbol table
variable. For each symbol gelf_getsym() is called,
which if it fails provokes ltrace to exit with an error
message via the error() function. A nested loop is

then made over the values passed to opt_x via the -x
option. For each value a comparison is made against
the name of each symbol. If there is a match, then
the symbol is added to the library_symbols list
via add_library_symbol() and the nested loop
breaks.

At the end of this loop a final loop is made over the
values passed to opt_x via the -x option.

For each value with a valid name member a compari-
son is made to the E_ENTRY_NAME value, which rep-
resents the program’s entry point. If this compari-
son should prove true, then the symbol is entered into
the library_symbols list via add_library_
symbol().

At the end of the function, any libraries passed to
ltrace via the -l option are closed via the do_close_
elf() function1 and the library_symbols list is
returned.

6 static void do_init_elf(struct ltelf *lte, const
char *filename) – elf.c

The passed ltelf structure is set to zero and open()
is called to open the passed filename as a file. If this
fails, then ltrace exits with an error message. The elf_
begin() function is then called, following which var-
ious checks are made via elf_kind() and gelf_
getehdr(). The type of the elf header is checked so
as to only process executable files or dynamic library
files.

If the file is not of one of these types, then ltrace exits
with an error. Ltrace also exits with an error if the elf
binary is from an unsupported architecture.

The ELF section headers are iterated over and the elf_
getscn() function is called, then the variable name
is set via the elf_strptr() function (if any of the
above functions fail, ltrace exits with an error message).

A comparison is then made against the section header
type and the data for it is obtained via a call to elf_
getdata().

1This function is called to close open ELF images. A check is
made to see if the ltelf structure has an associated hash value al-
located and if so this hash value is deallocated via a call to free().
After this elf_end() is called and the file descriptor associated
with the image is closed.
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For SHT_DYNSYM (dynamic symbols), the lte->
dynsym is filled via a call to elf_getdata(), where
the dynsym_count is calcuated by dividing the sec-
tion header size by the size of each entry. If the at-
tempt to get the dynamic symbol data fails, ltrace ex-
its with an error message. The elf_getscn() func-
tion is then called, passing the section header sh_link
variable. If this fails, then ltrace exits with an error mes-
sage. Using the value returned by elf_getscn(), the
gelf_getshdr() function is called and if this fails,
ltrace exits with an error message.

For SHT_DYNAMIC an Elf_Data structure data is set
via a call to elf_getdata() and if this fails, ltrace
exits with an error message. Every entry in the sec-
tion header is iterated over and the following occurs:
The gelf_getdyn() function is called to retrieve the
.dynamic data and if this fails, ltrace exits with an er-
ror message; relplt_addr and relplt_size are
calculated from the returned dynamic data.

For SHT_HASH values an Elf_Data structure data
is set via a call to elf_getdata() and if this fails,
ltrace exits with an error message. If the entry size is 4
then lte->hash is simply set to the dynamic data buf
data->d_buf. Otherwise it is 8. The correct amount
of memory is allocated via a call to malloc and the
hash data into copied into lte->hash.

For SHT_PROGBITS, checks are made to see if the
name value is .plt or .pd, and if so, the correct el-
ements are set in the lte->plt_addr/lte->opd
and lte->plt_size and lte->pod_size struc-
tures. In the case of OPD, the lpe->opd structure is
set via a call to elf_rawdata(). If neither the dy-
namic symbols or the dynamic strings have been found,
then ltrace exits with an error message. If relplt_
addr and lte->plt_addr are non-null, the section
headers are iterated across and the following occurs:

• The elf_getscn() function is called.

• If the sh_addr is equal to the relpt_addr and
the sh_size matches the relplt_size (i.e.,
this section is the .relplt section) then lte->

relplt is obtained via a call to elf_getdata()

and lte->relplt_count is calculated as the
size of section divided by the size of each entry. If
the call to elf_getdata() fails then ltrace exits
with an error message.

• If the function was unable to find the .relplt
section then ltrace exits with an error message.

7 static void add_library_symbol(GElf_Addr
addr, const char *name, struct
library_symbol **library_symbolspp, int
use_elf_plt2addr, int is_weak) – elf.c

This function allocates a library_symbol structure
and inserts it into the linked list of symbols represented
by the library_symbolspp variable.

The structure is allocated with a call to malloc(). The
elements of this structure are then set based on the argu-
ments passed to the function. And the structure is linked
into the linked list using its next element.

8 static GElf_Addr elf_plt2addr(struct ltelf
*lte, void *addr) – elf.c

In this function the opd member of the lte structure
is checked and if it is NULL, the function returns the
passed address argument as the return value. If opd is
non-NULL, then following occurs:

1. An offset value is calculated by subtracting the
opd_addr element of the ltr structure from the
passed address.

2. If this offset is greater than the opd_size element
of the lte structure then ltrace exits with an error.

3. The return value is calculated as the base address
(passed as lte->opd->d_buf) plus the calcu-
lated offset value.

4. This calculated final return value is returned as a
GElf_Addr variable.

9 static int in_load_libraries(const char
*name, struct ltelf *lte) – elf.c

This functions checks if there are any libraries passed
to ltrace as arguments to the -l option. If not, then the
function immediately returns 1 (one) because there is no
filtering (specified libraries) in place; otherwise, a hash
is calculated for the library name arguments by way of
the elf_hash() function.

For each library argument, the following occurs:

1. If the hash for this iteration is NULL the loop con-
tinues to the next iteration.
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2. The nbuckets value is obtained and the buckets
and chain values are calculated based on this value
from the hash.

3. For each bucket the following occurs:

The gelf_getsym() function is called to
get the symbol; if this fails, then ltrace exits with
an error.

A comparison is made between the passed
name and the name of the current dynamic symbol.
Should there be a match, the function will return a
positive value (one).

4. If the code reaches here, 0 (zero) is returned.

10 void insert_breakpoint(struct process
*proc, void *addr, struct library_symbol
*libsym) – breakpoints.c

The insert_breakpoint() function inserts a
breakpoint into a process at the given address (addr).
If the breakpoints element of the passed proc structure
has not been set it is set by calling the dict_init()
function.

A search is then made for the address by using the
dict_find_entry() function. If the address is
not found a breakpoint structure is allocated using
calloc(), entered into the dict hash table using
dict_enter(), and its elements are set.

If a pid has been passed (indicating that the process is al-
ready running), this breakpoint structure along with the
pid is then passed to the enable_breakpoint()
system-dependent function.

11 void enable_breakpoint(pid_t pid, struct
breakpoint *sbp) –
sysdeps/linux-gnu/breakpoint.c

The enable_breakpoint() function is responsible
for the insertion of breakpoints into a running process
using the ptrace interface.

First PTRACE_PEEKTEXT ptrace parameter is used
to save the original data from the breakpoint loca-
tion and then PTRACE_POKETEXT is used to copy
the architecture-dependent breakpoint value into the
supplied memory address. The architecture-dependent

breakpoint value is found in sysdeps/linux-gnu/*/
arch.h.

12 void execute_program(struct process *sp,
char **argv) – execute-program.c

The execute_program() function executes a pro-
gram whose name is supplied as an argument to ltrace. It
fork()s a child, changes the UID of the running child
process if necessary, calls the trace_me() (simply
calls ptrace() using the PTRACE_TRACEME argument,
which allows the process to be traced) function and then
executes the program using execvp().

13 struct event *wait_for_something(void) –
wait_for_something.c

The wait_for_something() function literally
waits for an event to occur and then handles it.

The events that it treats are: Syscalls, Systets, Ex-
iosts, exit signals, and breakpoints. wait_for_
something() calls the wait() function to wait for
an event.

When it awakens it calls get_arch_dep() on the
proc member of the event structure. If breakpoints
were not enabled earlier (due to the process not yet
being run) they are enabled by calling enable_
all_breakpoints(), trace_set_options()
and then continue_process() (this function sim-
ply calls continue_after_signal()).

In this case the event is then returned as LT_EV_NONE
which does not receive processing.

To determine the type of event that has occurred the fol-
lowing algorithm is used: The syscall_p() function
is called to detect if a syscall has been called via int 0x80
(LT_EV_SYSCALL) or if there has been a return-from-
syscall event (LT_EV_SYSRET). If neither of these is
true, it checks to see if the process has exited or has sent
an exit signal.

If neither of these is the case and the process has not
stopped, an LT_EV_UNKNOWN event is returned.

If process is stopped and the stop signal was not
systrap, an LT_EV_SIGNAL event is returned.

If none of the above cases is found to be true, it is
assumed that this was a breakpoint, and an LT_EV_
BREAKPOINT event is returned.
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14 void process_event(struct event *event) –
process_event.c

The process_event() function receives an event
structure, which is generally returned by the wait_
for_something() function.

It calls a switch-case construct based on the event->
thing element and processes the event using one
of the following functions: process_signal(),
process_exit(), process_exit_signal(),
process_syscall(), process_sysret(), or
process_breakpoint().

In the case of syscall() or sysret(), it calls the
sysname() function.

15 int syscall_p(struct process *proc, int
status, int *sysnum) –
sysdeps/linux-gnu/*/trace.c

This function detects if a call to or return from a system
call occurred. It does this first by checking the value of
EAX (on x86 platforms) which it obtains with a ptrace
PTRACE_PEEKUSER operation.

It then checks the program’s call stack, as maintained
by ltrace and, checking the last stack frame, it sees if
the is_syscall element of the proc structure is set,
which indicates a called system call. If this is set, then
2 is returned, which indicates a sysret event. If not,
then 1 is returned, provided that there was a value in
EAX.

16 static void process_signal(struct event
*event) – process_event.c

This function tests the signal. If the signal is
SIGSTOP it calls disable_all_breakpoints(),
untrace_pid() (this function merely calls the
ptrace interface using a PTRACE_DETACH operation),
removes the process from the list of traced processes
using the remove_proc() function, and then calls
continue_after_signal() (this function simply
calls ptrace with a PTRACE_SYSCALL operation) to al-
low the process to continue.

In the case that signal was not SIGSTOP, the func-
tion calls the output_line() function to display the
fact of the signal and then calls continue_after_
signal() to allow the process to continue.

17 static void process_exit(struct event
*event) – process_event.c

This function is called when a traced process exits. It
simply calls output_line() to display that fact in
the terminal and then calls remove_proc() to re-
move the process from the list of traced processes.

18 static void process_exit_signal(struct event
*event) – process_event.c

This function is called when when a traced program is
killed. It simply calls output_line() to display that
fact in the terminal and then calls remove_proc() to
remove the process from the list of traced processes.

19 static void process_syscall(struct event
*event) – process_event.c

This function is called when a traced program invokes a
system call. If the -S option has been used to run ltrace,
then the output_left() function is called to display
the syscall invocation using the sysname() function
to find the name of the system call.

It checks if the system call will result in a fork or ex-
ecute operation, using the fork_p() and exec_p()
functions which test the system call against those known
to trigger this behavior. If it is such a signal the
disable_all_breakpoints() function is called.

After this callstack_push_syscall() is called,
followed by continue_process().

20 static void process_sysret(struct event
*event) – process_event.c

This function is called when the traced program returns
from a system call. If ltrace was invoked with the -c
or -T options, the calc_time_spent() function is
called to calculate the amount of time that was spent
inside the system call.

After this the function fork_p() is called to test if the
system call was one that would have caused a process
fork. If this is true, and the -f option was set when run-
ning ltrace, then the gimme_arg() function is called
to get the pid of the child and the open_pid() func-
tion is called to begin tracing the child. In any case,
enable_all_breakpoints() is called.
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Following this, the callstack_pop() function is
called. Then the exec_p() function tests if the sys-
tem call was one that would have executed another pro-
gram within this process and if true, the gimme_arg()
function is called. Otherwise the event->proc struc-
ture is re-initialized with the values of the new program
and the breakpoints_init() function is called to
initialize breakpoints. If gimme_arg() does not re-
turn zero, the enable_all_breakpoints() func-
tion is called.

At the end of the function the continue_
process() function is called.

21 static void process_breakpoint(struct event
*event) – process_event.c

This function is called when the traced program hits a
breakpoint, or when entering or returning from a library
function.

It checks the value of the event->proc->

breakpoint_being_enabled variable to de-
termine if the breakpoint is in the middle
of being enabled, in which case it calls the
continue_enabling_breakpoint() function
and this function returns. Otherwise this function
continues.

It then begins a loop through the traced program’s call
stack, checking if the address where the breakpoint oc-
curred matches a return address of a called function
which indicates that the process is returning from a li-
brary call.

At this point a hack allows for PPC-specific behavior,
and it re-enables the breakpoint. All of the library func-
tion addresses are retrieved from the call stack and trans-
lated via the plt2addr() function. Provided that the
architecture is EM_PPC, the address2bpstruct()2

function is called to translate the address into a break-
point structure. The value from the address is read via
the ptrace PTRACE_PEEK operation and this value is
compared to a breakpoint value. If they do not match, a
breakpoint is inserted at the address.

If the architecture is not EM_PPC, then the address is
compared against the address of the breakpoint previ-
ously applied to the library function. If they do not
match, a breakpoint is inserted at the address.

2This function merely calls dict_find_entry() to find the
correct entry in proc->breakpoints and returns it.

Upon leaving the PPC-dependent hack, the func-
tion then loops across callstack frames using the
callstack_pop() function until reaching the frame
that the library function has returned to which is nor-
mally a single callstack frame. Again if the -c or -T
options were set, calc_time_spent() is called.

The callstack_pop() function is called one fi-
nal time to pop the last callstack frame and the pro-
cess’ return address is set in the proc structure as the
breakpoint address. The output_right() function
is called to log the library call and the continue_
after_breakpoint() function is called to allow
the process to continue, following which the function
returns.

If no return addresses in the callstack match the break-
point address, the process is executing in, and not re-
turning from a library function.

The address2bpstruct() function is called to
translate the address into a breakpoint structure.

Provided that this was a success, the following occurs:

• The stack pointer and return address to be saved
in the proc stucture are obtained using the
get_stack_pointer() and get_return_
address() functions.

• The output_left() function is called to log
the library function call and the callstack_
push_symfunc() function is called. A check
is then made to see if the PLTs_initialized_
by_here variable is set, to see if the function
matches the called library function’s symbol name
and to see if the need_to_reinitialize_
breakpoints variable is set. If all this is true the
reinitialize_breakpoints() function is
called.

Finally continue_after_breakpoint() is called
and the function returns.

If address2bpstruct() call above was not suc-
cessful, output_left() is called to show that an
unknown and unexpected breakpoint was hit. The
continue_process() function is called and the
function returns.
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22 static void callstack_push_syscall(struct
process *proc, int sysnum) –
process_event.c

This function simply pushes a callstack_element
structure onto the array callstack held in the proc struc-
ture. This structure’s is_syscall element is set to
differentiate this callstack frame from one which repre-
sents a library function call. The proc structure’s mem-
ber callstack_depth is incremented to reflect the
callstack’s growth.

23 static void callstack_push_symfunc(struct
process *proc, struct library_symbol
*sym) – process_event.c

As in the callstack_push_syscall() function
described above, a callstack_element structure is
pushed onto the array callstack held in the proc structure
and the callstack_depth element is incremented
to reflect this growth.

24 static void callstack_pop(struct process
*proc) – process_event.c

This function performs the reverse of the two functions
described above. It removes the last structure from
the callstack array and decrements the callstack_
depth element.

25 void enable_all_breakpoints(struct process
*proc) – breakpoints.c

This function begins by checking the breakpoints_
enabled element of the proc structure. Only if it is
not set the rest of the function continues.

If the architecture is PPC and the option -L was not
used, the function checks if the PLT has been set up by
using a ptrace PTRACE_PEEKTEXT operation. If not,
the function returns at this point.

If proc->breakpoints is set the dict_apply_
to_all() function is called using enable_bp_
cb() function.3 This call will set the proc->
breakpoints_enabled.

3This function is a callback that simply calls the function
enable_breakpoint().

26 void disable_all_breakpoints(struct
process *proc) – breakpoints.c

If proc->breakpoints_enabled is set, this
function calls dict_apply_to_all() with the ar-
gument disable_bp_cb() as the callback func-
tion. It then sets proc->breakpoints_enabled
to zero and returns.

27 static void disable_bp_cb(void *addr, void
*sbp, void *proc) – breakpoints.c

This function is a callback called by dict_apply_
to_all() and simply calls the function disable_
breakpoint() (does the reverse of enable_
breakpoint, copying the saved data from the break-
point location back over the breakpoint instruction using
the ptrace PTRACE_POKETEXT interface).

28 void reinitialize_breakpoints(struct
process *proc) – breakpoints.c

This function retrieves the list of symbols as a
library_symbol linked-list structure from the
proc->list_ofsymbols and iterates over this list,
checking each symbol’s need_init element and call-
ing insert_breakpoint() for each symbol for
which this is true.

If need_init is still set after insert_
breakpoint an error condition occurs, the error
is reported and ltrace exits.

29 void continue_after_breakpoint(struct
process *proc, struct breakpoint *sbp) –
sysdeps/linux-gnu/trace.c

A check is made to see if the breakpoint is enabled
via the sbp->enabled flag. If it is then disable_
breakpoint() is called.

After this, set_instruction_pointer()4 is
called to set the instruction pointer to the address of
the breakpoint. If the breakpoint is still enabled, then
continue_process() is called. If not then if
the architecture is SPARC or ia64 the continue_

4This function retrieves the current value of the instruc-
tion pointer using the ptrace interface with values of PTRACE_
POKEUSER and EIP.
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process() function is called or if not the ptrace in-
terface is invoked using a PTRACE_SINGLESTEP op-
eration.

30 void open_pid(pid_t pid, int verbose) –
proc.c

The trace_pid() function is called on the passed
pid, if this fails then the function prints an error mes-
sage and returns.

The filename for the process is obtained using the
pid2name() function and open_program() is
called with this filename passed as an argument.

Finally the breakpoints_enabled flag is set in the
proc structure returned by open process.

31 static void remove_proc(struct process
*proc) – process_event.c

This function removes a process from the linked list of
traced processes.

If list_of_processes is equal to proc (i.e., the
process was the first in the linked list) then there is a
reverse unlink operation where list_of_processes

= list_of_processes->next.

If not and the searched-for process is in the middle of the
list, then the list is iterated over until the process is found
and tmp->next is set to tmp->next->next, sim-
ply cutting out the search for process from the linked
list.

32 int fork_p(struct process *proc, int
sysnum) – sysdeps/linux-gnu/trace.c

This function checks to see if the given sysnum inte-
ger refers to a system calls that would cause a child
process to be created. It does this by checking the
fork_exec_syscalls table using the proc->
personality value and an index, i, to check each
system call in the table sequentially, returning 1 if there
is a match.

If the proc->personality value is greater than the
size of the table, or should there not be a match, then
zero is returned.

33 int exec_p(struct process *proc, int
sysnum) – sysdeps/linux-gnu/trace.c

This function checks to see if the given sysnum in-
teger refers to a system calls that would cause an-
other program to be executed. It does this by checking
the fork_exec_syscalls table using the proc->
personality value and an index, i, to check each
system call in the table sequentially, returning 1 if there
is a match.

If the proc->personality value is greater than the
size of the table, or should there not be a match, then
zero is returned.

34 void output_line(struct process *proc, char
*fmt, ...) – output.c

If the -c option is set, then the function returns im-
mediately. Otherwise the begin_of_line() func-
tion5 is called and the fmt argument data is output to the
output (can be a file chosen using -o or stderr) using
fprintf().

35 void output_left(enum tof type, struct
process *proc, char *function_name) –
output.c

If the -c option was set, then the function returns
immediately. If the current_pid variable is set
then the message <unfinished ...> is output and
current_pid and current_column are set to
zero.

Otherwise current_pid is set to the pid element
of the proc structure, and current_depth is set
to proc->callstack_depth. The begin_of_
line() function is called.

If USER_DEMANGLE is #defined then the function
name is output by way of my_demange(), or else it is
just output plain.

A variable func is assigned by passing the function_
name to name2func() if this failed then a loop is iter-
ated four times calling display_arg() many times
in succession to display four arguments.

5Prints the beginning part of each output line. It prints the pro-
cess ID, the time passed since the last output line and either the
return address of the current function or the instruction pointer.
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At the end of the loop it is called a fifth time.

Should the call to name2func() succeed, then an-
other loop is iterated but over the number of parame-
ters that the function receives—for each of which the
display_arg() function is called.

Finally if func->params_right is set, save_
register_args() is called.

36 void output_right(enum tof type, struct
process *proc, char *function_name) –
output.c

A function structure is allocated via the name2func()
function.

If the -c option was set providing the dict_opt_c
variable is not set it is allocated via a call to dict_
init(). An opt_c_struct structure is allocated
by dict_find_entry(). If this should fail, then
the structure is allocated manually by malloc() and the
function name is entered into the dictionary using the
dict_enter() function.

There are various time calculations and the function re-
turns. If the current_pid is set, is not equal to
proc->pid and the current_depth is not equal to
the process’ callstack_depth then the message
<unfinished>... is output and current_pid
is set to zero. If current_pid is not equal to the
proc structure’s pid element then begin_of_line()
is called and then if USE_DEMANGLE is defined the
function name is output as part of a resumed message
using fprintf() via my_demangle(). If USE_
DEMANGLE is not defined then fprintf() alone is
used to output the message. If func is not set then argu-
ments are displayed using ARGTYPE_UNKNOWN, other-
wise they are displayed using the correct argument type
from the proc structure.

37 int display_arg(enum tof type, struct
process *proc, int arg_num, enum
arg_type at) – display_args.c

This function displays one of the arguments, the arg_
num’th argument to the function the name of which
is currently being output to the terminal by the output
functions.

It uses a switch case to decide how to display the ar-
gument. Void, int, uint, long, ulong, octal char, and

address types are displayed using the fprintf()
stdio function. String and format types are handled
by the display_string, display_stringN()
function (sets the string_maxlength by calling
gimme_arg() with the arg2 variable. It then calls
display_string()) and display_format()
functions respectively.

Unknown values are handled by the display_
unknown() function.

38 static int display_unknown(enum tof type,
struct process *proc, int arg_num) –
display_args.c

The display_unknown() function performs a cal-
culation on the argument, retrieved using the arg_
num variable and uses of the gimme_arg() function.
Should the value be less than 1,000,000 and greater
than –1,000,000 then it is displayed as a decimal inte-
ger value; if not, it is interpreted as a pointer.

39 static int display_string(enum tof type,
struct process *proc, int arg_num) –
display_args.c

The display_string() function uses gimme_
arg() function to retrieve the address of the string to
be displayed from the stack. If this fails then the func-
tion returns and outputs the string NULL.

Memory is allocated for the string using malloc()
and should this fail, the function returns and outputs
??? to show that the string was unknown.

The umovestr() function is called to copy the string
from its address and the length of the string is deter-
mined by either the value passed to -s or the maximum
length of a string (by default infinite). Each character is
displayed by the display_char() function (outputs
the supplied character using fprintf(). It converts
all the control characters such as \r (carriage return), \n
(newline), and EOF (end of file) to printable versions).

Should the string be longer than the imposed maximum
string length, then the string “. . . ” is output to show that
there was more data to be shown.

The function returns the length of the output.
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40 static char *sysname(struct process *proc,
int sysnum) – process_event.c

This function retrieves the name of a system call based
on its system call number.

It checks the personality element of the proc structure
and the sysnum values to check that they fit within the
size of the syscalents[] array.

If proc->personality does not, the abort()
function is called. If sysnum does not then a string value
of SYS_<sysnum> is returned.

Provided that both numbers fit within the syscalents ar-
ray the correct value is obtained using the sysnum vari-
able. A string value of SYS_<name of systemcall>

is returned.

41 long gimme_arg(enum tof type, struct
process *proc, int arg_num) –
sysdeps/linux-gnu/*/trace.c

For x86 architecture this function checks if arg_num is
–1, if so then the value of the EAX register is returned,
which is obtained via the ptrace PTRACE_PEEKUSER
operation.

If type is equal to LT_TOF_FUNCTION or LT_TOF_
FUNCTIONR then the arg_num’th argument is re-
turned from the stack via a ptrace PTRACE_PEEKUSER
operation based on the current stack pointer (from the
proc structure) and the argument number.

If the type is LT_TOF_SYSCALL or LT_TOF_
SYSCALLR then a register value is returned based on
the argument number as so: 0 for EBX, 1 for ECX, 2 for
EDX, 3 for ESI, and 4 for EDI.

If the arg_num does not match one of the above or
the type value does not match either of the above cases,
ltrace exits with an error message.

42 static void calc_time_spent(struct process
*proc) – process_event.c

This function calculates the time spent in a system
call or library function. It retrieves a callstack_
element structure from the current frame of the pro-
cess’ callstack and calls gettimeofday() to obtain
the current time and compares the saved time in the
callstack_element structure to the current time.

This difference is then stored in the current_diff
variable.

43 void *get_instruction_pointer(struct
process *proc) – sysdeps/linux-gnu/*/regs.c

This function retrieves the current value of the instruc-
tion pointer using the ptrace interface with values of
PTRACE_PEEKUSER and EIP.

44 void *get_stack_pointer(struct process
*proc) – sysdeps/linux-gnu/*/regs.c

This function retrieves the stack pointer of the traced
process by using the ptrace interface with values of
PTRACE_PEEKUSER and UESP.

45 void *get_return_addr(struct process
*proc, void *stack_pointer) –
sysdeps/linux-gnu/*/regs.c

This function retrieves the current return address of the
current stack frame using the ptrace interface PTRACE_
PEEKTEXT operation to retrieve the value from the
memory pointed to by the current stack pointer.

46 struct dict *dict_init(unsigned int
(*key2hash) (void *), int (*key_cmp) (void
*, void *)) – dict.c

A dict structure is allocated using malloc(), follow-
ing which the buckets array of this structure is iterated
over and each element of the array is set to NULL.

The key2hash and key_cmp elements of the dict
structure are set to the representative arguments passed
to the function and the function returns.

47 int dict_enter(struct dict *d, void *key,
void *value) – dict.c

This function enters a value into the linked list repre-
sented by the dict structure passed as the first argu-
ment.

A hash is calculated by the key2hash() function us-
ing the key argument to the function and a dict struc-
ture new_entry, which is allocated with malloc().
The elements of new_entry are set using key, value,
and hash.
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An index is calculated by rounding the hash value with
the size of the d->bucket array, and the new_entry
structure is entered into this array at this index by linking
it to the start of the linked list held there.

48 void dict_clear(struct dict *d) – dict.c

This function iterates over both the d->buckets ar-
ray and the linked list held in each d->buckets array
element. For each linked list element it frees the en-
try before unlinking it from the list. For each emptied
bucket it sets the d->bucket element to NULL.

49 void *dict_find_entry(struct dict *d, void
*key) – dict.c

A hash is created using the d->key2hash function
pointer and the passed key argument variable.

This hash is then used to index into the d->buckets
array as a dict_entry structure. The linked listed
held in this element of the array is iterated over compar-
ing the calculated hash value to the hash value held in
each element of the linked list.

Should the hash values match, a comparison is made
between the key argument and the key element of this
linked list. If this comparison should prove true the
function returns the entry. Otherwise the function re-
turns NULL if no matches are ultimately found.

50 void dict_apply_to_all(struct dict *d, void
(*func) (void *key, void *value, void
*data), void *data) – dict.c

This function iterates over all the elements in the d->
buckets array, and iterates over the linked list held in
each element of said array.

For each element of each linked list the passed func
function pointer is called using the key, value and data
elements of the supplied dict structure d.

51 unsigned int dict_key2hash_string(void
*key) – dict.c

This function creates a hash value from a character
string passed as the void pointer key.

The key is first cast to a character pointer and for each
character in this string the following is carried out:

• The integer total is incremented by the current
value of total XORd by value of the character
shifted left by the value shift, which starts out as
zero, and is incremented by five for each iteration.

• Should the shift pass the value of 24, it is reduced
to zero.

After processing each character in the supplied string
the function returns the value held in the variable total
as the final hash value.

52 dict_key_* helper functions – dict.c

Ltrace have many simple function to help in the key
comparisions:

• int dict_key_cmp_string(void *key1,

void *key2) -- dict.c

A very simple function that returns the result of a
call to strcmp() using the two supplied pointer
values.

• unsigned int dict_key2hash_int(void

*key) -- dict.c

This is a very simple function that returns the sup-
plied pointer value cast to an unsigned int type.

• int dict_key_cmp_int(void *key1,

void *key2) -- dict.c

This is a very simple function that returns the math-
ematical difference of key2 from key1.
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Abstract

Cache memory compression (or compressed caching)
was originally developed for desktop and server plat-
forms, but has also attracted interest on embedded sys-
tems where memory is generally a scarce resource, and
hardware changes bring more costs and energy con-
sumption. Cache memory compression brings a consid-
erable advantage in input-output-intensive applications
by means of using a virtually larger cache for the local
file system through compression algorithms. As a result,
it increases the probability of fetching the necessary data
in RAM itself, avoiding the need to make low calls to
local storage. This work evaluates an Open Source im-
plementation of the cache memory compression applied
to Linux on an embedded platform, dealing with the un-
avoidable processor and memory resource limitations as
well as with existing architectural differences.

We will describe the Compressed Cache (CCache) de-
sign, compression algorithm used, memory behavior
tests, performance and power consumption overhead,
and CCache tuning for embedded Linux.

1 Introduction

Compressed caching is the introduction of a new level
into the virtual memory hierarchy. Specifically, RAM
is used to store both an uncompressed cache of pages
in their ‘natural’ encoding, and a compressed cache of
pages in some compressed format. By using RAM to
store some number of compressed pages, the effective
size of RAM is increased, and so the number of page
faults that must be handled by very slow hard disks is
decreased. Our aim is to improve system performance.
When that is not possible, our goal is to introduce no (or

minimal) overhead when compressed caching is enabled
in the system.

Experimental data show that not only can we improve
data input and output rates, but also that the sys-
tem behavior can be improved, especially in memory-
critical cases leading, for example, to such improve-
ments as postponing the out-of-memory activities al-
together. Taking advantage of the kernel swap sys-
tem, this implementation adds a virtual swap area (as
a dynamically sized portion of the main memory) to
store the compressed pages. Using a dictionary-based
compression algorithm, page cache (file-system) pages
and anonymous pages are compressed and spread into
variable-sized memory chunks. With this approach,
the fragmentation can be reduced to almost zero whilst
achieving a fast page recovery process. The size of
Compressed Cache can be adjusted separately for Page
Cache and Anonymous pages on the fly, using procfs
entries, giving more flexibility to tune system to re-
quired use cases.

2 Compressed Caching

2.1 Linux Virtual Memory Overview

Physical pages are the basic unit of memory manage-
ment [8] and the MMU is the hardware that trans-
lates virtual pages addresses into physical pages ad-
dress and vice-versa. This compressed caching imple-
mentation, CCache [3], adds some new flags to help
with compressed pages identification and uses the same
lists used by the PFRA (Page Frame Reclaiming Algo-
rithm). When the system is under a low memory con-
dition, it evicts pages from memory. It uses Least Re-
cently Used (LRU) criteria to determine order in which

• 53 •
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to evict pages. It maintains two LRU lists—active and
inactive LRU lists. These lists may contain both page-
cache (file-backed) and swap-cache (anonymous) pages.
When under memory pressure, pages in inactive list are
freed as:

• Swap-cache pages are written out to swap disks
using swapper_space writepage() (swap_
writepage()).

• Dirty page-cache pages are flushed to filesystem
disks using filesystem specific writepage().

• Clean page-cache pages are simply freed.

2.1.1 About Swap Cache

This is the cache for anonymous pages. All swap cache
pages are part of a single swapper_space. A single
radix tree maintains all pages in the swap cache. swp_
entry_t is used as a key to locate the corresponding
pages in memory. This value identifies the location in
swap device reserved for this page.

type offset

5 bits 27 bits

swp_entry_t for default setup
of MAX_SWAPFILES=32

} swp_entry_t;

typedef struct {

      unsigned long val;

Figure 1: Fields in swp_entry_t

In Figure 1, ‘type’ identifies things we can swap to.

2.1.2 About Page Cache

This is the cache for file-system pages. Like swap cache,
this also uses radix-tree to keep track of file pages. Here,
the offset in file is used as the search key. Each open file
has a separate radix-tree. For pages present in memory,
the corresponding radix-node points to struct page
for the memory page containing file data at that offset.

2.2 Compressed Cache Overview

For compressed cache to be effective, it needs to
store both swap-cache and page-cache (clean and dirty)
pages. So, a way is needed to transparently (i.e., no

changes required for user applications) take these pages
in and out of compressed cache.

This implementation handles anonymous pages and
page-cache (filesystem) pages differently, due to the
way they are handled by the kernel:

• For anonymous pages, we create a virtual swap.
This is a memory-resident area of memory where
we store compressed anonymous pages. The swap-
out path then treats this as yet another swap de-
vice (with highest priority), and hence only mini-
mal changes were required for this kernel part. The
size of this swap can be dynamically adjusted using
provided proc nodes.

• For page-cache pages, we make a corresponding
page-cache entry point to the location in the com-
pressed area instead of the original page. So
when a page is again accessed, we decompress the
page and make the page-cache entry point back
to this page. We did not use the ‘virtual swap’
approach here since these (file-system) pages are
never ‘swapped out.’ They are either flushed to
file-system disk (for dirty pages) or simply freed
(for clean pages).

In both cases, the actual compressed page is stored as
series of variable sized ‘chunks’ in a specially managed
part of memory which is designed to have minimum
fragmentation in storing these variable-sized areas with
quick storage/retrieval operations. All kinds of pages
share the common compressed area.

The compressed area begins as few memory pages. As
more pages are compressed, the compressed area in-
flates (up to a maximum size which can be set using
procfs interface) and when requests for these com-
pressed pages arrive, these are decompressed, and cor-
responding memory ‘chunks’ are put back onto the free-
list.

2.3 Implementation Design

When a page is to be compressed, the radix node point-
ing to the page is changed to point to the chunk_head—
this in turn points to first of the chunks for the com-
pressed page and all the chunks are also linked. This
chunk_head structure contains all the information
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Pages backed

by Swap

Pages backed by

Filesystem Disks

Main memory

Compressed Cache

Virtual Swap

Swap Filesystem Disks

Figure 2: Memory hierarchy with Compressed Caching

required to correctly locate and decompress the page
(compressed page size, compression algorithm used, lo-
cation of first of chunks, etc.).

When the compressed page is accessed/required later,
page-cache/swap-cache (radix) lookup is done. If we
get a chunk_head structure instead of a page structure
on lookup, we know this page was compressed. Since
chunk_head contains a pointer to first of the chunks
for this page and all chunks are linked, we can easily
retrieve the compressed version of the page. Then, us-
ing the information in the chunk_head structure, we
decompress the page and make the corresponding radix-
node points back to this newly decompressed page.

2.3.1 Compressed Storage

The basic idea is to store compressed pages in variable-
sized memory blocks (called chunks). A compressed
page can be stored in several of these chunks. Mem-
ory space for chunks is obtained by allocating 0-order
pages at a time and managing this space using chunks.
All the chunks are always linked as a doubly linked list
called the master chunk list. Related chunks are also
linked as a singly linked list using the related-chunk list;
e.g., all free chunks are linked together, and all chunks
belonging to the same compressed page are linked to-
gether. Thus all chunks are linked using master chunk
list and related chunks are also linked using one of
related-chunk list (e.g. free list, chunks belonging to
same compressed page).

Note that:

4Kb page boundaries

Figure 3: A sample of compressed storage view high-
lighting ‘chunked’ storage. Identically colored blocks
belong to the same compressed page, and white is free
space. An arrow indicates related chunks linked to-
gether as a singly linked list. A long horizontal line
across chunks shows that these chunks are also linked
together as a doubly lifnked list in addition to whatever
other lists they might belong to.

• A chunk cannot cross page boundaries, as is shown
for the ‘green’ compressed page. A chunk is split
unconditionally at page boundaries. Thus, the
maximum chunk size is PAGE_SIZE.

• This structure will reduce fragmentation to a mini-
mum, as all the variable, free-space blocks are be-
ing tracked.

• When compressed pages are taken out, correspond-
ing chunks are added to the free-list and physically
adjacent free chunks are merged together (while
making sure chunks do not cross page boundaries).
If the final merged chunk spans an entire page, the
page is released.

So, the compressed storage begins as a single chunk of
size PAGE_SIZE and the free-list contains this single
chunk.

An LRU-list is also maintained which contains these
chunks in the order in which they are added (i.e., the
‘oldest’ chunk is at the tail).

2.3.2 Page Insert and Delete

Page Insert: The uncompressed page is first com-
pressed in a buffer page. Then a number of free chunks
are taken from free list (or a new page is allocated to get
a new chunk) according to the size of the compressed
page. These chunks are linked together as a singly
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linked related-list. The remaining space from the last
chunk is added back to the free list, and merged with
adjacent free chunks, if present. The entry in the page-
cache radix tree is now made to point to the chunk_
head allocated for this compressed page. Pages that
are not compressible (size increases on compression),
are never added to CCache. The usual reclaim path ap-
plies to them.

Page Delete: When a page is looked up in memory, we
normally get a struct page corresponding to the ac-
tual physical page. But if the page was compressed,
we instead get a struct chunk_head rather than
a struct page at the corresponding node (identified
by the PG_compressed flag set), which gives a link to
first chunk. Since all related chunks are linked together,
compressed data is collected from all these chunks in
a separate page, and then decompression is done. The
freed chunks are merged with adjacent free chunks, if
present, and then added to the free list.

2.4 Compression Methods

In the fundamental work [5], a number of domain-
specific considerations are discussed for compression
algorithms:

1. Compression must be lossless, i.e., one-to-one
mapping from compressed and decompressed
forms, so exactly the same, original data must be
restored.

2. Compression must be in memory, so no kind of ex-
ternal memory can be used. Additionally, the fol-
lowing properties of typical memory data can be
exploited to achieve good compression:

• it is word or double-word aligned for faster
handling by the processor;

• it contains a large number of integers with a
limited range of values;

• it contains pointers (usually with integer
size), mostly to the same memory region, so
the majority of information is stored in the
lower bits;

• it contains many regularity sequences, often
zeros.

3. Compression must incur a low overhead. Speed
matters for both compression and decompression.
A compression algorithm can also be asymmetric
since typically decompression is required for many
read operations, therefore making it important to
have as cheap a decompression as possible. Small
space overhead is also required since this overhead
memory has to be allocated when the system is al-
ready running low on memory.

4. Compressible data, on average, should incur a 50%
size reduction. If a page can not be compressed up
to 50%, it increases the complexity of the proce-
dure for handling compressed pages.

Thus, general purpose compression algorithms may not
be good for our domain-specific compression require-
ments, due to high overhead. In this case we can
choose low overhead compression, which takes into ac-
count the majority of in-memory data regularities and
produces a sufficient compression ratio. We can also
balance between compressibility and overhead by us-
ing several compression algorithms {A1..AN} sequen-
tially. Assuming that probabilities to compress a page
are {P1..PN} and compression times are {C1..CN}, the
average compression time can be estimated as

C = ∑C1 ∗P1 (1)

Note that since non-compressible pages can exist, we
can determine that

∑Pi < 1.0 (2)

Thus, the best result from the speed versus compress-
ibility point of view will be obtained by minimizing C
time at compile- or run-time. The simplest way is to
apply first the fastest algorithm, then the second fastest,
and so on, leaving the slowest as last. Typically this
scheme will work pretty well if C1�CN; nevertheless,
any runtime adoption can be used. Originally the fol-
lowing compression methods were used for cache mem-
ory compression [5]:

• WK in-memory compression family of algorithms
as developed by Paul Wilson and Scott F. Kaplan.
These algorithms are based on the assumption that
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the target system has 32-bit word size, 22 bits of
which match exactly, and 10 bits differ in values
which will be looked for. Due to this assump-
tion, this family of algorithms is not suitable for
64-bit systems, for which another lookup approach
should be used. The methods perform close to real-
life usage:

– WK4x4 is the variant of WK compression
that achieves the highest (tightest) compres-
sion by itself by using a 4x4 set-associative
dictionary of recently seen words. The im-
plementation of a recency-based compression
scheme that operates on machine-word-sized
tokens.

– WKdm compresses nearly as tightly as
WK4x4, but is much faster because of the
simple, direct-mapped dictionary of recently
seen words.

• miniLZO is a lightweight subset of the very
fast Lempel-Ziv (LZO) implementation by Markus
Oberhumer [9], [15]. Key moments can be high-
lighted from the description and make this method
very suitable for our purpose:

– Compression is pretty fast, requires 64KB of
memory.

– Decompression is simple and fast, requires no
memory.

– Allows you to dial up extra compression at a
speed cost in the compressor. The speed of
the decompressor is not reduced.

– Includes compression levels for generating
pre-compressed data, which achieves a quite
competitive compression ratio.

– There is also a compression level which needs
only 8 KB for compression.

– Algorithm is thread-safe.

– Algorithm is lossless.

– LZO supports overlapping compression and
in-place decompression.

– Expected speed of LZO1X-1 is about 4–5
times faster than the fastest zlib compression
level.

3 Experimental Results

This section will describe how the CCache was tested on
an OMAP platform device—the Nokia Internet Tablet
N800 [6]. The main goal of the tests is to evaluate the
characteristics of the Linux kernel and overall system
behavior when CCache is added in the system.

As said before, this CCache implementation can com-
press two types of memory pages: anonymous pages
and page-cache pages. The last ones never go to swap;
once they are mapped on a block device file and writ-
ten to the disk, they can be freed. But anonymous pages
are not mapped on disk and should go to swap when the
system needs to evict some pages from memory.

We have tests with and without a real swap partition, us-
ing a MMC card. Our tests intend to evaluate CCache
against a real swap device. So, we decided to use just
anonymous pages compression. This way we can bet-
ter compare CCache performance against a system with
real swap. For the comparison, we measured the follow-
ing quantities:

• How many pages were maintained in memory
(CCache) and did not go to swap (avoiding I/O
overhead).

• Changes in power requirements.

• Comparison of different compression algorithms:
compress and decompress times, compression ra-
tio.

3.1 Test Suite and Methodology

We used a mobile device with embedded Linux as test-
ing platform. The Nokia Internet Tablet N800 has a
330Mhz ARM1136 processor from Texas Instruments
(OMAP 2420), 128MB of RAM, and 256MB of flash
memory used to store the OS and applications. The
OMAP2420 includes an integrated ARM1136 processor
(330 MHz), a TI TMS320C55x DSP (220 MHz), 2D/3D
graphics accelerator, imaging and video accelerator,
high-performance system interconnects, and industry-
standard peripherals [4]. Two SD/MMC slots, one in-
ternal and another external, can be used to store au-
dio/video files, pictures, documents, etc.
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As we can see on device’s specification, it is focused
on multimedia usage. As we know, multimedia appli-
cations have high processor and memory usage rates.
Our tests intend to use memory intensively, hence we
can measure the CCache impact on system performance.
The tests were divided into two groups: tests with real
applications and tests using synthetic benchmarks. Tests
with real applications tried to simulate a high mem-
ory consumption scenario with a lot of applications be-
ing executed and with some I/O operations to measure
the memory and power consumption behavior when
CCache is running. Synthetic tests were used to evalu-
ate the CCache performance, once they provided a easy
way to measure the time spent on the tests.

Tests with real applications consist of:

• Running 8 or 9 Opera browsers and load some
pages through a wireless Internet connection.

• Playing a 7.5MB video on Media player.

• Opening a PDF document.

We used an application called xautomation [12] to in-
teract with the X system through bash scripts from the
command line. Xautomation controls the interface, al-
lowing mouse movements, mouse right and left clicks,
key up and down, etc. Reading the /proc/meminfo
file, we have the memory consumption, and some graph-
ics related to the memory consumption can be plotted.
They will be shown and commented on in the following
sections.

The tests using synthetic benchmarks were executed us-
ing MemTest [11]. MemTest is a group of small tests to
evaluate the stability and consistency of the Linux mem-
ory management system. It contains several tests, but
we used just one, since our main goal is to measure the
CCache performance: fillmem. This test intends to test
the system memory allocation. It is useful to verify the
virtual memory system against the memory allocation
operation, pagination, and swap usage. It has one pa-
rameter which defines the size of memory allocated by
itself.

All the tests, using real applications or synthetic bench-
marking, were applied using a pre-configured scenarios,
depending on what would be measured. Basically we
have scenarios with different RAM memory sizes, with

or without a real swap partition, and with or without
CCache added to the system.

Memory behavior tests evaluate the memory consump-
tion against time and the OOM killer interaction on
the scenarios discussed before. Performance tests
used MemTest [11] to measure the total time of the
fillmem execution. Power consumption tests evalu-
ate the impact of CCache usage on power consumption,
since it is crucial on mobile devices with embedded sys-
tems.

3.1.1 Tuning for Embedded Linux

One of the most important constraints in embedded sys-
tems is the storage space available. Therefore imple-
menting mechanisms to save some space is crucial to
improve the embedded OS.

The N800’s OS, also known as Internet Tablet OS 2007
(IT OS 2007), is based on the linux-omap [10] kernel
and has some features customized to this device. One of
these, the most relevant in this case, is the swap system
behavior. The Linux kernel virtual memory subsystem
(VM) operation can be tuned using the files included
at /proc/sys/vm directory. There we can configure
OOM-killer parameters, swap parameters, writeout of
dirty data to disk, etc. On this case, just swap-related
parameters were modified, since the evaluation must be
as close as possible to reality—in the other words, the
default system configuration.

The swap system behavior on the device’s kernel is
configured as if a swap partition were not present in
the system. We configured two parameters to make
the test execution feasible under low-memory scenar-
ios: /proc/sys/vm/swappiness and /proc/sys/

vm/min_free_kbytes.

• swappiness [7] is a parameter which sets the ker-
nel’s balance between reclaiming pages from the
page cache and swapping process memory. The de-
fault value is 60.

• min_free_kbytes [7] is used to force the Linux
VM to keep a minimum number of kilobytes free.

If the user wants the kernel to swap out more pages,
which in effect means more caching, the swappiness
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parameter must be increased. The min_free_
kbytes controls when the kernel will start to force
pages to be freed, before out-of-memory conditions oc-
cur.

The default values for swappiness and min_free_
kbytes are 0 and 1280, respectively. During our tests,
we had to modify these values since the CCache uses
the default swap system, and with the default values,
the CCache would not be used as expected. Another
fact is that we added a real swap partition, and the
swappiness must be adjusted to support this con-
figuration. Increasing the swappiness to its default
value, 60, we noticed that more pages were swapped
and the differences between the CCache usage and a real
swap partition could be measured.

During our tests the available memory was consumed
so quickly that CCache could not act. The OOM killer
was called, and the test was killed. To give more time
to CCache, the min_free_kbytes was increased.
Another motivation is that pages taken by CCache are
marked as pinned and never leave memory; this can con-
tribute to anticipating the OOM killer call. It happens
because the CCache pages are taken out from the LRU
list and due to this, the PFRA (Page Frame Reclaiming
Algorithm) cannot select such pages to be freed.

Other parameters that must be adjusted are the max_

anon_cc_size and max_fs_backed_cc_size.
These parameters set the max size for anonymous
pages and the max size for page-cache pages, re-
spectively. The CCache will increase until the max
size is reached. Note that those parameters are set
in number of pages (4KB) and the pages are used
to store the chunks lists and the metadata needed to
manage those chunks. These parameters are exported
by CCache via /proc/sys/vm/max_anon_cc_size

and /proc/sys/vm/max_fs_backed_cc_size. We
have one limitation here: max_anon_cc_size and
max_fs_backed_cc_size can be configured only
one time; dynamic re-sizing is not permitted yet.

As previously mentioned, the tests covered the anony-
mous pages compression; therefore only max_anon_
cc_size was used. After the initialization, the IT OS
2007 has about 50M of free memory available, from a
total of 128M. After making some empirical tests, we
decided to set max_anon_cc_size to about 10% of
device’s total free memory (5 MB), or in other words,
1280 pages of 4 KB each. Since CCache pages are
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Figure 4: CCache x time: max_anon_cc_size = 1024,
Mem = 128M

pinned in memory and adaptive resizing is not yet im-
plemented, we chose to have only a small percentage of
memory assigned to ccache (10%). With a higher per-
centage, we might end-up calling the OOM killer too
soon.

3.2 Memory Behavior Tests

The main goal of these tests is to see what is happening
with the memory when CCache is compressing and de-
compressing pages. To execute the tests we used real ap-
plication scenarios, using applications provided by the
default installation of the N800’s distribution.

Using a bash script with XAutomation [12], we can
interact with the X server and load some applications
while another program collects the memory variables
present in /proc/meminfo file. Figure 4 shows the
memory consumption against time on a kernel with
CCache and max_anon_cc_size set to 1024 pages
(4MB).

As we can see in Figure 4, the CCache consumption was
very low once the swappiness parameter was config-
ured with default value of 1. Therefore more pages are
cached in memory instead of going to swap, even if the
available free memory is low. Actually this behavior is
expected since the system doesn’t have swap for default.
On Figure 5, we limited the memory to 100M at boot,
which caused increased memory pressure on the system.
The figure shows that the OOM killer was called at 600
ms, and CCache did not have time to react.
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Using the same test but with swappiness and min_
free_kbytes configured with 60 and 3072 respec-
tively, the OOM killer is not called any more, and we
have an increased usage of CCache. See Figure 6.

Figure 6 shows that the CCache size is not enough for
the memory load of the test. But we have a prob-
lem here: if the CCache size is increased, more pages
are taken off the LRU list and cannot be freed. The
best solution here is implementing the adaptive [1, 13]
CCache resizing. We will cover a bit more about adap-
tive CCache in Section 4.

In the tests, the new page size was collected for each
page that was compressed. With this, we can have
measurements using the most common ranges of com-
pressed page size. Figure 7 illustrates the Compression

Page Size Distribution in five ranges, pages sized be-
tween: 0K–0.5K, 0.5K–1K, 1K–2K, 2K–3K and 3K–
4K. About 42% of pages have sizes between 1K and 2K
after compression.
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These results indicate that we have a general system
gain with CCache. Since most of pages sizes are be-
tween 1K–2K, and we adopted a chunk-based approach
with no fragmentation. In general, we have an increase
of 100% of ‘system available memory.’ It is an impor-
tant CCache advantage: applications that before, could
not be executed on the system, now have more ‘visi-
ble available memory’ and can be executed, allowing an
embedded system to support applications that it would
otherwise be unable to run. It is important to remember
that on CCache, compressed pages with size more than
4KB are discarded.

3.3 Performance Tests

Performance tests aim to analyze the CCache overhead:
compression overhead, chunks lists handling overhead,
and page recovery overhead. With these tests we expect
to prove that CCache, even with all those overheads, is
faster than using a swap partition on a block device.

Only anonymous pages are being considered here.
As explained in Section 2.2, there are some steps
when a page is compressed. Table 1 shows the results
when running the fillmem allocating 70MB of mem-
ory (swappiness = 60, min_free_kbytes =

1024KB, max_cc_anon_size = 1280 pages):

The test using WK4x4 triggered the OOM killer and
could not be completed. But taking a look at the other
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Test No-
CCache

CCache
WKdm

CCache
WK4x4

CCache
LZO

Time(s) 14.68 4.64 – 4.25

Table 1: fillmem(70): CCache time x Real Swap time

values, we can conclude that the swap operation using
CCache is about 3 times faster than using a swap parti-
tion on an MMC card. But how about the OOM-killer?

As discussed before, CCache does not have dynamic re-
sizing. It implies that for some use cases, CCache has
no benefits and the memory allocated to the compressed
data becomes prejudicial to the system. Since we do
not have the adaptativity feature implemented, it is very
important to tune CCache according the use case.

3.3.1 Compression Algorithms Comparison

As we wrote above, it is essential to minimize overhead
by using an optimal compression algorithm. To com-
pare a number of algorithms, we performed tests on the
target N800 device. In addition to those algorithms used
in CCache (WKdm, WK4x4, zlib, and miniLZO), we
tested methods used in the Linux kernel (rubin, rtime)
and LZO compression.

Speed results are shown below relative to memcpy
function speed, so 2.4 means something works 2.4
times slower than memcpy. Reported data is the
size of data produced by compiler (.data and .bss
segments). The test pattern contained 1000 4K-pages
of an ARM ELF file which is the basic test data for
CCache. Input data was compressed page-per-page (4
KB slices).

Name

ARM11
code
size
(bytes)

ARM11
data
size
(bytes)

Comp
time
(rela-
tive)

Comp
ratio
(%)

Decomp
time
(rela-
tive)

Speed
asymm.

Wkdm 3120 16 2.3 89 1.4 1.8
Wk4x4 4300 4 3.5 87 2.6 0.9
miniLZO 1780 131076 5.6 73 1.6 3.5
zlib 49244 716 73.5 58 5.6 13.1
rubin_mips 180 4 152 98 37 4.2
dyn_rubin 180 4 87.8 92 94.4 0.9
rtime 568 4 7 97 1 7
lzo1 2572 0 8.8 76 1.6 5.5
lzo2 4596 0 62.8 62 2 31.4

Table 2: Compression Algorithms Comparison

From these tests we can draw the following conclusions
for the target system:

1. zlib is a very slow method, but it provides the best
compression;

2. using WK4x4 makes no practical sense because
the number of pages compressed for 50% or bet-
ter is the same as for WKdm, but in terms of speed,
WK4x4 is about 2 times slower;

3. lzo2 has good compression and very good decom-
pression speed, so it will be used to replace zlib
everywhere.

4. by using WKdm and miniLZO sequentially, we can
obtain good compression levels with small over-
head.

3.4 Power Consumption Tests

In order to evaluate the power consumption using
CCache, we replaced the device’s battery with an Ag-
ilent direct current power supply. This Agilent equip-
ment shows the total current in real time and with this,
the power consumption was calculated using an output
voltage of 4V.

Figure 8 shows the power consumption for the interac-
tive user test used and described in Section 3.2. Steps 1
to 5 can be discarded in an analysis of power consump-
tion since in these steps CCache is active, but it is not
called. The important steps are 5 to 8. In these steps we
have a stress memory situation and CCache is working.
As we can see, we have a gain of about 3% on aver-
age when compression is used. It can be explained for
smaller I/O data rates. Is important to take a look at the
‘Video Play’ step: this kind of application needs more
energy to process the video stream. These results show
that in this situation we have a good gain when CCache
is working. It is important to note that some variation
is accepted since all interactive tests results are use-case
dependent.

4 Related Work

The first implementation of compressed cache was done
by Douglis [2] in 1993 and results were not conclusive.
He achieved speed up for some applications, and slow-
downs for others. Later, in 1999 Kaplan [5] pointed out
that the machine Douglis used had a difference between
the processor speed and the access times on hard disk
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that was much smaller than encountered nowadays. Ka-
plan also proposed a new adaptive scheme, since that
used by Douglis was not conclusive about the applica-
tions’ performance.

Following the same scheme, Rodrigo Castro [1] im-
plemented and evaluated compressed cache and com-
pressed swap using the 2.4.x Linux kernel. He proposed
a new approach to reduce fragmentation of the com-
pressed pages, based on contiguous memory allocated
areas—cells. He also proposed a new adaptability pol-
icy that adjusts the compressed cache size on the fly.
Rodrigo’s adaptive compressed cache approach is based
on a tight compressed cache, without allocation of su-
perfluous memory. The cells used by compressed cache
are released to the system as soon as they are no longer
needed. The compressed cache starts with a minimum
size and as soon as the VM system starts to evict pages,
the compressed cache increases its memory usage in or-
der to store them.

All those implementations are focused on desktop or
server platforms. One implementation which is focused

on embedded devices is CRAMES [14]—Compressed
RAM for embedded systems. CRAMES was imple-
mented as a loadable module for the Linux kernel
and evaluated on a battery-powered embedded system.
CRAMES supports in-RAM compressed filesystems of
any type and uses a chunks approach (not the same de-
scribed in this paper) to store compressed pages.

The compressed cache implementation evaluated in this
paper still does not have the adaptive feature imple-
mented. From previous work, CCache uses the same
compression algorithms used by Rodrigo’s implementa-
tion, but the storage of compressed pages is quite dif-
ferent. The chunks approach reduces the fragmentation
close to zero and speeds up the page recovery. CCache
is the first Open Source compressed cache implementa-
tion for 2.6.x Linux kernel and it is under development,
both for desktop/server platforms and for embedded de-
vices, as presented in this paper.

5 Conclusions and Future Work

Storing memory pages as compressed data decreases the
number of access attempts to storage devices such as, for
example, hard disks, which typically are accessed much
slower than the main memory of a system. As such, we
can observe more benefits when the difference between
the access time to the main memory and the storage de-
vice is considerable. This characteristic is not typical
for embedded Linux systems, and the benefits of stor-
ing pages as compressed data are much smaller than on
an x86 architecture. Storage devices in the embedded
Linux systems are typically flash memory, for instance
MMC cards, and as we know, access times for these de-
vices are much faster than access times for a hard disk.
It allows us to come to the conclusion that wide use of
CCache is not justified in the embedded systems.

On the other hand, embedded systems have limitations
in the available memory. Thus, the experimental tests
results show that CCache can improve not only the input
and output performance but the system behavior in gen-
eral by improving memory management like swapping,
allocating big pieces of memory, or out-of-memory han-
dling. Being that as it may, it is also common knowl-
edge that this scenario has been changing along the de-
velopment of embedded Linux. The best benefit of this
CCache implementation is that developers can adjust it
to its system characteristics. Implementing a software-
based solution to handle the memory limitations is much



2007 Linux Symposium, Volume One • 63

better than hardware changes, which can increase the
market price of a product.

The power tests show that CCache makes a positive im-
pact on power consumption, but for the N800 architec-
ture the overall benefit is minor due to the high level of
system integration which is based on the OMAP 2420.

Finally, we can make some important points which can
improve this CCache implementation:

• use only fast compression methods like WKdm and
minilzo, maybe with lzo2;

• make performance and memory optimization for
compression take into account CPU and platform
hardware-accelerating features;

• enable compression according to instant memory
load: fast methods when memory consumption is
moderated, and slow when high memory consump-
tion is reached.

• compress/decompress pages that go to/from a real
swap partition.

• adaptive size of compressed cache: detection of
a memory consumption pattern and predict the
CCache size to support this load.
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Abstract

Major Linux distributors have been shipping ACPI in
Linux for several years, yet mis-perceptions about ACPI
persist in the Linux community. This paper addresses
the most common myths about ACPI in Linux.

1 Myth: There is no benefit to enabling ACPI
on my notebook, desktop, or server.

When users boot in ACPI-mode instead of legacy-mode,
the first thing they notice is that the power button is now
under software control. In legacy-mode, it is a physi-
cal switch which immediately removes power. In ACPI
mode, the button interrupts the OS, which can shutdown
gracefully. Indeed, ACPI standardizes the power, sleep,
and lid buttons and the OS can map them to whatever
actions it likes.

In addition to standardizing power button events, ACPI
also standardizes how the OS invokes software con-
trolled power-off. So a software-initiated power off
removes power from the system after Linux has shut-
down, while on many systems in legacy-mode, the op-
erator must manually remove power.

Users notice improved battery life when running in
ACPI-mode. On today’s notebooks, a key contributor to
improved battery life is processor power management.
When the processor is idle, the Linux idle loop takes
advantage of ACPI CPU idle power states (C-states) to
save power. When the processor is partially idle, the
Linux cpufreq sub-system takes advantage of ACPI pro-
cessor performance states (P-states) to run the processor
at reduced frequency and voltage to save power.

Users may notice other differences depending on the
platform and the GUI they use, such as battery capacity
alarms, thermal control, or the addition of or changes in
the the ability to invoke suspend-to-disk or suspend-to-
RAM, etc.

Users with an Intel R© processor supporting Hyper-
Threaded Technology (HT) will notice that HT is en-
abled in ACPI-mode, and not available in legacy-mode.

Many systems today are multi-processor and thus use an
IO-APIC to direct multiple interrupt sources to multiple
processors. However, they often do not include legacy
MPS (Multi-Processor Specification) support. Thus,
ACPI is the only way to configure the IO-APIC on these
systems, and they’ll run in XT-PIC mode when booted
without ACPI.

But to look at ACPI-mode vs. legacy-mode a bit deeper,
it is necessary to look at the specifications that ACPI
replaces. The most important one is Advanced Power
Management [APM], but ACPI also obsoletes the Multi-
Processor Specification [MPS] and the PCI IRQ Routing
Specification [PIRQ].

1.1 ACPI vs. Advanced Power Management (APM)

APM and ACPI are mutually exclusive. While a flexible
OS can include support for both, the OS can not enable
both on the same platform at the same time.

APM 1.0 was published in 1992 and was supported by
Microsoft R© Windows R© 3.1. The final update to APM,
1.2, was published in 1996.

ACPI 1.0 was developed in 1996, and Microsoft first
added support for it in Windows NT R©. For a period,
Windows preferred ACPI, but retained APM support to
handle older platforms. With the release of Windows
VistaTM , Microsoft has completed the transition to ACPI
by dropping support for APM.

Many platform vendors deleted their APM support dur-
ing this transition period, and few will retain APM sup-
port now that this transition is complete.

• 65 •
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Figure 1: APM Architecture

1.1.1 APM overview

The goal of the APM specification was to extend battery
life, while hiding the details of how that is done from the
OS in the APM BIOS.

APM defines five general system power states: Full On,
APM Enabled, APM Standby, APM Suspend, and Off.
The Full On state has no power management. The APM
Enabled state may disable some unused devices. The
APM Standby state was intended to be a system state
with instantaneous wakeup latency. The APM Suspend
was optionally suspend-to-RAM, and/or hibernate-to-
disk.

APM defines analogous power states for devices: De-
vice On, Device Power Managed, Device Lower Power,
and Device Off. Device context is lost in the Device
Off state. APM is somewhat vague about whether it
is the job of the OS device driver or the APM BIOS
to save and restore the device-operational parameters
around Device Off.

APM defines CPU Core control states—Full On, Slow
Clock, and Off. Interrupts transition the CPU back to
Full On instantaneously.

An APM-aware OS has an APM Driver that connects
with the APM BIOS. After a connection is established,
the APM Driver and APM BIOS “cooperatively perform
power management.” What this means is that the OS
makes calls into the BIOS to discover and modify the
default policies of the APM BIOS, and the OS polls the
BIOS at least once per second for APM BIOS events.

The APM BIOS can report events to the APM Driver.
For example, after detecting an idle period, the APM
BIOS may issue a System Standby Request Notification
telling the OS that it wants to suspend. The OS must
answer by calling a Set Power State function within a
certain time. If the OS doesn’t answer within the appro-
priate time, the BIOS may suspend the system anyway.
On resume, APM issues a System Standby Resume No-
tification to let the OS know what happened. This is the
OS’s opportunity to update its concept of time-of-day.

The OS can disable APM’s built-in concept of request-
ing a suspend or standby, and can instead manually ask
APM to perform these transitions on demand.

The OS can instrument its idle loop to call into the APM
BIOS to let it know that the processor is idle. The APM
BIOS would then perhaps throttle the CPU if it appeared
to be running faster than necessary.

The APM BIOS knows about AC/DC status. The APM
Driver can query the BIOS for current status, and can
also poll for AC/DC change events.

The APM BIOS knows about battery topology and sta-
tus. The APM Driver can query for configuration as well
as capacity, and can poll for Battery Low Notification.

APM supports a hard-coded list of devices for power
management including display, disk, parallel ports, se-
rial ports, network adapters, and PCMCIA sockets. The
OS can query for their state, enable/disable the APM
BIOS from managing the devices, and poll for state
changes.

1.1.2 Why APM is not viable

APM is fundamentally centered around the the APM
BIOS. The APM BIOS is entered from OS APM Driver
calls as well as from System Management Interrupts
(SMI) into System Management Mode (SMM). SMM is
necessary to implement parts of APM since BIOS code
needs to run on the processor without the knowledge or
support of the OS.

But it turns out that calling into the BIOS is a really
scary thing for an operating system to do. The OS puts
the stability of the system in the hands of the BIOS
developer on every call. Indeed, the only thing more
frightening to the OS is SMM itself, which is completely
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transparent to the OS and thus virtually impossible to
debug. The largest problem with both of these is that
if the state of the system was not as the BIOS devel-
oper expected it, then it may not be restored properly on
BIOS return to the OS.

So the quality of the “APM experience” varied between
platforms depending on the platform’s APM BIOS im-
plementation.

Further, the APM specification includes hard-coded lim-
itations about the system device configuration. It is not
extensible such that the platform firmware can accom-
modate system configurations that did not exist when
the specification was written.

The philosophy of ACPI, on the other hand, is to put
the OS, not the BIOS, in charge of power management
policy. ACPI calls this OSPM, or “Operating System-
directed configuration and Power Management.” OSPM
never jumps into the BIOS in ACPI-mode. However, it
does access system devices and memory by interpreting
BIOS ACPI Machine Language (AML) in kernel mode.

ACPI reduces the the need for SMM, but SMM is still a
tool available to BIOS writers to use when they see fit.

ACPI’s AML is extensible. It can describe resources
and capabilities for devices that the specification knows
nothing about—giving the OS the ability to configure
and power-manage a broad range of system configura-
tions over time.

ACPI 1.0 was published at the end of 1996. It is proba-
bly fair to say that platforms did not universally deploy it
until ACPI 2.0 was published in 2000. At that time, Mi-
crosoft released Windows 2000, and the APM era was
effectively over.

So if you’ve got a notebook from 1998 or 1999 that
includes both APM and ACPI support, you may find
that its APM implementation is more mature (and bet-
ter tested) than its new ACPI implementation. Indeed,
it is true that the upstream Linux kernel enables ACPI
on all systems that advertise ACPI support, but I recom-
mend that Linux distributors ship with CONFIG_ACPI_

BLACKLIST_YEAR=2000 to disable ACPI in Linux on
machines from the last century.

1.2 Multi-Processor Specification (MPS)

MPS 1.1 was issued in 1994. The latest revision, MPS
1.4, was issued in 1995, with minor updates until May,

1997. The primary goal of MPS was to standard-
ize multi-processor configurations such that a “shrink-
wrap” OS could boot and run on them without cus-
tomization. Thus a customer who purchased an MPS-
compliant system would have a choice of available Op-
erating Systems.

MPS mandated that the system be symmetric—all pro-
cessors, memory, and I/O are created equal. It also man-
dated the presence of Local and I/O APICs.

The Local APIC specified support for inter-processor
interrupts—in particular, the INIT IPI and STARTUP
IPI used to bring processors on-line.

While the specification calls it an “MP BIOS,” the code
is much different from the “APM BIOS.” The MP BIOS
simply puts all the processors into a known state so that
the OS can bring them on-line, and constructs static MP
configuration data structures—the MP tables—that enu-
merate the processors and APICS for the OS.

MPS also specified a standard memory map. However,
this memory map was later replaced by e820, which is
part of the ACPI specification.

The MPS tables enumerate processors, buses, and IO-
APICs; and the tables map interrupt sources to IO-APIC
input pins.

MPS mandated that SMP siblings be of equal capabil-
ity. But when Intel introduced Hyper-Threading Tech-
nology (HT) with the Pentium R© 4 processor, suddenly
siblings where not all created equal. What would hap-
pen to the installed base if MPS enumerated HT sib-
lings like SMP siblings? Certainly if an HT-ignorant
OS treated HT siblings as SMP, it would not schedule
tasks optimally.

So the existing MPS 1.4 was not extended to handle
HT,1 and today HT siblings are only available to the OS
by parsing the ACPI tables.

But MPS had a sister specification to help machines han-
dle mapping interrupt wires in PIC an IO-APIC mode—
the PIRQ spec.

1.3 ACPI vs. PCI IRQ Routers (PIRQ)

IRQ routers are motherboard logic devices that connect
physical IRQ wires to different interrupt controller in-

1Some BIOSes have a SETUP option to enumerate HT siblings
in MPS, but this is a non-standard feature.
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put pins. Microsoft published [PIRQ], describing OS-
visible tables for PIRQ routers. However, the spec ex-
cludes any mention of a standard method to get and
set the routers—instead stating that Microsoft will work
with the chipset vendors to make sure Windows works
with their chipsets.

ACPI generalizes PIRQ routers into ACPI PCI Interrupt
Link Devices. In real-life, these are just AML wrap-
pers for both the contents of the PIRQ tables, and the
undocumented chipset-specific get/set methods above.
The key is that the OS doesn’t need any chipset-specific
knowledge to figure out what links can be set to, what
they are currently set to, or to change the settings. What
this means is that the ACPI-aware OS is able to route in-
terrupts on platforms for which it doesn’t have intimate
knowledge.

1.4 With benefits come risks

It is fair to say that the Linux/ACPI sub-system is large
and complex, particularly when compared with BIOS-
based implementations such as APM. It is also fair to
say that enabling ACPI—effectively an entire suite of
features—carries with it a risk of bugs. Indeed it carries
with it a risk of regressions, particularly on pre-2000
systems which may have a mature APM implementation
and an immature ACPI implementation.

But the hardware industry has effectively abandoned the
previous standards that are replaced by ACPI. Further,
Linux distributors are now universally shipping and sup-
porting ACPI in Linux. So it is critical that the Linux
community continue to build the most robust and full
featured ACPI implementation possible to benefit its
users.

2 Myth: Suspend to Disk doesn’t work, it must
be ACPI’s fault.

The suspend-to-disk (STD) implementation in Linux
has very little to do with ACPI. Indeed, if STD is not
working on your system, try it with acpi=off or
CONFIG_ACPI=n. Only if it works better without ACPI
can you assume that it is an ACPI-specific issue.

ACPI’s role during suspend-to-disk is very much like
its role in a normal system boot and a normal system
power-off. The main difference is that when ACPI is

available, STD uses the “platform” method to power off
the machine instead of the “shutdown” method. This
allows more devices to be enabled as wakeup devices,
as some can wake the system from suspend to disk, but
not from soft power-off.

Many end-users think think that STD and ACPI are
practically synonyms. One reason for this is because in
the past, /proc/acpi/sleep was used to invoke STD.
However, this method is now deprecated in favor of the
generic /sys/power/state interface.

Note that suspend-to-RAM (STR) is more dependent
on ACPI than STD, as the sleep and wakeup paths are
ACPI-specific.

However, the vast majority of both STD and STR fail-
ures today have nothing to do with ACPI itself, but in-
stead are related to device drivers. You can often iso-
late these issues by unloading a device driver before sus-
pend, and re-loading it after resume.

3 Myth: The buttons on my notebook don’t
work, it must be ACPI’s fault.

The ACPI specification standardizes only 3 buttons—
power, sleep, and lid. If these buttons do not work in
ACPI-mode, then it is, indeed, an ACPI issue.

The other buttons on the keyboard are handled in a vari-
ety of platform-specific methods.

First there are the standard keyboard buttons that go di-
rectly to the input sub-system. When these malfunc-
tion, it cannot be blamed on ACPI, because if there is a
problem with them, they’ll have the same problem with
acpi=off.

The “ACPI issues” appear with “hot-keys,” which are
platform-specific buttons that are not handled by the
standard keyboard driver.

When in acpi=off mode, these are sometimes han-
dled in the BIOS with SMI/SMM. But when in ACPI-
mode, this SMM support is disabled by the platform
vendor on the assumption that if ACPI-mode is enabled,
then a modern OS sporting a platform-specific hot-key
driver is available to handle the hot-keys. For Win-
dows, the vendor may be able to guarantee this is true.
However, to date, no platform vendor has volunteered
to create or support the community in the creation of
platform-specific hot-key drivers for Linux.
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Sometimes these keys actually do use the ACPI subsys-
tem to get their work done. However, they report events
to vendor-specific ACPI devices, which need vendor-
specific ACPI device drivers to receive the events and
map them to actions.

4 Myth: My motherboard boots with
acpi=off, but fails otherwise, it must
be ACPI’s fault.

With the advent of multi-core processors, SMP systems
are very common, and all modern x86 SMP system have
an IO-APIC.

However, many notebook and desktop BIOS vendors do
not include MPS support in their BIOS. So when booted
with acpi=off, these systems revert all the way back
to 8259 PIC mode. So only in ACPI-mode is the IO-
APIC enabled, and thus any IO-APIC mode issues get
blamed on ACPI.

The real ACPI vs. non-ACPI, apples-versus-apples com-
parison would be acpi=off vs. noapic—for both of
these will boot in PIC mode.

But why do so many systems have trouble with IO-APIC
mode? The most common reason is the periodic HZ
timer. Linux typically uses the 8254 Programmable In-
terrupt Timer (PIT) for clock ticks. This timer is typi-
cally routed to IRQ0 via either IO-APIC pin0 or pin2.

But Windows doesn’t always use the PIT; it uses the
RTC on IRQ8. So a system vendor that validates their
system only with Windows and never even boots Linux
before releasing their hardware may not notice that the
8254 PIT used by Linux is not hooked up properly.

5 Myth: The Linux community has no influ-
ence on the ACPI Specification.

HP, Intel, Microsoft, Phoenix, and Toshiba co-
developed the ACPI specification in the mid-1990s, but
it continues to evolve over time. Indeed, version 3.0b
was published in October, 2006.

Linux plays a role in that evolution. The latest version
of the specification included a number of “clarifications”
that were due to direct feedback from the Linux commu-
nity.
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Figure 2: ACPI sighting profile at bugzilla.kernel.org

Sometimes Linux fails to work properly on a system in
the field and the root cause is that the ACPI specification
was vague. This caused the Linux implementation to do
one thing, while the BIOS vendors and Microsoft did
another thing.

The Linux/ACPI team in the Intel Open Source Tech-
nology Center submits “specification clarifications” di-
rectly to the ACPI committee when this happens. The
specification is updated, and Linux is changed to match
the corrected specification.

6 Myth: ACPI bugs are all due to sub-
standard platform BIOS.

When Linux implemented and shipped ACPI, we ran
into three categories of failures:

1. Linux fails because the platform BIOS clearly vio-
lates the written ACPI specification.

These failures exist because until Linux imple-
mented ACPI, platform vendors had only Windows
OS compatibility tests to verify if their ACPI im-
plementation was correct.
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Unfortunately, an OS compatibility test is not a
specification compliance test. The result is that
many BIOS implementations work by accident be-
cause they have been exercised by only one OS.

Today, the Linux-ready Firmware Developer Kit
[FWKIT] is available so that vendors who care
about Linux have the tools they need to assure their
BIOS implementation is compatible with Linux.

2. Linux fails because the platform BIOS writer and
Linux programmer interpreted the ACPI specifica-
tion differently.

As mentioned in the previous section, we treat
these as Linux bugs, fix them, and update the spec-
ification to match the actual industry practice.

3. Bugs in the Linux/ACPI implementation. These
are simply bugs in Linux, like any other bugs in
Linux.

The myth is that a large number of failures are due BIOS
bugs in category #1. The reality is shown by Figure 2—
under 10% of all Linux/ACPI bugs can be blamed on
broken BIOSes.

The majority of bugs have actually been reported against
category #3, the Linux-specific code.

7 Myth: ACPI code seems to change a lot, but
isn’t getting any better.

When ACPI was still new in Linux and few distributors
were shipping it, there were many times when changes
would fix several machines, but break several others. To
be honest, a certain amount of experimentation was go-
ing on to figure out how to become bug-compatible with
the installed base of systems.

Marcelo Tosatti was maintaining Linux-2.4, and he
walked up to me and in a concerned voice asked why
we’d break some systems while fixing others. It was
clear we needed validation tests to prevent regressions,
but we didn’t have them yet. And before we did, Linux
distributors cut over to Linux-2.6, and almost univer-
sally started shipping ACPI. Suddenly we had a large
installed base running Linux/ACPI.

For a short while we didn’t mend our ways of experi-
menting on the user base. Then Linus Torvalds scolded

us for knowingly causing regressions, insisting that even
if a system is working by mistake, changes should never
knowingly break the installed base. He was right, of
course, and ever since the Linux/ACPI team has made
regressions the highest-priority issues.

But while this was happening, a team at Intel was creat-
ing three test suites that today are used to to verify that
Linux/ACPI is constantly improving.

1. The ACPICA ASL Test Suite (ASLTS) is dis-
tributed in open source along with the ACPICA
source package on intel.com. [ACPICA]
ASLTS runs a suite of over 2,000 ASL tests against
the ACPICA AML interpreter in a simulation envi-
ronment. This is the same interpreter that resides in
the Linux Kernel. During the development of this
test suite, over 300 issues were found. Today there
are fewer than 50 unresolved. ACPICA changes
are not released if there are any regressions found
by this test suite.

2. The ACPICA API Test Suite exercises the inter-
faces to the ACPICA core as seen from the OS.
Like ASLTS, the API tests are done in a simulation
environment.

3. ACPI ABAT—Automated Basic Acceptance
Tests—which run on top of Linux, exercising
user-visible features that are implemented by
ACPI. ACPI ABAT is published in open source on
the Linux/ACPI home page.2

Finally, one can examine the bug profile at bugzilla.
kernel.org and observe that 80% of all sightings are
now closed.

8 Myth: ACPI is slow and thus bad for high-
performance cpufreq governors such as “on-
demand.”

It is true that the BIOS exports AML to the OS, which
must use an AML interpreter to parse it. It is true that
parsing AML is not intended to occur on performance-
critical paths. So how can ACPI possibly be appropriate
for enabling P-state transitions such as those made by
the high-performance “ondemand” P-state governor—
many times per second?

2http://acpi.sourceforge.net
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The answer is that AML is used to parse the ACPI tables
to tell cpufreq what states ondemand has to choose
from. ondemand then implements its run-time policy
without any involvement from ACPI.

The exception to this rule is that the platform may decide
at run-time that the number of P-states should change.
This is a relatively rare event, e.g. on an AC→DC tran-
sition, or a critical thermal condition. In this case, ACPI
re-evaluates the list of P-states and informs cpufreq
what new states are available. Cpufreq responds to this
change and then proceeds to make its run-time governor
decisions without any involvement from ACPI.

9 Myth: Speedstep-centrino is native and thus
faster than ACPI-based ‘acpi-cpufreq.’

To change the processor frequency and voltage, the OS
can either write directly to native, model-specific regis-
ters (MSR), or it can access an IO address. There can
be a significant efficiency penalty for IO access on some
systems, particularly those which trap into SMM on that
access.

So the community implemented speedstep-centrino, a
cpufreq driver with hard-coded P-state tables based on
CPUID and the knowledge of native MSRs. Speedstep-
centrino did not need ACPI at all.

At that time, using acpi-cpufreq instead of speedstep-
centrino meant using the less-efficient IO accesses. So
the myth was true—but two things changed.

1. Speedstep-centrino’s hard-coded P-state tables
turned out to be difficult to maintain. So ACPI-
table capability was added to speedstep-centrino
where it would consult ACPI for the tables first,
and use the hard-coded tables as a backup.

2. Intel published the “Intel Processor Vendor-
Specific ACPI Interface Specification” along with
[ACPICA]. This specification made public the bits
necessary for an ACPI implementation to use na-
tive MSR access. So native MSR access was added
to acpi-cpufreq.

The result was that both drivers could talk ACPI, and
both could talk to MSRs. Speedstep-centrino still had
its hard-coded tables, and acpi-cpufreq could still talk
to IO addresses if the system asked it to.

Recently, acpi-cpufreq has been anointed the preferred
driver of the two, and speedstep-centrino is scheduled
for removal from the source tree as un-maintainable.

10 Myth: More CPU idle power states (C-
states) are better than fewer states.

Users observe the system C-states in /proc/acpi/

processor/*/power and assume that systems with
more C-states save more power in idle than systems with
fewer C-states. If they look at the data book for an Intel
CoreTM2 Duo processor and try to relate those states to
this file, then that is a reasonable assumption.

However, with some limitations, the mapping between
hardware C-states and the ACPI C-states seen by Linux
is arbitrary. The only things that matter with C-states is
the amount of power saved, and the latency associated
with waking up the processor. Some systems export
lots of C-states, others export fewer C-states and have
power-saving features implemented behind the scenes.

An example of this is Dynamic Cache Sizing. This is not
under direct OS or C-state control. However, the pro-
cessor recognizes that when deep C-states are entered,
it can progressively flush more and more of the cache.
When the system is very idle, the cache is completely
flushed and is totally powered off. The user cannot tell
if this feature is implemented in the processor by look-
ing at how many C-states are exported to the OS—it is
implemented behind the scenes in processor firmware.

11 Myth: Throttling the CPU will always use
less energy and extend battery life.

Energy = Power ∗Time. That is to say, [Watt-Hours] =
[Watts] * [Hours].

Say the processor is throttled to half clock speed so that
it runs at half power, but takes twice as long to get the
job done. The energy consumed to retire the workload
is the same and the only effect was to make the work
take twice as long. Energy/work is constant.

There are, however, some second-order effects which
make this myth partially true. For one, batteries are
not ideal. They tend to supply more total energy when
drained at a lower rate than when drained at a higher
rate.
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Secondly, systems with fans require energy to run those
fans. If the system can retire the workload without get-
ting hot, and succeeds in running the fans slower (or
off), then less energy is required to retire the workload.

Note that processor clock throttling (ACPI T-states) dis-
cussed here should not be confused with processor per-
formance states (ACPI P-states). P-states simultane-
ously reduce the voltage with the clock speed. As
power varies as voltage squared, deeper P-states do take
the processor to a more efficient energy/work operating
point and minimize energy/work.

12 Myth: I can’t contribute to improving
ACPI in Linux.

The basis of this last myth may be the existence of
ACPICA.

ACPICA (ACPI Component Architecture) is Intel’s ref-
erence implementation of the ACPI interpreter and sur-
rounding OS-agnostic code. In addition to Linux,
BSD R©, SolarisTM , and other operating systems rely on
ACPICA as the core of their ACPI implementation. For
this to work, Intel holds the copyright on the code, and
publishes under dual BSD and GPL licenses.

In Linux, 160 ACPICA files reside in sub-directories un-
der /drivers/acpi. When a patch is submitted from
the Linux community to those files, the Linux/ACPI
maintainer asks for their permission to license the
change to Intel to re-distribute under both licenses on
the file, not just the GPL. That way, Intel can share the
fix with the other ACPICA users rather than having the
multiple copies diverge.

The ACPICA license isn’t a barrier for open source con-
tributors, but since it isn’t straight GPL and extra per-
mission is requested, it does generate a false impression
that patches are unwelcome.

Further, it is the 40 pure-GPL files in /drivers/acpi

that are most interesting to the majority of the Linux
community anyway, for those files contain all the Linux-
specific code and ACPI-related policy—treating the
ACPICA core as a “black box.”

But submitting patches is only one way to help.
As described earlier, a lot of the work surrounding
Linux/ACPI is determining what it means to be bug-
compatible with common industry platform BIOS prac-
tice. The more people that are testing and poking at

ACPI-related functions on a broad range of systems, the
easier it is for the developers to improve the subsystem.

Your system should boot as well (or better) in ACPI-
mode using no boot parameters as it does with acpi=
off or other workarounds. Further, the power manage-
ment features supported by ACPI such as suspend-to-
RAM and processor power management should func-
tion properly and should never stop functioning prop-
erly.

It is a huge benefit to the community and the quality
of the Linux ACPI implementation when users insist
that their machines work properly—without the aid of
workarounds. When users report regressions, file bugs,
and test fixes, they are doing the community a great ser-
vices that has a dramatic positive impact on the quality
of ACPI in Linux.

13 Conclusion

Forget your initial impressions of Linux/ACPI made
years ago. ACPI in Linux is not a myth, it is now uni-
versally deployed by the major Linux distributors, and
it must function properly. Insist that the ACPI-related
features on your system work perfectly. If they don’t,
complain loudly and persistently3 to help the develop-
ers find and fix the issues.

The community must maintain its high standards for
ACPI in Linux to continuously improve into the high-
est quality implementation possible.
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Abstract

Linux has traditionally been centered around processor
performance and power consumption. Thermal manage-
ment has been a secondary concern—occasionally used
for fan speed control, sometimes for processor throt-
tling, and once in a rare while for an emergency thermal
shutdown.

Handheld devices change the rules. Skin temperature
is a dominant metric, the processor may be a minority
player in heat generation, and there are no fans.

This paper describes extensions to Linux thermal man-
agement to meet the challenges of handheld devices.

1 Handhelds Thermal Challenges

The new generation handheld computing devices are ex-
ploding with new usage models like navigation, info-
tainment, health, and UMPC. “Internet on the Go” is a
common feature set the handheld devices must provide
for all these new usage models. This requires handheld
devices to be high-performance.

High-performance handhelds have magnified power and
thermal challenges as compared to notebooks.

• Notebooks today are infrequently designed to sit
in your lap. Most of them are designed to sit on
a table, and many actually require free air flow
from beneath the case. Users demand that hand-
held computers be cool enough that their hand does
not sweat. Thus, there are strict skin temperature
limits on handhelds.

• Notebooks typically have fans. Handhelds typi-
cally do not have fans.

• Handheld form factors are physically smaller than
a typical notebook, and thus the thermal dissipation
within the platform is limited.

• The CPU is the dominant heat generator on most
notebooks. But for handhelds, the CPU may be a
minor contributor as compared to other devices.

2 ACPI Thermal Capabilities

Linux notebooks today use a combination of ACPI and
native-device thermal control.

The ACPI specification [ACPI] mandates that if a note-
book has both active and passive cooling capability, then
the platform must expose them to the OS via ACPI. The
reasoning behind this is that the OS should be involved
in the cooling policy decision when deciding between
active versus passive cooling.

But a large number of notebooks implement thermal
control “behind the scenes” and don’t inform or involve
ACPI or the OS at all. Generally this means that they
control the fan(s) via chipset or embedded controller;
but in some cases, they go further, and also implement
thermal throttling in violation of the ACPI spec.

2.1 Linux will not use the ACPI 3.0 Thermal Ex-
tensions

ACPI 3.0 added a number of thermal extensions—
collectively called the “3.0 Thermal Model.” These ex-
tensions include the ability to relate the relative contri-
butions of multiple devices to multiple thermal zones.
These relative contributions are measured at system
design-time, and encoded in an ACPI thermal relation-
ship table for use by the OS in balancing the multiple
contributors to thermal load. This is a sophisticated so-
lution requiring thorough measurements by the system
designer, as well as knowledge on the part of the OS
about relative performance tradeoffs.

The handheld effort described in this paper does not
need the ACPI 3.0 thermal extensions. Indeed, no Linux
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notebook has yet materialized that needs those exten-
sions.

So when the BIOS AML uses _OSI and asks Linux if it
supports the “3.0 Thermal Model,” Linux will continue
to answer “no,” for the immediate future.

2.2 How the ACPI 2.0 Thermal Model works

ACPI defines a concept of thermal zones. A thermal
zone is effectively a thermometer with associated trip
points and devices.

A single CRT trip point provokes a critical system shut-
down. A single HOT trip point provokes a system
suspend-to-disk. A single PSV trip point activates the
OS’s passive cooling algorithm. One or more ACx trip
points control fans for active cooling. Each active trip
point may be associated with one or multiple fans, or
with multiple speeds of the same fan.

When a PSV trip point fires, the Linux processor_

thermal driver receives the event and immediately re-
quests the Linux cpufreq subsystem to enter the deep-
est available processor performance state (P-state). As
P-states reduce voltage along with frequency, they are
more power-efficient than simple clock throttling (T-
states), which lower frequency only.

The processor thermal throttling algorithm then period-
ically polls the thermal zone for temperature, and throt-
tles the clock accordingly. When the system has cooled
and the algorithm has run its course, the processor is
un-throttled, and cpufreq is again allowed to control P-
states.

2.3 Why is the ACPI 2.0 Thermal Model not suffi-
cient?

It can’t hurt to implement ACPI’s CRT trip point for
critical system shutdown—but that isn’t really the focus
here.

The HOT trip point doesn’t really make sense, since on
a handheld, shutdown and hibernate to disk (if one even
exists) are likely to be synonymous.

Active trip points are of no use on systems which have
no fans.

CPU WLAN

WWAN

Mem

Graphics

_TZ1 (Skin)
    _TMP
    _CRT
    _TZD
        CPU, WLAN, WWAN, MEM
    _PLD (top)

_TZ0 (CPU)
    _TMP
    _CRT
    _PSV
    _PSL
        CPU

_TZ5 (Comms)
    _TMP
    _CRT
    _TZD
        WLAN
        WWAN

_TZ3 (MEM)
    _TMP
    _CRT
    _TZD
        MEM

_TZ4 (Skin)
    _TMP
    _CRT
    _TZD
        ...
    _PLD (bottom)

_TZ2 (GRAPHICS)
    _TMP
    _CRT
    _TZD
        GRAPHICS

Figure 1: Example Sensor-to-Thermal-Zone Mapping

That leaves the single PSV trip point. ACPI 2.0 can as-
sociate (only) a processor throttling device with a trip
point. Yes, handhelds have processors, but the proces-
sor isn’t expected to always be the dominant contributor
to thermal footprint on handhelds like it often is on note-
books.

ACPI 2.0 includes the _TZD method to associate de-
vices with thermal zones. However, ACPI doesn’t say
anything about how to throttle non-processor devices—
so that must be handled by native device drivers.

2.4 So why use ACPI at all?

Inexpensive thermal sensors do not know how to gener-
ate events. They are effectively just thermometers that
need to be polled. However, using the CPU to poll
the sensors would be keeping a relatively power-hungry
component busy on a relatively trivial task. The solu-
tion is to poll the sensors from a low-power embedded
controller (EC).

The EC is always running. It polls all the sensors and
is responsible for interrupting the main processor with
events. ACPI defines a standard EC, and so it is easy
to re-use that implementation. Of course, it would be
an equally valid solution to use a native device driver
to talk to an on-board microcontroller that handles the
low-level polling.
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Interrupt

Platform
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    Notify(TZx)
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acpi_intr()

Embedded ControllerT

Figure 2: Thermal Event Delivery via ACPI

2.5 Mapping Platform Sensors to ACPI Thermal
Zones

Figure 1 shows an example of mapping platform sensors
to the ACPI Thermal zones. Four different scenarios are
illustrated in the figure:

• Sensors that are built into the CPU.

• Sensors that are associated with a single non-
processor device, such as DRAM or graphics.

• Sensors that are associated with cluster of compo-
nents, for example, Wireless LAN (WLAN) and
Wireless WAN (WWAN).

• Skin sensors that indicate overall platform temper-
ature.

2.6 How to use ACPI for Handheld Thermal Events

For the CPU, Linux can continue to handle a single
ACPI passive trip point with an in-kernel processor ther-
mal throttling algorithm.

For critical thermal events, Linux can continue to handle
a single ACPI critical trip point with a system shutdown.

Thermal Management
Policy Control Application

User

Kernel

Platform

Native Temperature
Sensor Driver

Temperature
Sensor

native_intr()Interrupt

Figure 3: Thermal Event Delivery via native driver

However, for the non-processor thermal zones, a single
passive trip point is insufficient. For those we will use
ACPI’s concept of “temperature change events.”

When the EC decides that the temperature has changed
by a meaningful amount—either up or down—it sends
a temperature change event to the thermal zone object.

If the thermal zone is associated with a processor, then
the kernel can invoke its traditional processor thermal
throttling algorithm.

As shown in Figure 2, for non-processor thermal zones,
the thermal driver will query the temperature of the
zone, and send a netlink message to user-space identi-
fying the zone and the current temperature.

Figure 3 shows the same event delivered by a native plat-
form, sensor-specific sensor driver.

3 Proposed Handheld Thermal Solution

Multiple works ([LORCH], [VAHDAT]) focus on low-
power OS requirements and low-power platform design.
While low-power optimizations have a positive impact
on thermals, this only addresses thermal issues at a com-
ponent level. To address the platform-level thermal is-
sues, we need to look at the thermal problem in a more
complete platform perspective. This requires support
from OS, user applications, etc.

3.1 Design Philosophy

• Thermal monitoring will be done using inexpen-
sive thermal sensors—polled by a low-power EC.
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ACPI
Thermal Driver

Native Sensor Driver
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Thermal Management
Policy Control Application

User

Kernel

Platform hardware, BIOS, firmware

Platform

ACPI
Processor Driver

Thermal sysfs I/F

Native
Device Driver

sysfs throttle I/F.

Figure 4: Thermal Zone Driver Stack Architecture

• Thermal management policy decisions will be
made from user space, as the user has a compre-
hensive view of the platform.

• The kernel provides only the mechanism to deliver
thermal events to user space, and the mechanism
for user space to communicate its throttling deci-
sions to native device drivers.

Figure 4 shows the thermal control software stack. The
thermal management policy control application sits on
top. It receives netlink messages from the kernel ther-
mal zone driver. It then implements device-specific ther-
mal throttling via sysfs. Native device drivers supply
the throttling controls in sysfs and implement device-
specific throttling functions.

3.2 Thermal Zone module

The thermal zone module has two components—a ther-
mal zone sysfs driver and thermal zone sensor driver.
The thermal zone sysfs driver is platform-independent,
and handles all the sysfs interaction. The thermal zone
sensor driver is platform-dependent. It works closely
with the platform BIOS and sensor driver, and has
knowledge of sensor information in the platform.

3.2.1 Thermal sysfs driver

The thermal sysfs driver exports two inter-
faces (thermal_control_register() and
thermal_control_deregister()) to compo-
nent drivers, which the component drivers can call to
register their control capability to the thermal zone
sysfs driver.

The thermal sysfs driver also exports two
interfaces—thermal_sensor_register() and
thermal_sensor_deregister()—to the platform-
specific sensor drivers, where the sensor drivers can use
this interface to register their sensor capability.

This driver is responsible for all thermal sysfs entries.
It interacts with all the platform specific thermal sensor
drivers and component drivers to populate the sysfs en-
tries.

The thermal zone driver also provides a notification-of-
temperature service to a component driver. The ther-
mal zone sensor driver as part of registration exposes its
sensing and thermal zone capability.

3.2.2 Thermal Zone sensor driver

The thermal zone sensor driver provides all the
platform-specific sensor information to the thermal
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sysfs driver. It is platform-specific in that it has prior
information about the sensors present in the platform.

The thermal zone driver directly maps the ACPI 2.0
thermal zone definition, as shown in Figure 1. The ther-
mal zone sensor driver also handles the interrupt notifi-
cation from the sensor trips and delivers it to user space
through netlink socket.

3.3 Component Throttle driver

All the component drivers participating in the given
thermal zone can register with the thermal driver, each
providing the set of thermal ops it can support. The ther-
mal driver will redirect all the control requests to the
appropriate component drivers when the user programs
the throttling level. Its is up to the component driver to
implement the thermal control.

For example, a component driver associated with
DRAM would slow down the DRAM clock on throttling
requests.

3.4 Thermal Zone Sysfs Property

Table 1 shows the directory structure exposing each
thermal zone sysfs property to user space.

The intent is that any combination of ACPI and native
thermal zones may exist on a platform, but the generic
sysfs interface looks the same for all of them. Thus,
the syntax of the files borrows heavily from the Linux
hwmon sub-system.1

Each thermal zone provides its current temperature and
an indicator that can be used by user-space to see if the
current temperature has changed since the last read.

If a critical trip point is present, its value is indicated
here, as well as an alarm indicator showing whether it
has fired.

If a passive trip point is present, its value is indicated
here, as well as an alarm indicator showing whether it
has fired.

There are symbolic links to the device nodes of the de-
vices associated with the thermal zone. Those devices
will export their throttling controls under their device
nodes.

1Documentation/hwmon/sysfs-interface defines
the names of the sysfs files, except for the passive files, which are
new.

Thermal Managment 
Algorithim

Event 
Handler

Sysfs
Interface

User InterfaceUser 
Policy

Figure 5: Thermal Policy Control Application

3.5 Throttling Sysfs Properties

Devices that support throttling will have two addi-
tional properties associated with the device nodes:
throttling and throttling_max.

A value of 0 means maximum performance, though no
throttling. A value of throttling_max means maxi-
mum power savings in the deepest throttling state avail-
able before device state is lost.

3.6 Netlink Socket Kobject event notification

Events will be passed from the kernel to user-space us-
ing the Linux netlink facility. Interrupts from the sen-
sor or EC are delivered to user-space through a netlink
socket.

3.7 Policy Control Application

Figure 5 shows a thermal policy control application.

The control application interacts with the user, via GUI
or configuration files, etc., such that it can understand
both the dependencies within the system, and the de-
sired current operating point of the system.

The thermal management module can monitor the plat-
form and component temperature through the sysfs in-
terface, which is a simple wrapper around the sysfs
layer. The application receives temperature change
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sysfs ACPI Description R/W
temp1_input _TMP Current temperature RO
temp1_alarm Temperature change occurred RW
temp1_crit _CRT Critical alarm temperature RO
temp1_crit_alarm Critical alarm occurred RW
temp1_passive _PSV Passive alarm temperature RO
temp1_passive_alarm Passive alarm occurred RW
<device_name1> Link to device1 associated with zone RO
<device_name2> Link to device2 associated with zone RO
. . . . . . RO

Table 1: Thermal Zone sysfs entries

events via netlink, so it can track temperature trends.
When it decides to implement throttling, it accesses the
appropriate native device’s sysfs entries via the sysfs in-
terface.

The thermal throttling algorithms implemented inter-
nally to the policy control application are beyond the
scope of this paper.

3.8 Possible ACPI extensions

This proposal does make use of the ACPI critical trip
point. Depending on the device, the policy manager may
decide that either the device or the entire system must be
shut down in response to a critical trip point.

This proposal also retains the ACPI 2.0 support for a
passive trip point associated with a processor, and in-
kernel thermal throttling of the processor device.

However, the main use of ACPI in this proposal is sim-
ply as a conduit that associates interesting temperature
change events with thermal zones.

What is missing from ACPI is a way for the policy man-
ager to tell the firmware via ACPI what events are inter-
esting.

As a result, the EC must have built-in knowledge about
what temperature change events are interesting across
the operating range of the device.

However, it would be more flexible if the policy con-
trol application could simply dictate what granularity of
temperature change events it would like to see surround-
ing the current temperature.

For example, when the temperature is 20C, the pol-
icy application may not care about temperature change

events smaller than 5C. But when the temperature is
higher, change events of 0.5C may be needed for fine
control of the throttling algorithm.

4 Conclusion

On handheld computers it is viable for a platform-
specific control application to manage the thermal pol-
icy. With the policy moved to user-space, the kernel
component of the solution is limited to delivering events
and exposing device-specific throttling controls.

This approach should be viable on a broad range of sys-
tems, both with and without ACPI support.
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Abstract

The Linux kernel provides a system call interface for
asynchronous I/O (AIO) which has not been widely
adopted. It supports few operations and provides asyn-
chronous submission and completion of those opera-
tions in limited circumstances. It has succeeded in pro-
viding cache-avoiding reads and writes to regular files,
used almost exclusively by database software. Main-
taining this minimal functionality has proven to be dis-
proportionately difficult which has in turn discouraged
adding support for other operations.

Recently Ingo Molnar introduced a subsystem called
syslets [3]. Syslets give user space a new system call
interface for performing asynchronous operations. They
support efficient asynchronous submission and comple-
tion of almost every existing system call interface in the
kernel.

This paper documents the path that leads from the limits
of the existing AIO implementation to syslets. Syslets
have the potential to both reduce the cost and broaden
the functionality of AIO support in the Linux kernel.

1 Background

Before analyzing the benefits of syslets we first review
the motivation for AIO and explain the limitations of the
kernel’s current support for AIO.

1.1 Briefly, Why AIO?

AIO can lead to better system resource utilization by
letting a single process do independent work in parallel.

Take the trivial example of calculating the cryptographic
hash of a very large file. The file is read in pieces into

memory and each piece is hashed. With synchronous
read() calls, the CPU is idle while each piece is read
from the file. Then as the CPU hashes the file in memory
the disk is idle. If it takes the same amount of time to
read a piece as it takes to calculate its hash (a bit of a
stretch these days) then the system is working at half
capacity.

If AIO is used, our example process fully utilizes both
the CPU and the disk by letting it issue the read for the
next piece without blocking the CPU. After issuing the
read, the process is free to use the CPU to hash the cur-
rent piece. Once this hashing is complete the process
finds that the next read has completed and is available
for hashing.

The general principles of this trivial example apply
to more relevant modern software systems. Trade a
streaming read from a large file for random reads from
a block device and trade hashing for non-blocking net-
work IO and you have an ISCSI target server.

1.2 KAIO Implementation Overview

The kernel provides AIO for file IO with a set of sys-
tem calls. These system calls and their implementation
in the kernel have come to be known as KAIO. Appli-
cations use KAIO by first packing the arguments for IO
operations into iocb structs. IO operations are initiated
by passing an array of iocbs, one element per IO op-
eration, to io_submit(). Eventually the result of the
operations are made available as an array of io_event
structures—one for each completed IO operation.

In the kernel, the io_submit() system call handler
translates each of the iocbs from user space into a
kiocb structure—a kernel representation of the pend-
ing operation. To initiate the IO, the synchronous file
IO code paths are called. The file IO paths have two
choices at this point.
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The first option is for a code path to block process-
ing the IO and only return once the IO is complete.
The process calling io_submit() blocks and when
it eventually returns, the IO is immediately available for
io_getevents(). This is what happens if a buffered
file IO operation is initiated with KAIO.

The second option is for the file IO path to note that
it is being called asynchronously and take action to
avoid blocking the caller. The KAIO subsystem pro-
vides some infrastructure to support this. The file IO
path can return a specific error, -EIOCBQUEUED, to
indicate that the operation was initiated and will com-
plete in the future. The file IO path promises to call
aio_complete() on the kiocb when the IO is
complete.

The O_DIRECT file IO path is the most significant
mainline kernel path to implement the second op-
tion. It uses block IO completion handlers to call
aio_complete() after returning -EIOCBQUEUED
rather than waiting for the block IO to complete before
returning.

1.3 KAIO Maintenance Burden

The KAIO infrastructure has gotten us pretty far but its
implementation imposes a significant maintenance bur-
den on code paths which support it.

• Continuation can’t reference the submitting pro-
cess. Kernel code has a fundamental construct for
referencing the currently executing process. KAIO
requires very careful attention to when this is done.
Once the handler returns -EIOCBQUEUED then
the submission system call can return and kernel
code will no longer be executing in the context of
the submitting process. This means that an oper-
ation can only avoid blocking once it has gotten
everything it needs from the submitting process.
This keeps O_DIRECT, for example, from avoid-
ing blocking until it has pinned all of the pages
from user space. It performs file system block off-
set lookups in the mean time which it must block
on.

• Returning an error instead of blocking implies far-
reaching changes to core subsystems. A large num-
ber of fundamental kernel interfaces block and cur-
rently can’t return an error. lock_page() and

mutex_lock() are only two of the most impor-
tant. These interfaces have to be taught to return an
error instead of blocking. Not only does this push
changes out to core subsystems, it requires rewrit-
ing code paths to handle errors from these func-
tions which might not have handled errors before.

• KAIO’s special return codes must be re-
turned from their source, which has promised
to call aio_complete(), all the way
back to io_setup(), which will call
aio_complete() if it does not see the special
error codes. Code that innocently used to overwrite
an existing error code with its own, say returning
-EIO when O_SYNC metadata writing fails, can
lead to duplicate calls to aio_complete() .
This invariant must be enforced through any mid-
level helpers that might have no idea that they’re
being called in the path between io_submit()
and the source of KAIO’s special error codes.

• iocbs duplicate system call arguments. For any
operation to be supported by KAIO it must have its
arguments expressed in the iocb structure. This
duplicates all the problems that the system call in-
terface already solves. Should we use native types
and compatibility translation between user space
and kernel for different word sizes? Should we use
fixed-width types and create subtle inconsistencies
with the synchronous interfaces? If we could re-
use the existing convention of passing arguments
to the kernel, the system call ABI, we’d avoid this
mess.

Far better would be a way to provide an asynchronous
system call interface without having to modify, and risk
breaking, existing system call handlers.

2 Fibrils

2.1 Blame Linus

In November of 2005, Linus Torvalds expressed frus-
tration with the current KAIO implementation. He sug-
gested an alternative he called micro-threads. It built on
two fundamental, and seemingly obvious, observations:

1. The C stack already expresses the partial progress
of an operation much more naturally than explicit
progress storage in kiocb ever will.
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2. schedule(), the core of the kernel task sched-
uler, already knows when an operation blocks for
any reason. Handling blocked operations in the
scheduler removes the need to handle blocking at
every potential blocking call site.

The proposal was to use the call stack as the represen-
tation of a partially completed operation. As an opera-
tion is submitted its handler would be executed as nor-
mal, exactly as if it was executed synchronously. If it
blocked, its stack would be saved away and the stack of
the next runnable operation would be put into place.

The obvious way to use a scheduler to switch per-
operation stacks is to use a full kernel thread for each
operation. Originally it was feared that a full kernel
thread per operation would be too expensive to manage
and switch between because the existing scheduler in-
terface would have required initiating each operation in
its own thread from the start. This is wasted effort if it
turns out that the operations do not need their own con-
text because they do not block. Scheduling stacks only
when an operation blocks defers the scheduler’s work
until it is explicitly needed.

After experience with KAIO’s limitations, scheduling
stacks offers tantalizing benefits:

• The submitting process never blocks

• Very little cost is required to issue non-blocking
operations through the AIO interface

Most importantly, it requires no changes to system call
handlers—they are almost all instantly supported.

2.2 Fibrils prototype

There were two primary obstacles to implementing this
proposal.

First, the kernel associates a structure with a given task,
called the task_struct. By convention, it’s con-
sidered private to code that is executing in the context
of that task. The notion of scheduling stacks changes
this fundamental convention in the kernel. Schedul-
ing stacks, even if they’re not concurrently executing
on multiple CPUs, implies that code which accesses
task_struct must now be re-entrant. Involuntary

preemption greatly increases the problem. Every mem-
ber of task_struct would need to be audited to en-
sure that concurrent access would be safe.

Second, the kernel interfaces for putting a code path to
sleep and waking it back up are also implemented in
terms of these task_structs. If we now have multi-
ple code paths being scheduled as stacks in the context
of one task then we have to rework these interfaces to
wake up the stacks instead of the task_struct that
they all belong to. These sleeping interfaces are some
of the most used in the kernel. Even if the changes are
reasonably low-risk this is an incredible amount of code
churn.

It took about a year to get around to seriously consider-
ing making these large changes. The result was a proto-
type that introduced a saved stack which could be sched-
uled under a task, called a fibril [1].

3 Syslets

The fibrils prototype succeeded in sparking debate of
generic AIO system calls. In his response to fibrils [4],
Ingo Molnar reasonably expressed dissatisfaction with
the fibrils construct. First, the notion of a secondary sim-
pler fibrils scheduler will not last over time as people ask
it to take on more functionality. Eventually it will end
up as complicated as the task scheduler it was trying to
avoid. There were already signs of this in the lack of
support for POSIX AIO’s prioritized operations. Sec-
ond, effort would be better spent adapting the main task
scheduler to support asynchronous system calls instead
of creating a secondary construct to avoid the perceived
cost of the task scheduler.

Two weeks later, he announced [2] an interface and
scheduler changes to support asynchronous system calls
which he called syslets.1

The syslet implementation first makes the assertion that
the modern task scheduler is efficient enough to be used
for swapping blocked operations in and out. It uses full
kernel tasks to express each blocked operation.

The syslet infrastructure modifies the scheduler so that
each operation does not require execution in a dedicated
task at the time of submission. If a task submits a sys-
tem call with syslets and the operation blocks, then the

1The reader may be forgiven for giggling at the similarity to
Chicklets, a brand of chewing gum.
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scheduler performs an implicit clone(). The submis-
sion call then returns as the child of the submitting task.
This is carefully managed so that the user space regis-
ters associated with the submitting task are migrated to
the new child task that will be returning to user space.
This requires a very small amount of support code in
each architecture that wishes to support syslets.

Returning from a blocked syslet operation in a cloned
child is critical to the simplicity of the syslets approach.
Fibrils tried to return to user space in the same con-
text that submitted the operation. This lead to exten-
sive modifications to allow a context to be referenced
by more than one operation at a time. The syslet infras-
tructure avoids these modifications by declaring that a
blocked syslet operation will return to user space in a
new task.

This is a viable approach because nearly all significant
user space thread state is either shared between tasks
or is inherited by a new child task from its parent. It
will be very rare that user space will suffer ill effects
of returning in a new child task. One consequence is
that gettid() will return a new value after a syslet
operation blocks. This could require some applications
to more carefully manage per-thread state.

4 Implementing KAIO with syslets

So far we’ve considered asynchronous system calls,
both fibrils and syslets, which are accessible through a
set of new system calls. This gives user space a pow-
erful new tool, but it does nothing to address the kernel
maintenance problem of the KAIO interface. The KAIO
interface can be provided by the kernel but implemented
in terms of syslets instead of kiocbs.

As the iocb structures are copied from user space their
arguments would be used to issue syslet operations. As
the system call handler returns in the syslet thread it
would take the result of the operation and insert it into
the KAIO event completion ring.

Since the syslet interface performs an implicit clone we
cannot call the syslet submission paths directly from
the submitting user context. Current KAIO users are
not prepared to have their thread context change under
them. This requires worker threads which are very care-
fully managed so as not to unacceptably degrade perfor-
mance.

Cancellation would need to be supported. Signals could
be sent to the tasks which are executing syslets which
could cause the handler to return. The same accounting
which associated a user’s iocb with a syslet could be
annotated to indicate that the operation should complete
as canceled instead of returning the result of the system
call.

4.1 Benefits

Implementing KAIO with syslets offers to simplify ex-
isting paths which support KAIO. Those paths will also
provide greater KAIO support by blocking less fre-
quently.

System call handlers would no longer need to know
about kiocbs. They could be removed from the file
IO paths entirely. Synchronous file IO would no longer
need to work with these kiocbswhen they are not pro-
viding KAIO functionality. The specific error codes that
needed to be carefully maintained could be discarded.

KAIO submission would not block as often as it does
now. As explored in our trivial file hashing exam-
ple, blocking in submission can lead to resource under-
utilization. Others have complained that it can make
it difficult for an application to measure the latency of
operations which are submitted concurrently. This has
been observed in the field as O_DIRECT writes issued
with KAIO block waiting for an available IO request
structure.

4.2 Risks

Implementing KAIO with syslets runs the risk of adding
significant memory and CPU cost to each operation. It
must be very carefully managed to keep these costs un-
der control.

Memory consumption will go up as each blocked opera-
tion is tracked with a kernel thread instead of a kiocb.
This may be alleviated by limiting the number of KAIO
operations which are issued as syslets at any given time.
This measure would only be possible if KAIO contin-
ues to only support operations which are guaranteed to
make forward progress.

Completion will require a path through the scheduler.
O_DIRECT file IO demonstrates this problem. Previ-
ously it could call aio_complete() from block IO
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completion handlers which would immediately queue
the operation for collection by user space. With syslets
the block IO completion handlers would wake the
blocked syslet executing the IO. The syslet would wake
up and run to completion and return at which point the
operation would be queued for collection by user space.

4.3 Remaining Work

An initial rewrite of the KAIO subsystem has been done
and put through light testing. At the time of this writing
conclusive results are not yet available. There is much
work yet to be done. Results may be found in the future
on the web at http://oss.oracle.com/~zab/
kaio-syslets/.

5 Conclusion

KAIO has long frustrated the kernel community with its
limited functionality and high maintenance cost. Syslets
offer a powerful interface for user space to move to-
wards in the future. With luck, syslets may also ease the
burden of supporting existing KAIO functionality while
addressing significant limitations of the current imple-
mentation.
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Abstract

Frysk is a user-level, always-on, execution analysis and
debugging tool designed to work on large applications
running on current Linux kernels. Since Frysk, inter-
nally, makes aggressive use of the utrace, ptrace,
and /proc interfaces, Frysk is often the first tool to
identify regressions and problems in those areas. Con-
sequently, Frysk, in addition to its GNOME application
and command line utilities, includes a kernel regression
test-suite as part of its installation.

This paper will examine Frysk’s approach to testing, in
particular the development and inclusion of unit tests di-
rectly targeted at kernel regressions. Examples will in-
clude a number of recently uncovered kernel bugs.

1 Overview

This paper will first present an overview of the Frysk
project, its goals, and the technical complexities or risks
of such an effort.

The second section will examine in more detail one
source of technical problems or risk—Linux’s ptrace
interface—and the way that the Frysk project has ad-
dressed that challenge.

In the concluding section, several specific examples of
problems (both bugs and limitations) in the kernel that
identified will be discussed.

2 The Frysk Project

The principal goal of the Frysk Project is to develop a
suite of always-on, or very-long-running, tools that al-
low the developer and administrator to both monitor and
debug complex modern user-land applications. Further,
by exploiting the flexibility of the underlying Frysk ar-
chitecture, Frysk also makes available a collection of
more traditional debugging utilities.

Figure 1: Frysk’s Monitor Tool

In addition, as a secondary goal, the Frysk project is en-
deavoring to encourage the advancement of debug tech-
nologies, such as kernel-level monitoring and debug-
ging interface (e.g., utrace), and debug libraries (e.g.,
libdwfl for DWARF debug info), available to Linux
users and developers.

2.1 Frysk’s Tool Set

A typical desktop or visual user of Frysk will use the
monitoring tool to watch their system, perhaps focusing
on a specific application (see Figure 1).

When a problem is noticed Frysk’s more traditional de-
bugging tool can be used to drill down to the root-cause
(see Figure 2).

For more traditional command-line users, there are
Frysk’s utilities, which include:

• fstack – display a stack back-trace of either a
running process or a core file;

• fcore – create a core file from a running program;
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$ fcatch /usr/lib/frysk/funit-stackframe
fcatch: from PID 17430 TID 17430:
SIGSEGV detected - dumping stack trace for TID 17430
#0 0x0804835c in global_st_size () from: \ldots/funit-stackframe.S#50
#1 0x08048397 in main () from: \ldots/funit-stackframe.S#87
#2 0x00c2d4e4 in __libc_start_main ()
#3 0x080482d1 in _start ()

Figure 3: Running the fcatch utility

$ fstep -s 1 ls
[3299] 0xbfb840 mov %esp,%eax
[3299] 0xbfb842 call 0xbfbf76
[3299] 0xbfbf76 push %ebp
[3299] 0xbfbf77 mov %esp,%ebp
[3299] 0xbfbf79 push %edi
[3299] 0xbfbf7a push %esi
....

Figure 4: Running the fstep utility

Figure 2: Frysk’s Debugger Tool

• fstep – instruction-step trace a running program
(see Figure 4);

• fcatch – catch a program as it is crashing, and
display a stack back-trace of the errant thread (see
Figure 3);

and of course the very traditional:

• fhpd – command-line debugger.

3 The Frysk Architecture

Internally, Frysk’s architecture consists of three key
components:

• kernel interface – handles the reception of system
events (e.g., clone, fork, exec) reported to Frysk by
the kernel; currently implemented using ptrace.

• the core – the engine that uses the events supplied
by the kernel to implement an abstract model of the
system.

• utilities and GNOME interface – implemented us-
ing the core.

4 Project Risks

From the outset, a number of risks were identified with
the Frysk project. Beyond the technical complexities
of building a monitoring and debugging tool-set, the
Frysk project has additional “upstream” dependencies
that could potentially impact on the project’s effort:

• gcj – the Free GNU Java compiler; Frysk chose
to use gcj as its principal compiler.

• Java-GNOME bindings – used to implement a true
GNOME interface; Frysk is recognized as an early
adopter of the Java-GNOME bindings.

• Kernel’s ptrace and /proc interfaces – cur-
rently used by Frysk to obtain system information;
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it was recognized that Frysk would be far more ag-
gressive in its use of these interfaces than any ex-
isting clients and hence was likely to uncover new
problems and limitations.

• Kernel’s utrace interface – the maturing frame-
work being developed to both replace and extend
ptrace

The next two sections will review the Frysk–Kernel in-
terface, problems that were encountered, and the actions
taken to address those problems.

5 Managing Project Stability—Testing

One key aspect of a successful project is its overall sta-
bility, to that end the quality of testing is a key factor.
This section will identify development processes that
can both help and hinder that goal, with specific refer-
ence to the kernel and its ptrace and /proc inter-
faces.

5.1 Rapid Feedback—Linux Kernel

Modify
Kernel

Build
Kernel

Crash
Kernel

Figure 5: Short Feedback Cycle—Kernel

Linux’s rapid progress is very much attributed to its
open-source development model. In addition, and as
illustrated by Figure 5, the Linux developer and the
project’s overall stability also benefits from very short
testing and release cycles—just the act of booting the
modified kernel is a significant testing step. Only occa-
sionally do problems escape detection in the initial test-
ing and review phases.

5.2 Slow Feedback—ptrace Component Clients

In contrast, as illustrated by Figure 6, the short develop-
ment and testing cycle fails when a component is only

occasionally exposed to use by its clients. The long
lead-in time and the great number of changes that occur
before an under-used kernel component is significantly
tested greatly increases the risk that the kernel compo-
nent will contain latent problems.

The ptrace interface provides a good illustration of
this problem. Both changes directly to that module,
such as a new implementation like utrace, or indi-
rectly, such as modifications to the exec code, can lead
to latent problems or limitations that are only detected
much later when the significantly modified kernel is de-
ployed by a distribution. Specific examples of this are
discussed further in the third section.

5.3 Quickening the Feedback

Frysk, being heavily dependent on both the existing
ptrace interface and the new utrace interface, rec-
ognized its exposure very early on in its development.
To mitigate the risk of that exposure, Frysk implemented
automated testing at three levels:

1. Integration test (Frysk) – using Dogtail (a test
framework for GUI applications) and ExpUnit (an
expect framework integrated into JUnit), test
the user-visible functionality of Frysk.

2. Unit test (Frysk) – applying test-driven develop-
ment ensured the rapid creation of automated tests
that exercised Frysk’s internal interfaces and ex-
ternal functionality; the unit tests allow Frysk de-
velopers to quickly isolate a new problem down to
a sub-system and then, possibly, that sub-system’s
interaction with the kernel.

3. Regression test (“upstream”) – where the root
cause of a problem was determined to be an “up-
stream” or system component on which Frysk de-
pended (e.g., kernel, compiler, library), a stan-
dalone automated test demonstrating the specific
upstream problem was implemented.

Further, to encourage the use of these test suites, and
ensure their likely use by even kernel developers, these
test suites were included in the standard Frysk installa-
tion (e.g., in Fedora the frysk-devel RPM contains
all of Frysk’s test suites).
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Modify
Kernel

Build
Kernel
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Kernel
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Distro

Crash
Kernel

Run
Frysk

Figure 6: Long Feedback Cycle—ptrace interface

$ /usr/lib/frysk/fsystest
SKIP: frysk2595/ptrace_after_forked_thread_exits
PASS: frysk2595/ptrace_after_exec
....
PASS: frysk3525/exit47
PASS: frysk3595/detach-multi-thread
PASS: frysk2130/strace-clone-exec.sh
XFAIL: frysk2595/ptrace_peek_wrong_thread

Figure 7: Running Frysk’s fsystest

Figure 7 illustrates the running of Frysk’s “upstream” or
system test suite using fsystest, and Figure 8 illus-
trates the running of Frysk’s own test suite, implemented
using the JUnit test framework.

6 Problems Identified by Frysk

In this final section, two specific tests included in
Frysk’s “upstream” test suite will be described.

6.1 Case 1: Clone-Exec Crash

In applying test-driven development, Frysk developers
first enumerate, and then implement all identifiable se-
quences of a given scenario. For instance, to ensure that
exec can be correctly handled, the Frysk test suite se-
quences many scenarios including the following:

• 32-bit program exec’ing a 64-bit program

• main thread exec’ing

• non-main thread exec’ing

The last case, as illustrated in Figure 9, has proven
to be especially interesting. When first implemented,

fork()

ptrace()
TRACEME

exec()

clone()

exec()

exit()

"hi"

waitpid()

Figure 9: Clone Exec Crash
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$ /usr/lib/frysk/funit
Running testAssertEOF(frysk.expunit.TestExpect) ...PASS
Running testTimeout(frysk.expunit.TestExpect) ...PASS
Running testEquals(frysk.expunit.TestExpect) ...PASS
Running testIA32(frysk.sys.proc.TestAuxv) ...PASS
Running testAMD64(frysk.sys.proc.TestAuxv) ...PASS
Running testIA64(frysk.sys.proc.TestAuxv) ...PASS
Running testPPC32(frysk.sys.proc.TestAuxv) ...PASS
Running testPPC64(frysk.sys.proc.TestAuxv) ...PASS
....

Figure 8: Running Frysk’s funit

it was found that the 2.6.14 kernel had a regres-
sion causing Frysk’s unit-test to fail—the traced pro-
gram would core dump. Consequently, a standalone
test strace-clone-exec.sh was added to Frysk’s
“upstream” test suite demonstrating the problem, and
the fix was pushed upstream.

Then later with the availability of the 2.6.18 ker-
nels with the utrace patch, it was found that
running Frysk’s test suite could trigger a kernel
panic. This was quickly isolated down to the same
strace-clone-exec.sh test, but this time running
the test caused a kernel panic. Since the test was already
widely available, a fix could soon be written and incor-
porated upstream.

6.2 Case 2: Threaded ptrace Calls

Graphical debugging applications, such as Frysk, are of-
ten built around two or more threads:

• an event-loop thread handling process start, stop,
and other events being reported by the kernel.

• a user-interface thread that responds to user re-
quests such as displaying the contents of a stopped
process’ memory, while at the same time ensuring
that the graphical display remains responsive.

As illustrated in Figure 10, Linux restricts all
ptrace requests to the thread that made the initial
PTRACE_ATTACH. Consequently, any application us-
ing ptrace is forced to route all calls through a dedi-
cated thread. In the case of Frysk, initially a dedicated
ptrace thread was created, but later that thread’s func-
tionality was folded into the event-loop thread.

The “upstream” test ptrace_peek_wrong_thread

was added to illustrate this kernel limitation.

Event
Loop

Thread

User
Interface
Thread

ptrace()
ATTACH

waitpid()

ptrace()
PEEK

Figure 10: Multi-threaded ptrace

7 Conclusion

As illustrated by examples such as the Exec Crash bug
described in Section 6.1, Frysk, by both implementing
an “upstream” test suite (focused largely on the kernel)
and including that test suite in a standard install, has
helped to significantly reduce the lag between a kernel
change affecting a debug-interface on which it depends
(such as ptrace) and that change been detected and
resolved.

And the final score? Since Frysk’s stand-alone test suite
is identifying limitations and problems in the existing
ptrace and /proc interfaces and the problems in the
new utrace code, this one can be called a draw.
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Abstract

The Linux* kernel is evolving rapidly with thousands of
patches monthly going into the base kernel. With devel-
opment at this pace, we need a way to ensure that the
patches merged into the mainline do not cause perfor-
mance regressions.

The Linux Kernel Performance project was started in
July 2005 and is Intel’s effort to ensure every dot release
from Linus is evaluated with key workloads. In this pa-
per, we present our test infrastructure, test methodology,
and results collected over the 2.6 kernel development
cycle. We also look at examples of historical perfor-
mance regressions that occurred and how Intel and the
Linux community worked together to address them to
make Linux a world-class enterprise operating system.

1 Introduction

In recent years, Linux has been evolving very rapidly,
with patches numbering up to the thousands going into
the kernel for each major release (see Figure 1) in
roughly a two- to three-month cycle. The performance
and scalability of the Linux kernel have been key ingre-
dients of its success. However, with this kind of rapid
evolution, changes detrimental to performance could
slip in without detection until the change is in the dis-
tributions’ kernels and deployed in production systems.
This underscores the need for a systematic and disci-
plined way to characterize, test, and track Linux kernel
performance, to catch any performance issue of the ker-
nel at the earliest time possible to get it corrected.

Intel’s Open Source Technology Center (OTC)
launched the Linux Kernel Performance Project (LKP)
in the summer of 2005 (http://kernel-perf.
sourceforge.net) to address the need to monitor
kernel performance on a regular basis. A group of OTC
engineers set up the test machines, infrastructure, and
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Figure 1: Rate of change in Linux kernel

benchmarks; they started regular testing and analysis of
Linux kernel’s performance. We began to publish our
test data on project website since July 2005.

2 Testing Process

Each release candidate of the Linux kernel triggers our
test infrastructure, which starts running a benchmark
test suite within an hour whenever a new kernel get pub-
lished. Otherwise, if no new -rc version appears within
a week, we pick the latest snapshot (-git) kernel for
testing over the weekend. The test results are reviewed
weekly. Anomalous results are double-checked, and re-
run if needed. The results are uploaded to a database
accessible by a web interface. If there were any sig-
nificant performance changes, we would investigate the
causes and discuss them on Linux kernel mailing list
(see Figure 2).

We also make our data available on our website publicly
for community members to review performance gains
and losses with every version of the kernel. Ultimately,
we hope that this data catches regressions before ma-
jor kernel releases, and results in consistent performance
improvement.
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Figure 2: Performance testing process.

2.1 Benchmarks Suite

We ran a set of benchmarks covering core components
of the Linux kernel (memory management, I/O subsys-
tem, process scheduler, file system, network stack, etc.).

Table 1 lists and describes the benchmarks. Most of the
benchmarks are open source and can be duplicated eas-
ily by others.

2.2 Test Platforms

Currently we have a mix of Itanium R© SMP machines
and Xeon R© SMP machines to serve as our test plat-
forms, with the configurations as listed below:

4P Intel R© ItaniumTM 2 processor (1.6Ghz)
4P Dual-Core Intel R© Itanium R© processor (1.5Ghz)
2P Intel R© Xeon R© MP processor (3.4Ghz)
4P Dual-Core Intel R© Xeon R© MP processor (3.0Ghz)
2P Xeon R© CoreTM2 Duo processor (2.66Ghz)
2P Xeon R© CoreTM2 Quad processor (2.40Ghz)

2.3 Test Harness

We needed a test harness to automate the regular exe-
cution of benchmarks on test machines. Even though
there were test harnesses from the Scalable Test Plat-
form (http://sourceforge.net/projects/stp)
and Linux Test Project (http://ltp.sourceforge.
net), they did not fully meet all of our testing require-
ments. We elected to create a set of shell scripts for our

Short Description
name

Kbuild Measures the speed of Linux ker-
nel compilation.

Reaim7 Stresses the scheduler with up to
thousands of threads each generat-
ing load on memory and I/O.

Volanomark A chatroom benchmark to test
java thread scheduling and net-
work scalability.

Netperf Measures the performance of
TCP/IP network stack.

Tbench Load testing of TCP and process
scheduling.

Dbench A stress test emulating Netbench
load on file system.

Tiobench Multithread IO subsystem perfor-
mance test.

Fileio Sysbench component for file I/O
workloads.

Iozone Tests the file system I/O under dif-
ferent ratio of file size to system
memory.

Aiostress Tests asynchronous I/O perfor-
mance on file system and block
device.

Mmbench Memory management perfor-
mance benchmark.

Httperf Measures web server perfor-
mance; also measures server
power usage information under
specific offered load levels.

Cpu-int/fp An industry standard CPU inten-
sive benchmark suite on integer
and floating point operations.

Java-business An industry standard benchmark
to measure server-side Java*, tests
scheduler scalability.

Table 1: Performance benchmark suite

test harness, which was easy to customize for adding the
capabilities we need.

Our test harness provides a list of services that are item-
ized below:

• It can detect and download new Linux kernels from
kernel.orgwithin 30 minutes after release, and
then automatically install the kernel and initiate
benchmark suites on multiple test platforms.
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• It can test patches on any kernel and compare re-
sults with other kernel version.

• It can locate a patch that causes a performance
change by automating the cycle of git-bisect, ker-
nel install for filtering out the relevant patch.

• It uploads results from benchmark runs for differ-
ent kernels and platforms into a database. The
results and corresponding profile data can be ac-
cessed with a friendly web interface.

• It can queue tasks for a test machine so that differ-
ent test runs can be executed in sequence without
interference.

• It can invoke a different mix of benchmarks and
profiling tools.

We use a web interface to allow easy comparison of
results from multiple kernels and review of profiling
data. The results may be rerun using the web inter-
face to confirm a performance change, or automated git-
bisect command be initiated to locate the patch respon-
sible. The results are published in external site (http:
//kernel-perf.sourceforge.net) after they have
been reviewed.

3 Performance Changes

During the course of the project, our systematic testing
has revealed performance issues in the kernels. A partial
list of the performance changes are listed in Table 2. We
will go over some of those in details.

3.1 Disk I/O

3.1.1 MPT Fusion Driver Bug

There was a sharp drop in disk performance for the
2.6.13 kernel (see Figure 3). Initially we thought that
it was related to the change in system tick from 1000Hz
to 250Hz. After further investigation, it was found that
the change in Hz actually revealed a race condition bug
in the MPT fusion driver’s initialization code.

Our colleague Ken Chen found that there were two
threads during driver initialization interfering with each

other: one for domain validation, and one for host con-
troller initialization. When there were two host con-
trollers, while the second host controller was brought
up, the initialization thread temporarily disabled the
channel for the first controller. However, domain vali-
dation was in progress on first channel in another thread
(and possibly running on another CPU). The effect of
disabling the first channel during in-progress domain
validation was that it caused all subsequent domain val-
idation commands to fail. This resulted in the lowest
possible performance setting for almost all disks pend-
ing domain validation. Ken provided a patch and cor-
rected the problem.
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Figure 3: MPT Fusion driver bug

3.2 Scheduler

3.2.1 Missing Inter-Processor Interrupts

During the 2.6.15 time frame, there was a 60% decrease
in Volanomark throughput on Itanium R© test machines
(see Figure 4). It was caused by a patch that caused
rescheduled Inter Processor Interrupts (IPI) not to be
sent from resched_task(), ending up delaying the
rescheduling task until next timer tick, thus causing the
performance regression. The problem was quickly re-
ported and corrected by our team.

3.2.2 Scheduler Domain Corruption

During the testing of benchmark Httperf, we noticed
unusual variation on the order of 80% in the response
time of the web server under test for the 2.6.19 ker-
nel. This was caused by a bug introduced when the



96 • Keeping Kernel Performance from Regressions

Kernel Patch causing change Effect
2.6.12-rc4 noop-iosched: kill O(N) merge scan. Degraded IO throughput for noop IO sched-

uler by 32%.
2.6.13-rc2 Selectable Timer Interrupt Frequency of 100,

250, and 1000 HZ.
Degraded IO throughput by 43% due to MPT
Fusion driver.

2.6.15-rc1 sched: resched and cpu_idle rework. Degraded performance of Netperf (-98%) and
Volanomark (-58%) on ia64 platforms.

2.6.15-rc2 ia64: cpu_idle performance bug fix Fixed Volanomark and netperf degradations
in 2.6.15-rc1.

2.6.15-rc5 [SCSI] mptfusion : driver performance fix. Restored fileio throughput.
2.6.16-rc1 x86_64: Clean up copy_to/from_user. Re-

move optimization for old B stepping
Opteron.

Degraded Netperf by 20% on Xeon R© MP.

2.6.16-rc3 x86_64: Undid the earlier changes to remove
unrolled copy/memset functions for Xeon R©

MP.

Reverted the memory copy regression in
2.6.16-rc1.

2.6.18-rc1 lockdep: irqtrace subsystem, move ac-
count_system_vtime() calls into softirq.c.

Netperf degraded by 3%.

2.6.18-rc4 Reducing local_bh_enable/disable overhead
in irq trace.

Netperf performance degradation in 2.6.18-
rc1 restored.

2.6.19-rc1 mm: balance dirty pages Now that we can
detect writers of shared mappings, throttle
them.

IOzone sequential write dropped by 55%.

2.6.19-rc1 Send acknowledge each 2nd received seg-
ment.

Volanomark benchmark throughput reduced
by 10%.

2.6.19-rc1 Let WARN_ON return the condition. Tbench degraded by 14%.
2.6.19-rc2 Fix WARN_ON regression. Tbench performance restored.
2.6.19-rc2 elevator: move the back merging logic into

the elevator core
Noop IO scheduler performance in 2.6.18-rc4
fixed and restored to 2.6.12-rc3 level

Table 2: Linux kernel performance changes seen by test suites
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Figure 4: IPI scheduling bug

cpu_isolated_map structure was designated as init
data. However, the structure could be accessed again
after the kernel was initialized and booted when a re-
build of sched_domain was triggered by setting the
sched_mc_power_savings policy. Subsequently, the
corrupted sched_domain caused bad load-balancing
behavior and caused erratic response time.

3.2.3 Rotating Staircase Dead Line Scheduler

The recently proposed RSDL (Rotating Staircase Dead
Line) scheduler has generated a lot of interest due to its
elegant handling of interactivity. We put RSDL 0.31 to
test and found that for Volanomark, there is a big 30%
to 80% slowdown. It turned out that the yield semantics
in RSDL 0.31 were too quick to activate the yielding
process again. RSDL 0.33 changed the yield semantics
to allow other processes a chance to run, and the perfor-
mance recovered.
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3.3 Memory Access

3.3.1 Copy Between Kernel and User Space

During the 2.6.15-rc1 timeframe, we detected a drop up
to 30% in Netperf’s throughput on older Xeon R© pro-
cessor MP-based machines (see Figure 5). This was
caused by a switch in the copy between user and ker-
nel space to use repeat move string instructions which
are slower than loop-based copy on Xeon R© processor
MP. This problem was corrected quickly. Later, when
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Figure 5: Xeon R© processor MP’s Netperf TCP-
streaming performance made worse using string copy
operations

the newer CoreTM2 Duo based Xeon R©s became available
with efficient repeat move string instructions, a switch
to use string instructions in the 2.6.19 kernel actually
greatly improved throughput. (see Figure 6).

3.4 Miscellaneous

3.4.1 Para-Virtualization

The para-virtualization option was introduced in the
2.6.20 time frame, and we detected a 3% drop in Net-
perf and Volanomark performance. We found that
Para-virtualization has turned off VDSO, causing int
0x80 rather than the more efficient sysenter to be
used for system calls, causing the drop.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2.6.20

2.6.19

2.6.19-rc6

2.6.19-rc5

2.6.19-rc4

2.6.19-rc3

2.6.19-rc2

2.6.19-rc1

2.6.18

2.6.17

2.6.16

2.6.15

2.6.14 

2.6.13 

2.6.12 

Pe
rc

en
t C

ha
ng

e 
fr

om
 B

as
el

in
e 

(%
)

Kernel

TCP-streaming throughput

Figure 6: Xeon R© CoreTM2 Duo’s Netperf TCP-
streaming performance improved with string copy op-
erations

3.4.2 IRQ Trace Overhead

When the IRQ trace feature was intro-
duced in 2.6.18-rc1, it unconditionally added
local_irq_save(flags) and local_irq_
restore(flags) when enabling/disabling bottom
halves. This additional overhead caused a 3% regres-
sion in Netperf’s UDP streaming tests, even when the
IRQ tracing feature was unused. This problem was
detected and corrected.

3.4.3 Cache Line Bouncing

There was a 16% degradation of tbench in 2.6.18-rc14
(see Figure 7) We found that a change in the code trig-
gered an inappropriate object code optimization in older
gcc 3.4.5, which turned a rare write into a global vari-
able into an always write event to avoid a conditional
jump. As a result, cache line bouncing among the cpus
increased by 70% from our profiling. A patch was later
merged by Andrew into the mainline to sidestep this gcc
problem.

4 Test Methodology

4.1 Test Configuration

We tried to tune our workloads so they could sat-
urate the system as much as possible. For a pure
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Figure 7: Tbench performance problem caused by cache
line bouncing

CPU-bound workload, the CPU utilization was close
to 100%. However for a workload involving I/O,
the system utilization was limited by the time wait-
ing for file and network I/O. The detailed bench-
mark options for each test are described on our
website (http://kernel-perf.sourceforge.
net/about_tests.php). Table 3 gives a sense of
the average loading for different benchmarks. The load-
ing profile is the standard one from vmstat.

For the disk-bound test workload, we reduced the
amount of main memory booted to only 1GB (that’s
only a quarter to one-eighth of the memory of our sys-
tem). The test file size was a few times of the size of
memory booted. This made the actual effect of I/O dom-
inant and reduced the effect of file I/O cache.

Name % cpu % io % mem % user % sys
Reaim7 100 1 68 85 15
Aiostress 1 36 83 0 1
Dbench 37 28 95 1 36
Fileio 1 14 100 0 1
IOzone 1 23 99 0 1
Kbuild 79 9 90 74 5
Mmbench 2 66 99 0 2
Netperf 40 0 34 2 38
Cpu-int/fp 100 0 75 100 0
Java-business 39 0 89 39 0
tbench 97 0 41 5 92
Volanomark 99 0 96 45 54

Table 3: Sample system loading under benchmarks

4.2 Dealing with Test Variation

Variations in performance measurements are part of any
experiment. To some extent the starting state of the sys-
tem, like cpu cache, file I/O cache, TLB, and disk ge-
ometry, played a role. However, a large variation makes
the detection of change in performance difficult.

To minimize variation, we do the following:

• Start tests with a known system state;

• Utilize a warm-up workload to bring the system to
a steady state;

• Use a long run time and run the benchmark mul-
tiple times to get averages of performance where
possible.

To get our system in known state, we rebooted our sys-
tem before our test runs. We also reformatted the disk
and installed the test files. This helped to ensure the lay-
out of the test file and the location of journal on the disk
to remain the same for each run.

We also ran warm-up workloads before the actual
benchmark run. This helped bring the CPU caches,
TLB, and file I/O cache into a steady state before the
actual testing.

The third approach we took was to either run the bench-
mark for a long time or to repeat the benchmark run mul-
tiple times and measure the average performance. Short
tests like Kbuild, when run repeatedly for 15 times in
our test run, got a good average value with standard de-
viation below 1%. The average performance value has
reduced variance and resembles more closely a well be-
haved Gaussian distribution [5]. Single run results for
some benchmarks are far from a Gaussian distribution.
One such example is Tbench.

Figure 8 superimposes the distribution of throughput
from a single run of Tbench versus a normal distribu-
tion with the same standard deviation. It can be seen
that the distribution from a single benchmark run is bi-
modal and asymmetric. Therefore using a single mea-
surement for comparison is problematic with the issues
raised in [1-4]. For these cases, a more accurate per-
formance comparison is made by using average values,
which resemble much more closely a normal distribu-
tion and have smaller deviations.
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Figure 8: Tbench throughput distribution

Sometimes we can better understand the underlying rea-
son for performance variation by correlating the perfor-
mance variation with changes in other profiling data.
For example, with Tbench, context switch has a 0.98
correlation coefficient with the throughput (see Fig-
ure 9). This gives an indication that the variation in
context switch rate is highly correlated with the varia-
tion in throughput. Another example is Kbuild (see Fig-
ure 10), where we find the number of merged IO blocks
had a –0.96 correlation coefficient with the kernel com-
pile time, showing that the efficiency of disk I/O opera-
tions in merging IO blocks is critical to throughput.

This kind of almost one-to-one correlation between
throughput and profiling data can be a big help to check
whether there is a real change in system behavior. Even
though there are variations in throughput from each run,
the ratio between the throughput and profile data should
be stable. So when comparing two kernels, if there is a
significant change in this ratio, we will know that there
are significant changes in the system behavior.

We have also performed a large number of runs of
benchmarks on a baseline kernel to establish the bench-
mark variation value. Both max and min values are
saved in a database to establish a confidence interval for
a benchmark. This value is used for results compari-
son: if the difference in measured performance values
is more than the confidence interval, then there is a sig-
nificant change in the kernel performance that should
be looked into. In general, disk-I/O-bound benchmarks
have much higher variation, making it much harder to
detect small changes in performance in them.
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4.3 Profiling

Our test harness collected profiling data during bench-
mark runs with a set of profiling tools: vmstat,
iostat, sar, mpstat, ps, and readprofile.
The profiling data provided information about the load
on the CPU from user applications and the activities of
the kernel’s subsystems: scheduler, memory, file, net-
work, and I/O. Information about I/O queue length and
hot kernel functions had been useful for us in locating
bottlenecks in the kernel and to investigate the cause of
performance changes. The waiting time from vmstat
can be combined with wchan information from ps
to gain insight to time spent by processes waiting for
events. Table 4 provides a profile of waited events for
a run snapshot of Aiostress and Reaim7 benchmarks as
an example.
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Aiostress Reaim7
1209 pause 18075 pause

353 io_getevents 8120 wait
13 get_write_access 1218 exit
12 sync_buffer 102 pipe_wait

6 stext 62 start_this_handle
3 sync_page 1 sync_page
1 congestion_wait 2 sync_page
1 get_request_wait 2 cond_resched

Table 4: The events waited by Aiostress and Reaim7

4.4 Automated Git-Bisect

The git bisect utility is a powerful tool to locate the patch
responsible for a change in behavior of the kernel from
a set of patches. However, manually running it to bisect
a large patch-set repeatedly to find a patch is tedious.
One has to perform the steps of bisecting the patch set
into two, rebuild, install, and reboot the kernel for one
patch set, run the benchmark to determine if the patch
set causes an improvement or degradation to the perfor-
mance, and determine which subset of the two bisected
patch sets contains the patch responsible for the change.
Then the process repeats again on a smaller patch set
containing the culprit. The number of patches between
two rc releases are in the hundreds, and often 8 to 10
repetitions are needed. We added capability in our test
harness to automate the bisect process and benchmark
run. It is a very useful tool to automatically locate the
patch responsible for any performance change in O(log
n) iterations.

4.5 Results Presentation

After our benchmark runs have been completed, a wrap-
per script collects the output from each benchmark
and puts it into a ‘comma separated value’ format
file that is parsed into a MySQL* database. The re-
sults are accessible through an external web site http:
//kernel-perf.sourceforge.net as a table and
chart of percentage change of the performance com-
pared to a baseline kernel (selected to be 2.6.9 for older
machines, and 2.6.18 for newer ones). Our internal web
site shows additional runtime data, kernel config file,
profile results, and a control to trigger a re-run or to per-
form a git bisect.

4.6 Performance Index

It is useful to have a single performance index that sum-
marizes the large set of results from all the benchmarks
being run. This approach has been advocated in the liter-
ature (see [1]-[4]). This is analogous to a stock market
index, which gives a sense of the overall market trend
from the perspective of individual stock, each weighted
according to a pre-determined criterion.

Benchmark
Number

of
subtests

Deviation
%

Weight
per

metric
Reaim7 1 0.46 2
Aiostress 8 12.8 0.01
Cpu-int/fp 2 0.6 1
Dbench 1 11.3 0.1
fileio 1 11.8 0.1
Iozone 21 14.7 0.01
Kbuild 1 1.4 1
Mmbench 1 4.9 0.2
Netperf 7 1.6 0.15
Java-Business 1 0.6 1
tbench 1 12.7 0.5
Tiobench 9 11.4 0.01
Volanomark 1 0.8 1

Table 5: Number of subtests, variations weights on sub-
tests for each benchmark

We use the geometric mean of ratios of performance
metric to its baseline value of each benchmark as a per-
formance index, as suggested in [2]. We weigh each
benchmark according to its reliability (i.e., benchmarks
with less variance are weighed more heavily). If a
benchmark has a large number of subtests producing
multiple metrics, we put less weight on each metric so
the benchmark will not be over-represented in the per-
formance index. Table 5 shows the weights being cho-
sen for some of our benchmarks.

We use a weighted version of the geometric mean to
aid us in summarizing the performance of the kernel.
This weighted geometric index, though somewhat sub-
jective, is a very useful tool to monitor any change in
overall kernel performance at a glance and help guide
us to the specific benchmarked component causing the
change. Figure 11 shows the performance index pro-
duced over our benchmark suite. It is interesting to note
that from the limited perspective of the benchmark suite
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Figure 11: Weighted geometric mean performance for all benchmarks

we run regularly, the index for the 2.6 kernel series has
been trending upwards.

5 Conclusion

Our project set up the infrastructure to systematically
test every kernel release candidate across multiple plat-
forms and benchmarks, and also made the test data
available to the community on the project website,
http://kernel-perf.sourceforge.net. As a re-
sult, we have been able to catch some kernel regressions
quickly, and worked with the community to fix them.
However, with rapid changes in the kernel, the limited
coverage from our regular benchmark runs could un-
cover only a portion of performance regressions. We
hope this work will encourage more people to do regu-
lar and systematic testing of the Linux kernel, and help
prevent performance problems from propagating down-
stream into distribution kernels. This will help to solid-
ify Linux’s position as a world-class enterprise system.
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Abstract

While x86 processors are an attractive option for embed-
ded designs, many embedded developers avoid them be-
cause x86-based systems remain dependent on a legacy
BIOS ROM to set up the system. LinuxBIOS is an
open source solution that replaces the proprietary BIOS
ROMs with a light-weight loader. LinuxBIOS frees the
developer from complex CPU and chipset initialization
and allows a variety of payloads to be loaded, including
the Linux kernel itself.

This presentation reviews the journey of the AMD
GeodeTM processors and chipset as they were integrated
into LinuxBIOS to become the centerpoint of the One
Laptop Per Child (OLPC) project. We also discuss how
embedded developers can take advantage of the Lin-
uxBIOS environment for their own x86-based projects.

1 Introduction

Ever since the x86 Personal Computer (PC) architec-
ture was introduced in 1981, it has been accompanied by
bootstrap code known as the Basic Input/Output System
(BIOS) that executes a Power On Self Test (POST). Al-
most every year since the PC’s introduction, hardware
and operating system features have increased in com-
plexity. Each new feature adds complexity to the BIOS,
which must maintain compatibility with older operating
systems and yet also provide support for new ones. The
end result is a convoluted and cryptic combination of old
standards (such as software interrupts for accessing the
display and storage devices) and new standards (such as
Advanced Configuration and Power Interface (ACPI)).

Almost all BIOS implementations are proprietary and
many Open Source developers are in conflict with what
is perceived to generally be a “black magic” box. Due to
the arcane nature of the BIOS, most modern operating

systems have abandoned the BIOS hardware interfaces
and access the hardware directly. The desktop computer
focus of the traditional BIOS model frustrates embed-
ded systems designers and developers, who struggle to
get a BIOS that embraces their unique platforms. Due to
the very specific requirements for system boot time and
resource usage, it is difficult to meet embedded stan-
dards with a BIOS designed for two decades of desktop
computers.

The LinuxBIOS project exists to address legacy BIOS
issues. It is licenced under the GNU Public License
(GPL) to promote a transparent and open loader. Lin-
uxBIOS provides CPU and chipset initialization for x86,
x86_64, and Alpha systems and allows the flexibility to
load and run any number of different payloads.

This paper discusses the development and use of Lin-
uxBIOS for embedded x86 platforms based on AMD
Geode processors. The first section examines the history
of LinuxBIOS and the AMD Geode processors. The
next section moves into detail about the system initial-
ization process. The final section discusses integrating
payloads with the LinuxBIOS firmware.

2 History

“History is a guide to navigation in perilous
times. History is who we are and why we are
the way we are.”

—David C. McCullough

2.1 LinuxBIOS History

Ron Minnich started the LinuxBIOS project at Los
Alamos National Lab (LANL) in September 1999 to ad-
dress problems caused by the PC BIOS in large clusters.
The team agreed that the ideal PC cluster node would
have the following features:

• 103 •
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• Boot directly into an OS from non-volatile RAM;

• Configure only the network interfaces;

• Connect to a control node using any working net-
work interface;

• Take action only at the direction of the control
node.

At that time, the LANL team felt that Linux R© did a bet-
ter job of running the hardware than the PC BIOS. Their
concept was to use a simple hardware bootstrap to load
a small Linux kernel from flash to memory. Leveraging
work from the OpenBIOS project, the LinuxBIOS team
booted an Intel L440GX+ motherboard after approxi-
mately six months of development. Early on, the team
decided that assembly code would not be the future of
LinuxBIOS. OpenBIOS was disregarded because it was
based on a great deal of assembly code and a difficult-to-
master build structure. The team found a simple loader
from STMicroelectronics called STPC BIOS that was
written in C and available to be open sourced, so it be-
came the basis for the first version of LinuxBIOS.1

In 2000, Linux NetworX and Linux Labs joined the
effort. The LinuxBIOS team added Symmetric Multi-
ple Processor (SMP) support, an Alpha port, and cre-
ated the first 13-node LinuxBIOS-based Supercomput-
ing Clusters. Since 2001, the team has added devel-
opers and they continue to port to new platforms, in-
cluding AMD OpteronTM processor- and AMD AthlonTM

processor-based platforms. Interestingly enough, Lin-
uxBIOS was originally designed for clusters, yet Lin-
uxBIOS for non-cluster platforms far exceeds the clus-
ter use.

In 2005, some current and past members of the MIT Me-
dia Lab joined together to create the One Laptop Per
Child (OLPC) program, dedicated to making a low-cost
laptop for educational projects around the globe. The
OLPC team designed an x86 platform that incorporates
an AMD Geode solution. As low price and open tech-
nology were part of the core requirements for the lap-
top, the designers decided to use a royalty-free open
source BIOS solution, ultimately choosing LinuxBIOS.
The first two board revisions included the AMD Geode

1Version 2 started after the addition of Hypertransport
TM

technol-
ogy support changed the device model enough to warrant a version
bump.

GX processor based LinuxBIOS loader, originally uti-
lizing a Linux-as-bootloader payload. This later tran-
sitioned to OpenFirmware after it became available in
the middle of 2006. In 2007, AMD Geode LX proces-
sor support was added to the loader, making it a freely
available reference BIOS design for interested develop-
ers of other AMD Geode solutions.

2.2 AMD Geode History

The AMD Geode processor is the offspring of the Me-
diaGX processor released by Cyrix in 1997. The Medi-
aGX saved total system cost by embedding a graphics
engine that used one of the first Unified Memory Ar-
chitecture (UMA) implementations. It also featured an
integrated northbridge memory controller and Sound-
Blaster emulation in the CPU. The MediaGX broke the
sub-$1000, sub-$500, and sub-$200 price barrier on the
Compaq Presario 2100 in 1996 and 1997. In 1997,
Cyrix was purchased by National Semiconductor, who
renamed the MediaGX line to Geode. National Semi-
conductor released the Geode GX2 (today, just called
the GX) and CS5535 companion chip in 2002. In 2003,
the Geode division was sold to AMD. AMD focused
heavily on power, price, and performance, and in 2005
released the AMD Geode LX 800@0.8W processor and
CS5536 companion chip, with the LX 900@1.5W pro-
cessor following in 2007.

The AMD Geode GX and LX processors support the
i586 instruction set, along with MMX and 3DNow!TM

extensions. The LX features a 64K instruction and a
64K data L1 cache and 128K L2 cache. Both proces-
sors have on-board 2D graphics and video accelerators.
The LX adds an on-board AES engine and true random
number generator. The CS5536 companion chip pro-
vides southbridge capabilities: IDE, USB 2.0, SMBus,
AC97, timers, GPIO pins, and legacy x86 peripherals.

3 Geode LinuxBIOS ROM image

While the entire image is known as LinuxBIOS, it is
constructed of individual pieces that work together. An
AMD Geode LinuxBIOS ROM image is made up of
three main binary pieces:2

• LinuxBIOS Loader: system initialization code;

2OLPC also adds additional binary code for its embedded con-
troller.
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• VSA2: the AMD Geode proccessor’s System Man-
agement Interrupt (SMI) handler;

• Payload: the image or program to be loaded to boot
the OS.

3.1 LinuxBIOS Architecture

LinuxBIOS version 2 is structured to support multiple
motherboards, CPUs, and chipsets. The overall plat-
form configuration is described in Config.lb in the
mainboard directory. The Config.lb file contains
important information like what CPU architecture to
build for, what PCI devices and slots are present, and
where code should be addressed. The mainboard also
contains the pre-DRAM initialization file, auto.c.
ROMCC compiles auto.c and generates a stackless
assembly code file, auto.inc. The use of ROMCC
works well for small sections of simple C code, but for
complicated memory controller initialization, there are
some issues with code size and C variable-to-register
space conversion.

To work around the ROMCC issues, Yinghai Lu of
AMD developed support for the AMD64 architecture’s
Cache-as-RAM (CAR) feature [1]. Compiled C code
makes heavy use of the stack. Only a few lines of assem-
bly code are needed to set up the CPU cache controller
to be used as temporary storage for the stack. All the
pre-DRAM initialization (including memory initializa-
tion) is compiled as normal C code. Once the memory
controller is configured the stack is copied to real mem-
ory and the cache can be configured as normal. The
AMD Geode processors are one of two CPUs to use a
CAR implementation in LinuxBIOS version 2.3

3.2 LinuxBIOS Directory Structure

The LinuxBIOS source tree can be a bit daunting to a
newcomer. The following is a short tour of the Lin-
uxBIOS directory structure, highlighting the parts inter-
esting to a systems developer.

The cpu/ directory contains the initialization code for
VSA2 and the AMD Geode graphics device.

3See the Future Enhancements section for more details about
CAR in LinuxBIOS version 3.

linuxbios/src
|-- cpu

|-- amd
|-- model_gx2
|-- model_lx

The mainboard/ directory contains platform-specific
configuration and code. The platform Config.lb file
contains the PCI device configuration and IRQ routing.
This directory also contains the source file compiled by
ROMCC.

linuxbios/src
|-- mainboard

|-- amd
|-- norwich

|-- olpc
|-- rev_a

(Note: ‘Norwich’ is the code name for an AMD Geode
development platform).

The source code in northbridge/ includes memory
initialization and the PCI bridge 0 configuration and ini-
tialization. In the AMD Geode processor’s architecture,
the northbridge is integrated into the CPU, so the direc-
tory name is the same as the CPU.

linuxbios/src
|-- northbridge

|-- amd
|-- gx2
|-- lx

The southbridge/ directory contains the source for
SMBus, flash, UART, and other southbridge device con-
figuration and initialization.

linuxbios/src
|-- southbridge

|-- amd
|-- cs5536

The target/ directory contains the platform build
directories. These include the configuration files that
specify the build features including ROM size, VSA2
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binary size, and the desired payload binary. This is
also where the ROM image is built. A script called
buildtarget in the linuxbios/target direc-
tory parses the target configuration files and builds the
Makefiles for the ROM image in the platform target di-
rectory.

linuxbios/targets
|-- amd

|-- norwich
|-- olpc

|-- rev_a

3.3 LinuxBIOS Boot Process

Figure 1 details the process of booting a system with
LinuxBIOS.

1. The AMD Geode processor fetches code from the
reset vector and starts executing noncompressed
(pre-DRAM) LinuxBIOS from the flash ROM. The
early CPU, northbridge, and southbridge initializa-
tion takes place. Once the memory is initialized,
LinuxBIOS decompresses and copies the rest of it-
self to low memory.

2. LinuxBIOS continues system initialization by
walking the PCI tree starting at bus 0. Most of the
AMD Geode device’s internal configuration and
initialization happens at this stage. Cache, system
memory, and PCI region properties are configured.
The VSA2 code is decompressed into low memory
and executed.

3. The VSA2 initialization makes adjustments to the
UMA for graphics memory and itself. VSA2 is
then copied to the top of RAM and located log-
ically in mid-PCI memory space, 0x80000000.
VSA2 initializes the runtime components. Upon
completion, control is returned to LinuxBIOS.

4. LinuxBIOS finishes enumeration and initialization
of all the PCI devices in the system. PCI de-
vices are allocated memory and I/O (including the
VSA2 virtualized headers) and then enabled. Dur-
ing the southbridge PCI configuration, the presence
of IDE-versus-flash capability and other configura-
tions not controlled directly in PCI space are set
up. The CPU device is the last device to enumerate
and an end-of-POST SMI is generated to signal to
VSA2 that the system is configured.

5. The last stage of LinuxBIOS is to load the payload.
LinuxBIOS copies itself to the top of system mem-
ory and then locates and decompresses the payload
image into memory. Finally, the payload is exe-
cuted. See Section 4 for more details about the
payload.

3.4 VSA2

Virtual System Architecture (VSA) is the AMD Geode
device’s System Management Mode (SMM) software.
VSA2 is the second generation of VSA that supports GX
and LX CPUs and the CS5535 and CS5536 chipsets.
In a traditional BIOS, VSA2 handles normal SMI/SMM
tasks like bug fixes, legacy USB, and power manage-
ment (legacy, APM, and ACPI). VSA2 also handles vir-
tual PCI configuration space for the AMD Geode de-
vice’s internal controllers; graphics, IDE, flash, etc. PCI
virtualization translates PCI configuration-space access
to the internal device’s GeodeLinkTM Model-Specific
Registers (MSRs). PCI configuration access is infre-
quent and virtualization is a good way to save silicon
real-estate with software.

Since Linux manages most hardware devices on its own,
it only requires VSA2 PCI virtualization.

Linux kernel drivers handle the power management,
USB, and graphic controllers that would normally be
controlled by VSA2 in a legacy BIOS environment. In
the embedded Linux environment, only the PCI virtual-
ization portion of VSA2 is required. Omitting the un-
needed code saves space in the LinuxBIOS ROM im-
age for larger payloads. VSA2 is in the process of be-
ing ported to GNU tools and will be released as open
source. This will enable the open source community
to write Virtual System Modules (VSMs) for additional
features or to replace VSA2 entirely with a new AMD
Geode chipset SMI handler.

The VSA2 image is compressed with NRV2B and con-
catenated to the beginning of the LinuxBIOS (with pay-
load) image.4

4 Payloads

Once LinuxBIOS provides CPU and chipset initializa-
tion for the platform, it passes control to a payload that

4VSA2 is added at the beginning because execution starts at the
end of the ROM image, where LinuxBIOS is located.
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Figure 1: LinuxBIOS Memory Map

can continue the booting process. This is analogous
to a traditional BIOS ROM, which also handles CPU
and chipset initialization, and then passes control to
code that manages the BIOS services (such as the setup
screen, access to block devices, and ultimately starting
the process that ends up in the secondary bootloader).
The traditional BIOS code is tied closely to the loader
and only provides support for a limited set of features.
By contrast, a LinuxBIOS payload is far more flexible.
In theory LinuxBIOS can load and run any correctly for-
matted ELF file (though in practice, the payload must be
able to run autonomously without any operating system
services). This allows the developer to choose from any
number of available open source options, from simple

loaders to the Linux kernel itself. This flexibility also
allows embedded developers to easily craft custom solu-
tions for their unique platform—for instance, supporting
diskless boot with Etherboot, or loading and running a
kernel from NAND flash or other non-traditional media.

When LinuxBIOS has finished initializing and enumer-
ating the system, it passes control to the ELF loader to
load the payload. The payload loader locates the stream
on the ROM and decodes the ELF header to determine
where the segments should be copied into memory. Be-
fore copying, the loader first moves the firmware to the
very top of system memory to lessen the chance that
it will be overwritten by the payload. LinuxBIOS stays
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resident in case the ELF loader fails to load the specified
payload. Many “standard” payloads (such as memtest86
and the Linux kernel) are designed to run on a sys-
tem with a traditional BIOS image. Those payloads are
loaded into firmware-friendly memory locations such as
0x100000. After copying and formatting the segments,
the loader passes control to the entry point specified in
the ELF header. System control leaves LinuxBIOS and
passes to the payload.

4.1 Linux Kernel Payloads

While there are many different types of loaders, loading
the Linux kernel directly from the ROM was the origi-
nal goal of the LinuxBIOS project. The kernel can ei-
ther be loaded by itself and mount a local or network-
based filesystem, or it can be accompanied by a small
RAMdisk filesystem that provides additional services
for finding and booting the final kernel image. This is
known as “Linux as Bootloader” or simply, LAB.

The Linux kernel is a very compelling payload for sev-
eral reasons. The kernel already supports a huge num-
ber of different devices and protocols, supporting virtu-
ally any platform or system scenario. The kernel is also
a well known and well supported entity, so it is easy
to integrate and extend. Finally, the great majority of
LinuxBIOS implementations are booting the Linux ker-
nel anyway, so including it in the ROM greatly simpli-
fies and accelerates the boot process. Using Linux as a
bootloader further extends the flexibility by including a
RAMdisk with user-space applications that can access
a network or provide graphical boot menus and debug
capabilities.5

The challenge to using a main kernel in a LinuxBIOS
payload is that it is often difficult to shrink the size of
the kernel to fit in the ROM. This can be mitigated by
using a larger ROM. In most cases the additional cost
of the flash ROM is offset by the improved security and
convenience of having the main kernel in the ROM im-
age. Another concern is the ability to safely and quickly
upgrade the kernel in the ROM image. It is a danger-
ous matter to flash the ROM, since a failed attempt usu-
ally results in a “brick” (an unbootable machine). This
can be avoided in part by increasing the size of the flash
ROM and providing a safe “fallback” image that gets

5Some LinuxBIOS developers have been experimenting with fit-
ting an entire root filesystem into the the ROM. See reference [2].

invoked in case of a badly flashed image. The advan-
tages outweigh the costs for embedded applications that
rarely upgrade the kernel image.

As may be expected, the standard Linux binary files re-
quire some manipulation before they can be loaded. A
tool called mkelfimage6 is used to combine the ker-
nel text and data segments and to add setup code and an
optional RAMdisk into a single loadable ELF file.

Table 1 shows the program headers read by readelf
from the loadable ELF file created by mkelfimage
from a vmlinux file and a 1MB RAMdisk.

The first segment contains code similar to the Linux
startup code that de-compresses the kernel and prepares
the system to boot. This section also contains setup in-
formation such as the kernel command line string. The
next segment allocates space for a GDT table that is used
by the setup code. Kernel developers will note the famil-
iar .text segment loaded to 0x100000 and the subse-
quent .data segment. Finally, the 1MB RAMdisk is
copied to address 0x800000.

4.2 Other Payloads

Several popular Open Source Software (OSS) stan-
dalone applications have been adapted to run as Lin-
uxBIOS payloads. These include the memtest86
memory tester and the etherboot network boot util-
ity. etherboot is particularly interesting since it pro-
vides an open source alternative to the PXE protocol.
It can easily enable any system to boot an image from
a network even with network cards that do not natively
support PXE boot. Another interesting option appeared
during the early days of the OLPC project when Sun
Microsystems unexpectedly released key portions of the
OpenFirmware loader. Also known as OpenBoot, Open-
Firmware is a firmware package programmed in Forth
that serves as the bootloader on SPARC-based worksta-
tions and PowerPC-based systems from Apple and IBM.
When it became available, OpenFirmware was quickly
adapted to load on the OLPC platform as a LinuxBIOS
payload.

4.3 Building Payloads

The payload is integrated with the LinuxBIOS loader
during the LinuxBIOS build process. During configura-

6Written by Eric Biderman, Joshua Aune, Jake Page, and An-
drew Ip.
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Type Offset VirtAddr PhysAddr FileSiz MemSiz

LOAD 0x000144 0x00010000 0x00010000 0x0561c 0x1ab24
LOAD 0x005760 0x00091000 0x00091000 0x00000 0x00070
LOAD 0x005760 0xc0100000 0x00100000 0x264018 0x264018
LOAD 0x269778 0xc0365000 0x00365000 0x4b086 0xaf000
LOAD 0x2b47fe 0x00800000 0x00800000 0x100000 0x100000

Table 1: ELF Sections from Loadable Kernel

# option CONFIG_COMPRESSED_ROM_STREAM_NRV2B=0
option CONFIG_COMPRESSED_ROM_STREAM_LZMA=1
option CONFIG_PRECOMPRESSED_ROM_STREAM=1
# Need room for VSA
option ROM_SIZE=(1024*1024)-(64*1024)
...
romimage "fallback"

...
payload /tmp/payload.elf

end

Figure 2: OLPC LinuxBIOS Configuration

tion, the developer specifies the size of the LinuxBIOS
ROM image and a pointer to the payload binary. Option-
ally, the payload can be NRV2B- or LZMA-compressed
to conserve space at the expense of speed. Figure 2
shows a set of example configuration options for an
AMD Geode processor-based target with a 1MB flash
ROM and a compressed payload.

During the LinuxBIOS build, the payload is compressed
(if so configured), and integrated in the final ROM im-
age as shown previously in Figure 1.

4.4 BuildROM

Constructing a LinuxBIOS ROM image from start to
finish can be a complicated and tedious process involv-
ing a number of different packages and tools. Buil-
dROM is a series of makefiles and scripts that sim-
plify the process of building a ROM image by con-
solidating tasks into a single make target. This pro-
vides a reproducible build that can be replicated as re-
quired. BuildROM was inspired by Buildroot,7 and was
originally designed to build Linux-as-bootloader (LAB)
based ROM images for the OLPC project. The OLPC
LAB used a simple RAM filesystem that was based on

7http://buildroot.busybox.org

uClibc and Busybox, and ran a simple graphical
tool that could use kexec to load a kernel from USB,
NAND, or from the network. This involved no less than
six packages and a number of tools—a nightmare for the
release manager, and very difficult for the core team to
duplicate and run on their own platforms. BuildROM
simplified the entire process and makes it easy to build
new ROM image releases as they are required. More
recently, it has been extended to build a number of dif-
ferent platforms and payloads.

5 Advantages and Disadvantages of Lin-
uxBIOS

Like most open source projects, LinuxBIOS continues
to be a work in progress, with both positive and negative
aspects.

Chief among the positive aspects is that LinuxBIOS
is developer-friendly, especially when compared to tra-
ditional BIOS solutions. LinuxBIOS is mostly C-
based, which greatly simplifies development. However,
machine-generated code is almost always larger and
slower than hand-tuned assembly, which is a liability,
especially in the pre-DRAM section where speed and
size are of the essence. As mentioned before, ROMCC
does an amazing job of generating stackless assembly



110 • Breaking the Chains—Using LinuxBIOS to Liberate Embedded x86 Processors

code, but due to the complexity of its task, it is difficult
to optimize the code for minimum size and maximum
efficiency.

Even though the LinuxBIOS code is written in C, the
developer is not freed from having to look through the
generated assembly to verify and debug the solution.
Assembly code in LinuxBIOS is written in the AT&T
format (as are all GNU tools-based projects), but many
traditional BIOS projects and x86 CPU debuggers use
the Intel format. This may cause a learning barrier for
developers transitioning to LinuxBIOS, as well as mak-
ing it somewhat difficult to port existing source code to
LinuxBIOS.

The current AMD Geode LinuxBIOS implementation is
slower then expected. Benchmarks show that decom-
pression and memory copy are slower then other ROM
implementations. More investigation is needed to deter-
mine why this happens.

The positive aspects of LinuxBIOS more than make up
for these minor issues. LinuxBIOS uses a development
environment familiar to embedded Linux developers. It
is written in C and uses 32-bit flat mode. There is no
need to worry about dealing with 16-bit real or big real
modes.

In the end, while LinuxBIOS is backed by a strong open
source community, it cannot exist without the support of
the hardware vendors. The growth of LinuxBIOS will
ultimately depend on convincing hardware companies
that there is a strong business case for developing and
supporting LinuxBIOS ports for their platforms.

6 Future Enhancements

There is still much to be done for the AMD Geode
chipset LinuxBIOS project. LinuxBIOS version 3
promises to to be a great step forward. Among the
changes planned include:

• A new configuration system based on the the kernel
config system;

• Replacing remaining stackless pre-DRAM code
with Cache-as-RAM (CAR) implementations;

• Speed and size optimizations in all facets of the
boot process.

The AMD Geode chipset code will be transitioned to
work with LinuxBIOS version 3, including better inte-
gration with the default CAR mode, and speed optimiza-
tions. Also, more work needs to be done to support a
fallback image to reduce the chance that a failed ROM
flash will break the target machine.

Changes are also in store for VSA2. The code will be
ported to compile with GNU tools, and fully released
so that others can build on the existing SMI framework.
Further VSA2 work will center around power manage-
ment, which will be new ground for LinuxBIOS-based
ROMs. Finally, continuing work will occur to enhance
BuildROM and help make more diagnostic tools avail-
able to validate and verify LinuxBIOS in an open source
environment.

7 Conclusion

LinuxBIOS is an exciting development in the world of
the AMD Geode chipsets and x86 platforms in general.
It facilitates the efforts of developers by avoiding the
pitfalls of a traditional BIOS and provides great flexibil-
ity in the unique scenarios of embedded development.
There is a great advantage for the AMD Geode pro-
cessors in supporting LinuxBIOS because LinuxBIOS
allows designers to consider AMD Geode solutions in
ways they never before thought possible (as evidenced
by the early success story of the very non-traditional
OLPC platform). We look forward to continuing to par-
ticipate with LinuxBIOS as it transitions into version 3
and beyond.
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Abstract

GANESHA is a user-space NFSv2, NFSv3, and NFSv4
server. It runs on Linux, BSD variants, and POSIX-
compliant UNIXes. It is available under the CeCILL
license, which is a French transposition of the GPL and
is fully GPL-compatible. The protocol implementation
is fairly complete, including GSSAPI security hooks.
GANESHA is currently in production at our site, where,
thanks to a large cache and a lot of threads, it delivers
up to a hundred thousand NFS operations per minute.
This paper describes the current implementation as well
as future developments. This includes GANESHA as a
NFS Proxy server and NFSv4.1 enhancements, but also
the access to LDAP and SNMP information using the
file system paradigm.

1 Introduction

NFS is a well known and venerable network protocol
which is used widely. NFSv4 is the latest version of the
protocol. It fully reconsiders its semantic and the way
NFS can be used.

We manage a huge compute center at CEA. In the past
three years, we had to face a strong increase in the
amount of data produced by our supercomputer, up to
tens of terabytes a day. Archived results and files are
stored in HPSS, a third-party vendor’s HSM which had
a NFS interface. NFS fits our need well in terms of files
meta-data management, but there were several limita-
tions in the product that made for a difficult bridge be-
tween the HSM and NFS, and we believed it was time
to step to something new. The HPSS product has a user-
space API, complete enough to do all manipulation on
files and directories. The decision to write a brand new
daemon to handle the NFS interface we needed to HPSS
was natural, but the following ideas lead the design pro-
cess:

• The new product should be able to manage very
large data and meta-data caches (up to millions of
records), to avoid congestion on the underlying file
system.

• The new product should be able to provide the NFS
interface we needed to HPSS, but should also be
able to access other file systems.

• The new product should support the NFSv4 proto-
col, and its related features in term of scalability,
adaptability, and security.

• The new product should be able to scale as much
as possible: software congestion and bottlenecks
should be avoided, the only limits would come
from the hardware.

• The new product should be a free software pro-
gram.

• The new product should be running on Linux, but
portable to other Unix platforms.

These considerations drove the design of GANESHA.
This paper will provide you with additional informa-
tion about it. The generic architecture and the way it
works will be described and you’ll see how GANESHA
can be turned into a “very generic” NFS server (using
only POSIX calls from LibC) or a NFSv4 Proxy as well.
Information will also be provided on the way to write
packages to extend GANESHA in order to make it man-
age various names-spaces.

The paper first describes NFSv4 and the technical rea-
sons that lead to a user-space NFS daemon. The archi-
tecture of the product is then detailed including the is-
sues that were met and how they were solved. Some
actual results are shown before concluding.

• 113 •



114 • GANESHA, a multi-usage with large cache NFSv4 server

2 Why a NFSv4 server in User Space?

GANESHA is not a replacement for the NFSv4 server
implemented in the kernel; it is a brand new program,
with its advantages and disadvantages. For some as-
pects, the NFSv4 server in the kernel should be more ef-
ficient, but there are several domains (for example build-
ing a NFSv4 Proxy server) in which the user-space ap-
proach will provide many interesting things.

First of all, working in user space makes it possible to
allocate very large piece of memory. This memory can
then be used to build internal caches. Feedback of using
GANESHA in production showed that 4 Gigabytes were
enough for making a million-entry cache. On a x86_64
platform, it is possible to allocate even bigger memory
chunks (up to 16 or 32 GB, depending on the machine’s
resources). Caching about 10 million entries becomes
possible.

A second point is portability. If you write kernel code,
then it will be acquainted with the kernel’s structure and
it won’t be possible to port it to a different OS. We kept
Linux (i686 or x86_64) as the primary target, but we
also wanted to compile and run it on different archi-
tectures, keeping them as secondary targets. Most of
the Free Software Community is very close to Linux,
but there are other free operating systems (FreeBSD
or OpenSolaris) and we have wanted to be compatible
with them since the beginning of the project. Another
consideration is the code itself: something that com-
piles and runs on different platforms is generally safer
than a “one target” product. Our experience as devel-
opers showed that this approach always pays back; it
often reveals bugs that would not have been so easily de-
tected on Linux, because resources are managed differ-
ently. Portability doesn’t only mean “running on several
OSes,” for a NFS server it also means “managing differ-
ent file systems.” The NFSv4 semantics bring new ideas
that need to be considered there. The NFSv2 and NFSv3
protocols have semantics very close to the way Unixes
manage file systems. Because of this, it was almost im-
possible to have NFS support for a non UNIX-related
file system. One design consideration of NFSv4 was to
make the protocol able to manage as many file systems
as possible. Because of this, it requires a very reduced
subset of file/directory attributes to be supported by the
underlying file system and can manage things as simple
as a FAT16 file system (which has almost none of the at-
tributes you expect in “regular” file systems). When de-

signing GANESHA, we wanted to keep this idea: man-
aging as many file systems as possible. In fact, it is pos-
sible with the NFSv4 semantics to manage every set of
data whose organization is similar to a file system: trees
whose nodes are directories and leaves are files or sym-
bolic links. This structure (that will be referenced as
the name-space structure in this paper) maps to many
things: files systems of course, but also information ac-
cessible through a SNMP MIB or LDAP-organized data.
We choose to integrate this functionality to GANESHA:
making it a generic NFSv4 server that can manage ev-
erything that can be managed by NFSv4. Doing this is
not very easy within the kernel (kernel programming is
subject to lots of constraints): designing the daemon for
running in user space became then natural.

A last point is also to be considered: accessing services
located in user space is very easy when you already are
in user space. NFSv4 support in the kernel introduced
the rpc_pipefs mechanism which is a bridge used by ker-
nel services to address user-space services. It is very
useful for managing security with kerberos5 or when
the idmapd daemon is asked for a user-name conver-
sion. This is not required with GANESHA: it uses the
regular API for the related service.

These reasons naturally lead the project to a user-space
daemon. We also wanted to write something new and
open. There was already an efficient support of NFSv4
support within kernel code. Rewriting something else
would have had no sense. This is why GANESHA is a
user-space daemon.

3 A few words about NFSv4

NFS in general, and more specifically NFSv4, is a cen-
tral aspect to this paper. People are often familiar with
NFS, but less are aware of the features of NFSv4.

NFSv2 was developed by Sun Microsystems in 1984. It
showed limits and this lead to the birth of NFSv3, which
was designed in a more public forum by several com-
panies. Things were a bit different with NFSv4. The
protocol has been fully developed by an IETF working
group (IETF is responsible for standardization of proto-
col like IPv4, IPv6, UDP, TCP, or “higher-level” things
like FTP, DNS, and HTTP). The design began with a
birds-of-a-feather meeting at IETF meetings. One of the
results was the formation of the NFS version 4 working
group in July, 1997.
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Goals of the working group when designing the protocol
were:

• improve access and performance on the Internet;

• strong security with negotiation built into the pro-
tocol;

• easier cross-platform interoperability;

• the protocol should be ready for protocol exten-
sions.

NFSv4 integrates features that allow it to work correctly
on a WAN, which is a network with low bandwidth and
high latency. This is done through using experience ob-
tained with protocols like WebNFS. NFSv4 will then
use compound requests to limit messages and send as
much information as possible in each of them. To re-
duce traffic, the caching capability were truly extended,
making the protocol ready for implementation of very
aggressive caching and an NFSv4 proxy server.

Scalability and availability were improved, too; a strong
stateful mechanism is integrated in the protocol. This
is a major evolution compared to NFSv2 and NFSv3,
which were stateless protocols. A complex negotiation
process occurs between clients and server. Due to this,
NFSv4 can allow a server with a strong load to relocate
some of its clients to a less busy server. This mecha-
nism is also used when a client or server crash occurs to
reduce the time to full recovery on both sides.

Security is enhanced by making the protocol a
connection-oriented protocol. The use of RPC-
SEC_GSS is mandatory (this protocol is an evo-
lution of ONC/RPC that supports extended secu-
rity management—for example the krb5 or SPKM-
3 paradigm—by use of the GSSAPI framework) and
provides “RPC-based” security. The protocol is
connection-oriented, and will require TCP (and not
UDP like NFSv2 and NFSv3), which makes it easier to
have connection-based security.

The structure and semantics of NFSv3 were very close
to those of UNIX. For other platforms, it was difficult
to “fit” in this model. NFSv4 manages attributes as
bitmaps, with absolutely no link to previously defined
structures. Users and groups are identified as strings
which allow platforms that do not manage uid/gid like
UNIX to interoperate via NFSv4.

The protocol can be extended by support of “minor ver-
sions.” NFSv4 is released and defined by RFC3530, but
evolutions are to be integrated in it, providing new fea-
tures. For example, the support of RDMA, the support
of the PNFS paradigm, and the new mechanism for “di-
rectory delegation” are to be integrated in NFSv4. They
will be part of NFSv4.1, whose definition is in process.

4 Overview

This section describes the design consideration for
GANESHA. The next sections will show you how these
goals were achieved.

4.1 The CeCILL License

GANESHA is available as a Free Software product un-
der the terms of the CeCILL license. This license is
a French transposition of GPL made by several French
research organizations, including CEA, CNRS, and IN-
RIA. It is fully GPL-compatible.

The use of the GNU General Public License raised some
legal issues. These issues lead to uncertainties that
may prevent contributions to Free Software. To provide
better legal safety while keeping the spirit of these li-
censes, three French public research organizations, the
CEA, the CNRS, and INRIA, have launched a project
to write Free Software licenses conforming to French
law. CEA, CNRS, and INRIA released CeCILL in July,
2004. CeCILL is the first license defining the principles
of use and dissemination of Free Software in confor-
mance with French law, following the principles of the
GNU GPL. This license is meant to be used by compa-
nies, research institutions, and all organizations willing
to release software under a GPL-like license while en-
suring a standard level of legal safety. CeCILL is also
perfectly suited to international projects.

4.2 A project on Open-Source products

GANESHA was fully written and developed using Free
Software. The resources available for system program-
ming are huge and comprehensive, and this made the
task much easier on Linux than on other Unixes.

The tools used were:

• gcc (of course. . . )
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Figure 1: GANESHA’s layered architecture

• gdb for debugging, often used jointly with Electric
Fence or the Dmalloc library for memory debug-
ging.

• valgrind for caring about memory leaks.

• doxygen for generating the various documents
about the APIs’ calls and structures.

• GIT as source code repository manager.

• PERL and SWIG to wrap API calls in order to write
non-regression scripts.

• Connectathon test suite which is a test suite de-
signed for the validation of NFS client-server be-
havior.

• PyNFS a non-regression test tool written in Python
by the CITI folks.1

4.3 A layered product

GANESHA is designed as a layered product. Each layer
is a module dedicated to a specific task. Data and meta-
data caching, RPCSEC_GSS and protocol management,
accessibility to the file system. . . All these functionali-
ties are handled by specific modules. Each module has
a well defined interface that was designed before start-
ing to write a single line of code. Such a modular design
is good for future code maintenance. Furthermore, one
can write new algorithms within a layer without chang-
ing the rest of the code. A better description is that cache
management could change the cache layers, or a differ-
ent name-space could be managed, but these changes

1CITI’s site contains bunches of interesting stuff for people in-
terested in NFSv4.

should not impact the other modules. Efforts were made
to reduce adherences between layers. This was costly at
the beginning of the project, but on a mid-range time
scale, it appeared that this simplified a lot in the rest
of the project. Each layer could be developed indepen-
dently, by different developers, with their own valida-
tion and non-regression tests. A “global make” step can
then re-assemble all the pieces. It should be reduced if
all of them complete their validation tests.

A few modules are the very core of GANESHA:

• The Buddy Malloc module manages the memory
used by GANESHA.

• The RPCSEC_GSS module handles the data trans-
port via the RPCSEC_GSS protocol. It manages
security by accessing the security service (usually
krb5, SPKM-3, or LIPKEY).

• The NFS protocol modules perform the manage-
ment of the structures used for the NFS messages.

• The Cache Inode Layer manages a very large cache
for meta-data.

• The File Content Layer manages data caching. It is
closely acquainted with the Cache Inode Layer.

• The File System Abstraction Layer is a very impor-
tant module: it wraps, via a well defined interface,
the calls to access a name-space. The objects it
addresses are then cached by the Cache Inode and
File Content layers.

• The Hash Table Module provides Red-Black-
Trees-based hash tables. This generic module is
widely used within GANESHA to provide associa-
tive addressing.

These modules will be discussed in more details in the
next sections.

4.4 Managing memory

The main issue is memory management. Almost all
modules within GANESHA’s architecture will have to
perform dynamic memory allocation. For example, a
thread managing a NFS request may need to allocate
a buffer for storing the requested result. If the regular
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LibC malloc/free calls are used, there are risks of frag-
menting memory because some modules will allocate
large buffers when others will use much smaller ones.
This could lead to a situation where part of the mem-
ory used by the program is swapped to disk, and perfor-
mance would quickly drop.

For this reason, GANESHA implements its own mem-
ory manager. This module, which is used by all the other
parts of GANESHA, allows each thread to allocate its
own piece of memory at startup. When a thread needs
a buffer, it will look into this space to find an available
chunk of the correct size. This allocation is managed by
the Buddy Malloc algorithm, the same that is used by
the kernel. Use of the syscall madvise is also made to
tell the Linux memory manager not to move the related
pages. The behavior of the daemon towards memory
will then be to allocate a single large piece of memory.
If there is no other “resource consuming” daemon run-
ning on the same machine, the probability for this piece
of memory not to be swapped is high. This will maintain
performance at a good level.

4.5 Managing the CPU resource

The second resource is the CPU. This is much easier to
manage than memory. GANESHA is massively multi-
threaded, and will have dozens of threads at the same
time (most of them are “worker threads,” as we’ll see
later). POSIX calls for managing threads help us a lot
here, we can use them to tell the Linux scheduler not
to manage the pack of threads as a whole, but to con-
sider each of them separately.2 With a multi-processor
machine, such an approach will allow the workload to
“spread across” all of the CPUs. What is also to be con-
sidered is potential deadlocks. In a multi-threaded envi-
ronment, it is logical to have mutexes to protect some re-
sources from concurrent accesses. But having bunches
of threads is not useful if most of them are stuck on a
bottleneck. Design considerations were taken into ac-
count to avoid this situation.

First, reader/writer locks were preferred to simple mu-
texes. Because the behavior of reader/writer locks may
differ from one system to another, a small library was
written to provide this service (which was a required en-
hancement in terms of portability).

2This is the PTHREAD_SCOPE_SYSTEM behavior which is
used here, as opposed to the PTHREAD_SCOPE_PROCESS policy
that would not lead to the expected result.

Second, if threads share resources, this common pool
could turn to a bottleneck when many threads exist to-
gether. This was avoided by allocating resources per
thread. This consideration has a strong impact on the
threads’ behavior, because there can’t be a dedicated
garbage collector. Each thread has to perform its own
garbage collection and has to reassemble its resources
regularly. To avoid congestion, some mechanism (lo-
cated on the “dispatcher thread” described below) will
prevent too many threads from performing this opera-
tion at the same time (a period during which they are
not available for doing their “regular” job). Cache lay-
ers that require this kind of garbage collection to be done
have been designed so that this process could be divided
in several steps, each undertaken by a separate agent.
Experience “in real life” shows that this solution was
suitable when the number of threads is large compared
to the number of threads allowed to start garbage col-
lecting (60 threads running concurrently when 3 could
stop working at the same time). This experience shows
that the required memory chunk was much less that what
is needed for a single request (about 20 times the size).
In this situation, the impact of memory management is
almost invisible: an incoming request finds a non-busy
thread most of the time. Side effects will only become
visible under a very large load (hundreds to thousands
of requests per second).

4.6 The Hash Tables: a core module for associative
addressing

Associative addressing is a service that is required by
many modules in GANESHA—for example, finding an
inode knowing its parent and name, or finding the struc-
ture related to a NFSv4 client, knowing its client ID.
The API for this kind of service is to be called very of-
ten: it has to be very efficient to enhance the daemon’s
global performance. The choice was made to use an
array of Red-Black Trees.3 RBTs have an interesting
feature: they re-balance themselves automatically after
add/update operations and so stay well balanced. RBTs
use a computed value, defined as the RBT value in this
document, to identify a specify contiguous region of the
tree. Several entries stored in the RBT can produce the
same RBT value, they’ll reside the same area, but this
will decrease the performance. Having a function to
compute “well diversified” RBT values is then critical.

3We’ll use the abbreviation RBT for Red-Black Tree in the rest
of this paper.
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This supposes an actual knowledge of the data on which
the value is computed. Because of this it is hard to have
a “generic RBT value function,” a new one is to be de-
veloped for each use.

Bottlenecks could occur if a single RBT is used: sev-
eral threads could perform add/update operations at the
same time, causing a conflicting re-balance simultane-
ously. It then appears that RBTs are to be protected by
read/writer locks and this could quickly become a bot-
tleneck. Working around this issue is not difficult: us-
ing several RBTs (stored in an array) will solve it. If
the number of RBTs used is large (more than 15 times
bigger) that the number of concurrent threads that can
access them, the the probability of having two of them
working on the same tree becomes pretty small. This
will not use more memory: each of the 15 (or more)
trees will be 15 times smaller than the single one would
have been. There is an inconvenience: an additional
function is required to compute the index for the RBT
to be used. Implementing two functions is then needed
for a single hash table: one for computing the index, the
other to compute the RBT value. They must be differ-
ent enough to split data across all the trees. If not, some
RBTs would be very small, and others very large. Ex-
perience shows that specific non-regression tests were
necessary to check for the “independence” of these two
functions.

4.7 A massively multi-threaded daemon

GANESHA is running lots of threads internally. As
shown in the previous sections, most of its design
consideration were oriented to this massively multi-
threaded architecture. The threads are of different types:

• GANESHA supports NFSv2, NFSv3, NFSv4, and
the ancillary protocol MOUNT PROTOCOL v1 and
v3. The dispatcher thread will listen for incoming
NFS/MOUNT requests, but won’t decode them. It
will choose the least busy worker and add the re-
quest to its lists of requests to process. Duplicate
request management is done here: this thread keeps
track of the previously managed requests by keep-
ing the replies sent within the last 10 minutes (they
are stored in a hash table and addressed with the
RPC Xid4 value). Before associating a worker with

4See the definition of ONC/RPC protocol for details on this.

a request, it looks at this DRC.5 If a matching RPC
Xid is found, then the former reply is sent back
again to the client. This thread will use the RPC-
SEC_GSS layer, mostly.

• The worker threads do most of the job. Many in-
stances (several dozen) of this kind of thread exist
concurrently. They wait for the dispatcher thread to
provide them with a request to manage. They will
decode it and use Cache Inode API and File Con-
tent API calls to perform the operation required for
this request. These threads are the very core of the
NFS processing in GANESHA.

• The statistics manager collects stats from every
layer for every thread. It periodically writes down
the data in CSV format6 for further treatment. A
dedicated PERL script, ganestat.pl, is avail-
able with the GANESHA rpm as a “pretty printer”
for this CSV file.

• The admin gateway manages a dedicated proto-
col. This allows administrative operations to be
done remotely on the daemon. These operations
include flushing caches, syncing data to FSAL stor-
age, or performing a slow and clean shutdown. The
ganeshadmin program, provided with the distri-
bution, is used to interact with this thread.

4.8 Dealing with huge caches

As stated above, GANESHA uses a large piece of mem-
ory to build large caches. Data and meta-data caches
will be the largest caches in GANESHA.

Let’s focus first on the meta-data cache, located in the
Cache Inode Layer. Each of its entries is associated with
an entry in the name-space (a file, a symbolic link, or
a directory7). This entry is itself associated with a re-
lated object in the File System Abstraction Layer (see
next section) identified by a unique FSAL handle. The
meta-data cache layer will map in memory the struc-
ture it reads from the FSAL calls, and it tries to keep in
memory as many entries as possible, with their parent-
children dependencies. Meta-data cache use hash tables

5Duplicate Request Cache.
6Comma Separated Value, an ASCII based format for storing

spreadsheets.
7For the current version, objects of type socket, character, or de-

vice are not managed by GANESHA.
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intensively to address the entries, using the FSAL han-
dle to address the entry associatively. With the current
version of GANESHA, a simple write-through cache
policy is implemented. The attributes kept for each ob-
ject (the file attributes and the content of the directo-
ries) will expire after a configurable grace period. If
expired, they’ll be renewed if they are accessed before
being erased from the cache. Garbage collection is more
sophisticated. Because there is no common resources
pool, each thread has to perform garbage collection it-
self. Each thread will keep a LRU list of the entries on
which it works. A cached entry can exist only within
one and only one of these lists, so if a thread accesses
an entry which was previously accessed by another, it
acquires this entry, forcing the other thread to release
it. When garbage collection starts, the thread will go
through this list, starting from the oldest entry. It then
use a specific garbage policy to decide whether each en-
try should be kept or purged. This policy is somewhat
specific. The meta-data cache is supposed to be very
large (up to millions of entries) and no garbage col-
lection will occur before at least 90% of this space is
used. We choose to keep as much as possible the “tree
topology” of the name-space viewed by the FSAL in the
cache. In this topology, nodes are directories, and leaves
are files and symbolic links. Leaves are garbage col-
lected before nodes. Nodes are garbage only when they
contain no more leaves (typically an empty directory or
a directory where all entries were previously garbaged).
This approach explicitly considers that directories are
more important than files or symbolic links, but this
should not be an issue. Usually, a name-space will con-
tain a lot more files than directories, so it makes sense
to garbage files first: they occupy most of the available
space. Because the cache is very large, parts of it tend
to be “sleeping areas” that are no longer accessed. The
garbage collection routine within each worker thread,
which manages the oldest entries first, will quickly lo-
cate these and clean them. With our workload and file
system usage, this policy revealed no problem. When
the garbage collection’s high water mark is reached, the
number of entries cached begins to oscillate regularly
between low water mark and high water mark. The pe-
riod of the oscillation is strongly dependent on the aver-
age load on the server.

The data cache is not managed separately: if the con-
tent of a file is stored in data cache, this will become a
characteristic of the meta-data cached entry. The data
cache is then a ‘child cache’ to the meta-data cache: if

a file is data-cached, then it is also meta-data cached.
This avoid incoherencies between this two caches since
they are two sides of the same coin. Contents of the files
which are cached are stored in dedicated directories in
a local file system. A data-cache entry will correspond
to two files in this directory: the index file and the data
file. The index files contain the basic meta-data informa-
tion about the file; the most important one is its FSAL
handle. The data file is the actual data corresponding
to the cached file. The index file is used to rebuild the
data-cache, in the event that the server crashes without
cleanly flushing it: the FSAL Handle will be read from
this file and then the corresponding meta-data cache en-
try will be re-inserted as well, making it point to the data
file for reconstructing the data cached entry. Garbage
collection is performed at the same time as meta-data
cache garbage collection. Before garbaging files, the
meta-data cache asks the data cache if it knows this en-
try or not. If not, regular meta-data garbage collection
is performed. If yes, the meta-data cache asks the data
cache to apply its garbage policy on it, and eventually
flush or purge it. If the file is cleaned from the data
cache, it can be garbaged from meta-data cache. A con-
sequence of this is that a file which has an active entry in
the data cache will never be cleaned from the meta-data
cache. This way of working fits well with the architec-
ture of GANESHA: the worker threads can manage the
data cache and meta-data cache at the same time, in a
single pass. As stated above, the two caches are in fact
the same, so no incoherence can occur between them.
The data cache has no scalability issue (the paths to the
related files are always known by the caches) and does
not impact the performance of the meta-data cache. The
policy used for data cache is “write-back” policy, and
only “small” files (smaller than 10 MB) will be man-
aged; others would be accessed directly, ignoring the
data cache. Smarter or more sophisticated algorithms
can be implemented—for example, the capability, for
very large files, to cache a region of the file but not
the whole file. This implementation could be linked
to NFSv4 improvements like NFSv4 named attributes
or the use of the PNFS paradigm (which is part of the
NFSv4.1 draft protocol).

5 File System Abstraction Layer

FSALs (or File System Abstraction Layers) are a very
important module in GANESHA. They exist in differ-
ent incarnations: HPSS FSAL, POSIX FSAL, NFSv4
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Proxy FSAL, SNMP FSAL, and LDAP FSAL. They
provide access to the underlying file name-space. They
wrap all the calls used for accessing it into a well defined
API. This API is then used by the Cache Inode and File
Content module. FSAL can use dedicated APIs to ac-
cess the name-space (for example, the SNMP API in the
case of SNMP FSAL), but this API will completely hid-
den from the other modules. FSAL semantics are very
close to the NFSv4 semantics, an approach that is re-
peated in the Cache Layers. This uniformity of seman-
tics, close to native NFSv4, makes the implementation
of this protocol much easier. Objects within FSAL are
addressed by an FSAL Handle. This handle is supposed
to be persistent-associated with a single FSAL object by
an injective relationship: two different objects will al-
ways have different handles. If an object is destroyed,
its handle will never be re-used for another FSAL ob-
ject. Building a new FSAL is the way to make GANE-
SHA support a new name-space. If the produced FSAL
fits correctly with the provided non-regression and vali-
dation tests, then the GANESHA daemon need only be
recompiled with this new FSAL to provide export over
NFS for it. Some implementation documents are avail-
able in the GANESHA distribution. External contribu-
tors may actively participate to GANESHA by writing
additional FSALs. Templates for FSAL source code are
available in the GANESHA package.

5.1 The HPSS FSAL

This FSAL is not related to Free Software, but a few
words must be said for historical reasons, because it
strongly contributed to the origin of the project. We
are using the HSM named HPSS,8 a third-party vendor
product sold by the IBM company. This HSM manages
a name-space, accessible in user space via dedicated
API, which fully complies with the FSAL pre-requisites.
The name-space is relatively slow, and this led us to im-
prove the caching features in GANESHA. This module
is available, but not within the regular distribution of
GANESHA (you need to have HPSS installed to com-
pile it with the HPSS API libraries).

5.2 The POSIX-based FSAL

This flavor of FSAL uses the regular POSIX calls (open,
close, unlink, stat) from LibC to manage file system

8HPSS stands for High Performance Storage System.

objects. All the file systems managed by the machine
on which the daemon is running (depending on its ker-
nel) will be accessible via these functions; using them
in GANESHA provides generic NFS access to all of
them. The inconvenience is that POSIX calls often use
the pathnames to the objects to identify them. This is no
persistent information about the object (a rename could
be performed on it, changing its name). This does not fit
with the pre-requisite to build FSAL, as described in the
previous subsection. Another “more persistent” identi-
fier is to be found. The choice was made to use an an-
cillary database (basically a PostgreSQL base) to build
and keep the identifier we need. The tuple (inode num-
ber, file system ID, ctime attributes) is enough to fully
identify an object, but the name should be used to call
the POSIX functions. The database will keep parent-
hood relationship between objects, making it possible to
rebuild the full path to it, by making a kind of “reverse
lookup” when needed. SQL optimization and pathname
caching were used a lot in the module. A complete de-
scription of the process would require a full paper. Why
develop such a module when it could be much easier
to use the NFS interface in the kernel? The answer is
linked with the resource we use at our compute center.

GANESHA can access more file systems than most
available kernels at our site. We had the need to access
the LUSTRE file system, but some machines were not
LUSTRE clients. In most cases, they are not Linux ma-
chines. We strongly needed them to be able to access the
LUSTRE name-space. This could not be done via NFS
kernel support: this NFS implementation uses the VFS
layer a lot, a part of the kernel that is often bypassed
by the LUSTRE implementation for optimization. This
approach, using the simple POSIX calls to access LUS-
TRE from GANESHA, was quick to write and not very
costly.

This module is available.

5.3 The NFSv4 Proxy FSAL

When designing GANESHA, we had one thought: hav-
ing a NFSv4 proxy would be great. NFSv4 has lots
of features that are designed for implementing aggres-
sive cache policy (file delegation is a good example of
this feature). GANESHA is designed to manage huge
caches. The “wedding” seems very natural here. The
NFsv4 Proxy FSAL wraps NFSv4 client calls to FSAL
calls. It turns the back-end part of GANESHA into a
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NFSv4 client, turning the whole daemon into a NFSv4
proxy server. The mechanism of file delegation is a fea-
ture in NFSv4 that is quite interesting here. It allows
a file to be “fully acquired” by a client for a given pe-
riod of time. Operations on files, such as IO operations
and modification of its attributes, will be done on the
client directly, without disturbing the server; that guar-
antees that no other clients will access it. Depending on
the kind of delegation used, the server may use transient
callbacks to update information about the file. When the
delegation ends, the server recovers the file, getting the
new state for the file from the client. Delegation, used
jointly with GANESHA meta-data and data caches, is
very efficient: accessing a file’s content will be done
though data cache, once a delegation on the file has been
acquired. The policy for the NFSv4 Proxy FSAL will be
to acquire as many delegations as possible, populating
the GANESHA’s caches. With a well populated cache,
GANESHA will become able to answer by proxy many
requests. In NFSv4.1, a new feature is added: the di-
rectory delegation. This will allow the content of di-
rectories to be delegated and acquired by clients in the
same way that file contents are. Used with GANESHA’s
meta-data cache, this feature will be very interesting.

This module is still under development.

5.4 The “Ghost FS” FSAL

This FSAL is a very simple one and is not designed for
production use. It just emulates the behavior of a file
system in memory, with no persistent storage. The calls
to this FSAL are very quick to return because all the
work is done in memory, no other resources are used.
Other FSALs are always much slower than the cache
layer.9 It is hard to evaluate meta-data and cache mod-
ules performances. With the “Ghost FS” FSAL, calls
to these layers can be easily qualified, and it is possible
to identify the most costly calls, and thus to optimize
GANESHA.

This module is available.

5.5 The LUSTRE FSAL

As mentioned above, LUSTRE is a file system we use
a lot, and we would like to access it from machines
that are not LUSTRE clients. We already developed

9Otherwise there would have been no need for caches. . .

the POSIX FSAL for this, but having something more
acquainted with LUSTRE would be nicer. Having a
user-space LUSTRE API able to perform operations in
a handle-based way would be something very interest-
ing: it would allow us to wrap the API to a LUSTRE
FSAL, making the access to this file system via the
GANESHA NFSv4 interface much more efficient than
the one we have with the POSIX FSAL. We also hope
to use the NFSv4 named attributes10 to provide clients
for LUSTRE-specific information about the file (the res-
ident OST11 of the file is a good example).

This module is under definition. It will be finalized as
soon as a handle-based LUSTRE API is available.

5.6 The SNMP FSAL

The SNMP protocol organizes sets of data as trees. The
overall structure of the trees is defined by files named
MIB.12 Knowing the MIB yields the ability to compute
the OID13 to access a given management value. This
OID is basically a list of numbers: each of them iden-
tifies a node at the given level in the tree, and the last
one identifies the leaf where the data resides. For ex-
ample, .1.3.6.1.4.1.9362.1.1.0 identifies the
Uptime value in the SNMPv2 MIB. This OID is used to
query a SNMP agent about the time since the last reboot
of the machine. OIDs can also be printed in a “sym-
bolic” way, making them more human readable. In the
previous example, .1.3.6.1.4.1.9362.1.1.0 is
printed as SNMPv2-MIB::system.sysUpTime. This tree
structure is in fact a name space: each SNMP-accessible
variable can be seen as a “file object” whose content
is the value of the variable. There are “directories”
which are the nodes in the MIB structure. OIDs are
very good candidates for being handles to SNMP
objects, and are to be mapped to names (the symbolic
version of the OID). This clearly shows that SNMP has
enough features to build an FSAL on top of it. Using
it with GANESHA will map the SNMP information
into an NFS export, able to be browsed like a file
system. It is then possible to browse SNMP in a
similar way to the /proc file system. In our exam-
ple, Handle .1.3.6.1.4.1.9362.1.1.0 would

10which are basically the way NFSv4 manages extended at-
tributes.

11Object Storage Target: the way LUSTRE views a storage re-
source.

12Management Information Base.
13Object ID.
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map to (mounted NFS PATH)/SNMPv2-MIB/
system/sysUpTime. A read operation on
SNMPv2-MIB/system/sysUpTime would yield
the corresponding value.

Some SNMP values are settable: in this approach, they
could be changed by writing to the file corresponding to
them.

This module is under development.

5.7 The LDAP FSAL

The idea for this FSAL is the same as for the SNMP
FSAL. LDAP has a name-space structure and is acces-
sible via a user-space API. This FSAL simply wraps
this API to provide FSAL support, then NFS support
via GANESHA for LDAP. LDAP information will then
be browsed like /proc, via NFS.

This module is under development.

6 Performances and results

In this section, we will show GANESHA’s scalability
feature by an actual test. The test is as follows: a specific
tool was written to perform, in a multi-threaded way (the
number of threads is configurable) what find . -ls
does, which is scanning a whole large tree in a name-
space. This tree contained 2220 directories on 3 levels;
each of them contained 50 files (which means more that
110,000 files were in the whole tree). The test utility
ran on several client nodes (up to 4 machines) using the
same server. The multi-threaded test utility was run of
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Figure 3: Performance with a preloaded metadata-cache

each of these 4 clients with 64 threads each. This was
equivalent to 256 cache-less clients operating concur-
rently. The server machine was a IBM x366 server with
four Intel Xeon 3 GHz processors and 4 GB of RAM,
running GANESHA built with the POSIX FSAL. Two
groups of measurements were made. The first one is
done with a server whose meta-data cache is empty (Fig-
ure 2), and the second (Figure 3) with the same server
with a preloaded cache. In this second step, the read
entries exist in the memory of the server, and the perfor-
mance of the meta-data cache can be compared to the
raw FSAL performances.

Figure 2 shows that saturation of the FSAL occurs
quickly. Increasing the number of worker threads in-
creases the performance, but no larger throughput than
5,000 entries read per second can be reached. Observa-
tions made on the server showed that no CPU or mem-
ory contention led to this saturation effect. The rea-
son was that the POSIX FSAL on top of the underlying
POSIX calls did not scale to these values.

Figure 3 shows different results. Due to the meta-data
cache, most of the operations are done directly in mem-
ory, reducing greatly the calls to POSIX FSAL. The
throughput raises up to 90,000 entries read per second.
The dependence between this throughput and the num-
ber of worker threads is linear, which shows the scalabil-
ity of the process. After 11 worker threads, we can’t see
such linearity. The reason for this was due to CPU con-
gestion. The OS could not allocate enough CPU time to
all the workers, and they start waiting to be scheduled.
This test should be performed on a larger platform.

This test shows that the multi-thread architecture in
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GANESHA provides good scalability.

7 Conclusion and perspectives

GANESHA has been in production at our site for more
than one full year. It fits the needs we had when the
decision was taken to start the project. Its large cache
management capability allowed an increase of the in-
coming NFS requests on the related machines, a need
that was critical for several other projects.

When the product started in full production, in January,
2006, this provided us with very useful feedback that
helped in fixing bugs and improved the whole daemon.
Thanks to this, GANESHA is a very stable product in
our production context at our site. Making GANESHA
Free Software is an experience that will certainly be very
positive; we expect the same kind of feedback from the
Open Software community. GANESHA can also be
of some interest for this community; we actually be-
lieve that is could serve well as a NFSv4 Proxy or as
an SNMP or LDAP gateway.

NFSv4 is also a very exciting protocol, with plenty of in-
teresting features. It can be used in various domains and
will probably be even more widely used that the former
version of NFS. Lots of work is done around this pro-
tocol, like discussion about implementing its features
or extending it with new features (see NFSv4.1 drafts).
GANESHA will evolve as NFSv4 will. We hope that
you will find this as exciting as we did, and we are happy
to share GANESHA with the community. We are ea-
gerly awaiting contributions from external developers.
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Abstract

Mass adoption of virtualization is upon us. A plethora
of virtualization vendors have entered the market. Each
has a slightly different set of features, disk formats, con-
figuration files, and guest kernel drivers. As concepts
such as Virtual Appliances become mainstream, soft-
ware vendors are faced with new challenges. Previously,
software vendors had to port their application to multi-
ple operating systems: Solaris, Linux, AIX, etc. The
new “port” becomes one where software vendors will
be expected to produce images that drop-in to VMware,
Xen, Parallels, SLES, RHEL, and even Microsoft Vir-
tual Server.

This paper will explore the state of existing virtualiza-
tion technology in meeting the goal of providing ready-
to-run guest images. This includes: comparing, con-
trasting, and poking fun at virtual disk formats; be-
moaning the assortment of kernel drivers needed to im-
prove performance in a guest (vmware-tools, paravirt
drivers. . . ); dark muttering about incompatibilities be-
tween Xen guests and hosts; and lamenting all the dif-
ferent configuration files that define a guest.

Virtualization has moved into the mainstream of com-
puting. Most businesses are no longer asking if they
should deploy a virtualization solution; they are in-
stead asking which vendors support the technologies
they have already implemented. In many ways, this is
a great new age for software vendors. With virtualiza-
tion technology so common, it makes it possible to re-
duce the costs associated with supporting a product on
a large assortment of operating systems. Software ven-
dors can now bundle just the right amount of operating
system required to support their software application in
a software appliance model. Distributing a software ap-
pliance allows vendors to fully certify one stack, without
the worry about which packages or versions a particular
operating system distribution chooses to ship. The ex-
tensive QA and support models that go along with ship-

ping a separate application are drastically simplified.
Software vendors no longer need to decide which op-
erating systems to support, the new question is “which
virtualization technologies do I support?”

This question should be easy to answer. Unfortunately,
it is becoming increasingly difficult. It does not have
to be. The hypervisor is the new platform, and many
vendors have entered the market, with more vendors on
the way. Each vendor offers products to meet a similar
requirement: Allow fully isolated containers, or virtual
machines, to consume the resources they require, with-
out stepping on other containers.

The advantages of virtualization are many. To the soft-
ware consumer, virtualization takes away much of the
concern surrounding the full stack. The fact that differ-
ent applications may require conflicting library support
is no longer a concern. The ability to better manage
resources, increasing utilization of hardware without in-
creasing risk of multiple applications stepping on each
other is a tremendous benefit. Live migration, the ability
to move virtual machines across physical hosts in real
time, substantially increases availability. It is possible to
maintain both performance and availability with a frac-
tion of the hardware resources that were once required.

In the software appliance model, vendor relationships
are improved as the customer can go to a single vendor
for support, without playing intermediary between the
application vendor, tools vendors, and operating system
vendors. Software consumers need not worry about test-
ing and patching large numbers of security and bug fixes
for software which gets installed with most general pur-
pose operating systems, but is never used or installed
within their virtualized environment.

To the software producer and distributor, virtualization
means simplified development, QA, and testing cycles.
When the application ships with its full stack, all of the
time required to ensure compatibility with any number
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of supported platforms goes away. The little compro-
mises required to make sure that applications run reli-
ably across all platforms have a tendency to ensure that
those applications do not run optimally on any platform,
or increase the code complexity exponentially. This pain
goes away when the platform is a part of the applica-
tion, and unnecessary components which exist in a gen-
eral purpose application are no longer present. Software
vendors can distribute fully tested and integrated appli-
ances, and know exactly what components are on the
appliance without concern that a critical component was
updated to fix a bug in some other application unrelated
to what the vendor’s application provides or supports.

With so many benefits to virtualization, and so many
options available to the consumer, what could possibly
go wrong? No one ever likes the answers to that ques-
tion. The proliferation of options in the virtualization
market has brought a new kind of insanity for software
vendors. “Which technologies do I provide ready-to-run
guest images for?” The simple answer should be all of
the major players. Providing choice to customers with
minimal effort is a great thing. Unfortunately, the effort
is not so minimal at the moment.

Each vendor has a business need to distinguish itself by
providing unique features or a unique combination of
features. Unfortunately for the consumer, even generic
features are provided in unique ways by each virtualiza-
tion provider, needlessly complicating life both for the
software vendor and the end user.

This doesn’t have to be so hard.

1 Disk Formats

There are several possibilities for the virtual machine
disk format, none of which is universally supported.
While most of the commonly-used formats offer a sim-
ilar set of features, including sparse allocation and copy
on write or some form of snapshot, they are not directly
interchangeable. VMware’s VMDK and Microsoft’s
VHD are among the most common formats supported.
The QCOW format also offers similar functionality,
though it should be noted that there are now multiple
incompatible versions of the QCOW formats, making
QCOW more of a format family than a format. The disk
format will typically include the raw file systems or hard
disk image, a bit of metadata describing the supported
features, versioning, and creation method, as well as

specific implementation metadata in the case of sparse
allocation or copy on write. It may also contain infor-
mation used to define the characteristics of the virtual
machine associated with the images.

While VMDK, VHD, and QCOW are among the most
commonly supported disk formats, they are far from
universal. Some technologies still require raw file sys-
tem images or other proprietary formats. The good news
here is that conversion utilities exist for most formats
available. If the desire is to have a single reference
image that can be packaged for many different virtual-
ization technologies, perhaps a raw file system or hard
disk image is the best choice, as those can be directly
converted to most other formats with little effort. Still,
the question remains, why does this have to be so com-
plicated? With a similar feature set among the most
popular virtual disk formats, what is it that separates
them? The difference lies in the metadata implementa-
tions. Perhaps in the future, common ground can be es-
tablished and the disk format conversions will no longer
be necessary.

2 Virtual Machine Configuration

When we look at what defines a virtual machine, there
are many of the same pieces we find in stand-alone hard-
ware. Along with the virtual disk or physical file sys-
tems, a virtual machine is allocated the basic resources
required for a machine to function and be useful. This
includes one or more virtual processors, a chunk of
memory, and virtual or physical I/O devices. These are
the core building blocks, and will differ among deploy-
ments of a given appliance based on customer require-
ments and available resources. In addition to these sim-
ple building blocks, there are typically a number of ad-
ditional configuration options which help to define the
virtual machine. These include migration and availabil-
ity options, crash or debugging behavior, and console
or terminal definitions. All of this configuration is spe-
cific to the actual deployment of an image, and should
be defined within the hypervisor, controlling domain, or
management infrastructure.

In addition to these site-specific configuration options,
many virtualization vendors provide options for which
kernel to boot, the initial ram disk or initrd image to
be used, and other typical boot options. While there
are specific circumstances where keeping such config-
uration options separate from the virtual machine con-
tainer itself would be desirable, it is more frequently a
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management headache for the consumer of virtual ap-
pliances. When the boot kernel is defined—or worse,
located—outside of the central image, there is no simple
way for an image to be self-maintained. While mecha-
nisms exist for updating a virtual image similar to those
for updating physical hosts, the guest does not typi-
cally have permission or ability to write to the host’s
file systems for such activities as updating the guest ker-
nel or initrd. Simply put, any effective software appli-
ance must be self-contained, and use standard tools for
managing the contents of the appliance itself. Ideally
the bootloader is also contained in the appliance image,
but at the very minimum, a bootloader installed on the
hypervisor should be able to read and interpret boot con-
figuration information from within a guest image.

3 Paravirtualization vs. Full Virtualization

Both paravirtualized and fully virtualized machines
have been around for quite some time, and each has dis-
tinct advantages. For the paravirtualized machine, the
guest operating system is fully aware that it is operating
under hypervisor control. The kernel has been modi-
fied to work directly with the hypervisor, and as much
as possible to avoid instructions that are expensive to
virtualize. The largest advantage to paravirtualization
is performance. Generally speaking, a paravirtualized
guest will outperform a fully virtualized guest on the
same hardware, often by a substantial margin. With this
being the case, why isn’t every guest paravirtualized?

There are several obstacles to paravirtualization. The
source level changes required to build a paravirtualized
kernel can be large and invasive, in many cases tens of
thousands of lines of code. These changes occur in core
kernel code and can be much more complex than higher
level driver code. While the nature of the changes re-
quired to support a given hypervisor can be very similar,
the implementation details and ABI will vary from ven-
dor to vendor, and even among versions of the hypervi-
sor from the same vendor. It is not uncommon for a par-
avirtualization patch set to be several revisions behind
the latest upstream kernel, or skip upstream revisions all
together. This is unlikely to change until a given imple-
mentation has been accepted into the upstream kernel.
The resources required to maintain such a large patch set
outside of the upstream tree are considerable; maintain-
ing the same code in the upstream kernel requires much
fewer resources. There is also the small matter of guest
operating systems which are not open source, or whose

license does not allow the redistribution of changes. In
these instances, paravirtualization is extremely difficult,
if not impossible.

In the fully virtualized machine, the guest operating
system does not need to know that it is being virtu-
alized at all. The kernel operates exactly as it would
on standard hardware. The hypervisor will trap neces-
sary instructions and virtualize them without assistance
from the guest. Standard devices such as network and
block drivers are typically presented as virtual imple-
mentations of fairly well-supported physical devices to
the guest so that no special drivers are needed. Mod-
ern CPUs include hardware support for virtualization,
which improves performance and compatibility. While
this method is an effective way to ensure compatibility
with a large variety of guest operating systems, there
is a high overhead in trapping all of the necessary in-
structions. To help with this performance problem, it
is common for the hypervisor to support a number of
paravirtualized device drivers. By replacing the com-
mon and well supported device drivers with new devices
which are aware of the hypervisor, certain expensive in-
structions can be avoided and performance is improved
dramatically. Typically, a virtualized guest with paravir-
tualized drivers will achieve performance much closer
to that of a true paravirtualized guest.

This is another area of difficulty for the software ap-
pliance distributor. The vast number of virtualization
vendors each have their own paravirtualized kernels,
drivers, or guest tools. Some of these are open source,
some are not. Regardless of source code availability,
there is the question of which kernel versions these
drivers will build against, or might be supported with.
It is not uncommon for a vendor to have no working
driver or tool set for two or three of the most recent
upstream kernel versions, leaving them outside of the
upstream stable support cycle all together. It is also pos-
sible that upstream kernel versions are skipped over en-
tirely, making it difficult to find a common kernel ver-
sion that can be supported by all of the desired virtual-
ization targets that a software vendor might have. Luck-
ily, it is quite possible to have a user space that supports
a variety of kernel releases, ensuring that only the ker-
nel version and associated virtualization drivers or tools
are the only substantial changes between images. This
leaves most of the QA and testing work intact, and still
provides a substantial support savings over supporting
entirely different general purpose operating systems.
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It is hoped that some of these problems can be ad-
dressed generically. Changes to the Linux kernel are
being made which make it possible to eventually build
a single kernel which supports multiple virtualization
solutions. Examples include paravirt_ops which
shipped in the 2.6.20 kernel, and the VMI interface
on top of paravirt_ops which is included in the
2.6.21 Linux kernel. While the initial groundwork for
paravirt_ops and the VMI layer are present in
mainline kernels, there is still a lot of work remaining
to make them beneficial to the vast majority of users. In
the short term, we have simply added another yet op-
tion for building virtualization solutions. Until stable
releases of the majority players in virtualization have
patches or products to support these new kernel inter-
faces available, and the older products are phased out,
these interfaces simply represent one more option that
must be supported. It really does have to get worse be-
fore it gets better.

Another proposal that has been floating around is a set
of common paravirtualized drivers, which could be built
as modules and provide many of the benefits associated
with vendor provided tools and drivers while decreas-
ing the number of configurations which must be built
and supported. Unfortunately this proposal is in early
stages and faces several obstacles. For instance, Xen
provides xenbus instead of relying on the PCI speci-
fication for I/O virtualization. There is also the ques-
tion of finding a common ground for block I/O, as many
virtualization vendors have put considerable effort into
optimizing block I/O for virtualized guests, and these
implementations are not guaranteed to be compatible
with one another. Still, if a agreement could be reached,
the result would be basic paravirtualized drivers which
could be maintained upstream, and present in the major-
ity of Linux vendor kernels without overhead. Virtual-
ization providers would still have the option of further
optimization by using platform-specific drivers, but end
users would see less basic overhead when using an im-
age that for one reason or another could not easily de-
ploy the platform-specific drivers.

4 Architectural incompatibility

Even when dealing with a single virtualization vendor,
there are a few architectural anomalies to keep in mind.
One particularly painful current example is PAE sup-
port. When dealing with 32-bit systems, both guest and
host, there is a question of exactly how much memory is

supported. In order for a 32-bit system to address more
than 4GB of memory, PAE is supported on most modern
x86 processors. In Linux, PAE is support is determined
at kernel build time. Unfortunately a PAE-enabled ker-
nel will not boot on physical or virtual hardware which
does not actually support PAE mode. This is because
PAE mode causes fairly significant changes to the page
table structure regardless of the amount of actual mem-
ory in a system. This is important to know because sev-
eral mainstream virtualization solutions take different
approaches to PAE support. In the VMware case, PAE is
supported on the host in modern versions, meaning the
hypervisor can address more than 4GB of memory, but
the guest does not support PAE mode even in instances
where the host has more than 4GB available. While it
is not a horrible limitation to say that a guest can only
support less than 4GB of memory, it also means that a
guest kernel cannot be built with PAE support and still
work on all VMware deployments. (Whether PAE is
supported in a VMware guest depends on the host ker-
nel and on image-specific configuration settings.)

In the Xen case, the rules are less clear-cut. Xen has es-
sentially three parts: the hypervisor, the domain 0 ker-
nel, and the guest or unprivileged domain kernel. The
hypervisor and the domain 0 kernel must always have
matching PAE support, meaning if the domain 0 ker-
nel is built with PAE support, the xen hypervisor must
be built with PAE support as well. For guest domains,
the situation is split between paravirtualized guests and
hardware virtual machines using the hardware virtual-
ization features of modern CPUs from Intel and AMD.
A hardware virtualized machine can run with PAE either
enabled or disabled, regardless of the domain 0 and hy-
pervisor. For paravirtualized guest domains, the kernel
must be built with the same PAE features of the hyper-
visor and domain 0. It is not possible to mix and match
PAE between paravirtualized guests and the hypervisor
with current releases of Xen. While it would be simple
enough to say that PAE support should always be en-
abled, there are a few obstacles to this. Some hardware
does not support PAE mode, particularly a large number
of laptops with Intel Pentium M CPUs. Additionally,
there are existing Xen hosts which do not support PAE
for one reason or another. It is believed that over time
non PAE implementations of 32-bit Xen will fall out of
use, but the current issue is real and still somewhat com-
mon.

Guest architecture support will also vary according to
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the hypervisor used. While many hypervisors currently
available offer support for both 64-bit and 32-bit guests
under a 64-bit hypervisor, several do not. Although
the hardware transition is nearly complete (it is diffi-
cult to find mainstream desktops or servers which do
not support x86_64 these days), it will still be some
time before older 32-bit hardware is retired from use,
and even longer before 32-bit applications are no longer
supported by many vendors. This means that it may be
necessary for software appliance vendors to offer both
32-bit and 64-bit guest images if they wish to ensure
compatibility with the largest number of virtualization
technologies. For applications which are only available
in 32-bit flavors, it means that guests will have to run
a 64-bit kernel in some circumstances, though a 32-bit
user space is generally supported.

Conclusion

With well over a dozen virtualization solutions in use to-
day, and more on the way, there is a lot of choice avail-
able to the consumer. Choice can be a double-edged
sword. Competition drives innovation, we are seeing re-
sults from this at a rather fast pace today. Competition in
the virtualization space also has the potential of driving
support overhead to painful levels. Differing approaches
to virtualization can ensure that the correct tool is avail-
able for any given job, but if the tool is too difficult to
use, it is (more often than not) simply ignored in favor
of the easier option.

Software vendors can leverage the benefits of virtual ap-
pliances now. While there are certainly obstacles to be
overcome, they are not insurmountable. The advantages
to a software appliance model are great, and the pains
associated with this growth in virtualization technolo-
gies have to be addressed.

As developers, providers, and integrators of virtualiza-
tion technology, we have to address these issues without
allowing things to get out of hand. We need to look be-
yond the the technology itself, and see how it will be
used. We need to make sure that the technology is con-
sumable without a massive amount of effort from the
consumers.
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Abstract

In early 2007, SMB2 became the first widely deployed
network file system protocol since NFS version 4.
This presentation will compare it with its predecessors
(CIFS and SMB) as well as with common alternatives.
The strengths and weaknesses of SMB/CIFS (the most
widely deployed network file system protocol) and NFS
versions 3 and 4 (the next most popular protocols) and
SMB2 will also be described.

Now that the CIFS POSIX Protocol extensions are im-
plemented in the Linux kernel, Samba, and multiple op-
erating systems, it is a good time to analyze whether
SMB2 would be better for Linux comprared to CIFS
POSIX Protocol extensions. In addition, alternatives
such as HTTP, WebDav, and cluster file systems will be
reviewed. Implementations of SMB2 are included in not
just Vista and Longhorn, but also Samba client libraries
and Wireshark (decoding support). Linux implemen-
tation progress and alternatives for SMB2 clients and
servers will also be described along with recommenda-
tions for future work in this area.

1 Introduction

The SMB2 protocol, introduced in Microsoft Vista this
year, is the default network file system on most new PCs.
It differs from its predecessors in interesting ways.

Although a few experimental network file system pro-
tocols were developed earlier, the first to be widely de-
ployed started in the mid-1980s: SMB (by IBM, Mi-
crosoft and others), AT&T’s RFS protocol, AFS from
Carnegie-Mellon University, NFS version 2—Sun [1]
and Novell’s NCP. The rapid increase in numbers of per-
sonal computers and engineering workstations quickly
made network file systems an important mechanism for

sharing programs and data. More than twenty years
later, the successors to the ancient NFS and SMB proto-
cols are still the default network file systems on almost
all operating systems.

Even if HTTP were considered a network file system
protocol, it is relatively recent, dating from the early
1990s, and its first RFC [RFC 1945] was dated May
1996. HTTP would clearly be a poor protocol for a
general purpose network file system on most operat-
ing systems including Linux. Since HTTP lacked suf-
ficient support for “distributed authoring” without lock-
ing operations, with little file metadata and lacking di-
rectory operations, “HTTP Extensions for Distributed
Authoring—WEBDAV” (RFC 2518) was released in
February 1999. WEBDAV did not, however, displace
CIFS or NFS, and few operating systems have a usable
in-kernel implementation of WEBDAV.

So after more than twenty years, despite the invention
of some important cluster file systems and the explosion
of interest in web servers, we are almost back where we
started—comparing NFS [3] Version 4 with the current
CIFS extensions and with a new SMB—the SMB2 pro-
tocol. File systems still matter. Network file systems
are still critical in many small and large enterprises. File
systems represent about 10% (almost 500KLOC) of the
2.6.21 Linux Kernel source code, and are among the
most actively maintained and optimized components.
The nfs1 and cifs modules are among the larger in-kernel
file systems.

Network file systems matter—the protocols that they de-
pend on are more secure, full featured and much more

1lowercase “nfs” and “cifs” are used to refer to the implementa-
tion of the NFS and CIFS protocol (e.g. for Linux the nfs.ko and
cifs.ko kernel modules), while uppercase “NFS” and “CIFS” re-
fer to the network protocol.
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complex than their ancestors. Some of the better NAS2

implementations can perform as well as SAN and clus-
ter file systems for key workloads.

2 Network File System Characteristics

Network protocols can be considered to be layered.
Network file system protocols are the top layer—far
removed from the physical devices such as Ethernet
adapters that send bits over the wire. In the Open Sys-
tem Interconnection (OSI) model, network file system
protocols would be considered as layer 6 and 7 (“Pre-
sentation” and “Application”) protocols. Network file
system protocols rely on lower level transport protocols
(e.g. TCP) for reliable delivery of the network file sys-
tems protocol data units (PDUs), or include intermedi-
ate layers (as NFS has done with SunRPC) to ensure
reliable delivery.

Network file system protocols share some fundamental
characteristics that distinguish them from other “appli-
cation level” protocols. Network file system clients and
servers (and the closely related Network Attached Stor-
age, NAS, servers) differ in key ways from cluster file
systems and web browsers/servers:

• Files vs. Blocks or Objects: This distinction is easy
to overlook when comparing network file system
protocols with network block devices, cluster file
systems and SANs. Network file systems read and
write files not blocks of storage on a device. A file
is more abstract—a container for a sequential series
of bytes. A file is seekable. A file conventionally
contains useful metadata such as ACLs or other se-
curity information, timestamps and size. Network
file systems request data by file handle or filename
or identifier, while cluster file systems operate on
raw blocks of data. Network file system protocols
are therefore more abstract, less sensitive to disk
format, and can more easily leverage file owner-
ship and security information.

• Network file system protocol operations match lo-
cal file system entry points: Network file system
protocol operations closely mirror the function lay-
ering of the file system layer (VFS) of the operating

2Network Attached Storage (NAS) servers are closely related to
network file servers.

system on the client. Network file system opera-
tions on the wire often match one to one with the
abstract VFS operations (read, write, open, close,
create, rename, delete) required by the operating
system. The OS/2 heritage of early SMB/CIFS im-
plementations and the Solaris heritage of NFS are
visible in a few network file system requests.

• Directory Hierarchy: Most network file systems as-
sume a hierarchical namespace for file and direc-
tory objects and the directories that contain them.

• Server room vs. intranet vs. Internet: Modern net-
work file system protocols have security and per-
formance features that make them usable outside
of the server room (while many cluster file sys-
tems are awkward to deploy securely across mul-
tiple sites). Despite this, HTTP and primitive FTP
are still the most commonly used choices for file
transfers over the Internet. Extensions to NFS ver-
sion 4 and CIFS (DFS) allow construction of a
global hierarchical namespace facilitating transpar-
ent failover and easier configuration.

• Application optimization: Because the pattern of
network file system protocol requests often more
closely matches the requests made by the applica-
tion than would be the case for a SAN, and since
the security and process context of most applica-
tion requests can be easily determined, network file
system servers and NAS servers can do interesting
optimizations.

• Transparency: Network file systems attempt to
provide local remote transparency so that local ap-
plications detect little or no difference between
running over a network file system and a local file
system.

• Heterogeneity: Network file system clients and
servers are often implemented on quite different
operating systems—clients access files without re-
gard to their on-disk format. In most large enter-
prises, client machines running quite different op-
erating systems access the same data on the same
server at the same time. The CIFS (or NFS) net-
work file system client that comes by default with
their operating system neither knows nor cares
about the operating system of the server. Samba
server has been ported to dozens of operating sys-
tems, yet the server operating system is mostly
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transparent to SMB/CIFS clients. Network file sys-
tems are everywhere, yet are not always seen when
running in multi-tier storage environments. They
often provide consistent file access under large web
servers or database servers or media servers. A net-
work file system server such as Samba can easily
export data on other network file systems, on re-
movable media (CD or DVD), or on a local file sys-
tem (ext3, XFS, JFS)—and with far more flexibil-
ity than is possible with most cluster file systems.

Network file systems differ in fundamental ways from
web clients/servers and cluster file systems.

2.1 History of SMB Protocol

The SMB protocol was invented by Dr. Barry Feigen-
baum of IBM’s Boca Raton laboratory during the early
development of personal computer operating system
software. It was briefly named after his initials (“BAF”)
before changing the protocol name to “Server Message
Block” or SMB. IBM published the initial SMB Spec-
ification book at the 1984 IBM PC Conference. A
few years later a companion document, a detailed LAN
Technical Reference for the NetBIOS protocol (which
was used to transport SMB frames), was published.
An alternative transport mechanism using TCP/IP rather
than the Netbeui frames protocol was documented in
RFCs 1001 and 1002 in 1987.

Microsoft, with early assistance from Intel and 3Com,
periodically released documents describing new dialects
of the SMB protocol. The LANMAN1.0 SMB dialect
became the default SMB dialect used by OS/2. At least
two other dialects were added to subsequent OS/2 ver-
sions.

In 1992, X/Open CAE Specification C209 provied bet-
ter documentation for this increasingly important stan-
dard. The SMB protocol was not only the default
network file system for DOS and Windows, but also
for OS/2. IBM added Kerberos and Directory inte-
gration to the SMB protocol in its DCE DSS project
in the early 1990s. A few years later Microsoft also
added Kerberos security to their SMB security negoti-
ation to their Windows 2000 products. Microsoft’s Ker-
beros authentication encapsulated service tickets using
SPNEGO in a new SMB SessionSetup variant, rather
than using the original SecPkgX mechanism used by

earlier SMB implementations (which had been docu-
mented by X/Open). The SMB protocol increasingly
was used for purposes other than file serving, includ-
ing remote server administration, network printing, net-
working messaging, locating network resources and se-
curity management. For these purposes, support for var-
ious network interprocess communication mechanisms
was added to the SMB protocol including: Mailslots,
Named Pipes, and the LANMAN RPC. Eventually more
complex IPC mechanisms were built allowing encap-
sulating DCE/RPC traffic over SMB (even supporting
complex object models such as DCOM).

In the mid 1990s, the SMBFS file system for Linux was
developed. Leach and Naik authored various CIFS IETF
Drafts in 1997, but soon CIFS Documentation activity
moved to SNIA. Soon thereafter CIFS implementations
were completed for various operating systems including
OS/400 and HP/UX. The CIFS VFS for Linux was in-
cluded in the Linux 2.6 kernel. After nearly four years,
the SNIA CIFS Technical Reference [4] was released
in 2002, and included not just Microsoft extensions to
CIFS, but also CIFS Unix and Mac Extensions.

In 2003 an additional set of CIFS Unix Extensions was
proposed, and Linux and Samba prototype implemen-
tations were begun. By 2005, Linux client and Samba
server had added support for POSIX ACLs,3 POSIX4

path names, a request to return all information needed
by statfs. Support for very large read requests and very
large write responses was also added.

In April 2006, support for POSIX (rather than Windows-
like) byte range lock semantics were added to the Samba
server and Linux cifs client (Linux Kernel 2.6.17). Ad-
ditional CIFS extensions were proposed to allow file I/O
to be better POSIX compliant. In late 2006, and early
2007, joint work among four companies and the Samba
team to define additional POSIX extensions to the CIFS
protocol led to creation of a CIFS Unix Extensions wiki,
as well as implementations of these new extensions [8]

3“POSIX ACLs” are not part of the official POSIX API. POSIX
1003.1e draft 17 was abandoned before standardization.

4In this paper, “POSIX” refers narrowly to the file API seman-
tics that a POSIX-compliant operating system needs to implement.
When the file system uses the CIFS network file system protocol,
providing POSIX-like file API behavior to applications requires ex-
tensions to the CIFS network protocol. The CIFS “POSIX” Proto-
col Extensions are not part of the POSIX standard, rather a set of
extensions to the network file system protocol to make it easier for
network file system implementations to provide POSIX-like file API
semantics.
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in the Linux CIFS client and Samba server (Mac client
and others in progress). The CIFS protocol continues to
evolve, with security and clustering extensions among
the suggestions for the next round of extensions. As the
technical documentation of these extensions improves,
more formal documentation is being considered.

2.2 History of NFS Protocol

NFS version 1 was not widely distributed, but NFS ver-
sion 2 became popular in the 1980s, and was docu-
mented in RFC 1094 in 1989. Approximately 10 years
after NFS version 2, NFS version 3 was developed. It
was documented by Sun in RFC 1813 citerfc1813 in
1995. Eight years later RFC 3530 defined NFS ver-
sion 4 (obsoleting the earlier RFC 3010, and complet-
ing a nearly five year standardization process). An ex-
tension to NFS version 3, “WebNFS,” documented by
Sun in 1996, attempted to show the performance advan-
tages of a network file system for Internet file traffic in
some workloads (over HTTP). The discussion of Web-
NFS increased the pressure on other network file sys-
tems to perform better over the Internet, and may have
been a factor in the renaming of the SMB protocol—
from “Server Message Block” to “Common Internet File
System.” Related to the work on NFS version 4 was
an improvement to the SunRPC layer that NFS uses
to transport its PDUs. The improved RPCSECGSS al-
lowed support for Kerberos for authentication (as does
CIFS), and allows negotiation of security features in-
cluding whether to sign (for data integrity) or seal (for
data privacy) all NFS traffic from a particular client to a
particular server. The NFS working group is developing
additional extensions to NFS (NFS version 4.1, pNFS,
NFS over RDMA, and improvements to NFS’s support
for a global namespace).

The following shows new protocol operations intro-
duced by NFS protocol versions 3 and 4:

NFS VERSION 2 Operations New NFS Version 4 Operations
GETATTR 1 CLOSE 4
SETATTR 2 DELEGPURGE 7
ROOT 3 DELEGRETURN 8
LOOKUP 4 GETFH 10
READLINK 5 LOCK 12
WRITE 8 LOCKT 13
CREATE 9 LOCKU 14
REMOVE 10 LOOKUPP 16
RENAME 11 NVERIFY 17
LINK 12 OPEN 18
SYMLINK 13 OPENATTR 19
MKDIR 14 OPEN-CONFIRM 20
RMDIR 15 OPEN-DOWNGRADE 21
READDIR 16 PUTFH 22
STATFS 17 PUTPUBFH 23
New NFS VERSION 3 Operations PUTROOTFH 24
ACCESS 4 RENEW 30
READ 6 RESTOREFH 31
MKNOD 11 SAVEFH 32
READDIRPLUS 17 SECINFO 33
FSSTAT 18 SETATTR 34
FSINFO 19 SETCLIENTID 35
PATHCONF 20 SETCLIENTID-CONFIRM 36
COMMIT 21 VERIFY 37

RELEASE-LOCKOWNER 39

3 Current Network File System Alternatives

Today there are a variety of network file systems in-
cluded in the Linux kernel, which support various proto-
cols including: NFS, SMB/CIFS, NCP, AFS, and Plan9.
In addition there are two cluster file systems now in the
mainline Linux kernel: OCFS2 and GFS2. A few pop-
ular kernel cluster file systems for Linux that are not
in mainline are Lustre and IBM’s GPFS. The cifs and
nfs file system clients for Linux are surprisingly simi-
lar in size (between 20 and 30 thousand lines of code)
and change rate. The most common SMB/CIFS server
for Linux is Samba, which is significantly larger than
the Linux NFS server in size and scope. The most com-
mon Linux NFS server is of course nfsd, implemented
substantially in kernel.

Windows Vista also includes support for various
network file system protocols including SMB/CIFS,
SMB2, and NFS.

4 SMB2 Under the Hood

The SMB2 protocol differs [7] from the SMB and CIFS
protocols in the following ways:

• The SMB header is expanded to 64 bytes, and bet-
ter aligned. This allows for increased limits on the
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number of active connections (uid and tids) as well
as the number of process ids (pids).

• The SMB header signature string is no longer
0xFF followed by “SMB” but rather 0xFE and then
“SMB.” In the early 1990s, LANtastic did a sim-
ilar change in signature string (in that case from
“SMB” to “SNB”) to distinguish their requests
from SMB requests.

• Most operations are handle based, leaving Cre-
ate (Open/Create/OpenDirectory) as the only path
based operation.

• Many redundant and/or obsolete commands have
been eliminated.

• The file handle has been increased to 64 bits.

• Better support for symlinks has been added. Win-
dows Services for Unix did not have native support
for symlinks, but emulated them.

• Various improvements to DFS and other miscella-
neous areas of the protocol that will become usable
when new servers are available.

• “Durable file handles” [10] allowing easier recon-
nection after temporary network failure.

• Larger maximum operation sizes, and improved
compound operation (“AndX”) support also have
been claimed but not proved.

Currently 19 SMB2 commands are known:

0x00 NegotiateProtocol 0x0A Lock
0x01 SessionSetupAndX 0x0B Ioctl
0x02 SessionLogoff 0x0C Cancel
0x03 TreeConnect 0x0D KeepAlive
0x04 TreeDisconnect 0x0E Find
0x05 Create 0x0F Notify
0x06 Close 0x10 GetInfo
0x07 Flush 0x11 SetInfo
0x08 Read 0x12 Break
0x09 Write

Many of the infolevels used by the GetInfo/SetInfo com-
mands will be familiar to those who have worked with
CIFS.

5 POSIX Conformance

5.1 NFS

NFS version 3 defined 21 network file system operations
(four more than NFS version 2) roughly corresponding
to common VFS (Virtual File System) entry points that
Unix-like operating systems require. NFS versions 2
and 3 were intended to be idempotent (stateless), and
thus had difficulty preserving POSIX semantics. With
the addition of a stateful lock daemon, an NFS version 3
client could achieve better application compatibility, but
still can behave differently [6] than local file systems in
at least four areas:

1. Rename of an open file. For example, the silly re-
name approach often used by nfs clients for renam-
ing open files could cause rm -rf to fail.

2. Deleting an existing file or directory can appear to
fail (as if the file were not present) if the request is
retransmitted.

3. Byte range lock security (Since these services are
distinct from the nfs server, both lockd and statd
have had problems in this area).

4. write semantics (when caching was done on the
client).

NFS also required additional protocol extensions to be
able to support POSIX ACLs, and also lacked sup-
port for xattrs (OS/2 EAs), creation time (birth time),
nanosecond timestamps, and certain file flags (im-
mutable, append-only etc.). Confusingly, the NFS pro-
tocol lacked a file open and close operation until NFS
version 4, and thus could only implement a weak cache
consistency model.

5.2 NFSv4

NFS version 4, borrowing ideas from other protocols in-
cluding CIFS, added support for an open and close op-
eration, became stateful, added support for a rich ACL
model similar to NTFS/CIFS ACLs, and added sup-
port for safe caching and a wide variety of extended
attributes (additional file metadata). It is possible for
an NFS version 4 implementation to achieve better ap-
plication compatibility than before without necessarily
sacrificing performance.
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5.3 CIFS

The CIFS protocol can be used by a POSIX compli-
ant operating system for most operations, but compen-
sations are needed in order to properly handle POSIX
locks, special files, and to determine approximate rea-
sonable values for the mode and owner fields. There are
other problematic operations that, although not strictly
speaking POSIX issues, are important for a network
file system in order to achieve true local remote trans-
parency. They include symlink, statfs, POSIX ACL op-
erations, xattrs, directory change notification (including
inotify) and some commonly used ioctls (for example
those used for the lsattr and chattr utilities). Without
protocol extensions, the CIFS protocol can adequately
be used for most important operations but differences
are visible as seen in figure 1.

5.4 CIFS with Unix Protocol Extensions

As can be seen in figure 2, with the CIFS Unix Exten-
sions it is possible to more accurately emulate local se-
mantics for complex applications such as a Linux desk-
top.

The Unix Extensions to the CIFS Protocol have been
improved in stages. An initial set, which included var-
ious new infolevels to TRANSACT2 commands in the
range from 0x200 to 0x2FF (inclusive), was available
when CAP_UNIX was included among the capabilities
returned by the SMB negotiate protocol response.

Additional POSIX extensions are negotiated via a get
and set capabilities request on the tree connection via a
Unix QueryFSInfo and SetFSInfo level. Following is a
list of the capabilties that may be negotiated currently:

• CIFS_UNIX_FCNTL_LOCKS_CAP

• CIFS_UNIX_POSIX_ACLS_CAP

• CIFS_UNIX_XATTR_CAP

• CIFS_UNIX_EXATTR_CAP

• CIFS_UNIX_POSIX_PATHNAMES_CAP (all
except slash supported in pathnames)

• CIFS_UNIX_POSIX_PATH_OPS_CAP

A range of information levels above 0x200
has been reserved by Microsoft and the SNIA
CIFS Working Group for Unix Extensions.
These include Query/SetFileInformation and
Query/SetPathInformation levels:

QUERY FILE UNIX BASIC 0x200 Part of the initial Unix Extensions
QUERY FILE UNIX LINK 0x201 Part of the initial Unix Extensions
QUERY POSIX ACL 0x204 Requires

CIFS UNIX POSIX ACL CAP
QUERY XATTR 0x205 Requires

CIFS UNIX XATTR CAP
QUERY ATTR FLAGS 0x206 Requires

CIFS UNIX EXTATTR CAP
QUERY POSIX PERMISSION 0x207
QUERY POSIX LOCK 0x208 Requires

CIFS UNIX FCNTL CAP
SMB POSIX PATH OPEN 0x209 Requires

CIFS UNIX POSIX PATH OPS CAP
SMB POSIX PATH UNLINK 0x20a Requires

CIFS UNIX POSIX PATH OPS CAP
SMB QUERY FILE UNIX INFO2 0x20b Requires

CIFS UNIX EXTATTR CAP

Currently the CIFS Unix Extensions also include the
following Query/SetFileSystemInformation levels that
allow retrieving information about a particular mounted
export (“tree connection”), and negotiating optional ca-
pabilities. Note that unlike NFS and SMB/CIFS, the
CIFS Unix Extensions allow different capabilities to be
negotiated in a more granular fashion, by “tree connec-
tion” rather than by server session.

If a server is exporting resources located on two very
different file systems, this can be helpful.

SMB QUERY CIFS UNIX INFO 0x200 (Part of the orig-
inal Unix Exten-
sions)

SMB QUERY POSIX FS INFO 0x201
SMB QUERY POSIX WHO AM I 0x202

These Unix Extensions allow a CIFS client to set and
return fields such as uid, gid and mode, which otherwise
have to be approximated based on CIFS ACLs. They
also drastically reduce the number of network roundtrips
and operations required for common path based opera-
tions. For example, with the older CIFS Unix Exten-
sions, a file create operation takes many network opera-
tions: QueryPathInfo, NTCreateX, SetPathInfo, Query-
PathInfo in order to implement local Unix create seman-
tics correctly. File creation can be done in one network
roundtip using the new SMB_POSIX_PATH_OPEN,
which reduces latency and allows the server to better
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Figure 1: Without extensions to CIFS, local (upper window) vs. remote (below) transparency problems are easily
visible

optimize. The improved atomicity of mkdir and create
makes error handling easier (e.g. in case a server failed
after a create operation, but before the SetPathInfo).

5.5 SMB2

The SMB2 protocol improves upon its predecessors by
including symlink support. However, retrieving mode
and Unix uid and gid from NTFS/CIFS ACLs is still
awkward. SMB2 appears to be only slightly improved
in this area, and substantially worse than the CIFS Unix
Extensions for this purpose.

6 Performance

CIFS has often been described as a chatty protocol, im-
plying that it is inherently slower than NFS, but this is
misleading. Most of the chattiness observed in CIFS
is the result of differences between the operating sys-
tem implementations being compared (e.g. Windows vs.
Linux). Another factor that leads to the accusation of the
CIFS protocol being chatty (wasteful of network band-
width) is due to periodic broadcast frames that contain
server announcements (mostly in support of the Win-
dows Network Neighborhood). These are not a required
part of CIFS, but are commonly enabled on Windows

servers so that clients and/or “Browse Masters” contain
current lists of the active servers in a resource domain.

There are differences between these protocols that could
significantly affect performance. Some examples in-
clude: compound operations, maximum read and write
sizes, maximum number of concurrent operations, en-
dian transformations, packet size, field alignment, dif-
ficult to handle operations, and incomplete operations
that require expensive compensations.

To contrast features that would affect performance it is
helpful to look at some examples.

6.1 Opening an existing file

The SMB2 implementation needs a surprising eight re-
quests to handle this simple operation.

6.2 Creating a new file

The SMB2 protocol appears to match perfectly the re-
quirements of the Windows client here. Attempting a
simple operation like:
echo new file data > newfile

results in the minimum number of requests that would
reasonably be expected (opencreate, write, close). Three
requests and three responses (823 bytes total).
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Figure 2: Better local (upper window) vs. remote (below) transparency with CIFS Unix extensions

6.3 Mount (NET USE)

Once again the SMB2 protocol appears to match well
the requirement of the client with only 11 requests
(four are caused by the Windows desktop trying to open
Desktop.ini and AutoRun.inf).

7 Linux Implementation

Much of the progress on SMB2 has been due to ex-
cellent work by the Samba 4 team, led by Dr. Andrew
Tridgell. Over the past year and a half, they have imple-
mented a comprehensive client library for SMB2, im-
plemented a test suite (not as comprehensive yet), im-
plemented DCE/RPC over SMB2 (for remote admin-
istration), implemented a SMB2 server (not complete),
and in cooperation with Ronnie Sahlberg, implemented
a wireshark (ethereal) protocol analyzer.

8 Future Work and Conclusions

Although great progress has been made on a proto-
type user space client in Samba 4, an implementation
of SMB2 in kernel on Linux also needs to be com-
pleted. We have started a prototype. The SMB2 pro-
tocol represents a modest improvement over the older

SMB/CIFS protocol, and should be slightly better de-
spite the slightly larger frame size caused by the larger
header. With fewer commands to optimize and better
aligned fields, performance may be slightly improved as
server developers better tune their SMB2 implementa-
tions.

Despite the addition of support for symlinks, the SMB2
protocol lacks sufficient support for features needed by
Unix and Linux clients. Adding Unix extensions to
SMB2, similar to what has been done with CIFS, is pos-
sible and could reuse some of the existing Unix specific
infolevels.

With current Linux kernels, NFS version 4 and CIFS
(cifs client/Samba server) are good choices for network
file systems for Linux to Linux. NFS performance
for large file copy workloads is better, and NFS offers
some security options that the Linux cifs client does
not. In heterogeneous environments that include Win-
dows clients and servers, Samba is often much easier to
configure.
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octet 1 2 3 4 5 6 7 8

RFC 1001 
msg type 
(session)

SMB length (some reserve top 7 bits) 0xFF 'S' 'M' 'B'

SMB 
Command

Status (error) code SMB flags SMB flags2

Process ID (high order) SMB Signature

SMB signature (continued) Reserved Tree Identifier Process Id (Low)

SMB User Identifier Word Count (variable number of 16 bit 
parameters follow)

Byte Count (size of data area) (data area 
follows)

Table 1: SMB Header Format (39 bytes + size of command specific wct area)

octet 1 2 3 4 5 6 7 8

RFC 1001 
msg type 
(session)

SMB length 0xFE 'S' 'M' 'B'

SMB Header length (64) reserved Status (error) code

SMB2 Command Unknown SMB2 Flags

Reserved Sequence number

Sequence Number (continued) Process Id

Tree Identifier SMB User Identifier

SMB User Identifier SMB Signature

SMB Signature (continued)

SMB Signature (continued) SMB2 Parameter length (in 
bytes)

Variable 
length SMB 
Parm

Variable 
length SMB 
Data

Table 2: SMB2 Header Format (usually 68 bytes + size of command specific parameter area)

octet 1 2 3 4 5 6 7 8

SunRPC Fragment Header XID

Message Type (Request vs. Response) SunRPC Version

Program: NFS (100003) Program Version (e.g. 3)

NFS Command Authentication Flavor (e.g. AUTH_UNIX)

Credential Length Credential Stamp

Machine Name length Machine name (variable size)

Machine Name (continued, variable length)

Unix UID Unix GID

Auxiliary GIDs (can be much larger)

Verifier Flavor Verifier Length

NFS Command Parameters and/or Data follow

Table 3: SunRPC/NFSv3 request header format (usually more than 72 bytes + size of nfs command)
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Abstract

Some modern processors such as later Opterons R© and
Power R© processors are able to support large pages sizes
such as 1GiB and 16GiB. These page sizes are imprac-
tical to reserve at boot time because of the amount of
memory that is potentially wasted. Currently, Linux R©

as it stands is not well suited to support multiple page
sizes because it makes no effort to satisfy allocations for
contiguous regions of memory. This paper will discuss
features under development that aim to support the allo-
cation of large contiguous areas.

This paper begins by discussing the current status of
mechanisms to reduce external fragmentation in the
page allocator. The reduction of external fragmenta-
tion results in sparsely populated superpages that must
be reclaimed for contiguous allocations to succeed. We
describe how poor reclaim decisions offset the perfor-
mance benefits of superpages in low-memory situations,
before introducing a mechanism for the intelligent re-
claim of contiguous regions. Following a presentation
of metrics used to evaluate the features and the results,
we propose a memory compaction mechanism that mi-
grates pages from sparsely populated to dense regions
when enough memory is free to avoid reclaiming pages.
We conclude by highlighting that parallel allocators pre-
vent contiguous allocations by taking free pages from
regions being reclaimed. We propose a method for ad-
dressing this by making pages temporarily unavailable
to allocators.

1 Introduction

Any architecture supporting virtual memory is required
to map virtual addresses to physical addresses through
an address translation mechanism. Recent translations
are stored in a cache called a Translation Lookaside
Buffer (TLB). TLB Coverage is defined as memory ad-
dressable through this cache without having to access

the master tables in main memory. When the master
table is used to resolve a translation, a TLB Miss is in-
curred. This can have as significant an impact on Clock
cycles Per Instruction (CPI) as CPU cache misses [3].
To compound the problem, the percentage of memory
covered by the TLB has decreased from about 10% of
physical memory in early machines to approximately
0.01% today [6]. As a means of alleviating this, mod-
ern processors support multiple page sizes, usually up to
several megabytes, but gigabyte pages are also possible.
The downside is that processors commonly require that
physical memory for a page entry be contiguous.

In this paper, mechanisms that improve the success rates
of large contiguous allocations in the Linux kernel are
discussed. Linux already supports two page sizes, re-
ferred to as the base page and the huge page. The paper
begins with an update on previous work related to the
placement of pages based on their mobility [2]. A per-
centage of pages allocated by the kernel are movable
due to the data being referenced by page tables or triv-
ially discarded. By grouping these pages together, con-
tiguous areas will be moved or reclaimed to satisfy large
contiguous allocations. As a bonus, pages used by the
kernel are grouped in areas addressable by fewer large
TLB entries, reducing TLB misses.

Work on the intelligent reclaim of contiguous areas is
then discussed. The regular reclaim algorithm reclaims
base pages but has no awareness of contiguous areas.
Poor page selections result in higher latencies and lower
success rates when allocating contiguous regions.

Metrics are introduced that evaluate the placement pol-
icy and the modified reclaim algorithm. After describing
the test scenario, it is shown how the placement policy
keeps a percentage of memory usable for contiguous al-
locations, and the performance impact is discussed. It
is then shown how the reclaim algorithm satisfies the al-
location of contiguous pages faster than the regular re-
claim.

• 141 •
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The remainder of the paper proposes future features to
improve the allocation of large contiguous regions. In-
vestigation showed that contiguous areas were sparsely
populated and that compacting memory would be a logi-
cal step. A memory compaction mechanism is proposed
that will be rarely triggered, as an effective placement
policy significantly reduces the requirement for com-
paction [1] [4]. Additional investigation revealed that
parallel allocators use pages being reclaimed, preempt-
ing the contiguous allocation. This is called the racing
allocator problem. It is proposed that pages being re-
claimed be made unavailable to other allocators.

2 External Fragmentation

External fragmentation refers to the inability to satisfy
an allocation because a sufficiently sized free area does
not exist despite enough memory being free overall [7].
Linux deals with external fragmentation by rarely re-
quiring contiguous pages. This is unsuitable for large,
contiguous allocations. In our earlier work, we defined
metrics for measuring external fragmentation and two
mechanisms for reducing it. This section will discuss
the current status of the work to reduce external frag-
mentation. It also covers how page types are distributed
throughout the physical address space.

2.1 Grouping Pages By Mobility

Previously, we grouped pages based on their abil-
ity to be reclaimed and called the mechanism anti-
fragmentation. Pages are now grouped based on their
ability to be moved, and this is called grouping pages
by mobility. This takes into account the fact that pages
mlock()ed in memory are movable by page migration,
but are not reclaimable.

The standard buddy allocator always uses the smallest
possible block for an allocation, and a minimum num-
ber of pages are kept free. These free pages tend to re-
main as contiguous areas until memory pressure forces a
split. This allows occasional short-lived, high-order al-
locations to succeed, which is why setting min_free_
kbytes to 163841 benefits Ethernet cards using jumbo
frames. The downside is that once split, there is no guar-
antee that the pages will be freed as a contiguous area.
When grouping by mobility, the minimum number of

1A common recommendation when using jumbo frames.

free pages in a zone are stored in contiguous areas. De-
pending on the value of min_free_kbytes, a num-
ber of areas are marked RESERVE. Pages from these
areas are allocated when the alternative is to fail.

Previously, bits from page→flags were used to track
individual pages. A bitmap now records the mobility
type of pages within a MAX_ORDER_NR_PAGES area.
This bitmap is stored as part of the struct zone for
all memory models except the SPARSEMEM, where the
memory section is used. As well as avoiding the con-
sumption of page→flags bits, tracking page type by
area controls fragmentation better.

Previously effective control of external fragmentation
required that min_free_kbytes be 5% to 10% of
physical memory, but this is no longer necessary. When
it is known there will be bursts of high-order atomic
allocations during the lifetime of the system, min_
free_kbytes should be increased. If it is found
that high order allocations are failing, increasing min_
free_kbytes will free pages as contiguous blocks
over time.

2.2 Partitioning Memory

When grouping pages by mobility, the maximum num-
ber of superpages that may be allocated on demand is
dependent on the workload and the number of mov-
able pages in use. This level of uncertainty is not al-
ways desirable. To have a known percentage of memory
available as contiguous areas, we create a zone called
ZONE_MOVABLE that only contains pages that may be
migrated or reclaimed. Superpage allocations are not
movable or reclaimable but if a sysctl is set, superpage
allocations are allowed to use the zone. Once the zone
is sized, there is a reasonable expectation that the super-
page pool can be grown at run-time to at least the size of
ZONE_MOVABLE while leaving the pages available for
ordinary allocations if the superpages are not required.

The size in bytes of the MAX_ORDER area varies be-
tween systems. On x86 and x86-64 machines, it is 4MiB
of data. On PPC64, it is 16MiB; on an IA-64 support-
ing huge pages, it is often 1GiB. If a developer requires
a 1GiB superpage on Power there is no means to pro-
viding it, as the buddy allocator does not have the nec-
essary free-lists. Larger allocations could be satisfied
by increasing MAX_ORDER, but this is a compile-time
change and not desirable in the majority of cases. Gen-
erally, supporting allocations larger than MAX_ORDER_
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Standard Allocator Grouping By Mobility

Figure 1: Distribution of Page Types

NR_PAGES requires adjacent MAX_ORDER_NR_PAGES

areas to be the same mobility type. The memory par-
tition provides this guarantee.

The patches to group pages by mobility and partition
memory were merged for wider testing in the Linux ker-
nel version 2.6.21-rc2-mm2 despite some scepticism
on the wider utility of the patches. Patches to allocate
adjacent MAX_ORDER_NR_PAGES are planned.

2.3 Comparing Distribution

Figure 1 shows where pages of different mobility types
are placed with the standard allocator and when group-
ing by mobility. Different colours are assigned to pages
of different mobility types and each square represents
MAX_ORDER_NR_PAGES. When the snapshot was taken
the system had been booted, a 32MiB file was cre-
ated and then deleted. It is clear in the figure that
MAX_ORDER_NR_PAGES areas contain pages of mixed
types with the standard allocator, but the same type
when when grouping by mobility. This “mixing” in the
standard allocator means that contiguous allocations are
not likely to succeed even if all reclaimable memory is
released.

It is clear from the figure that grouping pages by mobil-
ity does not guarantee that all of memory may be allo-
cated as contiguous areas. The algorithm depends on a
number of areas being marked MOVABLE so that they
may be migrated or reclaimed. To a lesser extent it de-
pends on RECLAIMABLE blocks being reclaimed. Re-
claiming those blocks is a drastic step because there is
no means to target the reclamation of kernel objects in a
specific area.

Despite these caveats, the result when grouping pages
by mobility is that a high percentage of memory may be

allocated as contiguous blocks. With memory partition-
ing, a known percentage of memory will be available.

3 Reclaim

When an allocation request cannot be satisfied from the
free pool, memory must be reclaimed or compacted. Re-
claim is triggered when the free memory drops below a
watermark, activating kswapd, or when available free
memory is so low that memory is reclaimed directly by
a process.

The allocator is optimised for base page-sized alloca-
tions, but the system generates requests for higher or-
der areas. The regular reclaim algorithm fares badly in
the face of such requests, evicting significant portions of
memory before areas of the requested size become free.
This is a result of the Least Recently Used (LRU) reclaim
policy. It evicts pages based on age without taking page
locality into account.

Assuming a random page placement at allocation and
random references over time, then pages of similar LRU
age are scattered throughout the physical memory space.
Reclaiming based on age will release pages in random
areas. To guarantee the eviction of two adjacent pages
requires 50% of all pages in memory to be reclaimed.
This requirement increases with the size of the requested
area tending quickly towards 100%. Awareness is re-
quired of the size and alignment of the allocation or the
performance benefits of superpage use are offset by the
cost of unnecessarily reclaiming memory.

3.1 Linear Area Reclaim

To fulfil a large memory request by reclaiming, a con-
tiguous aligned area of pages must be evicted. The re-
sultant free area is then returned to the requesting pro-
cess. Simplistically this can be achieved by linearly
scanning memory, applying reclaim to suitable contigu-
ous areas. As reclaim completes, pages coalesce into a
contiguous area suitable for allocation.

The linear scan of memory ignores the age of the page
in the LRU lists. But as previously discussed, scanning
based on page age is highly unlikely to yield a contigu-
ous area of the required size. Instead, a hybrid of these
two approaches is used.
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Figure 2: Area Reclaim area selection

3.2 LRU-Biased Area Reclaim

LRU-Biased Area Reclaim (Area Reclaim)2 is a hybrid
reclaim algorithm incorporating linear area reclaim into
the regular LRU-based aging algorithm. Instead of lin-
early scanning memory for a suitable area, the tails of
the active and inactive LRU lists are used as a starting
point.

Area Reclaim follows the regular approach of target-
ing pages in the LRU list order. First, an area in the
active list is selected based on the oldest page in that
list. Active pages in that area are rotated to the inactive
list. An area in the inactive list is then selected based
on the oldest page in that list. All pages on the LRU
lists within this area are then reclaimed. When there is
allocation pressure at a higher order, this tends to push
groups of pages in the same area from the active list onto
the head of the inactive list increasing the chances of re-
claiming areas at its tail in the future. On the assump-
tion there will be future allocations of the same size,
kswapd applies pressure at the largest size required by
an in-progress allocation.

Figure 2 shows an example memory layout. As an
example, consider the application of Area Reclaim at
order-3. The active and inactive lists work their way
through the pages in memory indicating the LRU-age
of those pages. In this example, the end of the active
list is in the second area and the end of the inactive list
is in the third area. Area Reclaim first applies pressure
to the active list, targeting the second area. Next it ap-
plies pressure to the inactive list, targeting area three.
All pages in this area are reclaimable or free and it will
coelesce.

While targeting pages in an area, we maintain the age-
based ordering of the LRU to some degree. The down-
side is that younger, active and referenced pages in the

2This was initially based on Peter Zijlstra’s modifications to last
year’s Linear Reclaim algorithm, and is commonly known as Lumpy
Reclaim.

x86-64 Test Machine

CPU Opteron R© 2GHz
# Physical CPUs 2
# CPUs 4
Main Memory 1024MiB

PPC64 Test Machine

CPU Power5 R© PPC64
1.9GHz

# Physical CPUs 2
# CPUs 4
Main Memory 4019MiB

Figure 3: Specification of Test Machines

same area are all targeted prematurely. The higher the
order of allocation, the more pages that are unfairly
treated. This is unavoidable.

4 Experimental Methodology

The mechanisms are evaluated using three tests: one
related to performance, and two that are known to ex-
ternally fragment the system under normal conditions.
Each of the tests is run in order, without intervening
reboots, to maximise the chances of the system being
fragmented. The tests are as follows.

kernbench extracts the kernel and then builds it three
times. The number of jobs make runs is the number of
processors multiplied by two. The test gives an over-
all view of the kernel’s performance and is sensitive to
changes that alter scalability.

HugeTLB-Capability is unaltered from our previous
study. For every 250MiB of physical memory, a kernel
compile is executed in parallel. Attempts are made to
allocate hugepages through the kernel’s proc interface
under load and at the end of test.

Highalloc-Stress builds kernels in parallel, but in addi-
tion, updatedb runs so that the kernel will make many
small unmovable allocations. Persistent attempts are
made to allocate hugepages at a constant rate such that
kswapd should not queue more than 16MiB/s I/O. Pre-
vious tests placed 300MiB of data on the I/O queue in
the first three seconds, making comparisons of reclaim
algorithms inconclusive.
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All benchmarks were run using driver scripts from VM-
Regress 0.803 in conjunction with the system that gen-
erates the reports on http://test.kernel.org.
Two machines were used to run the benchmarks based
on 64-bit AMD R© Opteron and POWER5 R© architec-
tures, as shown in Figure 3.

On both machines, a minimum free reserve of 5 ∗
MAX_ORDER_NR_PAGES was set, representing 2%
of physical memory. The placement policy is effective
with a lower reserve, but this gives the most predictable
results. This is due to the low frequency that page types
are mixed under memory pressure. In contrast, our pre-
vious study required fives times more space to reduce
the frequency of fallbacks.

5 Metrics

In this section, five metrics are defined that evaluate
fragmentation reduction and the modified reclaim algo-
rithm. The first metric is system performance, used to
evaluate the overhead incurred when grouping pages by
mobility. The second metric is overall allocator effec-
tiveness, measuring the ability to service allocations. Ef-
fectiveness is also used as the basis of our third metric,
reclaim fitness, measuring the correctness of the reclaim
algorithm. The fourth metric is reclaim cost, measuring
the processor and I/O overheads from reclaim. The final
metric is inter-allocation latency, measuring how long
it takes for an allocation to succeed.

5.1 System Performance

The performance of the kernel memory allocator is crit-
ical to the overall system. Grouping pages by mobility
affects this critical path and any significant degradation
is intolerable. The kernbench benchmark causes high
load on the system, particularly in the memory alloca-
tor. Three compilation runs are averaged, giving pro-
cessor utilisation figures to evaluate any impact of the
allocator paths.

5.2 Effectiveness

The effectiveness metric measures what percentage of
physical memory can be allocated as superpages

3http://www.csn.ul.ie/~mel/projects/
vmregress/vmregress-0.80.tar.gz

E = (Ar ∗100)/At

where Ar is the number of superpages allocated and At

is the total number of superpages in the system. During
the Highalloc-Stress test, attempts are made to allocate
superpages under load and at rest, and the effectivess
is measured. Grouping pages by mobility should show
an increase in the effectiveness when the system is at
rest at the end of a test. Under load, the metric is a
key indicator of the intelligent reclaim algorithm’s area
selection.

5.3 Reclaim Fitness

Reclaim fitness validates the reclaim algorithm. When
applied to 100% of memory, any correct algorithm will
achieve approximately the same effectiveness. A low
variance implies a correct algorithm. An incorrect algo-
rithm may prematurely exit or fail to find pages.

5.4 Reclaim Cost

The reclaim cost metric measures the overhead incurred
by scanning, unmapping pages from processes, and
swapping out. Any modification to the reclaim algo-
rithm affects the overall cost to the system. Cost is de-
fined as:

C = log10((Cs ∗Ws)+(Cu ∗Wu)+(Cw ∗Ww))

where Cs is the number of pages scanned, Cu is the num-
ber of pages unmapped, and Cw is the number of pages
we have to perform I/O for in order to release them. The
scaling factors are chosen to give a realistic ratio of each
of these operations. Ws is given a weight of 1, Wu is
weighted as 1000 and Ww is weighted at 1,000,000.

The cost metric is calculated by instrumenting the kernel
to report the scan, unmap, and write-out rates. These are
collected while testing effectiveness. This metric gives a
measure of the cost to the system when reclaiming pages
by indicating how much additional load the system ex-
periences as a result of reclaim.
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Figure 4: Inter-Allocation Latencies

5.5 Inter-Allocation Latency

Given a regular stream of allocation attempts of the
same size, the inter-allocation latency metric measures
the time between successful allocations. There are three
parts to the metric. The inter-allocation latency vari-
ability is defined as the standard deviation of the inter-
allocation delay between successful allocations. The
mean is the arithmetic mean of these inter-allocation de-
lays. The worst-case allocation time is simply the worst
inter-allocation delay.

The inter-allocation times are recorded when measur-
ing effectivess. Figure 4 shows the raw inter-allocation
times for regular and Area Reclaim. The fixed-height
vertical red lines indicate where an additional 5% of
memory was allocated as superpages. A vertical green
bar indicates when an allocation succeeded and the
height indicates how long since the last success. The
large portions of white on the left side of the regular re-
claim graph indicate the time required for enough mem-
ory to be reclaimed for contiguous allocations to suc-
ceed. In contrast, Area Reclaim does not regularly fail
until 50% of memory is allocated as superpages.

A key feature of a good reclaim algorithm is to provide
a page of the requested size in a timely manner. The
inter-allocation variability metric gives us a measure of
the consistency of the algorithm. This is particularly sig-
nificant during the transition from low to high allocator
load, as allocations are time critical.

x86-64 Test Machine
CPU Mobility Delta
Time Off On (%)

User 85.83 86.78 1.10
System 35.92 34.07 –5.17
Total 121.76 120.84 –0.75

PPC64 Test Machine
CPU Mobility Delta
Time Off On (%)

User 312.43 312.24 –0.06
System 16.89 17.24 2.05
Total 329.32 329.48 0.05

Figure 5: Mobility Performance Comparison

6 Results

Four different scenarios were tested: two sets of runs
evaluating the effectiveness and performance of the page
mobility changes, and two sets of runs evaluating the
Regular and Area Reclaim algorithms.

Figure 5 shows the elapsed processor times when run-
ning kernbench. This is a fork()-, exec()-, I/O-,
and processor-intensive workload and a heavy user of
the kernel page allocator, making it suitable for measur-
ing performance regressions there. On x86-64, there is a
significant and measurable improvement in system time
and overall processor time despite the additional work
required by the placement policy. In Linux, the kernel
address space is a linear mapping of physical memory
using superpage Page Table Entries (PTEs). Grouping
pages by mobility keeps kernel-related allocations to-
gether in the same superpage area, reducing TLB misses
in the kernel portion of the working set. A performance
gain is found on machines where the kernel portion of
the working set exceeds TLB reach when the kernel al-
locations are mixed with other allocation types.

In contrast, the PPC64 figures show small performance
regressions. Here, the kernel portion of the address
space is backed by superpage entries, but the PPC64
processor has at least 1024 TLB entries, or almost ten
times the number of x86-64. In this case, the TLB is able
to hold the working set of the kernel portion whether
pages are grouped by mobility or not. This is com-
pounded by running kernbench immediately after boot,
causing allocated physical pages to be grouped together.
PPC64 is expected to show similar improvements due
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to reduced TLB misses with workloads that have large
portions of their working sets in the kernel address space
and when the system has been running for a long time.

Where there are no benefits due to reduced TLB misses
in the kernel portion of a working set, regressions of be-
tween 0.1% and 2.1% are observed in kernbench. How-
ever, the worst observed regression in overall processor
time is 0.12%. Given that kernbench is an unusually
heavy user of the kernel page allocator and that super-
pages potentially offer considerable performance bene-
fits, this minor slowdown is acceptable.

 Mobility On

 Mobility Off

 0  10  20  30  40  50  60  70  80

x86-64 Test Machine

Allocated (%)

 Mobility On

 Mobility Off

 0  10  20  30  40  50  60  70  80

PPC64 Test Machine

Allocated (%)

Figure 6: Mobility Effectiveness

Figure 6 shows overall effectiveness. The pair of bars
show the percentage of memory successfully allocated
as superpages under load during the Highalloc-Stress
stress and at the end when the system is at rest. The
figures show that grouping the pages significantly im-
proves the success rates for allocations. In particular on
PPC64, dramatically fewer superpages were available at
the end of the tests in the standard allocator. It has been
observed that the longer systems run without page mo-
bility enabled, the closer to 0% the success rates are.

Figure 7 compares the percentage of memory allocated
as huge pages at the end of all test for both reclaim al-
gorithms. Both algorithms should be dumping almost

Reclaim Delta
Arch

Regular Area (%)
x86-64 64.53 73.15 8.62
PPC64 72.11 70.12 -1.99

Figure 7: Correctness

all of memory, so the figures should always be compa-
rable. The figures are comparable or improved, so it is
known that Area Reclaim will find all reclaimable pages
when under pressure. This validates the Area Reclaim
scanner.

 Area
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x86-64 Test Machine

Cost (log scale)
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Figure 8: Cost Comparison

Figure 8 shows that the cost of Area Reclaim are higher
than those of Regular reclaim, but not by a considerable
margin. Later we will show the the time taken to allocate
the required areas is much lower with Area Reclaim and
justifies the cost. Cost is a trade-off. On one hand the
algorithm must be effective at reclaiming areas of the
requested size in a reasonable time. On the other, it must
avoid adversely affecting overall system utility while it
is in operation.

The first row of graphs in Figure 9 shows the inter-
allocation variability as it changes over the course of the
test. Being able to deliver ten areas 20 seconds after they
are requested is typically of no use. Note that in both al-
gorithms, the variability is worse towards the start, with
Area Reclaim significantly out-performing Regular Re-
claim.

The second row of graphs in Figure 9 shows the mean
inter-allocation latency as it changes over the course of
the test. It is very clear that the Area Reclaim inter-
allocation latency is more consistent for longer, and gen-
erally lower than that for Regular reclaim.

The third row of graphs in Figure 9 shows the worst-
case inter-allocation latency. Although the actual worst-
case latencies are very similar with the two algorithms,
it is clear that Area Reclaim maintains lower latency for
much longer. The worst-case latencies for Area Reclaim
are at the end of the test, when very few potential con-
tiguous regions exist.
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The superpage size on PPC64 is eight times larger than
that on x86-64. Increased latencies between the archi-
tectures is to be expected, as reclaiming the required
contiguous area is exponentially more difficult. Inspec-
tion of the graphs shows that Area Reclaim allocates
superpages faster on both x86-64 and PPC64. The in-
creased effectiveness of the Area Reclaim algorithm is
particularly noticeable on PPC64 due to the larger su-
perpage size.

6.1 Results Summary

The effectiveness and performance comparisons show
that grouping pages by mobility and Area Reclaim is
considerably better at allocating contiguous regions than
the standard kernel, while still performing well. The
cost and latency metrics show that for a moderate in-
crease in work, we get a major improvement in alloca-
tion latency under load. A key observation is that early
allocations under load with Area Reclaim have consider-
ably lower latency and variability in comparison to the
standard allocator. Typically a memory consumer will
not allocate all of memory as contiguous areas, but allo-
cate small numbers of contiguous areas in short bursts.
Even though it is not possible to anticipate bursts of con-
tiguous allocations, they are handled successfully and
with low latency by the combination of grouping pages
by mobility and Area Reclaim.

7 Memory Compaction

Reclaim is an expensive operation and the cost might
exceeed the benefits of using superpages, particularly
when there is enough memory free overall to satisfy the
allocation. This paper proposes a memory compaction
mechanism that moves pages so that there are fewer, but
larger and contiguous, free areas. The term defragmen-
tation is avoided because it implies all pages are mov-
able, which is not the case in Linux. At the time of writ-
ing, no such memory compaction daemon has been de-
veloped, although a page migration mechanism[5] does
exist in the kernel.4

7.1 Compaction Mechanism

The compaction mechanism will use the existing page
migration mechanism to move pages. The page mobility

4As implemented by Christoph Lameter.

type information stored for a MAX_ORDER_NR_PAGES

area will be used to select where pages should be mi-
grated. Intuitively the best strategy is to move pages
from sparsely to densely populated areas. This is un-
suitable for two reasons. First, it involves a full scan of
all pages in a zone and sorting areas based on density.
Second, when compaction starts, areas that were previ-
ously sparse may no longer be sparse unless the system
was frozen during compaction, which is unacceptable.

The compaction mechanism will group movable pages
towards the end of a zone. When grouping pages by mo-
bility, the location of unmovable pages is biased towards
the lower addresses, so these strategies work in con-
junction. As well as supporting the allocation of very
large contiguous areas, biasing the location of movable
pages towards the end of the zone potentially benefits
the hot-removal of memory and simplifies scanning for
free pages to migrate to.

When selecting free pages, the free page scanner begins
its search at the end of a zone and moves towards the
start. Areas marked MOVABLE are selected. The free
pages contained within are removed from the free-lists
and stored on a private list. No further scanning for free
pages occurs until the pages on the private list are de-
pleted.

When selecting pages to move, the migration scanner
searches from the start of a zone and moves towards the
end. It searches for pages that are on the LRU lists, as
these are highly likely to be migratable. The selection
of an area is different when a process or a compaction
daemon is scanning. This process will be described in
the next two sections.

A compaction run always ends when the two scanners
meet. At that point, it is known that it is very unlikely
that memory can be further compacted unless memory
is reclaimed.

7.2 Direct Compaction

At the time of an allocation failure, a process must de-
cide whether to compact or reclaim memory. The ex-
tent of external fragmentation depends on the size of the
allocation request. In our previous paper, two metrics
were defined that measure external fragmentation. They
are reintroduced here, but not discussed in depth except
as they apply to memory compaction.
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Fragmentation index is the first metric and is only mean-
ingful when an allocation fails due to a lack of a suitable
free area. It determines if the allocation failure was due
to a lack of free memory or external fragmentation. The
index is calculated as

Fi( j) = 1− TotalFree/2 j

AreasFree

where TotalFree is the number of free pages, j is the
order of the desired allocation, and AreasFree is the
number of contiguous free areas of any size. When
AreasFree is 0, Fi( j) is defined as 0.

A value tending towards 0 implies the allocation failed
due to lack of memory and the process should reclaim.
A value tending towards 1 implies the failure is due to
external fragmentation and the process should compact.
If a process tries to compact memory and fails to satisfy
the allocation, it will then reclaim.

It is difficult to know in advance if a high fragmenta-
tion index is due to areas used for unmovable alloca-
tions. If it is, compacting memory will only consume
CPU cycles. Hence when the index is high but before
compaction starts, the index is recalculated using only
blocks marked MOVABLE. This scan is expensive, but
can take place without holding locks, and it is consider-
ably cheaper than unnecessarily compacting memory.

When direct compaction is scanning for pages to move,
only pages within MOVABLE areas are considered. The
compaction run ends when a suitably sized area is free
and the operation is considered successful. The steps
taken by a process allocating a contiguous area are
shown in Figure 10.

7.3 Compaction Daemon

kswapd is woken when free pages drop below a water-
mark to avoid processes entering direct reclaim. Sim-
ilarly, compactd will compact memory when external
fragmentation exceeds a given threshold. The daemon
becomes active when woken by another process or at a
timed interval.

There are two situations were compactd is woken up to
unconditionally compact memory. When there are not
enough pages free, grouping pages by mobility may be
forced to mix pages of different mobility types within

1. Attempt allocation
2. On success, return area
3. Calculate fragmentation index
4. If low memory goto 11
5. Scan areas marked MOVABLE
6. Calculate index based on

MOVABLE areas alone
7. If low memory goto 11
8. Compact memory
9. Attempt allocation

10. On success, return block
11. Reclaim pages
12. Attempt allocation
13. On success, return block
14. Failed, return NULL

Figure 10: Direct Compaction

an area. When a non-movable allocation is improperly
placed, compactd will be woken up. The objective is to
reduce the probability that non-movable allocations will
be forced to use a area reserved for MOVABLE because
movable pages were improperly placed. When kswapd
is woken because the high watermark for free pages is
reached, compactd is also woken up on the assumption
that movable pages can be moved from unmovable areas
to the newly freed pages.

If not explicitly woken, the daemon will wake regularly
and decide if compaction is necessary or not. The metric
used to make this determination is called the unusable
free space index. It measures what fraction of available
free memory may be used to satisfy an allocation of a
specific size. The index is calculated as

Fu( j) =
TotalFree−∑

i=n
i= j 2iki

TotalFree

where TotalFree is the number of free pages, 2n is the
largest allocation that can be satisfied, j is the order of
the desired allocation, and ki is the number of free page
blocks of size 2i. When TotalFree is 0, Fu is defined as
1.

By default the daemon will only be concerned with al-
locations of order-3, the maximum contiguous area nor-
mally considered to be reasonable. Users of larger con-
tiguous allocations would set this value higher. Com-
paction starts if the unusable free space index exceeds
0.75, implying that 75% of currently free memory is un-
usable for a contiguous allocation of the configured size.
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In contrast to a process directly reclaiming, the mi-
grate scanner checks all areas, not just those marked
MOVABLE. The compaction daemon does not exit until
the two scanners meet. The pass is considered a success
if the unusable free space index was below 0.75 before
the operation started, and above 0.75 after it completes.

8 Capturing Page Ranges

A significant factor in the efficiency of the reclaim algo-
rithm is its vulnerability to racing allocators. As pres-
sure is applied to an area of memory, pages are evicted
and released. Some pages will become free very rapidly
as they are clean pages; others will need expensive disk
operations to record their contents. Over this period,
the earliest pages are vulnerable to being used in servic-
ing another allocation request. The loss of even a single
page in the area prevents it being used for a contiguous
allocation request, rendering the work Area Reclaim re-
dundant.

8.1 Race Severity

In order to get a feel for the scale of the problem, the
kernel was instrumented to record and report how often
pages under Area Reclaim were reallocated to another
allocator. This was measured during the Highalloc-
stress test as described in Section 4.

The results in Figure 11 show that only a very small
portion of the areas targeted for reclaim survive to be
allocated. Racing allocations steal more than 97% of all
areas before they coalesce. The size of the area under
reclaim directly contributes to the time to reclaim and
the chances of being disrupted by an allocation.

Area Allocations Rate
Arch (MB) Good Raced (%)

x86-64 2 500 19125 2.61
PPC64 16 152 13544 1.12

Figure 11: Racing Allocations

8.2 Capture

If the reallocation of pages being reclaimed could be
prevented, there would be a significant increase in suc-

cess rates and a reduction in the overall cost for releas-
ing those areas. In order to evaluate the utility of seg-
regating the memory being released, a prototype cap-
ture system was implemented. Benchmarking showed
significant improvement in reallocation rates, but trig-
gered unexpected interactions with overall effectiveness
and increased the chances of the machine going out-of-
memory. More work is required.

9 Future Considerations

The intelligent reclaim mechanism focuses on the re-
claim of LRU pages because the required code is well
understood and reliable. However, a significant percent-
age of areas are marked RECLAIMABLE, usually mean-
ing that they are backed by the slab allocator. The slab
allocator is able to reclaim pages, but like the vanilla
allocator, it has no means to target which pages are re-
claimed. This is particularly true when objects in the
dentry cache are being reclaimed. Intelligently reclaim-
ing slab will be harder because there may be related ob-
jects outside of the area that need to be reclaimed first.
This needs investigation.

Memory compaction will linearly scan memory from
the start of the address space for pages to move. This
is suitable for compactd, but when direct compacting,
it may be appropriate to select areas based on the LRU
lists. Tests similar to those used when reclaiming will
be used to determine if the contiguous area is likely to
be successfully migrated. There are some potential is-
sues with this, such as when the LRU pages are already
at the end of memory, but it has the potential to reduce
stalls incurred during compaction.

The initial results from the page capture prototype are
promising but, they are not production-ready and need
further development and debugging. We have consid-
ered making the direct reclaim of contiguous regions
synchronous to reduce the latency and the number of
pages reclaimed.
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Abstract

System time is increasing on enterprise workloads
as multi-core and non-uniform memory architecture
(NUMA) systems become mainstream. A defining char-
acteristic of the increase in system time is an increase in
reference costs due to contention of shared resources—
instances of poor memory locality also play a role. An
exploration of these issues reveals further opportunities
to improve kernel scalability.

This paper examines kernel lock and scalability issues
encountered on enterprise workloads. These issues are
examined at a software level through structure definition
and organization, and at a hardware level through cache
line contention characteristics and system performance
metrics. Issues and opportunities are illustrated in the
process scheduler, I/O paths, timers, slab, and IPC.

1 Introduction

Processor stalls due to memory latency are the most sig-
nificant contributor to kernel CPI (cycles per instruc-
tion) on enterprise workloads. NUMA systems drive
kernel CPI higher as cache misses that cost hundreds
of clock cycles on traditional symmetric multiprocess-
ing systems (SMP) can extend to over a thousand clock
cycles on large NUMA systems. With a fixed amount
of kernel instructions taking longer to execute, system
time increases, resulting in fewer clock cycles for user
applications. Increases in memory latency have a sim-
ilar effect on the CPI of user applications. As a result,
minimizing the effects of memory latency increases on
NUMA systems is essential to achieving good scalabil-
ity.

Cache coherent NUMA systems are designed to over-
come limitations of traditional SMP systems, enabling
more processors and higher bandwidth. NUMA systems
split hardware resources into multiple nodes, with each

node consisting of a set of one or more processors and
physical memory units. Local node memory references,
including references to physical memory on the same
node and cache-to-cache transfers between processors
on the same node, are less expensive due to lower la-
tency. References that cross nodes, or remote node ref-
erences, are done at a higher latency due to the addi-
tional costs introduced by crossing a node interconnect.
As more nodes are added to a system, the cost to refer-
ence memory on a far remote node may increase further
as multiple interconnects are needed to link the source
and destination nodes.

In terms of memory latency, the most expensive kernel
memory references can be broadly categorized as re-
mote memory reads, or reads from physical memory on
a different node, and as remote cache-to-cache transfers,
or reads from a processor cache on a different node.

Many improvements have been added to the Linux ker-
nel to reduce remote memory reads. Examples include
libnuma and the kernel mbind() interface, NUMA
aware slab allocation, and per-cpu scheduler group al-
locations. These are all used to optimize memory lo-
cality. Similarly, many improvements have been added
to the kernel to improve lock sequences which decrease
latency from cache-to-cache transfers. Use of the RCU
(read-copy update) mechanism has enabled several scal-
ability improvements and continues to be utilized in
new development. Use of finer grain locks such as
array locks for SYSV semaphores, conversion of the
page_table_lock to per pmd locks for fast concur-
rent page faults, and per device block I/O unplug, all
contribute to reduce cache line contention.

Through characterization of kernel memory latency,
analysis of high latency code paths, and examination of
kernel data structure layout, we illustrate further oppor-
tunities to reduce latency.

• 153 •
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1.1 Methodology

Kernel memory latency characteristics are studied us-
ing an enterprise OLTP (online transaction processing)
workload with Oracle Database 10g Release 2 on Dual-
Core Intel R© Itanium R© 2 processors. The configuration
includes a large database built on a robust, high per-
formance storage subsystem. The workload is tuned to
make best use of the kernel, utilizing fixed process pri-
ority and core affinity, optimized binding of interrupts,
and use of kernel tunable settings where appropriate.

Itanium processors provide a mechanism to precisely
profile cache misses. The Itanium EAR (event address
registers) performance monitoring registers latch data
reads that miss the L1 cache and collect an extended
set of information about targeted misses. This includes
memory latency in clock cycles, the address of the load
instruction that caused the miss, the processor that re-
tired the load, and the address of the data item that was
missed.

Several additional processing steps are taken to supple-
ment the data collected by hardware. Virtual data ad-
dresses are converted to a physical address during col-
lection using the tpa (translate physical address) instruc-
tion and the resulting physical addresses are looked up
against SRAT (static resource affinity table) data struc-
tures to determine node location. Kernel symbols and
gdwarf-2 annotated assembly code are analyzed to
translate data addresses to kernel global variable names,
structure names, and structure field names. Symbols are
enhanced by inlining spinlocks and sinking them into
wrapper functions, with the exported function name de-
scribing the lock being acquired, where it is acquired,
and by whom it is acquired.

2 Cache Coherency

To maintain consistency between internal caches and
caches on other processors, systems use a cache co-
herency protocol, such as the MESI protocol (modified,
exclusive, shared, invalid). Each cache line contains sta-
tus flags that indicate the current cache line state.

A cache line in E (exclusive) state indicates that the
cache line does not exist in any other processor’s cache.
The data is clean; it matches the image in main memory.

A cache line in S (shared) state can exist in several
caches at once. This is frequently the case for cache

lines that contain data that is read, but rarely, if ever,
modified.

Cache lines in M (modified) state are only present in
one processor cache at a time. The data is dirty; it
is modified and typically does not match the image in
main memory. Cache lines in M state can be directly
transferred to another processors cache, with the abil-
ity to satisfy another processor’s read request detected
through snooping. Before the cache line can be trans-
ferred, it must be written back to main memory.

Cache lines in I (invalid) state have been invalidated,
and they cannot be transferred to another processor’s
cache. Cache lines are typically invalidated when there
are multiple copies of the line in S state, and one of the
processors needs to invalidate all copies of the line so it
can modify the data. Cache lines in I state are evicted
from a cache without being written back to main mem-
ory.

2.1 Cache Line Contention

Coherency is maintained at a cache line level—the co-
herency protocol does not distinguish between individ-
ual bytes on the same cache line. For kernel structures
that fit on a single cache line, modification of a single
field in the structure will result in any other copies of
the cache line containing the structure to be invalidated.

Cache lines are contended when there are several
threads that attempt to write to the same line concur-
rently or in short succession. To modify a cache line,
a processor must hold it in M state. Coherency opera-
tions and state transitions are necessary to accomplish
this, and these come at a cost. When a cache line con-
taining a kernel structure is modified by many differ-
ent threads, only a single image of the line will exist
across the processor caches, with the cache line trans-
ferring from cache to cache as necessary. This effect is
typically referred to as cache line bouncing.

Cache lines are also contended when global variables or
fields that are frequently read are located on the same
cache line as data that is frequently modified. Co-
herency operations and state transitions are required to
transition cache lines to S state so multiple processors
can hold a copy of the cache line for reading. This ef-
fect is typically referred to as false sharing.

Cache line contention also occurs when a thread refer-
encing a data structure is migrated to another processor,
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or when a second thread picks up computation based on
a structure where a first thread left off—as is the case
in interrupt handling. This behavior mimics contention
between two different threads as cache lines need to
be transferred from one processor’s cache to another to
complete the processing.

Issues with cache line contention expand further with
several of the critical kernel structures spanning multi-
ple cache lines. Even in cases where a code path is ref-
erencing only a few fields in a structure, we frequently
have contention across several different cache lines.

Trends in system design further intensify issues with
cache line contention. Larger caches increase the chance
that a cache miss on a kernel structure will hit in
a processor’s cache. Doubling the number of cores
and threads per processor also increases the number of
threads that can concurrently reference a kernel struc-
ture. The prevalence of NUMA increases the number of
nodes in a system, adding latency to the reference types
mentioned in the preceding section. Cache line con-
tention that appears fairly innocuous on small servers
today has the potential to transform into significant scal-
ability problems in the future.

3 NUMA Costs

In an experiment to characterize NUMA costs, a system
is populated with two processors and 64 GB of memory
using two different configurations. In the single node
configuration, both processors and memory are placed
into a single node—while the platform is NUMA, this
configuration is representative of traditional SMP. In the
split node configuration, processors and memory are di-
vided evenly across two NUMA nodes. This experiment
essentially toggles NUMA on and off without changing
the physical computing resources, revealing interesting
changes in kernel memory latency.

With the OLTP workload, scalability deteriorated when
comparing the 2.6.18 kernel to the 2.6.9 kernel. On the
2.6.9 kernel, system time increases from 19% to 23%
when comparing single node to split node configura-
tions. With less processor time available for the user
workload, we measure a 6% performance degradation.
On the 2.6.18 kernel, comparing single node to split
node configurations, system time increases from 19% to
25%, resulting in a more significant 10% performance
degradation.

Kernel data cache miss latency increased 50% as we
moved from single to split nodes, several times greater
than the increase in user data cache miss latency. A ker-
nel memory latency increase of this magnitude causes
several of the critical kernel paths to take over 30%
longer to execute—with kernel CPI increasing from
1.95 to 2.55. The two kernel paths that exhibited the
largest increases in CPI were in process scheduling and
I/O paths.

A comparison of single to split node configurations also
reveals that a surprisingly large amount of kernel data
cache misses are satisfied by cache-to-cache transfers.
The most expensive cache misses were due to remote
cache-to-cache transfers—reads from physical memory
on a remote node accounted for a much smaller amount
of the overall kernel memory latency.

4 2.6.20 Kernel

4.1 Memory Latency Characterization

Figure 1 illustrates the frequency of kernel misses at
a given latency value. This data was collected us-
ing a NUMA system with two fully-populated nodes
on the 2.6.20 kernel running the OLTP workload.
Micro-benchmarks were used to measure latency lower
bounds, confirming assumptions regarding latency of
different reference types.
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Figure 1: Kernel memory latency histogram

Four significant peaks exist on the kernel memory la-
tency histogram. The first, largest peak corresponds to
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local node cache-to-cache transfers and the second peak
corresponds to local node reads from main memory. The
third peak corresponds to a remote node read from main
memory, and the fourth peak highlights remote node
cache-to-cache transfers. Peaks do not represent abso-
lute boundaries between different types of references as
the upper bound is not fixed for any reference type. They
do, however, illustrate specific latency ranges where one
reference type is much more frequent than another.

46% of the kernel data cache misses are node local,
however, these inexpensive misses only account for 27%
of the overall kernel latency. The remote node cache
misses are considerably more expensive, particularly the
remote node cache-to-cache transfers. The height and
width of the fourth peak captures the severity of remote
node cache-to-cache transfers. The tail of the fourth
peak indicates references to a heavily contended cache
line, for instance a contended spinlock.

A two node configuration is used in these experiments
to illustrate that latency based scalability issues are not
exclusive to big iron. As we scale up the number
of NUMA nodes, latencies for remote cache-to-cache
transfers increase and the chance that cache-to-cache
transfers will be local inexpensive references decreases.

Figure 1 also illustrates that the most frequently refer-
enced kernel structures have a tendency to hit in pro-
cessor caches. Memory reads are, relatively speak-
ing, infrequent. Optimizations targeting the location or
NUMA allocation of data do not address cache-to-cache
transfers because these are infrequently read from main
memory.

In examining memory latency histograms for well tuned
user applications, the highest peaks are typically local
node cache-to-cache transfers and local node memory
reads. The most expensive reference type, the remote
node cache-to-cache transfer, is typically the smallest
peak. In a well tuned user application, the majority of
latency comes from local node references, or is at least
split evenly between local and remote node references.
In comparison to user applications, the kernel’s resource
management, communication, and synchronization re-
sponsibilities make it much more difficult to localize
processing to a single node.

4.2 Cache Line Analysis

With cache-to-cache transfers making up the two tallest
peaks in the kernel memory latency histogram, and re-

mote cache-to-cache transfers representing the most ex-
pensive overall references, 2.6.20 cache line analysis is
focused on only those samples representative of a cache-
to-cache transfer.
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Figure 2: Top 500 kernel cache misses based on total
latency

Figure 2 illustrates the top contended structures in the
kernel, based on the top 500 cache lines contributing the
most to kernel memory latency. While the top 500 cache
lines represent only a fraction of 1% of the total kernel
cache lines sampled during measurement, they account
for 33% of total kernel latency. Among the thousands of
structures in the kernel, only twelve structures, spread
across scheduler, timers, and I/O make up the majority
of the breakdown.

The chart is organized to co-locate nearby or related ker-
nel paths. I/O includes structures from AIO, through
block, through SCSI, down to the storage driver. These
represent approximately half of the breakdown. Struc-
tures for the slab allocation are also included on this side
of the chart as the I/O paths and related structures are
the primary users of slab allocation. Scheduler paths,
including the run queue, and list structures contained in
the priority arrays, account for 21% of the breakdown—
several percent more if we include IPC as part of this
path. Dynamic timers account for 9% of the breakdown.

4.3 Cache Line Visualization

Figure 3 is an example of a concise data format used to
illustrate issues with cache line contention. Every path
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   samples   remote  module   inst. address       inst.         function                          data address        data

       338    1.18%  vmlinux  0xA000000100646036  cmpxchg4.acq  [spinlock] @ schedule             0xE000001000054B50  rq_lock
       633   59.40%  vmlinux  0xA000000100069086  cmpxchg4.acq  [spinlock] @ try_to_wake_up       0xE000001000054B50  rq_lock
        67   22.39%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE000001000054B50  rq_lock
         9   77.78%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE000001000054B50  rq_lock
        72    2.78%  vmlinux  0xA00000010006B386  cmpxchg4.acq  [spinlock] @ task_running_tick    0xE000001000054B50  rq_lock
         1    0.00%  vmlinux  0xA00000010064B840  cmpxchg4.acq  [spinlock] @ wake_sleeping_dep... 0xE000001000054B50  rq_lock
         3   66.67%  vmlinux  0xA00000010006BC76  ld4.acq       resched_task                      0xE000001000054B50  rq_lock
        18   44.44%  vmlinux  0xA000000100069EA6  cmpxchg4.acq  [spinlock] @ try_to_wake_up       0xE000001000054B50  rq_lock

         5    0.00%  vmlinux  0xA000000100646130  ld8           schedule                          0xE000001000054B58  nr_running
         2    0.00%  vmlinux  0xA000000100646726  ld8           schedule                          0xE000001000054B58  nr_running
         2    0.00%  vmlinux  0xA000000100070806  ld8           try_to_wake_up                    0xE000001000054B58  nr_running
         1    0.00%  vmlinux  0xA00000010006CAF0  ld8           move_tasks                        0xE000001000054B58  nr_running
         3    0.00%  vmlinux  0xA00000010006AE60  ld8           deactivate_task                   0xE000001000054B58  nr_running
         1    0.00%  vmlinux  0xA0000001000753C6  ld8           scheduler_tick                    0xE000001000054B58  nr_running
        32   81.25%  vmlinux  0xA00000010006BBD0  ld8           __activate_task                   0xE000001000054B58  nr_running

        30    0.00%  vmlinux  0xA000000100068010  ld8           find_busiest_group                0xE000001000054B60  raw_weighted_load
         3    0.00%  vmlinux  0xA000000100070720  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
         2    0.00%  vmlinux  0xA000000100070740  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
        10    0.00%  vmlinux  0xA000000100070780  ld8           try_to_wake_up                    0xE000001000054B60  raw_weighted_load
         1    0.00%  vmlinux  0xA00000010006CAA6  ld8           move_tasks                        0xE000001000054B60  raw_weighted_load
         1    0.00%  vmlinux  0xA00000010006CAF6  ld8           move_tasks                        0xE000001000054B60  raw_weighted_load
         6    0.00%  vmlinux  0xA000000100075486  ld8           scheduler_tick                    0xE000001000054B60  raw_weighted_load
        21   61.90%  vmlinux  0xA00000010006BBD6  ld8           __activate_task                   0xE000001000054B60  raw_weighted_load

        14    0.00%  vmlinux  0xA000000100068030  ld8           find_busiest_group                0xE000001000054B68  cpu_load[0]
         2    0.00%  vmlinux  0xA000000100070786  ld8           try_to_wake_up                    0xE000001000054B68  cpu_load[0]
         5    0.00%  vmlinux  0xA000000100070790  ld8           try_to_wake_up                    0xE000001000054B68  cpu_load[0]
         2    0.00%  vmlinux  0xA000000100067F70  ld8           find_busiest_group                0xE000001000054B68  cpu_load[0]

         1    0.00%  vmlinux  0xA000000100068030  ld8           find_busiest_group                0xE000001000054B70  cpu_load[1]
         1    0.00%  vmlinux  0xA000000100075490  ld8           scheduler_tick                    0xE000001000054B70  cpu_load[1]

Figure 3: First cache line of rq struct

that references a structure field satisfied by a cache-to-
cache transfer is listed. Samples that are local cache
hits or cache misses that reference main memory are not
included, as a result, we do not see each and every field
referenced in a structure. Several columns of data are
included to indicate contention hotspots and to assist in
locating code paths for analysis.

• samples – The number of sampled cache misses
at a given reference point

• remote – The ratio of cache misses that reference
a remote node compared to local node references

• module – The kernel module that caused the cache
miss

• instruction address – The virtual address for
the instruction that caused the miss

• instruction – Indicates the instruction. This il-
lustrates the size of the field, for example ld4 is a
load of a four byte field. For locks, the instruc-
tion indicates whether a field was referenced atom-
ically, as is the case for a compare and exchange or
an atomic increment / decrement

• function – The kernel function that caused the
miss. In the case of spinlocks, we indicate the spin-
lock call as well as the caller function

• data address – The virtual address of the data
item missed. This helps to illustrate spatial charac-
teristics of contended structure fields

• data – Structure field name or symbolic informa-
tion for the data item

4.4 Process Scheduler

The process scheduler run queue structure spans four
128 byte cache lines, with the majority of latency com-
ing from the try_to_wake_up() path. Cache lines
from the rq struct are heavily contended due to re-
mote wakeups and local process scheduling referenc-
ing the same fields. In the first cache line of rq, the
most expensive references to the rq lock and remote
references from __activate_task come from the
wakeup path.

Remote wakeups are due to two frequent paths. First,
database transactions are completed when a commit
occurs—this involves a write to an online log file. Hun-
dreds of foreground processes go to sleep in the final
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   samples   remote  module   inst. address       inst.         function                          data address        data

         2    0.00%  vmlinux  0xA000000100647420  ld8           schedule                          0xE000001000014B80  nr_switches

         1    0.00%  vmlinux  0xA000000100646100  ld8           schedule                          0xE000001000014B88  nr_uninterruptible

         2    0.00%  vmlinux  0xA00000010006CB60  ld8           move_tasks                        0xE000001000014B98  most_recent_timestamp

       752   63.70%  vmlinux  0xA000000100066000  ld8           idle_cpu                          0xE000001000014BA0  curr (task_struct*)
         5    0.00%  vmlinux  0xA00000010006C4F0  ld8           move_tasks                        0xE000001000014BA0  curr (task_struct*)
         6    0.00%  vmlinux  0xA0000001006468B0  ld8           schedule                          0xE000001000014BA0  curr (task_struct*)
         1    0.00%  vmlinux  0xA000000100070F10  ld8           try_to_wake_up                    0xE000001000014BA0  curr (task_struct*)

       799   65.96%  vmlinux  0xA000000100066006  ld8           idle_cpu                          0xE000001000014BA8  idle (task_struct*)
         1    0.00%  vmlinux  0xA000000100646770  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
        10    0.00%  vmlinux  0xA0000001006468B6  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
         4    0.00%  vmlinux  0xA000000100647056  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
         1    0.00%  vmlinux  0xA0000001006472E0  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)
        31    0.00%  vmlinux  0xA0000001000753A6  ld8           scheduler_tick                    0xE000001000014BA8  idle (task_struct*)
         4    0.00%  vmlinux  0xA000000100065C90  ld8           account_system_time               0xE000001000014BA8  idle (task_struct*)
       176    1.14%  vmlinux  0xA000000100645E46  ld8           schedule                          0xE000001000014BA8  idle (task_struct*)

         2    0.00%  vmlinux  0xA000000100075526  ld8           scheduler_tick                    0xE000001000014BB0  next_balance

         3    0.00%  vmlinux  0xA000000100647DE6  ld8           schedule                          0xE000001000014BB8  prev_mm (mm_struct*)

         6    0.00%  vmlinux  0xA000000100646950  ld8           schedule                          0xE000001000014BC0  active (prio_array*)
         1    0.00%  vmlinux  0xA00000010006B306  ld8           task_running_tick                 0xE000001000014BC0  active (prio_array*)
        17   64.71%  vmlinux  0xA00000010006BB86  ld8           __activate_task                   0xE000001000014BC0  active (prio_array*)

         5    0.00%  vmlinux  0xA00000010006C4F6  ld8           move_tasks                        0xE000001000014BC8  expired (prio_array*)

        13    0.00%  vmlinux  0xA00000010006AD86  ld4           dequeue_task                      0xE000001000014BD0  arrays[0].nr_active
         2   50.00%  vmlinux  0xA00000010006B2B6  ld4           enqueue_task                      0xE000001000014BD0  arrays[0].nr_active

         1    0.00%  vmlinux  0xA00000010006AE10  ld4.acq       dequeue_task                      0xE000001000014BE8  arrays[0].bitmap

Figure 4: Second cache line of rq struct

stage of completing a transaction and need to be woken
up when their transaction is complete. Second, database
processes are submitting I/O on one processor and the
interrupt is arriving on another processor, causing pro-
cesses waiting for I/O to be woken up on a remote pro-
cessor.

A new feature being discussed in the Linux kernel com-
munity, called syslets, could be used to address issues
with remote wakeups. Syslets are simple lightweight
programs consisting of system calls, or atoms, that the
kernel can execute autonomously and asynchronously.
The kernel utilizes a different thread to execute the
atoms asynchronously, even if a user application mak-
ing the call is single threaded. Using this mechanism,
user applications can wakeup foreground processes on
local nodes in parallel by splitting the work between a
number of syslets.

A near term approach, and one complementary to node
local wakeups using syslets, would be to minimize the
number of remote cache line references in the try_to_
wake_up() path. Figure 3 confirms that the run queue
is not cache line aligned. By aligning the run queue, the
rq structure uses one less cache line. This results in a
measurable performance increase as the scheduler stats
ttwu field on the fourth cache line is brought into the

third cache line alongside other data used in the wakeup.

The second cache line of the rq struct in figure 4
shows a high level of contention between the idle and
curr task_struct pointers in idle_task. This
issue originates from the decision to schedule a task on
an idle sibling if the processor targeted for a wakeup is
busy. In this path, we reference the sibling’s runqueue
to check if it is busy or not. When a wakeup occurs
remotely, the sibling’s runqueue status is also checked,
resulting in additional remote cache-to-cache transfers.
Load balancing at the SMT sched_domain happens
more frequently, influencing the equal distribution of the
load between siblings. Instead of checking the sibling,
idle_cpu() can simply return the target cpu if there
is more than one task running, because it’s likely that
siblings will also have tasks running. This change re-
duces contention on the second cache line, and also re-
sults in a measurable performance increase.

The third line contains one field that contributes to cache
line contention, the sd sched_domain pointer used
in try_to_wake_up(). The fourth rq cache line
contains scheduler stats fields, with the most expensive
remote references coming from the try to wake up count
field mentioned earlier. The list_head structures
in the top 500 are also contended in the wakeup path.
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When a process is woken up, it needs to be added to the
prio_array queue.

4.5 Timers

Processes use the per-processor tvec_base that cor-
responds to the processor they are running on when
adding timers. This ensures timers are always added
locally. The majority of scalability issues with timers
are introduced during timer deletion. With I/O submit-
ted on a different processor than it is completed on, it
is necessary to acquire a remote tvec_base lock in
the interrupt handler to detach a timer from that base.

Figure 5 illustrates cache line contention for the tvec_
base lock. The mod_timer() path represents
deletes of the block queue plug timers, which are un-
necessary given we are using direct I/O in this work-
load. Cache line contention for the tvec_base
lock in del_timer() represents deletes from the
scsi_delete_timer() path—the result of delet-
ing a SCSI command eh_timeout timer upon I/O
completion.

Getting the base_lock for every I/O completion re-
sults in tens-of-thousands of expensive remote cache-
to-cache transfers per second. The tvec_base locks
are among the most contended locks in this workload.
An alternative approach would be to batch timers for
deletion, keeping track of a timer’s state. A timer’s state
could be changed locally during an I/O completion since
the timer is part of the scsi_cmnd struct that is read
into the cache earlier in the path. Timer state could indi-
cate both when the timer can be detached, and when the
kernel can free the memory.

Where we have a large number of timers to delete across
a number of tvec_base structures, we can prefetch
locks, hiding latency for the majority of the lock refer-
ences in the shadow of the first tvec_base lock refer-
enced.

4.6 Slab

Submitting I/O on one processor and handling the in-
terrupt on another processor also affects scalability of
slab allocation. Comparisons between the 2.6.20 and
the 2.6.9 kernel, which did not have NUMA aware slab
allocation, indicate the slab allocation is hurting more
than it is helping on the OLTP workload. Figures 6, 7,

and 8 illustrate scalability issues introduced by freeing
slabs from a remote node. The alien pointer in the
kmem_list3 structure and the nodeid in the slab
structure are mostly read, so we may be able to reduce
false sharing of these fields by moving them to another
cache line. If cache lines with these fields exist in S
state, several copies of the data can be held simulta-
neously by multiple processors, and we can eliminate
some of the remote cache-to-cache transfers.

Further opportunity may exist in using kmem_cache_
alloc calls that result in refills to free local slabs cur-
rently batched to be freed on remote processors. This
has the potential to reduce creation of new slabs, local-
ize memory references for slabs that have been evicted
from the cache, and provide more efficient lock refer-
ences.

A number of additional factors limit scalability. Alien
array sizes are limited to 12 and are not resized based on
slab tunables. In addition, the total size of alien arrays
increases squarely as the number of nodes increases,
putting additional memory pressure on the system.

A similar analysis for the new slub (unqueued slab) is
in progress on this configuration to determine if similar
issues exist.

4.7 I/O: AIO

As illustrated throughout this paper, cache line con-
tention of I/O structures is primarily due to submitting
I/O on one processor and handling the interrupt on an-
other processor. A superior solution to this scalability is-
sue would be to utilize hardware and device drivers that
support extended message-signaled interrupts (MSI-X)
and support multiple per-cpu or per-node queues. Using
extended features of MSI, a device can send messages
to a specific set of processors in the system. When an
interrupt occurs, the device can decide a target proces-
sor for the interrupt. In the case of the OLTP workload,
these features could be used to enable I/O submission
and completion on the same processor. This approach
also ensures that slab objects and timers get allocated,
referenced, and freed within a local node.

Another approach, explored in earlier Linux kernels, is
to delay the I/O submission so it can be executed on the
processor or node which will receive the interrupt during
I/O completion. Performance results with this approach
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  samples   remote  module   inst. address       inst.         function                           data address        data

        39   17.95%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention           0xE00000100658C000  lock
         9   11.11%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention           0xE00000100658C000  lock
       307    2.93%  vmlinux  0xA00000010009B4C6  cmpxchg4.acq  [spinlock] @ __mod_timer           0xE00000100658C000  lock
       861   58.07%  vmlinux  0xA0000001000995A6  cmpxchg4.acq  [spinlock] @ del_timer             0xE00000100658C000  lock
        10    0.00%  vmlinux  0xA00000010009B666  cmpxchg4.acq  [spinlock] @ run_timer_softirq     0xE00000100658C000  lock
       982   40.22%  vmlinux  0xA0000001000996C6  cmpxchg4.acq  [spinlock] @ mod_timer             0xE00000100658C000  lock
        24    0.00%  vmlinux  0xA0000001000997E6  cmpxchg4.acq  [spinlock] @ try_to_del_timer_sync 0xE00000100658C000  lock
         1    0.00%  vmlinux  0xA00000010009B966  cmpxchg4.acq  [spinlock] @ run_timer_softirq     0xE00000100658C000  lock

         7   14.29%  vmlinux  0xA00000010009B466  ld8           __mod_timer                        0xE00000100658C008  running_timer (timer_list*)

         3    0.00%  vmlinux  0xA00000010009A906  ld8           internal_add_timer                 0xE00000100658C010  timer_jiffies
        78    1.28%  vmlinux  0xA00000010009B606  ld8           run_timer_softirq                  0xE00000100658C010  timer_jiffies

Figure 5: Cache line with tvec_base struct

  samples   remote  module   inst. address       inst.         function                          data address        data

         9  100.00%  vmlinux  0xA0000001001580F0  ld8           ____cache_alloc_node              0xE00000207945BD00  slabs_partial.next (list_head*)
         5  100.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE00000207945BD00  slabs_partial.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE00000207945BD00  slabs_partial.next (list_head*)
         2  100.00%  vmlinux  0xA0000001002C3816  ld8           list_add                          0xE00000207945BD00  slabs_partial.next (list_head*)

         2  100.00%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE00000207945BD08  slabs_partial.prev (list_head*)
        22   59.09%  vmlinux  0xA0000001002C36B6  ld8           __list_add                        0xE00000207945BD08  slabs_partial.prev (list_head*)
        17   70.59%  vmlinux  0xA000000100159EE0  ld8           free_block                        0xE00000207945BD08  slabs_partial.prev (list_head*)

         3   66.67%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE00000207945BD10  slabs_full.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE00000207945BD10  slabs_full.next (list_head*)

         2  100.00%  vmlinux  0xA000000100158200  ld8           ____cache_alloc_node              0xE00000207945BD30  free_objects
        24   54.17%  vmlinux  0xA000000100159E10  ld8           free_block                        0xE00000207945BD30  free_objects

       408  100.00%  vmlinux  0xA0000001001580D6  cmpxchg4.acq  [spinlock] @ ____cache_alloc_node 0xE00000207945BD40  list_lock
        17    0.00%  vmlinux  0xA00000010015A206  cmpxchg4.acq  [spinlock] @ cache_flusharray     0xE00000207945BD40  list_lock
       114  100.00%  vmlinux  0xA00000010015A3B6  cmpxchg4.acq  [spinlock] @ __drain_alien_cache  0xE00000207945BD40  list_lock
        18    0.00%  vmlinux  0xA000000100158656  cmpxchg4.acq  [spinlock] @ cache_alloc_refill   0xE00000207945BD40  list_lock
        57   84.21%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE00000207945BD40  list_lock
         3  100.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE00000207945BD40  list_lock

       727    0.00%  vmlinux  0xA0000001001596B0  ld8           kmem_cache_free                   0xE00000207945BD50  alien (array_cache**)

Figure 6: Cache line with kmem_list3 struct

were mixed, with a range of both good and bad results
across different workloads. This model was also bur-
dened with the complexity of handling many different
corner cases.

Figure 9 illustrates the primary contention point for the
kioctx structure, the ctx_lock that protects a per-
process AIO context. This structure is dynamically al-
located as one per process and lives throughout the life-
time of an AIO context. The first cache line is contended
due to lock references in both the I/O submission and
completion paths.

One approach to improve the kioctx structure would
be to reorder structure fields to create a cache line with
fields most frequently referenced in the submit path,
and another cache line with fields most frequently refer-
enced in the complete path. Further analysis is required
to determine the feasibility of this concept. Contention
in the I/O submission path occurs with __aio_get_
req which needs the lock to put a iocb on a linked
list and with aio_run_iocb which needs the lock
to mark the current request as running. Contention in

the I/O completion path occurs with aio_complete
which needs the lock to put a completion event into
event queue, unlink a iocb from a linked list, and per-
form process wakeup if there are waiters.

Raman, Hundt, and Mannarswamy introduced a tech-
nique for structure layout in multi threaded applications
that optimizes for both improved spatial locality and re-
duces false sharing. Reordering fields in a few opti-
mized structures in the HP-UX operating system kernel
improved performance up to 3.2% on enterprise work-
loads. Structures across the I/O layers appear to be good
candidates for such optimization.

The aio_complete function is a heavyweight func-
tion with very long lock hold times. Having a lock hold
time dominated by one processor contributes to longer
contention wait time with other shorter paths occurring
frequently on all the other processors. In some cases, in-
creasing the number of AIO contexts may help address
this.

Figure 10 illustrates the AIO context internal structure
used to track the kernel mapping of AIO ring_info
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   samples   remote  module   inst. address       inst.         function                          data address        data

         9    0.00%  vmlinux  0xA000000100159740  ld4           kmem_cache_free                   0xE000000128DA5580  avail
         1    0.00%  vmlinux  0xA000000100159770  ld4           kmem_cache_free                   0xE000000128DA5580  avail

         5    0.00%  vmlinux  0xA00000010015A3F0  ld4           __drain_alien_cache               0xE000000128DA5584  limit
         8    0.00%  vmlinux  0xA000000100159746  ld4           kmem_cache_free                   0xE000000128DA5584  limit

        30    0.00%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE000000128DA5590  lock
         2    0.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE000000128DA5590  lock
      1793    0.00%  vmlinux  0xA000000100159716  cmpxchg4.acq  [spinlock] @ cache_free_alien     0xE000000128DA5590  lock

         2    0.00%  vmlinux  0xA0000001002C07A0  ld8           __copy_user                       0xE000000128DA5598  objpp (entry[0]*)

         2    0.00%  vmlinux  0xA0000001002C07A6  ld8           __copy_user                       0xE000000128DA55A0  objpp[i] 
         3    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55A0  objpp[i] 

         4    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55B0  objpp[i]

         1    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55C0  objpp[i]

         1    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55D8  objpp[i]

         2    0.00%  vmlinux  0xA000000100159C20  ld8           free_block                        0xE000000128DA55E0  objpp[i]

Figure 7: Cache line with alien array_cache struct

   samples   remote  module   inst. address       inst.         function                          data address        data

         4  100.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE0000010067D0000  list.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C35B0  ld8           list_del                          0xE0000010067D0000  list.next (list_head*)
         1  100.00%  vmlinux  0xA0000001002C3726  ld8           __list_add                        0xE0000010067D0000  list.next (list_head*)

        88   98.86%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE0000010067D0008  list.prev (list_head*)
        79  100.00%  vmlinux  0xA0000001002C36B6  ld8           __list_add                        0xE0000010067D0008  list.prev (list_head*)

        64  100.00%  vmlinux  0xA000000100158160  ld4           ____cache_alloc_node              0xE0000010067D0020  inuse
         2  100.00%  vmlinux  0xA000000100159DF6  ld4           free_block                        0xE0000010067D0020  inuse

         4  100.00%  vmlinux  0xA000000100158226  ld4           ____cache_alloc_node              0xE0000010067D0024  free (kmem_bufctl_t)

       513   45.03%  vmlinux  0xA000000100159636  ld2           kmem_cache_free                   0xE0000010067D0028  nodeid

Figure 8: Cache line with slab struct

and the AIO event buffer. A small percentage of the
cache line contention comes from with I/O submit path
where kernel needs to look up a kernel mapping for
an AIO ring_info structure. A large percentage of
the cache line contention comes from the I/O interrupt
path, where aio_complete needs to lookup the ker-
nel mapping of the AIO event buffer. In this case, the
majority of contention comes from many I/O comple-
tions happening one after the other.

4.8 I/O: Block

Figure 11 illustrates contention over request_queue
structures. The primary contention points are between
the queue_flags used in the submit path to check
block device queue’s status and the queue_lock
in the return path to perform a reference count on
device_busy. This suggests further opportunity for
structure ordering based on submit and complete paths.

Figure 12 illustrates the blk_queue_tag structure.
Lack of alignment with this structure causes unneces-

sary cache line contention as the size of blk_queue_
tag is less than half a cache line, so we end up with
portions of two to three different tags sharing the same
128 byte cache line. Cache lines are frequently bounced
between processors with multiple tags from independent
devices sharing the same cache line.

4.9 I/O: SCSI

Both the scsi_host and scsi_device structures
span several cache lines and may benefit from reorder-
ing. Both structures feature a single cache line with
multiple contended fields, and several other lines which
have a single field that is heavily contended.

Figure 13 illustrates the most heavily contended cache
line of the scsi_host structure. The primary source
of contention is in the submit path with an unconditional
spin lock acquire in __scsi_put_command to put
a scsi_cmnd on a local free_list, and reads of
the cmd_pool field. Multiple locks on the same cache
line is detrimental as it slows progress in the submit path
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  samples   remote  module   inst. address       inst.         function                          data address        data

         1    0.00%  vmlinux  0xA0000001001AB240  fetchadd4.rel lookup_ioctx                      0xE0000010252A1900  users
         2    0.00%  vmlinux  0xA0000001001ABD60  fetchadd4.rel sys_io_getevents                  0xE0000010252A1900  users

        44    2.27%  vmlinux  0xA0000001001AB1A6  ld8           lookup_ioctx                      0xE0000010252A1910  mm (mm_struct*)

        14   71.43%  vmlinux  0xA000000100066E56  cmpxchg4.acq  [spinlock] @ wake_up_common       0xE0000010252A1920  wait.lock (wait_queue_head)
         1    0.00%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE0000010252A1920  wait.lock (wait_queue_head)
         4    0.00%  vmlinux  0xA0000001000B9F76  cmpxchg4.acq  [spinlock] @ add_wait_queue_exc.. 0xE0000010252A1920  wait.lock (wait_queue_head)
         6    0.00%  vmlinux  0xA0000001000B9FD6  cmpxchg4.acq  [spinlock] @ remove_wait_queue    0xE0000010252A1920  wait.lock (wait_queue_head)

         1    0.00%  vmlinux  0xA0000001002C3556  ld8           list_del                          0xE0000010252A1928  wait.next
         5   60.00%  vmlinux  0xA000000100065EB0  ld8           __wake_up_common                  0xE0000010252A1928  wait.next
         4   75.00%  vmlinux  0xA0000001001A9F90  ld8           aio_complete                      0xE0000010252A1928  wait.next

       372    1.34%  vmlinux  0xA0000001001AA2D6  cmpxchg4.acq  [spinlock] @ aio_run_iocb         0xE0000010252A1938  ctx_lock
      1066    1.13%  vmlinux  0xA0000001001AAA36  cmpxchg4.acq  [spinlock] @ __aio_get_req        0xE0000010252A1938  ctx_lock
        14    0.00%  vmlinux  0xA0000001001ACC36  cmpxchg4.acq  [spinlock] @ io_submit_one        0xE0000010252A1938  ctx_lock
      1214   62.03%  vmlinux  0xA0000001001A8FB6  cmpxchg4.acq  [spinlock] @ aio_complete         0xE0000010252A1938  ctx_lock
       181   34.25%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention          0xE0000010252A1938  ctx_lock
        23   26.09%  vmlinux  0xA000000100009126  cmpxchg4.acq  ia64_spinlock_contention          0xE0000010252A1938  ctx_lock
        33   69.70%  vmlinux  0xA0000001001A9586  ld4.acq       __aio_put_req                     0xE0000010252A1938  ctx_lock
        39   82.05%  vmlinux  0xA0000001001A97D6  ld4.acq       __aio_put_req                     0xE0000010252A1938  ctx_lock
        52    0.00%  vmlinux  0xA0000001001A99B6  cmpxchg4.acq  [spinlock] @ aio_put_req          0xE0000010252A1938  ctx_lock

         4    0.00%  vmlinux  0xA0000001001AABD0  ld4           __aio_get_req                     0xE0000010252A193C  reqs_active
        28   64.29%  vmlinux  0xA0000001001A98C6  ld4           __aio_put_req                     0xE0000010252A193C  reqs_active

         2   50.00%  vmlinux  0xA0000001002C35C0  ld8           list_del                          0xE0000010252A1948  active_reqs.prev

        24    4.17%  vmlinux  0xA0000001001A80D0  ld8           aio_read_evt                      0xE0000010252A1978  ring_info.ring_pages (page**)
         7    0.00%  vmlinux  0xA0000001001A82B0  ld8           aio_read_evt                      0xE0000010252A1978  ring_info.ring_pages (page**)
         1    0.00%  vmlinux  0xA0000001001AAA96  ld8           __aio_get_req                     0xE0000010252A1978  ring_info.ring_pages (page**)
         3   33.33%  vmlinux  0xA0000001001A9C56  ld8           aio_complete                      0xE0000010252A1978  ring_info.ring_pages (page**)
        16   75.00%  vmlinux  0xA0000001001A9D90  ld8           aio_complete                      0xE0000010252A1978  ring_info.ring_pages (page**)

Figure 9: Cache line with kioctx struct

   samples   remote  module   inst. address       inst.         function                        data address        data

        55    1.82%  vmlinux  0xA0000001001A8216  cmpxchg4.acq  [spinlock] @ aio_read_evt       0xE0000010252A1980  lock

         2    0.00%  vmlinux  0xA0000001001A8240  ld4           aio_read_evt                    0xE0000010252A1990  nr
         2    0.00%  vmlinux  0xA0000001001A83E0  ld4           aio_read_evt                    0xE0000010252A1990  nr

         3    0.00%  vmlinux  0xA0000001001A9CD0  ld4           aio_complete                    0xE0000010252A1994  tail

        41    0.00%  vmlinux  0xA0000001001A80E0  ld8           aio_read_evt                    0xE0000010252A1998  internal_pages[0] (page*)
       415    1.20%  vmlinux  0xA0000001001AAAA6  ld8           __aio_get_req                   0xE0000010252A1998  internal_pages[0] (page*)
      1033   58.95%  vmlinux  0xA0000001001A9C76  ld8           aio_complete                    0xE0000010252A1998  internal_pages[0] (page*)
         1  100.00%  vmlinux  0xA0000001001A9DB0  ld8           aio_complete                    0xE0000010252A1998  internal_pages[0] (page*)

         1  100.00%  vmlinux  0xA0000001001A9DB0  ld8           aio_complete                    0xE0000010252A19A0  internal_pages[1] (page*)

         3    0.00%  vmlinux  0xA0000001001A82D0  ld8           aio_read_evt                    0xE0000010252A19A8  internal_pages[2] (page*)

Figure 10: Cache line with ring_info struct

with the cache line bouncing between processors as they
submit I/O.

Figure 14 illustrates contention in the scsi_device
struct with scsi_request_fn() referencing the
host pointer to process the I/O, and the low level driver
checking the scsi_device queue_depth to deter-
mine whether it should change the queue_depth on
a specific SCSI device. These reads lead to false shar-
ing on the queue_depth field, as scsi_adjust_
queue_depth() is not called during the workload. In
this case, the scsi_qla_host flags could be ex-
tended to indicate whether queue_depth needs to be
adjusted, resulting in the interrupt service routine mak-
ing frequent local references rather than expensive re-
mote references.

Figure 15 illustrates further contention between the I/O
submit and complete paths as sd_init_command()
reads of the timeout and changed fields in the sub-
mit path conflict with writes of iodone_cnt in the
complete path.

5 Conclusions

Kernel memory latency increases significantly as we
move from traditional SMP to NUMA systems, result-
ing in less processor time available for user workloads.
The most expensive references, remote cache-to-cache
transfers, primarily come from references to a select few
structures in the process wakeup and I/O paths. Sev-
eral approaches may provide mechanisms to alleviate
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   samples   remote  module   inst. address       inst.         function                        data address        data

         3   66.67%  vmlinux  0xA0000001001D1F26  ld8           __blockdev_direct_IO            0xE00000012C905C00  backing_dev_info.unplug_io_fn

         1  100.00%  vmlinux  0xA00000010029A0A0  ld8           blk_backing_dev_unplug          0xE00000012C905C08  backing_dev_info.unplug_io_data

         1    0.00%  scsi     0xA00000021E2A9B80  ld8           scsi_run_queue                  0xE00000012C905C10  queuedata

       147   59.86%  vmlinux  0xA0000001002942E6  ld4.acq       generic_make_request            0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100294750  ld4.acq       __freed_request                 0xE00000012C905C28  queue_flags
         3   33.33%  vmlinux  0xA000000100294766  cmpxchg4.acq  __freed_request                 0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100294780  ld4.acq       __freed_request                 0xE00000012C905C28  queue_flags
         6   16.67%  vmlinux  0xA000000100294796  cmpxchg4.acq  __freed_request                 0xE00000012C905C28  queue_flags
        20   55.00%  vmlinux  0xA000000100296B66  cmpxchg4.acq  blk_remove_plug                 0xE00000012C905C28  queue_flags
         1  100.00%  scsi     0xA00000021E2AF2D6  cmpxchg4.acq  scsi_request_fn                 0xE00000012C905C28  queue_flags
         1    0.00%  vmlinux  0xA000000100297456  ld4.acq       blk_plug_device                 0xE00000012C905C28  queue_flags
         4   25.00%  vmlinux  0xA000000100297486  cmpxchg4.acq  blk_plug_device                 0xE00000012C905C28  queue_flags
         3   66.67%  vmlinux  0xA000000100295930  ld4.acq       get_request                     0xE00000012C905C28  queue_flags
         6   50.00%  vmlinux  0xA00000010028DE96  ld4.acq       elv_insert                      0xE00000012C905C28  queue_flags

         6   50.00%  vmlinux  0xA00000010029C046  cmpxchg4.acq  [spinlock] @ __make_request     0xE00000012C905C30  __queue_lock
         3   66.67%  vmlinux  0xA000000100290156  cmpxchg4.acq  [spinlock] @ blk_run_queue      0xE00000012C905C30  __queue_lock
        18   50.00%  vmlinux  0xA00000010029AB56  cmpxchg4.acq  [spinlock] @ generic_unplug_d.. 0xE00000012C905C30  __queue_lock
         5   40.00%  scsi     0xA00000021E2ACF06  cmpxchg4.acq  [spinlock] @ scsi_device_unbusy 0xE00000012C905C30  __queue_lock
        28   28.57%  vmlinux  0xA000000100009106  ld4           ia64_spinlock_contention        0xE00000012C905C30  __queue_lock
        13   23.08%  vmlinux  0xA00000010029B2B6  cmpxchg4.acq  [spinlock] @ __make_request     0xE00000012C905C30  __queue_lock
        16   56.25%  scsi     0xA00000021E2A9336  cmpxchg4.acq  [spinlock] @ scsi_end_request   0xE00000012C905C30  __queue_lock
         5   20.00%  scsi     0xA00000021E2AF806  cmpxchg4.acq  [spinlock] @ scsi_request_fn    0xE00000012C905C30  __queue_lock
         3   33.33%  scsi     0xA00000021E2AFA36  cmpxchg4.acq  [spinlock] @ scsi_request_fn    0xE00000012C905C30  __queue_lock

         1    0.00%  vmlinux  0xA00000010029C000  ld8           __make_request                  0xE00000012C905C38  queue_lock*
       124   33.06%  scsi     0xA00000021E2ACEE6  ld8           scsi_device_unbusy              0xE00000012C905C38  queue_lock*
         2   50.00%  vmlinux  0xA000000100298EE0  ld8           blk_run_queue                   0xE00000012C905C38  queue_lock*
         5   60.00%  vmlinux  0xA000000100299006  ld8           blk_run_queue                   0xE00000012C905C38  queue_lock*
        10   30.00%  scsi     0xA00000021E2AB540  ld8           scsi_end_request                0xE00000012C905C38  queue_lock*
         1    0.00%  scsi     0xA00000021E2AB5C6  ld8           scsi_end_request                0xE00000012C905C38  queue_lock*
        11   45.45%  scsi     0xA00000021E2AF7C6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*
         1  100.00%  scsi     0xA00000021E2AF9B6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*
         1    0.00%  scsi     0xA00000021E2AF9F6  ld8           scsi_request_fn                 0xE00000012C905C38  queue_lock*

Figure 11: Cache line with request_queue struct

   samples   remote  module   inst. address       inst.         function                        data address        data

       119   56.30%  vmlinux  0xA000000100299F06  ld8           blk_queue_start_tag             0xE000000128E8BC08  tag_map

       128   54.69%  vmlinux  0xA000000100299F00  ld4           blk_queue_start_tag             0xE000000128E8BC24  max_depth

       113   28.32%  vmlinux  0xA000000100291C26  ld4           blk_queue_end_tag               0xE000000128E8BC28  real_max_depth

       122   53.28%  vmlinux  0xA0000001002B30E0  ld8           find_next_zero_bit              0xE000000128E8BC40  tag_map
        96   12.50%  vmlinux  0xA000000100291C66  ld4           blk_queue_end_tag               0xE000000128E8BC40  tag_map
        16   50.00%  vmlinux  0xA000000100299F76  cmpxchg4.acq  blk_queue_start_tag             0xE000000128E8BC40  tag_map

Figure 12: Cache line with blk_queue_tag struct

scalability issues in the future. Examples include hard-
ware and software utilizing message-signaled interrupts
(MSI-X) with per-cpu or per-node queues, and syslets.
In the near term, several complementary approaches can
be taken to improve scalability.

Improved code sequences reducing remote cache-to-
cache transfers, similar to the optimization targeting
idle_cpu() calls or reducing the number of rq cache
lines referenced in a remote wakeup are beneficial and
need to be pursued further. Proper alignment of struc-
tures also reduces cache-to-cache transfers, as illus-
trated in the blk_queue_tag structure. Opportuni-
ties exist in ordering structure fields to increase cache
line sharing and reduce contention. Examples include
separating read only data from contended read / write
fields, and careful placement or isolation of frequently
referenced spinlocks. In the case of scsi_host and

to a lesser extent kioctx, several atomic semaphores
placed on the same cache quickly increase contention
for a structure.

Data ordering also extends to good use of
__read_mostly attributes for global variables,
which also have a significant impact. In the 2.6.9 ker-
nel, false sharing occurred between inode_lock and
a hot read-only global on the same cache line, ranking
it number 1 in the top 50. In the 2.6.20 kernel, the hot
read-only global was given the __read_mostly at-
tribute, and the cache line with inode_lock dropped
out of the top 50 cache lines. The combination of the
two new cache lines contributed 45% less latency with
the globals separated.

Operations that require a lock to be held for a single
frequently-occurring operation, such a timer delete from
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   samples   remote  module   inst. address       inst.           function                        data address        data

       852   50.23%  scsi     0xA00000021E29DA80  ld8             __scsi_get_command              0xE0000010260C8020  cmd_pool
         2  100.00%  scsi     0xA00000021E29DF10  ld8             __scsi_put_command              0xE0000010260C8020  cmd_pool
 
       292   69.86%  scsi     0xA00000021E29C536  cmpxchg4.acq   [spinlock] @ scsi_put_command    0xE0000010260C8028  free_list_lock

         3    0.00%  scsi     0xA00000021E29DE60  ld8             __scsi_put_command              0xE0000010260C8030  free_list.next

         5   60.00%  scsi     0xA00000021E2AA0F6  ld8             scsi_run_queue                  0xE0000010260C8040  starved_list.next

       292   40.75%  qla      0xA00000021E4063E6  cmpxchg4.acq    [spinlock] @ qla2x00_queuecom.. 0xE0000010260C8050  default_lock
        41   58.54%  scsi     0xA00000021E29C416  cmpxchg4.acq    [spinlock] @ scsi_dispatch_cmd  0xE0000010260C8050  default_lock
        98   50.00%  vmlinux  0xA000000100009106  ld4             ia64_spinlock_contention        0xE0000010260C8050  default_lock
        14   50.00%  vmlinux  0xA000000100009126  cmpxchg4.acq    ia64_spinlock_contention        0xE0000010260C8050  default_lock
        95   49.47%  scsi     0xA00000021E2AF456  cmpxchg4.acq    [spinlock] @ scsi_request_fn    0xE0000010260C8050  default_lock
        97   67.01%  scsi     0xA00000021E2A95B6  cmpxchg4.acq    [spinlock] @ scsi_device_unbu.. 0xE0000010260C8050  default_lock
        42   78.57%  scsi     0xA00000021E2A9736  cmpxchg4.acq    [spinlock] @ scsi_run_queue     0xE0000010260C8050  default_lock

        27   37.04%  qla      0xA00000021E4062B6  ld8             qla2x00_queuecommand            0xE0000010260C8058  host_lock*
       197   57.36%  qla      0xA00000021E4063A6  ld8             qla2x00_queuecommand            0xE0000010260C8058  host_lock*
        41   48.78%  scsi     0xA00000021E29E3A0  ld8             scsi_dispatch_cmd               0xE0000010260C8058  host_lock*
         3   66.67%  scsi     0xA00000021E29E526  ld8             scsi_dispatch_cmd               0xE0000010260C8058  host_lock*
       355   65.63%  scsi     0xA00000021E2ACDB0  ld8             scsi_device_unbusy              0xE0000010260C8058  host_lock*
        14   50.00%  scsi     0xA00000021E2ACEA6  ld8             scsi_device_unbusy              0xE0000010260C8058  host_lock*
       123   55.28%  scsi     0xA00000021E2AF436  ld8             scsi_request_fn                 0xE0000010260C8058  host_lock*
        34   50.00%  scsi     0xA00000021E2AF746  ld8             scsi_request_fn                 0xE0000010260C8058  host_lock*
        38   76.32%  scsi     0xA00000021E2A9E80  ld8             scsi_run_queue                  0xE0000010260C8058  host_lock*

Figure 13: Cache line with scsi_host struct

   samples   remote  module   inst. address       inst.         function                          data address        data

        26   38.46%  scsi     0xA00000021E29EB10  ld8           scsi_put_command                  0xE00000012464C000  host (scsi_host*)
         4   25.00%  scsi     0xA00000021E29ED10  ld8           scsi_get_command                  0xE00000012464C000  host (scsi_host*)
        11   45.45%  scsi     0xA00000021E2ACD90  ld8           scsi_device_unbusy                0xE00000012464C000  host (scsi_host*)
        22   59.09%  scsi     0xA00000021E29CDE0  ld8           scsi_finish_command               0xE00000012464C000  host (scsi_host*)
        90   54.44%  scsi     0xA00000021E2AF0F0  ld8           scsi_request_fn                   0xE00000012464C000  host (scsi_host*)
         1  100.00%  scsi     0xA00000021E2A9B96  ld8           scsi_run_queue                    0xE00000012464C000  host (scsi_host*)
         2  100.00%  scsi     0xA00000021E29DFB0  ld8           scsi_dispatch_cmd                 0xE00000012464C000  host (scsi_host*)

         2    0.00%  scsi     0xA00000021E2AAF10  ld8           scsi_next_command                 0xE00000012464C008  request_queue (request_queue*)
         1    0.00%  scsi     0xA00000021E2ACF26  ld8           scsi_device_unbusy                0xE00000012464C008  request_queue (request_queue*)
         1  100.00%  scsi     0xA00000021E2AB826  ld8           scsi_io_completion                0xE00000012464C008  request_queue (request_queue*)

         6   33.33%  scsi     0xA00000021E29C2F6  cmpxchg4.acq  [spinlock] @ scsi_put_command     0xE00000012464C034  list_lock
        21   52.38%  scsi     0xA00000021E29C3B6  cmpxchg4.acq  [spinlock] @ scsi_get_command     0xE00000012464C034  list_lock

         2    0.00%  scsi     0xA00000021E2AF686  ld8           scsi_request_fn                   0xE00000012464C048  starved_entry.next

        92   35.87%  qla      0xA00000021E420D60  ld4           qla2x00_process_completed_req...  0xE00000012464C060  queue_depth

         2  100.00%  qla      0xA00000021E41EDF0  ld4           qla2x00_start_scsi                0xE00000012464C074  lun

Figure 14: First cache line of scsi_device struct

a tvec_base, can be batched so many operations can
be completed with a single lock reference. In addition,
iterating across all nodes for per-node operations may
provide an opportunity to prefetch locks and data ahead
for the next node to be processed, hiding the latency of
expensive memory references. This technique may be
utilized to improve freeing of slab objects.

Through a combination of improvements to the exist-
ing kernel sources, new feature development targeting
the reduction of remote cache-to-cache transfers, and
improvements in hardware and software capabilities to
identify and characterize cache line contention, we can
ensure improved scalability on future platforms.
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Abstract

Kdump, a kexec based kernel crash dumping mecha-
nism, has witnessed a lot of new significant development
activities recently. Features like, the relocatable kernel,
dump filtering, and initrd based dumping have enhanced
kdump capabilities are important steps towards making
it a more reliable and easy to use solution. New tools
like Linux Kernel Dump Test Module (LKDTM) pro-
vide an opportunity to automate kdump testing. It can
be especially useful for distributions to detect and weed
out regressions relatively quickly. This paper presents
various newly introduced features and provides imple-
mentation details wherever appropriate. It also briefly
discusses the future directions, such as early boot crash
dumping.

1 Introduction

Kdump is a kernel crash dumping mechanism where a
pre-loaded kernel is booted in, to capture the crash dump
after a system crash [12]. This pre-loaded kernel, often
called as capture kernel, runs from a different physical
memory area than the production kernel or regular ker-
nel. As of today, a capture kernel is specifically com-
piled and linked for a specific memory location, and is
shipped as an extra kernel to capture the dump. A re-
locatable kernel implementation gets rid of the require-
ment to run the kernel from the address it has been com-
piled for, instead one can load the kernel at a different
address and run it from there. Effectively the distribu-
tions and kdump users don’t have to build an extra ker-
nel to capture the dump, enhancing ease of use. Section
2 provides the details of relocatable kernel implementa-
tion.

Modern machines are being shipped with bigger and
bigger RAMs and a high end configuration can possess

a tera-byte of RAM. Capturing the contents of the entire
RAM would result in a proportionately large core file
and managing a tera-byte file can be difficult. One does
not need the contents of entire RAM to debug a ker-
nel problem and many pages like userspace pages can
be filtered out. Now an open source userspace utility is
available for dump filtering and Section 3 discusses the
working and internals of the utility.

Currently, a kernel crash dump is captured with the
help of init scripts in the userspace in the capture ker-
nel. This approach has some drawbacks. Firstly, it as-
sumes that the root filesystem did not get corrupted and
is still mountable in the second kernel. Secondly, mini-
mal work should be done in second kernel and one need
not have to run various user space init scripts. This led to
the idea of building a custom initial ram disk (initrd) to
capture the dump and improve the reliability of the op-
eration. Various implementation details of initrd based
dumping are presented in Section 4.

Section 5 discusses the Linux Kernel Dump Test Mod-
ule (LKDTM), a kernel module, which allows one to set
up and trigger crashes from various kernel code paths at
run time. It can be used to automate kdump testing pro-
cedure to identify bugs and eliminate regressions with
lesser efforts. This paper also gives a brief update on de-
vice driver hardening efforts in Section 6 and concludes
with future work in Section 7.

2 Relocatable bzImage

Generally, the Linux R© kernel is compiled for a fixed
address and it runs from that address. Traditionally,
for i386 and x86_64 architectures, it has been com-
piled and run from 1MB physical memory location.
Later, Eric W. Biederman introduced a config option,

• 167 •
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CONFIG_PHYSICAL_START, which allowed a kernel to
be compiled for a different address. This option effec-
tively shifted the kernel in virtual address space and one
could compile and run the kernel from a physical ad-
dress say, 16MB. Kdump used this feature and built a
separate kernel for capturing the dump. This kernel was
specifically built to run from a reserved memory loca-
tion.

The requirement of building an extra kernel for dump
capturing has not gone over too well with distributions,
as they end up shipping an extra kernel binary. Apart
from disk space requirements, it also led to increased
efforts in terms of supporting and testing this extra ker-
nel. Also from a user’s perspective, building an extra
kernel is cumbersome.

The solution to the above problem is a relocatable ker-
nel, where the same kernel binary can be loaded and
run from a different address than what it has been com-
piled for. Jan Kratochvil had posted a set of proto-
type patches to kick- off the discussion on the fastboot
mailing list [6]. Later, Eric W. Biederman came up
with another set of patches and posted them to LKML
for review [8]. Finally, Vivek Goyal picked up Eric’s
patches, cleaned those up, fixed a number of bugs, in-
corporated various review comments, and went through
multiple rounds of reposting to LKML for inclusion into
the mainline kernel. Relocatable kernel implementation
is very architecture dependent and support for i386 ar-
chitecture has been merged with version 2.6.20 of the
mainline kernel. Patches for x86_64 have been posted
on LKML [11] and are now part of -mm. Hopefully,
these will be merged with mainline kernel soon.

2.1 Design Approaches

The following design approaches have been discussed
for the relocatable bzImage implementation.

• Modify kernel text/data mapping at run time
At run time, the kernel determines where it has
been loaded by the boot-loader and it updates its
page tables to reflect the right mapping between
kernel virtual and physical addresses for kernel text
and data. This approach has been adopted for the
x86_64 implementation.

• Relocate using relocation information
This approach forces the linker to generate reloca-
tion information. These relocations are processed

and packed into the bzImage. The uncompressed
kernel code decompresses the kernel, performs the
relocations, and transfers control to the protected
mode kernel. This approach has been adopted by
the i386 implementation.

2.2 Design Details (i386)

In i386, kernel text and data are part of linearly mapped
region which has got hard-coded assumptions about vir-
tual to physical address mapping. Hence, it is probably
difficult to adopt the modifying the page table approach
for implementing a relocatable kernel. Instead, a sim-
pler, non-intrusive approach is to ask the linker to gen-
erate relocation information, pack this relocation infor-
mation into bzImage, and the uncompressed kernel code
can process these relocations before jumping to the 32-
bit kernel entry point (startup_32()).

2.2.1 Relocation Information Generation

Relocation information can be generated in many ways.
The initial experiment was to compile the kernel as
shared object file (-shared) which generated the re-
location entries. Eric had posted the patches for this
approach [9] but it was found that the linker also gen-
erated the relocation entries for absolute symbols (for
some historical reason) [1]. By definition, absolute sym-
bols are not to be relocated, but, with this approach, ab-
solute symbols also ended up being relocated. Hence
this method did not prove to be a viable one.

Later, a different approach was taken where
the i386 kernel is built with the linker option
--emit-relocs. This option builds an exe-
cutable vmlinux and still retains relocation information
in a fully linked executable. This increases the size
of vmlinux by around 10%, though this information is
discarded at runtime. The kernel build process goes
through these relocation entries and filters out PC
relative relocations, as these don’t have to be adjusted
if bzImage is loaded at a different physical address. It
also filters out the relocations generated with respect to
absolute symbols because absolute symbols don’t have
to be relocated. The rest of the relocation offsets are
packed into the compressed vmlinux. Figure 1 depicts
the new i386 bzImage build process.
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Figure 1: i386 bzImage build process

2.2.2 In-place Decompression

The code for decompressing the kernel has been
changed so that decompression can be done in-place.
Now the kernel is not first decompressed to any other
memory location then merged and put at final destina-
tion and there are no hard-coded assumptions about the
intermediate location [7]. This allows the kernel to be
decompressed within the bounds of its uncompressed
size and it will not overwrite any other data. Figure 2
depicts the new bzImage decompression logic.

At the same time, the decompressor is compiled as po-
sition independent code (-fPIC) so that it is not bound to
a physical location, and it can run from anywhere. This
code has been carefully written to make sure that it runs
even if no relocation processing is done.

Compressed
bzImage

Compressed
bzImage Uncompressed

Kernel

Location where
kernel is run from

Decompress
Kernel (2)

Move kernel
to a safe
location (1)

Location where
kernel is loaded
by boot-loader,
Usually, 1MB

Figure 2: In-place bzImage decompression

2.2.3 Perform Relocations

After decompression, all the relocations are performed.
Uncompressed code calculates the difference between
the address for which the kernel was compiled and the
address at which it is loaded. This difference is added
to the locations as specified by relocation offsets and
control is transferred to the 32-bit kernel entry point.

2.2.4 Kernel Config Options

Several new config options have been introduced
for relocatable kernel implementation. CONFIG_

RELOCATABLE controls whether the resulting bzImage
is relocatable or not. If this option is not set, no reloca-
tion information is generated in the vmlinux.

Generally, bzImage decompresses itself to the address
it has been compiled for (CONFIG_PHYSICAL_START)
and runs from there. But if CONFIG_RELOCATABLE is
set, then it runs from the address it has been loaded at by
the boot-loader and it ignores the compile time address.

CONFIG_PHYSICAL_ALIGN option allows a user to
specify the alignment restriction on the physical address
the kernel is running from.

2.3 Design Details (x86_64)

In x86_64, kernel text and data are not part of the
linearly mapped region and are mapped in a separate
40MB virtual address range. Hence, one can easily
remap the kernel text and data region depending on
where the kernel is loaded in the physical address space.
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The kernel decompression logic has been changed to do
an in-place decompression. The changes are similar to
those as discussed for i386 architecture.

2.3.1 Kernel text And data Mapping Modification

Normally, the kernel text/data virtual and physical ad-
dresses differ by an offset of __START_KERNEL_map
(0xffffffff80000000UL). At run time, this offset will
change if the kernel is not loaded at the same address
it has been compiled for. Kernel initial boot code deter-
mines where it is running from and it updates its page
tables accordingly. This shift in address is calculated at
run time and is stored in a variable phys_base. Fig-
ure 3 depicts the various mappings.

phys_base

Virtual Addr Space Physical Addr
Space

Kernel load
Addr

Kernel
Compile
Addr

Kernel text/data

Kernel image
Linearly mapped

 region

Figure 3: x86_64 kernel text/data mapping update

2.3.2 __pa_symbol() and __pa() Changes

Given the fact kernel text/data mapping changes at run
time, some __pa()-related macro definitions need to
be modified.

As mentioned previously, the kernel determines the dif-
ference between the address it has been compiled for
and the address it has been loaded at and stores that shift
in the variable phys_base.

Currently, __pa_symbol() is used to determine the
physical address associated with a kernel text/data vir-
tual address. Now this mapping is not fixed and can
vary at run time. Hence, __pa_symbol() has been
updated to take into the account the offset phys_base
while calculating the physical address associated with a
kernel text/data area.

#define __pa_symbol(x) \

({unsigned long v; \

asm("" : "=r" (v) : "0" (x));\

((v − __START_KERNEL_map) + phys_base);})

__pa() should be used only for virtual addresses be-
longing to a linearly mapped region. Currently, this
macro can map both the linearly mapped region and the
kernel/text data region. But, now it has been updated to
map only the kernel linearly mapped region, keeping in
line with the rest of the architectures. As the kernel lin-
early mapped region mappings don’t change because of
kernel image location, __pa() does not have to handle
the kernel load address shift (phys_base).

#define __pa(x) \

((unsigned long)(x) − PAGE_OFFSET)

2.3.3 Kernel Config Options

It is similar to i386, except that there is no option
CONFIG_PHYSICAL_ALIGN and alignment is set to
2MB.

2.4 bzImage Protocol Extension

The bzImage protocol has been extended to com-
municate relocatable kernel information to the boot-
loader. Two new fields, kernel_alignment and
relocatable_kernel, have been added to the bz-
Image header. The first one specifies the physical ad-
dress alignment requirement for the protected mode ker-
nel, and the second one indicates whether this protected
mode kernel is relocatable or not.

A boot-loader can look at the relocatable_
kernel field and decide if the protected mode compo-
nent should be loaded at the hard-coded 1MB address or
it can be loaded at other addresses too. Kdump uses this
feature and kexec boot-loader loads the relocatable bz-
Image at non-1MB address, in a reserved memory area.
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3 Dump Filtering

On modern machines with a large amount of memory,
capturing the contents of the entire RAM could create
a huge dump file, which might be in the range of tera-
bytes. It is difficult to manage such a huge dump file,
both while storing it locally and while sending it to a
remote host for analysis. makedumpfile is a userspace
utility to create a smaller dump file by dump filtering, or
by compressing the dump data, or both [5].

3.1 Filtering Options

Often, many pages like userspace pages, free pages, and
cache pages might not be of interest to the engineer an-
alyzing the crash dump. Hence, one can choose to filter
out those pages. The following are the types of pages
one can filter out:

• Pages filled with zero
makedumpfile distinguishes this page type by
reading each page. These pages are not part of
the dump file but the analysis tool is returned ze-
ros while accessing the filtered zero page.

• Cache pages
makedumpfile distinguishes this page type by
reading the members flags and mapping in
struct page. If both the PG_lru bit and
PG_swapcache bit of flags are on and PAGE_

MAPPING_ANON bit of mapping is off, the page is
considered to be a cache page.

• User process data pages
makedumpfile distinguishes this page type by
reading the member mapping in struct page.
If PAGE_MAPPING_ANON bit of mapping is on,
the page is considered to be a user process data
page.

• Free pages
makedumpfile distinguishes this page type by
reading the member free_area in struct
zone. If the page is linked into the member
free_area, the page is considered to be a free
page.

3.2 Filtering Implementation Details

makedumpfile examines the various memory man-
agement related data structures in the core file to dis-
tinguish between page types. It uses the crashed kernel
vmlinux, compiled with debug information, to retrieve a
variety of information like data structure size, member
offset, symbol addresses, and so on.

The memory management information depends on
the Linux version, the architecture of the processor,
and the memory model (FLATMEM, DISCONTIGMEM,
SPARSEMEM). For example, the symbol name of
struct pglist_data is node_data on linux-2.6.18
x86_64 DISCONTIGMEM, but it is pgdat_list on
linux-2.6.18 ia64 DISCONTIGMEM. makedumpfile
supports these varieties.

To begin with, makedumpfile infers the memory
model used by the crashed kernel, by searching for the
symbol mem_map, mem_section, node_data, or
pgdat_list in the binary file of the production ker-
nel. If symbol mem_map is present, the crashed ker-
nel used FLATMEM memory model or if mem_section
is present, the crashed kernel used SPARSEMEM mem-
ory model or if node_data or pgdat_list is
present, the crashed kernel used DISCONTIGMEM mem-
ory model.

Later it examines the struct page entry of each
page frame and retrieves the members flags and
mapping. The size of struct page and the mem-
ber field offsets are extracted from the .debug_info
section of the debug-compiled vmlinux of the produc-
tion kernel. Various symbol virtual addresses are re-
trieved from the symbol table of production kernel bi-
nary.

The organization of struct page entry arrays,
depends on the memory model used by the ker-
nel. For the FLATMEM model on linux-2.6.18 i386,
makedumpfile determines the virtual address of the
symbol mem_map from vmlinux. This address is trans-
lated into file offset with the help of /proc/vmcore
ELF headers and finally it reads the mem_map array at
the calculated file offset from core file. Other page types
in various memory models are distinguished in similar
fashion.
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3.3 Dump File Compression

The dump file can be compressed using standard com-
pression tools like gzip to generate smaller footprint.
The only drawback is that one will have to uncompress
the whole file before starting the analysis. Alternatively,
one can compress individual pages and decompress a
particular page only when analysis tool accesses it. This
reduces the disk space requirement while analyzing a
crash dump.

makedumpfile allows for the creation of compressed
dump files where compression is done on a per page ba-
sis. diskdump has used this feature in the past and
makedumpfile has borrowed the idea [3].

3.4 Dump File Format

By default, makedumpfile creates a dump file in the
kdump-compressed format. It is based on diskdump
file format with minor modifications. The crash utility
can analyze kdump-compressed format.

makedumpfile can also create a dump file in ELF
format which can be opened by both crash and gdb.
The ELF format does not support compressed dump
files.

3.5 Sample Dump Filtering Results

The dump file size depends on the production kernel’s
memory usage. Tables 1 and 2 show the dump file size
reduction in two possible cases. In the first table, most
of the production kernel’s memory is free, as dump was
captured immediately after a system boot and filtering
out free pages is effective. In the second table, most of
the memory is used as cache, as a huge file was being
decompressed while dump was captured, and filtering
out cache pages is effective.

4 Kdump initramfs

In the early days of kdump, crash dump capturing was
automated with the help of init scripts in userspace. This
approach was simple and easy, but it assumed that the
root filesystem was not corrupted during system crash
and could still be mounted safely in the second kernel.
Another consideration is that one should not have to run

linux-2.6.18, x86_64 Memory:5GB
Filtering option Size Reduction

Pages filled with zero 76%
Cache pages 16%

User process data pages 1%
Free pages 78%

All the above types 97%

Table 1: Dump filtering on system containing many free
pages

linux-2.6.18, x86_64 Memory:5GB
Filtering option Size Reduction

Pages filled with zero 3%
Cache pages 91%

User process data pages 1%
Free pages 1%

All the above types 94%

Table 2: Dump filtering on system containing many
cache pages

various other init scripts before he/she starts saving the
dump. Other scripts unnecessarily consume precious
kernel memory and possibly can lead to reduced reli-
ability.

These limitations led to the idea of capturing the crash
dump from early userspace (initial ramdisk context).
Saving the dump before even a single init script runs,
probably adds to the reliability of the operation and
precious memory is not consumed by un-required init
scripts. Also, one could specify a dump device other
than the root partition, which is guaranteed to be safe.

A prototype implementation of initrd based dumping
was available in Fedora R© 6. This was a basic scheme
implemented along the lines of nash shell based stan-
dard boot initrd and had various drawbacks like big-
ger ramdisk size, limited dump destination devices sup-
ported, and limited error handling capability because of
constrained scripting environment.

The above limitations triggered the redesign of the initrd
based dumping mechanism. The following sections pro-
vide the details of the new design and also highlight the
short-comings of the existing implementation, wherever
appropriate.
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4.1 Busybox-based Initial RAM Disk

Initial implementation of initrd based dumping was
roughly based on the initramfs files generated by the
mkinitrd utility. The newer design, uses Busybox [2]
utilities to generate the kdump initramfs. The advan-
tages of this scheme become evident in the following
discussion.

4.1.1 Managing the initramfs Size

One of the primary design goals was to keep the
initramfs as small as possible for two reasons. First,
one wants to reserve as little memory as possible for
crash dump kernel to boot and second, out of the re-
served memory, one wants to keep the free memory pool
as large as possible, to be used by kernel and drivers.

Initially it was considered to implement all of the re-
quired functionality for kdump in a statically linked bi-
nary, written in C. This binary would have been smaller
than Busybox, as it would avoid inclusion of unused
Busybox bits. But maintainability of the above approach
was a big concern, keeping in mind the vast array of
functionality it had to support. The feature list included
the ability to copy files to nfs mounts, to local disk
drives, to local raw partitions, and to remote servers via
ssh.

Upon a deeper look, the problem space resembled more
and more that of an embedded system which made the
immediate solution to many of the constraints self evi-
dent: Busybox [2].

Following are some of the utilities which are typically
packed into the initial ramdisk and contribute to the size
bloat of initramfs.

• nash: A non-interactive shell-like environment

• The cp utility

• The scp and ssh utilities: If a scp remote target
is selected

• The ifconfig utility

• The dmsetup and lvm utilities: For software
raided and lvm file systems

Some of these utilities are already built statically. How-
ever, even if one required the utilities to be dynamically
linked, various libraries have to be pulled in to satisfy
dependencies and the initramfs image size skyrockets.
In the case of the earlier initramfs for kdump, depend-
ing on the configuration, the inclusion of ssh, scp,
ifconfig, and cp required the inclusion of the fol-
lowing libraries:

libacl.so.1 libz.so.1
libselinux.so.1 libnsl.so.1
libc.so.6 libcrypt.so.1
libattr.so.1 libgssapi_krb5.so.2
libdl.so.2 libkrb5.so.3
libsepol.so.1 libk5crypto.so.3
linux-gate.so.1 libcom_err.so.2
libresolv.so.2 libkrb5support.so
libcrypto.so.6 ld-linux.so.2
libutil.so.1

Given these required utilities and libraries, the initramfs
was initially between 7MB and 11MB uncompressed,
which seriously cut into the available heap presented to
the kernel and the userspace applications which needed
it during the dump recovery process.

Busybox immediately provided a remedy to many of the
size issues. By using Busybox, the cp and ifconfig util-
ities were no longer needed, and with them went away
the need for most of the additional libraries. With Busy-
box, our initramfs size was reduced to a range of 2MB
to 10MB.

4.1.2 Enhanced Flexibility

A Busybox based initramfs implementation vastly in-
creased kdump system flexibility. Initially, the nash in-
terpreter allowed us a very small degree of freedom in
terms of how we could capture crash dumps. Given that
nash is a non-interactive script interpreter with an ex-
tremely limited conditional handling infrastructure, we
were forced in our initial implementation to determine,
at initramfs creation time, exactly what our crash proce-
dure would be. In the event of any malfunction, there
was only one error handling path to choose, which was
failing to capture the dump and rebooting the system.

Now, with Busybox, we are able to replace nash with
any of the supported Busybox shells (msh was chosen,
since it was the most bash-like shell that Fedora’s Busy-
box build currently enables). This switch gave us sev-
eral improvements right away, such as an increase in our
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ability to make decisions in the init script. Instead of
a script that was in effect a strictly linear progression
of commands, we now had the ability to create if-then-
else conditionals and loops, as well as the ability to cre-
ate and reference variables in the script. We could now
write an actual shell script in the initramfs, which al-
lowed us to, among many other things, to recover from
errors in a less drastic fashion. We now have the choice
to do something other than simply reboot the system and
lose the core file. Currently, it tries to mount the root
filesystem and continue the boot process, or drop to an
interactive shell within the initramfs so that a system ad-
ministrator can attempt to recover the dump manually.

In fact, the switch to Busybox gave us a good deal of
additional features that we were able to capitalize on.
Of specific note was the additional networking abil-
ity in Busybox. The built-in ifup/ifdown network in-
terface framework allowed us to bring network inter-
faces up and down easily, while the built-in vconfig
utility allowed us to support remote core capture over
vlan interfaces. Furthermore since we now had a truly
scriptable interface, we were able to use the sysfs inter-
face to enslave interfaces to one another, emulating the
ifenslave utility, which in turn allows us to dump cores
over bonded interfaces. Through the use of sysfs, we
are also able to dynamically query the devices that are
found at boot time and create device files for them on
the fly, rather than having to anticipate them at initramfs
creation time. Add to that the ability to use Busybox’s
findfs utility to identify local partitions by disklabel or
uuid, and we are able to dynamically determine our
dump location at boot time without needing to undergo a
kdump initramfs rebuild every time local disk geometry
changes.

4.2 Future Goals

In the recent past, our focus in terms of kdump userspace
implementation has been on moving to Busybox in an
effort to incorporate and advance upon the functionality
offered by previous dump capture utilities, while mini-
mizing the size impact of the initramfs and promoting
maintainability. Now that we have achieved these goals,
at least in part, our next set of goals include the follow-
ing:

• Cleanup initramfs generation – The generation
of the initramfs has been an evolutionary pro-

cess. Current initramfs generation script is a heav-
ily modified version of its predecessor to support
the use of Busybox. This script needs to be re-
implemented to be more maintainable.

• Config file formalization – The configuration file
syntax for kdump is currently very ad hoc, and does
not easily support expansion of configuration di-
rectives in any controlled manner. The configura-
tion file syntax should be formalized.

• Multiple dump targets – Currently, the initramfs
allows the configuration of one dump target, and
a configurable failure action in the event the dump
capture fails. Ideally, the configuration file should
support the listing of several dump targets as alter-
natives in case of failures.

• Further memory reduction – While we have
managed to reduce memory usage in the initramfs
by a large amount, some configurations still require
the use of large memory footprint binaries (most
notably scp and ssh). Eventually, we hope to switch
to using a smaller statically linked ssh client for use
in remote core capture instead, to reduce the top
end of our memory usage.

5 Linux Kernel Dump Test Module

Before adopting any dumping mechanism, it is impor-
tant to ascertain that the solution performs reliably in
most crash scenarios. To achieve this, one needed a tool
which can be used to trigger crash dumps from various
kernel code paths without patching and rebuilding the
kernel. LKDTM (Linux Kernel Dump Test Module) is
a dynamically loadable kernel module, that can be used
for forcing a system crash in various scenarios and helps
in evaluating the reliability of a crash dumping solution.
It has been merged with the mainline kernel and is avail-
able in kernel version 2.6.19.

LKDTM is based on LKDTT (Linux Kernel Dump Test
Tool) [10], but has an entirely different design. LKDTT
inserts the crash points statically and one must patch and
rebuild the kernel before it can be tested. On the other
hand, LKDTM makes use of jprobes infrastructure
and allows crash points to be inserted dynamically.

5.1 LKDTM Design

LKDTM artificially induces system crashes at prede-
fined locations and triggers dump for correctness test-
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ing. The goal is to widen the coverage of the tests, to
take into account the different conditions in which the
system might crash, for example, the state of the hard-
ware devices, system load, and context of execution.

LKDTM achieves the crash point insertion by using
jumper probes (jprobes), the dynamic kernel instru-
mentation infrastructure of the Linux kernel. The mod-
ule places a jprobe at the entry point of a critical func-
tion. When the kernel control flow reaches the function,
as shown in Figure 4, the probe causes the registered
helper function to be called before the actual function
is executed. At the time of insertion, each crash point
is associated with two attributes: the action to be trig-
gered and the number of times the crash point is to be hit
before triggering the action (similar to LKDTT). In the
helper function, if it is determined that the count associ-
ated with the crash point has been hit, the specified ac-
tion is performed. The supported action types, referred
to as Crash Types, are kernel panic, oops, exception, and
stack overflow.

jprobe registered

insert lkdtm.ko

trigger crash

Y

N

Dump capture

jprobe hit

jprobe handler
    executed

count 
    is
   0 ?

      return from
   jprobe handler

Figure 4: LKDTM functioning

jprobes was chosen over kprobes in order to en-
sure that the action is triggered in the same context as
that of the critical function. In the case of kprobes,
the helper function is executed in the int 3 trap con-
text. Whereas, when the jprobe is hit, the underly-
ing kprobes infrastructure points the saved instruc-
tion pointer to the jprobe’s handler routine and returns

from the int3 trap (refer Documentation/kprobes.txt for
the working of kprobes/jprobes). The helper rou-
tine is then executed in the same context as that of the
critical function, thus preserving the kernel’s execution
mode.

5.2 Types of Crash Points

The basic crash points supported by LKDTM are same
as supported by LKDTT. These are as follows:

IRQ handling with IRQs disabled (INT_
HARDWARE_ENTRY) The jprobe is placed at the
head of the function __do_IRQ, which processes
interrupts with IRQs disabled.

IRQ handling with IRQs enabled (INT_HW_IRQ_
EN) The jprobe is placed at the head of the func-
tion handle_IRQ_event, which processes inter-
rupts with IRQs enabled.

Tasklet with IRQs disabled (TASKLET) This crash
point recreates crashes that occur when the tasklets are
being executed with interrupts disabled. The jprobe is
placed at the function tasklet_action.

Block I/O (FS_DEVRW) This crash point crashes the
system when the filesystem accesses the low-level block
devices. It corresponds to the function ll_rw_block.

Swap-out (MEM_SWAPOUT) This crash point causes
the system to crash while in the memory swapping is
being performed.

Timer processing (TIMERADD) The jprobe is placed
at function hrtimer_start.

SCSI command (SCSI_DISPATCH_CMD) This
crash point is placed in the SCSI dispatch command
code.
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IDE command (IDE_CORE_CP) This crash point
brings down the system while handling I/O on IDE
block devices.

New crash points can be added, if required, by making
changes to drivers/misc/lkdtm.c file.

5.3 Usage

The LKDTM module can be built by enabling the
CONFIG_LKDTM config option under the Kernel
hacking menu. It can then be inserted into the run-
ning kernel by providing the required command line ar-
guments, as shown:

#modprobe lkdtm cpoint_name=<> cpoint_

type=<> [cpoint_count={>0}] [recur_

count={>0}]

5.4 Advantages/disadvantages of LKDTM

LKDTT has kernel space and user space components. In
order to make use of LKDTT, one has to apply the ker-
nel patch and rebuild the kernel. Also, it makes use of
the Generalised Kernel Hooks Interface (GHKI), which
is not part of the mainline kernel. On the other hand,
using LKDTM is extremely simple and is merged into
mainline kernels. The crash point can be injected into a
running kernel by simply inserting the kernel module.

The only shortcoming of LKDTM is that the crash point
cannot be placed in the middle of the function without
changing the context of execution, unlike LKDTT.

5.5 Kdump Testing Automation

So far kdump testing was done manually but it was diffi-
cult and very time consuming process. Now it has been
automated with the help of LKDTM infrastructure and
some scripts.

LTP (Linux Test Project) seems to be the right place for
such testing automation framework. A patch has been
posted to LTP mailing list [4]. This should greatly help
distributions in quickly identify regressions with every
new release.

These scripts set up a cron job which starts on a re-
boot and inserts either LKDTM or an elementary testing
module called crasher. Upon a crash, a crash dump

is automatically captured and saved to a pre-configured
location. This is repeated for various crash points as
supported by LKDTM. Later, these scripts also open the
captured dump and do some basic sanity verification.

The tests can be started by simply executing the follow-
ing from within the tarball directory:

# ./setup
# ./master run

The detailed instructions on the usage have been docu-
mented in the README file, which is part of the tarball.

6 Device Driver Hardening

Device driver initialization in a capture kernel contin-
ues to be a pain point. Various kinds of problems have
been reported. A very common problem is the pending
messages/interrupts on the device from previous the ker-
nel’s context. This interrupt is delivered to the driver in
the capture kernel’s context and it often crashes because
of state mismatch. A solution is based on the fact that
the device should have a way to allow the driver to reset
it. Reset should bring it to a known state from where the
driver can continue to initialize the device.

PCI bus reset can probably be of help here, but it is
uncertain how the PCI bus can be reset from software.
There does not seem to be a generic way, but PowerPC R©

firmware allows doing a software reset of the PCI buses
and the Extended Error Handling (EEH) infrastructure
makes use of it. We are looking into using EEH func-
tionality to reset the devices while the capture kernel
boots.

Even if there is a way to reset the device, device drivers
might not want to reset it all the time as resetting is gen-
erally time consuming. To resolve this issue, a new com-
mand line parameter reset_devices has been intro-
duced. When this parameter is passed on the command
line, it is an indication to the driver that it should first try
to reset the underlying device and then go ahead with the
rest of the initialization.

Some drivers like megaraid, mptfusion, ibmvscsi and ib-
mveth reported issues and have been fixed. MPT tries to
reset the device if it is not in an appropriate state and
megaraid sends a FLUSH/ABORT message to the de-
vice to flush all the commands sent from previous ker-
nel’s context. More problems have been reported with
aacraid and cciss drivers which are yet to be fixed.
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7 Early Boot Crash Dumping

Currently, kdump does not work if the kernel crashes be-
fore the boot process is completed. For kdump to work,
the kernel should be booted up so that the new kernel
is pre-loaded. During the development phase, many de-
velopers run into issues when the kernel is not booting
at all, and making crash dumps work in those scenarios
will be useful.

One idea is to load the kernel from early userspace (ini-
trd/initramfs), but that does not solve the problem en-
tirely because the kernel can crash earlier than that.

Another possibility is to use the kboot boot-loader to
pre-load a dump capture kernel in the memory some-
where and then launch the production kernel. This pro-
duction kernel will jump to the already loaded capture
kernel in case of a boot time crash. Figure 5 illustrates
the above design.

Dump Capture
Kernel

Production Kernel

Kboot

Boot into
kboot 
boot-loader (1)

Kboot pre-loads
dump capture
kernel (2)

Kboot loads
and boots into
production 
kernel (3)

Production
Kernel 
crashes
during
boot (4)

Figure 5: Early boot crash dumping

8 Conclusions

Kdump has come a long way since the initial implemen-
tation was merged into the 2.6.13 kernels. Features like
the relocatable kernel, dump filtering, and initrd-based
dumping have made it an even more reliable and easy
to use solution. Distributions are in the process of merg-
ing these features in upcoming releases for mass deploy-
ment.

The only problem area is the device driver initialization
issues in the capture kernel. Currently, these issues are
being fixed on a per-driver basis when they are reported.
We need more help from device driver maintainers to
fix the reported issues. We are exploring the idea of per-
forming device reset using EEH infrastructure on Power
and that should further improve the reliability of kdump
operation.
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Abstract

The inclusion of the Kernel Virtual Machine (KVM)
driver in Linux 2.6.20 has dramatically improved
Linux’s ability to act as a hypervisor. Previously, Linux
was only capable of running UML guests and contain-
ers. KVM adds support for running unmodified x86
operating systems using hardware-based virtualization.
The current KVM user community is limited by the
availability of said hardware.

The Xen hypervisor, which can also run unmodified op-
erating systems with hardware virtualization, introduced
a paravirtual ABI for running modified operating sys-
tems such as Linux, Netware, FreeBSD, and OpenSo-
laris. This ABI not only provides a performance advan-
tage over running unmodified guests, it does not require
any hardware support, increasing the number of users
that can utilize the technology. The modifications to the
Linux kernel to support the Xen paravirtual ABI are in-
cluded in some Linux distributions, but have not been
merged into mainline Linux kernels.

This paper will describe the modifications to KVM
required to support the Xen paravirtual ABI and a
new module, kvm-xen, implementing the requisite
hypervisor-half of the ABI. Through these modifica-
tions, Linux can add to its list of supported guests all of
the paravirtual operating systems currently supported by
Xen. We will also evaluate the performance of a Xeno-
Linux guest running under the Linux hypervisor to com-
pare Linux’s ability to act as a hypervisor versus a more
traditional hypervisor such as Xen.

1 Background

The x86 platform today is evolving to better support vir-
tualization. Extensions present in both AMD and Intel’s
latest generation of processors include support for sim-
plifying CPU virtualization. Both AMD and Intel plan

on providing future extensions to improve MMU and
hardware virtualization.

Linux has also recently gained a set of x86 virtual-
ization enhancements. For the 2.6.20 kernel release,
the paravirt_ops interface and KVM driver were
added. paravirt_ops provides a common infras-
tructure for hooking portions of the Linux kernel that
would traditionally prevent virtualization. The KVM
driver adds the ability for Linux to run unmodified
guests, provided that the underlying processor supports
either AMD or Intel’s CPU virtualization extensions.

Currently, there are three consumers of the
paravirt_ops interface: Lguest [Lguest], a
“toy” hypervisor designed to provide an example
implementation; VMI [VMI], which provides support
for guests running under VMware; and XenoLinux
[Xen], which provides support for guests running under
the Xen hypervisor.

1.1 Linux as a Hypervisor

As of 2.6.20, Linux will have the ability to virtualize
itself using either hardware assistance on newer proces-
sors or paravirtualization on existing and older proces-
sors.

It is now interesting to compare Linux to existing hy-
pervisors such as VMware [VMware] and Xen [Xen].
Some important questions include:

• What level of security and isolation does Linux
provide among virtual guests?

• What are the practical advantages and disadvan-
tages of using Linux as a hypervisor?

• What are the performance implications versus a
more traditional hypervisor design such as that of
Xen?

• 179 •
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To begin answering these questions and others, we use
Linux’s virtualization capabilities to run a XenoLinux
kernel as a guest within Linux.

The Xen hypervisor is now in several Linux distribu-
tions and forms the basis of two commercial hypervi-
sors. Therefore, the paravirtual kernel interface that
Xen supports is a good proof point of completeness and
performance. If Linux can support guests well using
a proven interface such as Xen’s, then Linux can be a
practical hypervisor.

2 Virtualization and the x86 Platform

Starting in late 2005, the historical shortcomings of the
x86 platform with regard to virtualization were reme-
died by Intel and AMD. It will take another several years
before most x86 platforms in the field have hardware
virtualization support. There are two classes of prob-
lems when virtualizating older x86 platforms:

1. Functional issues, including the existence of priv-
ileged instructions that are available to non-
privileged code. [Robin]

2. Performance issues that arise when multiple ker-
nels are running on the platform.

Most of the work done by VMware and Xen, as well as
the code in Linux, paravirt_ops and Lguest, is
focused on overcoming these x86 shortcomings.

Performance issues caused by virtualization, including
TLB flushing, cache thrashing, and the need for ad-
ditional layers of memory management, are being ad-
dressed in current and future versions of Intel and AMD
processors.

2.1 Ring Compression and Trap-and-Emulate

Traditionally, a monitor and a guest mode have been re-
quired in the CPU to virtualize a platform. [Popek] This
allows a hypervisor to know whenever one of its guests
is executing an instruction that needs hypervisor inter-
vention, since executing a privileged instruction in guest
mode will cause a trap into monitor mode.

A second requirement for virtualization is that all in-
structions that potentially modify the guest isolation

mechanisms on the platform must trap when executed
in guest mode.

Both of these requirements are violated by Intel and
AMD processors released prior to 2005. Neverthe-
less VMware, and later Xen, both successfully virtual-
ized these older platforms by devising new methods and
working with x86 privilege levels in an unanticipated
way.

The x86 processor architecture has four privilege lev-
els for segment descriptors and two for page descrip-
tors. Privileged instructions are able to modify control
registers or otherwise alter the protection and isolation
characteristics of segments and pages on the platform.
Privileged instructions must run at the highest protec-
tion level (ring 0). All x86 processors prior to the intro-
duction of hardware virtualization fail to generate a trap
on a number of instructions when issued outside of ring
0. These “non-virtualizable” instructions prevent the
traditional trap-and-emulate virtualization method from
functioning.

Ring compression is the technique of loading a guest
kernel in a less-privileged protection zone, usually ring
3 (the least privileged) for user space and ring 1 for the
guest kernel (or ring 3 for the x86_64 guest kernel).
In this manner, every time the guest kernel executes a
trappable privileged instruction the processor enters into
the hypervisor (fulfilling the first requirement above, the
ability to monitor the guest), giving the hypervisor full
control to disallow or emulate the trapped instruction.

Ring compression almost works to simulate a monitor
mode on x86 hardware. It is not a complete solution
because some x86 instructions that should cause a trap
in certain situations do not.

2.2 Paravirtualization and Binary Translation

On x86 CPUs prior to 2005 there are some cases
where non-privileged instructions can alter isolation
mechanisms. These include pushing or popping flags
or segment registers and returning from interrupts—
instructions that are safe when only one OS is running
on the host, but not safe when multiple guests are run-
ning on the host. These instructions are unsafe because
they do not necessarily cause a trap when executed by
non-privileged code. Traditionally, hypervisors have re-
quired this ability to use traps as a monitoring mecha-
nism.
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VMware handles the problem of non-trapping privi-
leged instructions by scanning the binary image of the
kernel, looking for specific instructions [Adams] and re-
placing them with instructions that either trap or call into
the hypervisor. The process VMware uses to replace bi-
nary instructions is similar to that used by the Java just-
in-time bytecode compiler.

Xen handles this problem by modifying the OS kernel at
compile time, so that the kernel never executes any non-
virtualizable instructions in a manner that can violate
the isolation and security of the other guests. A Xen
kernel replaces sensitive instructions with register-based
function calls into the Xen hypervisor. This technique is
also known as paravirtualization.

2.3 x86 Hardware Virtualization Support

Beginning in late 2005 when Intel started shipping Intel-
VT extensions, x86 processors gained the ability to have
both a host mode and a guest mode. These two modes
co-exist with the four levels of segment privileges and
two levels of page privileges. AMD also provides pro-
cessors with similar features with their AMD-V exten-
sions. Intel-VT and AMD-V are similar in their major
features and programming structure.

With Intel-VT and AMD-V, hardware ring compression
and binary translation are obviated by the new hard-
ware instructions. The first generation of Intel and AMD
virtualization support remedied many of the functional
shortcomings of x86 hardware, but not the most impor-
tant performance shortcomings.

Second-generation virtualization support from each
company addresses key performance issues by reduc-
ing unnecessary TLB flushes and cache misses and by
providing multi-level memory management support di-
rectly in hardware.

KVM provides a user-space interface for using AMD-
V and Intel-VT processor instructions. Interestingly,
KVM does this as a loadable kernel module which turns
Linux into a virtual machine monitor.

3 Linux x86 Virtualization Techniques in
More Detail

To allow Linux to run paravirtual Xen guests, we use
techniques that are present in Xen, KVM, and Lguest.

3.1 Avoiding TLB Flushes

x86 processors have a translation-look-aside buffer
(TLB) that caches recently accessed virtual address to
physical address mappings. If a virtual address is ac-
cessed that is not present in the TLB, several hundred
cycles are required to determine the physical address of
the memory.

Keeping the TLB hit rate as high as possible is neces-
sary to achieve high performance. The TLB, like the
instruction cache, takes advantage of locality of refer-
ence, or the tendency of kernel code to refer to the same
memory addresses repeatedly.

Locality of reference is much reduced when a host is
running more than one guest operating system. The
practical effect of this is that the TLB hit rate is reduced
significantly when x86 platforms are virtualized.

This problem cannot be solved by simply increasing the
size of the TLB. Certain instructions force the TLB to
be flushed, including hanging the address of the page
table. A hypervisor would prefer to change the page
table address every time it switches from guest to host
mode, because doing so simplifies the transition code.

3.2 Using a Memory Hole to Avoid TLB Flushes

Devising a safe method for the hypervisor and guest to
share the same page tables is the best way to prevent an
automatic TLB flush every time the execution context
changes from guest to host. Xen creates a memory hole
immediately above the Linux kernel and resides in that
hole. To prevent the Linux kernel from having access to
the memory where the hypervisor is resident, Xen uses
segment limits on x86_32 hardware. The hypervisor is
resident in mapped memory, but the Linux kernel cannot
gain access to hypervisor memory because it is beyond
the limit of the segment selectors used by the kernel. A
general representation of this layout is shown in Figure
1.

This method allows both Xen and paravirtual Xen guests
to share the same page directory, and hence does not
force a mandatory TLB flush every time the execu-
tion context changes from guest to host. The memory
hole mechanism is formalized in the paravirt_ops
reserve_top_address function.
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Figure 1: Using segment limits on i386 hardware allows
the hypervisor to use the same page directory as each
guest kernel. The guest kernel has a different segment
selector with a smaller limit.

3.2.1 x86_64 hardware and TLB Flushes

The x86_64 processors initially removed segment limit
checks, so avoiding TLB flushes in 64-bit works differ-
ently from 32-bit hardware. Transitions from kernel to
hypervisor occur via the syscall instruction, which is
available in 64-bit mode. syscall forces a change to
segment selectors, dropping the privilege level from 1 to
0.

There is no memory hole per se in 64-bit mode, because
segment limits are not universally enforced. An unfortu-
nate consequence is that a guest’s userspace must have
a different page table from the guest’s kernel. There-
fore, the TLB is flushed on a context switch from user
to kernel mode, but not from guest (kernel) to host (hy-
pervisor) mode.

3.3 Hypercalls

A paravirtual Xen guest uses hypercalls to avoid caus-
ing traps, because a hypercall can perform much better
than a trap. For example, instead of writing to a pte that
is flagged as read-only, the paravirtualized kernel will
pass the desired value of the pte to Xen via a hypercall.
Xen will validate the new value of the pte, write to the
pte, and return to the guest. (Other things happen be-
fore execution resumes at the guest, much like returning
from an interrupt in Linux).

Xen hypercalls are similiar to software interrupts. They
pass parameters in registers. 32-bit unprivileged guests
in Xen, hypercalls are executed using an int in-
struction. In 64-bit guests, they are executed using a
syscall instruction.

3.3.1 Handling Hypercalls

Executing a hypercall transfers control to the hypervisor
running at ring 0 and using the hypervisor’s stack. Xen
has information about the running guest stored in several
data structures. Most hypercalls are a matter of validat-
ing the requested operation and making the requested
changes. Unlike instruction traps, not a lot of intro-
spection must occur. By working carefully with page ta-
bles and processor caches, hypercalls can be much faster
than traps.

3.4 The Lguest Monitor

Lguest implements a virtual machine monitor for
Linux that runs on x86 processors that do not have hard-
ware support for virtualization. A userspace utility pre-
pares a guest image that includes an Lguest kernel and
a small chunk of code above the kernel to perform con-
text switching from the host kernel to the guest kernel.

Lguest uses the paravirt_ops interface to install
trap handlers for the guest kernel that reflect back into
Lguest switching code. To handle traps, Lguest
switches to the host Linux kernel, which contains a
paravirt_ops implementation to handle guest hy-
percalls.
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3.5 KVM

The AMD-V and Intel-VT instructions available in
newer processors provide a mechanism to force the pro-
cessor to trap on certain sensitive instructions even if the
processor is running in privileged mode. The processor
uses a special data area, known as the VMCB or VMCS
on AMD and Intel respectively, to determine which in-
structions to trap and how the trap should be delivered.
When a VMCB or VMCS is being used, the processor
is considered to be in guest mode. KVM programs the
VMCB or VMCS to deliver sensitive instruction traps
back into host mode. KVM uses information provided
in the VMCB and VMCS to determine why the guest
trapped and emulates the instruction appropriately.

Since this technique does not require any modifications
to the guest operating system, it can be used to run any
x86 operating that runs on a normal processor.

4 Our Work

Running a Xen guest on Linux without the Xen hyper-
visor present requires some basic capabilities. First, we
need to be able to load a Xen guest into memory. Sec-
ond, we have to initialize a Xen compatible start-of-day
environment. Lastly, Linux needs to be able to switch
between running the guest as well as to support han-
dling the guest’s page tables. For the purposes of this pa-
per we are not addressing virtual IO, nor SMP; however,
we do implement a simple console device. We discuss
these features in Section 6. We expand on our choice
of using QEMU as our mechanism to load and initialize
the guest for running XenoLinux in Section 4.2. Using
the Lguest switching mechanism and tracking the guest
state is explained in Section 4.3. Section 4.4 describes
using Linux’s KVM infrastructure for Virtual Machine
creation and shadowing a VM’s page tables. The vir-
tual console mechanism is explained in Section 4.5. Fi-
nally, we describe the limitations of our implementation
in Section 4.6.

4.1 QEMU and Machine Types

QEMU is an open source machine emulator which uses
translation or virtulization to run operating systems or
programs for various machine architectures. In addition
to emulating CPU architectures, QEMU also emulates
platform devices. QEMU combines a CPU and a set of
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Figure 2: Linux host memory layout with KVM, kvm-
xen, and a XenoLinux guest

devices together in a QEMU machine type. One exam-
ple is the “pc” machine which emulates the 32-bit x86
architecture and emulates a floppy controller, RTC, PIT,
IOAPIC, PCI bus, VGA, serial, parallel, network, USB,
and IDE disk devices.

A paravirtualized Xen guest can be treated as a new
QEMU machine type. Specifically, it is a 32-bit CPU
which only executes code in ring 1 and contains no de-
vices. In addition to being able to define which devices
are to be emulated on a QEMU machine type, we can
also control the initial machine state. This control is
quite useful as Xen’s start-of-day assumptions are not
the same as a traditional 32-bit x86 platform. In the end,
the QEMU Xen machine type can be characterized as an
eccentric x86 platform that does not run code in ring 0,
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nor has it any hardware besides the CPU.

Paravirtualized kernels, such as XenoLinux, are built
specifically to be virtualized, allowing QEMU to use an
accelerator, such as KVM. KVM currently relies on the
presence of hardware virtualization to provide protec-
tion while virtualizing guest operating systems. Paravir-
tual kernels do not need hardware support to be virtual-
ized, but they do require assistance in transitioning con-
trol between the host and the guest. Lguest provides a
simple mechanism for the transitions we explain below.

4.2 Lguest Monitor and Hypercalls

Lguest is a simple x86 paravirtual hypervisor designed
to exercise the paravirt_ops interface in Linux
2.6.20. No hypercalls are implemented within Lguest’s
hypervisor, but instead it will transfer control to the host
to handle the requested work. This delegation of work
ensures a very small and simple hypervisor. Paravirtual
Xen guests rely on hypercalls to request that some work
be done on its behalf.

For our initial implementation, we chose not to imple-
ment the Xen hypercalls in our hypervisor directly, but
instead reflect the hypercalls to the QEMU Xen ma-
chine. Handling a Xen hypercall is fairly straightfor-
ward. When the guest issues a hypercall, we examine
the register state to determine which hypercall was is-
sued. If the hypercall is handled in-kernel (as some
should be for performance reasons) then we simply call
the handler and return to the guest when done. If the hy-
percall handler is not implemented in-kernel, we transi-
tion control to the QEMU Xen machine. This transition
is done by setting up specific PIO operations in the guest
state and exiting kvm_run. The QEMU Xen machine
will handle the hypercalls and resume running the guest.

4.3 KVM Back-end

The KVM infrastructure does more than provide an in-
terface for using new hardware virtualization features.
The KVM interface gives Linux a generic mechanism
for constructing a VM using kernel resources. We
needed to create a new KVM back-end which provides
access to the infrastructure without requiring hardware
support.

Our back-end for KVM is kvm-xen. As with other
KVM back-ends such as kvm-intel and kvm-amd, kvm-
xen is required to provide an implementation of the

struct kvm_arch_ops. Many of the arch ops are
designed to abstract the hardware virtualization imple-
mentation. This allows kvm-xen to provide its own
method for getting, setting, and storing guest register
state, as well as hooking on guest state changes to en-
force protection with software in situations where kvm-
intel or kvm-amd would rely on hardware virtualization.

We chose to re-use Lguest’s structures for tracking guest
state. This choice was obvious after deciding to re-use
Lguest’s hypervisor for handling the transition from host
to guest. Lguest’s hypervisor represents the bare mini-
mum needed in a virtual machine monitor. For our ini-
tial work we saw no compelling reason to write our own
version of the switching code.

During our hardware setup we map the hypervisor into
the host virtual address space. We suffer the same re-
strictions on the availability of a specific virtual address
range due to Lguest’s assumption that on most machines
the top 4 megabytes are unused. During VCPU cre-
ation, we allocate a struct lguest, reserve space
for guest state, and allocate a trap page.

After the VCPU is created, KVM initializes its shadow
MMU code. Using the vcpu_setup hook which fires
after the MMU is initialized, we set up the initial guest
state. This setup involves building the guest GDT, IDT,
TSS, and the segment registers.

When set_cr3 is invoked the KVM MMU resets the
shadow page table and calls into back-end specific code.
In kvm-xen, we use this hook to ensure that the hyper-
visor pages are always mapped into the shadow page
tables and to ensure that the guest cannot modify those
pages.

We use a modified version of Lguest’s run_guest
routine when supporting the kvm_run call. Lguest’s
run_guest will execute the guest code until it traps
back to the host. Upon returning to the host, it de-
code the trap information and decides how to proceed.
kvm-xen follows the same model, but replaces Lguest-
specific responses such as replacing Lguest hypercalls
with Xen hypercalls.

4.4 Virtual Console

The virtual console as expected by a XenoLinux guest
is a simple ring queue. Xen guests expect a reference
to a page of memory shared between the guest and the
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host and a Xen event channel number. The QEMU Xen
machine type allocates a page of the guest’s memory,
selects an event channel, and initializes the XenoLinux
start-of-day with these values.

During the guest booting process it will start writing
console output to the shared page and will issue a hyper-
call to notify the host of a pending event. After control is
transferred from the guest, the QEMU Xen machine ex-
amines which event was triggered. For console events,
the QEMU Xen machine reads data from the ring queue
on the shared page, increments the read index pointer,
and notifies the guest that it received the message via
the event channel bitmap, which generates an interrupt
in the guest upon returning from the host. The data read
from and written to the shared console page is connected
to a QEMU character device. QEMU exposes the char-
acter devices to users in many different ways including
telnet, Unix socket, PTY, and TCP socket. In a similar
manner, any writes to QEMU character devices will put
data into the shared console page, increment the write
index pointer, and notify the guest of the event.

4.5 Current Restrictions

The current implementation for running Xen guests on
top of Linux via KVM supports 32-bit UP guests. We
have not attempted to implement any of the infrastruc-
ture required for virtual IO beyond simple console sup-
port. Additionally, while using Lguest’s hypervisor sim-
plified our initial work, we do inherit the requirement
that the top 4 megabytes of virtual address space be
available on the host. We discuss virtual IO and SMP
issues as future work in Section 6.

5 Xen vs. Linux as a hypervisor

One of the driving forces behind our work was to com-
pare a more traditional microkernel-based hypervisor
with a hypervisor based on a monolithic kernel. kvm-
xen allows a XenoLinux guest to run with Linux as the
hypervisor allowing us to compare this environment to
a XenoLinux guest running under the Xen hypervisor.
For our evaluation, we chose three areas to focus on:
security, manageability, and performance.

5.1 Security

A popular metric to use when evaluating how secure a
system can be is the size of the Trusted Computing Base

(or TCB). On a system secured with static or dynamic
attestation, it is no longer possible to load arbitrary priv-
ileged code [Farris]. This means the system’s security
is entirely based on the privileged code that is being
trusted.

Many claim that a microkernel-based hypervisor, such
as Xen, significantly reduces the TCB since the hyper-
visor itself is typically much smaller than a traditional
operating system [Qiang]. The Xen hypervisor would
appear to confirm this claim when we consider its size
relative to an Operating System such as Linux.

Pro ject SLOCs
KVM 8,950

Xen 165,689
Linux 5,500,933

Figure 3: Naive TCB comparison of KVM, Xen, and
Linux

From Figure 3, we can see that Xen is thirty-three times
smaller than Linux. However, this naive comparison
is based on the assumption that a guest running under
Xen does not run at the same privilege level as Xen it-
self. When examining the TCB of a Xen system, we
also have to consider any domain that is privileged. In
every Xen deployment, there is at least one privileged
domain, typically Domain-0, that has access to physi-
cal hardware. Any domain that has access to physical
hardware has, in reality, full access to the entire system.
The vast majority of x86 platforms do not possess an
IOMMU which means that every device capable of per-
forming DMA can access any region of physical mem-
ory. While privileged domains do run in a lesser ring,
since they can program hardware to write arbitrary data
to arbitrary memory, they can very easily escalate their
privileges.

When considering the TCB of Xen, we must also con-
sider the privileged code running in any privileged do-
main.

Pro ject SLOCs
KVM 5,500,933

Xen 5,666,622

Figure 4: TCB size of KVM and Xen factoring in the
size of Linux

We clearly see from Figure 4 that since the TCB of both
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kvm-xen and Xen include Linux, the TCB comparison
really reduces down to the size of the kvm-xen module
versus the size of the Xen hypervisor. In this case, we
can see that the size of the Xen TCB is over an order
magnitude larger than kvm-xen.

5.2 Driver Domains

While most x86 platforms do not contain IOMMUs,
both Intel and AMD are working on integrating
IOMMU functionality into their next generation plat-
forms [VT-d]. If we assume that eventually, IOMMUs
will be common for the x86, one could argue that Xen
has an advantage since it could more easily support
driver domains.

5.3 Guest security model

The Xen hypervisor provides no security model for re-
stricting guest operations. Instead, any management
functionality is simply restricted to root from the privi-
leged domain. This simplistic model requires all man-
agement software to run as root and provides no way to
restrict a user’s access to a particular set of guests.

kvm-xen, on the other hand, inherits the Linux user se-
curity model. Every kvm-xen guest appears as a process
which means that it also is tied to a UID and GID. A
major advantage of kvm-xen is that the supporting soft-
ware that is needed for each guest can be run with non-
root privileges. Consider the recent vulnerability in Xen
related to the integrated VNC server [CVE]. This vul-
nerability actually occurred in QEMU which is shared
between KVM and Xen. It was only a security issue in
Xen, though, as the VNC server runs as root. In KVM,
the integrated VNC server runs as a lesser user, giving
the VM access only to files on the host that are accessi-
ble by its user.

Perhaps the most important characteristic of the process
security model for virtualization is that it is well under-
stood. A Linux administrator will not have to learn all
that much to understand how to secure a system using
kvm-xen. This reduced learning curve will inherently
result in a more secure deployment.

5.4 Tangibility

Virtualization has the potential to greatly complicate
machine management, since it adds an additional layer

of abstraction. While some researchers are proposing
new models to simplify virtualization [Sotomayor], we
believe that applying existing management models to
virtualization is an effective way to address the problem.

The general deployment model of Xen is rather com-
plicated. It first requires deploying the Xen hypervi-
sor which must boot in place of the operating system.
A special kernel is then required to boot the privileged
guest–Domain-0. There is no guarantee that device
drivers will work under this new kernel, although the
vast majority do. A number of key features of modern
Linux kernels are also not available such as frequency
scaling and software suspend. Additionally, regardless
of whether any guests are running, Xen will reserve a
certain amount of memory for the hypervisor—typically
around 64MB.

kvm-xen, on the other hand, is considerably less intru-
sive. No changes are required to a Linux install when
kvm-xen is not in use. A special host kernel is not
needed and no memory is reserved. To deploy kvm-xen,
one simply needs to load the appropriate kernel module.

Besides the obvious ease-of-use advantage of kvm-xen,
the fact that it requires no resources when not being
used means that it can be present on any Linux installa-
tion. There is no trade-off, other than some disk space,
to having kvm-xen installed. This lower barrier to en-
try means that third parties can more easily depend on
a Linux-based virtualization solution such as kvm-xen
than a microkernel-based solution like Xen.

Another benefit of kvm-xen is that is leverages the full
infrastructure of QEMU. QEMU provides an integrated
VNC server, a rich set of virtual disk formats, userspace
virtual network, and many other features. It is consider-
ably easier to implement these features in QEMU since
it is a single process. Every added piece of infrastruc-
ture in Xen requires creating a complex communication
protocol and dealing with all sorts of race conditions.

Under kvm-xen, every XenoLinux guest is a process.
This means that the standard tools for working with pro-
cesses can be applied to kvm-xen guests. This greatly
simplifies management as eliminates the need to create
and learn a whole new set of tools.

5.5 Performance

At this early stage in our work, we cannot definitively
answer the question of whether a XenoLinux guest un-
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Figure 5: Hypercall latency

der kvm-xen will perform as well or better than running
under the Xen hypervisor. We can, however, use our
work to attempt to determine whether the virtualization
model that kvm-xen uses is fundamentally less perfor-
mant than the model employed by Xen. Further, we can
begin to determine how significant that theoretical per-
formance difference would be.

The only fundamental difference between kvm-xen and
the Xen hypervisor is the cost of a hypercall. With
the appropriate amount of optimization, just about ev-
ery other characteristic can be made equivalent between
the two architectures. Hypercall performance is rather
important in a virtualized environment as most of the
privileged operations are replaced with hypercalls.

As we previously discussed, since the Xen Hypervisor is
microkernel-based, the virtual address space it requires
can be reduced to a small enough amount that it can fit
within the same address space as the guest. This means
that a hypercall consists of only a privilege transition.
Due to the nature of x86 virtualization, this privilege
transition is much more expensive than a typical syscall,
but is still relatively cheap.

Since kvm-xen uses Linux as its hypervisor, it has to use
a small monitor to trampoline hypercalls from a guest
to the host. This is due to the fact that Linux cannot
be made to fit into the small virtual address space hole
that the guest provides. Trampolining the hypercalls in-
volves changing the virtual address space and, subse-
quently, requires a TLB flush. While there has been a
great deal of work done on the performance impact of
this sort of transition [Wiggins], for the purposes of this
paper we will attempt to consider the worst-case sce-
nario.

In the above table, we see that kvm-xen hypercalls are
considerably worse than Xen hypercalls. We also note
though that kvm-xen hypercalls are actually better than
hypercalls when using SVM. Current SVM-capable pro-
cessors require an address space change on every world
switch so these results are not surprising.

Based on these results, we can assume that kvm-xen
should be able to at least perform as well as an SVM
guest can today. We also know from many sources
[XenSource] that SVM guests can perform rather well
on many workloads, suggesting that kvm-xen should
also perform well on these workloads.

6 Future Work

To take kvm-xen beyond our initial work, we must ad-
dress how to handle Xen’s virtual IO subsystem, SMP
capable guests, and hypervisor performance.

6.1 Xen Virtual IO

A fully functional Xen virtual IO subsystem is com-
prised of several components. The XenoLinux kernel
includes a virtual disk and network driver built on top
of a virtual bus (Xenbus), an inter-domain page-sharing
mechanism (grant tables), and a data persistence layer
(Xenstore). For kvm-xen to utilize the existing support
in a XenoLinux kernel, we need to implement support
for each of these elements.

The Xenbus element is mostly contained within the
XenoLinux guest, not requiring significant work to be
utilized by kvm-xen. Xenbus is driven by interaction
with Xenstore. As changes occur within the data tracked
by Xenstore, Xenbus triggers events within the Xeno-
Linux kernel. At a minimum, kvm-xen needs to im-
plement the device enumeration protocol in Xenstore so
that XenoLinux guests have access to virtual disk and
network.

Xen’s grant-tables infrastructure is used for controlling
how one guest shares pages with other domains. As with
Xen’s Domain 0, the QEMU Xen machine is also capa-
ble of accessing all of the guest’s memory, removing the
need to reproduce grant-table-like functionality.

Xenstore is a general-purpose, hierarchical data persis-
tence layer. Its implementation relies on Linux notifier
chains to trigger events with a XenoLinux kernel. kvm-
xen would rely on implementing a subset of Xenstore
functionality in the QEMU Xen machine.

6.2 SMP Guests

Providing support for XenoLinux SMP guests will be
very difficult. As of this writing, KVM itself does not
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support SMP guests. In addition to requiring KVM
to become SMP capable, XenoLinux kernels rely on
the Xen hypervisor to keep all physical CPU Time
Stamp Counter (TSC) registers in relative synchroniza-
tion. Linux currently does not utilize TSCs in such a
fashion using other more reliable time sources such as
ACPI PM timers.

6.3 Hypervisor Performance

Xen guests that utilize shadow page tables benefit signif-
icantly from the fact that the shadow paging mechanism
is within the hypervisor itself. kvm-xen uses KVM’s
MMU, which resides in the host kernel, and XenoLinux
guests running on kvm-xen would benefit greatly from
moving the MMU into the hypervisor. Additionally, sig-
nificant performance improvements would be expected
from moving MMU and context-switch-related hyper-
calls out of the QEMU Xen machine and into the hyper-
visor.

7 Conclusion

With kvm-xen we have demonstrated that is possible
to run a XenoLinux guest with Linux as its hyper-
visor. While the overall performance picture of run-
ning XenoLinux guests is not complete, our initial re-
sults indicate that kvm-xen can achieve adequate per-
formance without using a dedicated microkernel-based
hypervisor like Xen. There are still some significant
challenges for kvm-xen—namely SMP guest support—
though as KVM and the paravirt_ops interface in
Linux evolve, implementing SMP support will become
easier.
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Abstract

Direct Jump Probe (djprobe) is an enhancement to
kprobe, the existing facility that uses breakpoints to cre-
ate probes anywhere in the kernel. Djprobe inserts jump
instructions instead of breakpoints, thus reducing the
overhead of probing. Even though the kprobe “booster”
speeds up probing, there still is too much overhead due
to probing to allow for the tracing of tens of thousands
of events per second without affecting performance.

This presentation will show how the djprobe is designed
to insert a jump, discuss the safety of insertion, and de-
scribe how the cross self-modification (and so on) is
checked. This presentation also provides details on how
to use djprobe to speed up probing and shows the per-
formance improvement of djprobe compared to kprobe
and kprobe-booster.

1 Introduction

1.1 Background

For the use of non-stop servers, we have to support
a probing feature, because it is sometimes the only
method to analyze problematic situations.

Since version 2.6.9, Linux has kprobes as a very unique
probing mechanism [7]. In kprobe ((a) in Figure 1),
an original instruction at probe point is copied to an
out-of-line buffer and a break-point instruction is put at
the probe point. The break-point instruction triggers a
break-point exception and invokes pre_handler()
of the kprobe from the break-point exception handler.
After that, it executes the out-of-line buffer in single-
step mode. Then, it triggers a single-step exception and
invokes post_handler(). Finally, it returns to the
instruction following the probe point.

This probing mechanism is useful. For example, system
administrators may like to know why their system’s per-
formance is not very good under heavy load. Moreover,

system-support venders may like to know why their sys-
tem crashed by salvaging traced data from the dumped
memory image. In both cases, if the overhead due to
probing is high, it will affect the result of the mea-
surment and reduce the performance of applications.
Therefore, it is preferable that the overhead of probing
becomes as small as possible.

From our previous measurement [10] two years ago, the
processing time of kprobe was about 1.0 usec whereas
Linux Kernel State Tracer (LKST) [2] was less than 0.1
usec. From our previous study of LKST [9], about 3%
of overhead for tracing events was recorded. Therefore,
we decided our target for probing overhead should be
less than 0.1 usec.

1.2 Previous Works

Figure 1 illustrates how the probing behaviors are dif-
ferent among kprobe, kprobe-booster and djprobe when
a process hits a probe point.

As above stated, our goal of the processing time is less
than 0.1 usec. Thus we searched for improvements to
reduce the probing overhead so as it was as small as
possible. We focused on the probing process of kprobe,
which causes exceptions twice when each probe hit. We
predicted that most of the overhead came from the ex-
ceptions, and we could reduce it by using jumps instead
of the exceptions.

We developed the kprobe-booster as shown in Fig-
ure 1(b). In this improvement, we attempted to replace
the single-step exception with a jump instruction, be-
cause it was easier than replacing a break-point. Thus,
the first-half of processing of kprobe-booster is same as
the kprobe, but it does not use a single-step exception
in the latter-half. This improvement has already been
merged into upstream kernel since 2.6.17.

Last year, Ananth’s paper [7] unveiled efforts for im-
proving kprobes, so the probing overheads of kprobe

• 189 •
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Figure 1: Kprobe, kprobe-booster and djprobe

and kprobe-booster became about 0.5 usec and about 0.3
usec respectively. Thus the kprobe-booster succeeded to
reduce the probing overhead by almost half. However,
its performance is not enough for our target.

Thus, we started developing djprobe: Direct Jump
Probe.

1.3 Concept and Issues

The basic idea of djprobe is simply to use a jump in-
struction instead of a break-point exception. In djprobe
((c) in Figure 1), a process which hits a probe point
jumps to the out-of-line buffer, calls probing handler,
executes the “original instructions” on the out-of-line
buffer directly, and jumps back to the instruction fol-
lowing the place where the original instructions existed.
We will see the result of this improvement in Section 4.

There are several difficulties to implement this concept.
A jump instruction must occupy 5 bytes on i386, re-
placement with a jump instruction changes the instruc-
tion boundary, original instructions are executed on an-
other place, and these are done on the running kernel.
So. . .

• Replacement of original instructions with a jump
instruction must not block other threads.

• Replacement of original instructions which are
targeted by jumps must not cause unexpectable
crashes.

• Some instructions such as an instruction with rel-
ative addressing mode can not be executed at out-
of-line buffer.

• There must be at least one instruction following the
replaced original instructions to allow for the re-
turning from the probe.

• Cross code modification in SMP environment may
cause General Protection Fault by Intel Erratum.

• Djprobe (and also kprobe-booster) does not sup-
port the post_handler.

Obviously, some tricks are required to make this con-
cept real. This paper discribes how djprobe solve these
issues.

1.4 Terminology

Before discussing details of djprobe, we would like to
introduce some useful terms. Figure 2 illustrates an ex-
ample of execution code in CISC architecture. The first
instruction is a 2 byte instruction, second is also 2 bytes,
and third is 3 bytes.

In this paper, IA means Insertion Address, which speci-
fies the address of a probe point. DCR means Detoured
Code Region, which is a region from insertion address to
the end of a detoured code. The detoured code consists
of the instructions which are partially or fully covered
by a jump instruction of djprobe. JTPR means Jump
Target Prohibition Region, which is a 4 bytes (on i386)
length region, starts from the next address of IA. And,
RA means Return Address, which points the instruction
next to the DCR.
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Figure 2: Terminology

2 Solutions of the Issues

In this section, we discuss how we solve the issues of
djprobe. The issues that are mentioned above can be
categorized as follows.

• Static-Analysis Issues

• Dynamic-Safety Issue

• Cross Self-modifying Issue

• Functionality-Performance Tradeoff Issue

The following section deeply discuss how to solve the
issues of djprobe.

2.1 Static Analysis Issues

First, we will discuss a safety check before the probe is
inserted. Djprobe is an enhancement of kprobes and it
based on implementation of Kprobes. Therefore, it in-
cludes every limitation of kprobes, which means djprobe
cannot probe where kprobes cannot. As figure 3 shows,
the DCR may include several instructions because the
size of jump instruction is more than one byte (relative
jump instruction size is 5 bytes in i386 architecture). In
addition, there are only a few choices of remedies at ex-
ecution time because “out-of-line execution” is done di-
rectly (which means single step mode is not used). This

jump
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jump
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Figure 3: Corruption by jump into JTPR

means there are 4 issues that should be checked stati-
cally. See below. Static safety check must be done be-
fore registering the probe and it is enough that it be done
just once. Djprobe requires that a user must not insert
a probe, if the probe point doesn’t pass safety checks.
They must use kprobe instead of djprobe at the point.

2.1.1 Jumping in JTPR Issue

Replacement with a jump instruction involves changing
instruction boundaries. Therefore, we have to ensure
that no jump or call instructions in the kernel or kernel
modules target JTPR. For this safety check, we assume
that other functions never jump into the code other than
the entry point of the function. This assumption is ba-
sically true in gcc. An exception is setjmp()/longjmp().
Therefore, djprobe cannot put a probe where setjmp() is
used. Based on this assumption, we can check whether
JTPR is targeted or not by looking through within the
function. This code analysis must be changed if the as-
sumption is not met. Moreover, there is no effective way
to check for assembler code currently.

2.1.2 IP Relative Addressing Mode Issue

If the original instructions in DCR include the IP (In-
struction Pointer, EIP in i386) relative addressing mode
instruction, it causes the problem because the original
instruction is copied to out-of-line buffer and is executed
directly. The effective address of IP relative addressing
mode is determined by where the instruction is placed.
Therefore, such instructions will require a correction of
a relative address. The problem is that almost all rel-
ative jump instructions are “near jumps” which means
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destination must be within –128 to 127 bytes. How-
ever, out-of-line buffer is always farther than 128 bytes.
Thus, the safety check disassembles the probe point and
checks whether IP relative instruction is included. If the
IP relative address is found, the djprobe can not be used.

2.1.3 Prohibit Instructions in JTPR Issue

There are some instructions that cannot be probed by
djprobe. For example, a call instruction is prohibited.
When a thread calls a function in JTPR, the address in
the JTPR is pushed on the stack. Before the thread re-
turns, if a probe is inserted at the point, ret instruction
triggers a corruption because instruction boundary has
been changed. The safety check also disassembles the
probe point and check whether prohibited instructions
are included.

2.1.4 Function Boundary Issue

Djprobe requires at least one instruction must follow
DCR. If DCR is beyond the end of the function, there is
no space left in the out-of-line buffer to jump back from.
This safety check can easily be done because what we
have to do is only to compare DCR bottom address and
function bottom address.

2.2 Dynamic-Safety Issue

Next, we discuss the safety of modifying multiple in-
structions when the kernel is running. The dynamic-
safety issue is a kind of atomicity issue. We have to
take care of interrupts, other threads, and other proces-
sors, because we can not modify multiple instructions
atomically. This issue becomes more serious on the pre-
emptive kernel.

2.2.1 Simultaneous Execution Issue

Djprobe has to overwrite several instructions by a jump
instruction, since i386 instruction set is CISC. Even if
we write this jump atomically, there might be other
threads running on the middle of the instructions which
will be overwritten by the jump. Thus, “atomic write”
can not help us in this situation. In contrast, we can
write the break-point instruction atomically because its
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Figure 4: Bypass method

size is one byte. In other words, the break-point instruc-
tion modifies only one instruction. Therefore, we de-
cided to use the “bypass method” for embedding a jump
instruction.

Figure 4 illustrates how this bypass method works.

This method is similar to the highway construction. The
highway department makes a bypass route which de-
tours around the construction area, because the traffic
can not be stopped. Similarly, since the entire system
also can not be stopped, djprobe generates an out-of-
line code as a bypass from the original code, and uses
a break-point of the kprobe to switch the execution ad-
dress from the original address to the out-of-line code.
In addition, djprobe adds a jump instruction in the end
of the out-of-line code to go back to RA. In this way,
other threads detour the region which is overwritten by
a jump instruction while djprobe do it.

What we have to think of next is when the other threads
execute from within the detoured region. In the case
of non-preemptive kernel, these threads might be inter-
rupted within the DCR. The same issue occurs when
we release the out-of-line buffers. Since some threads
might be running or be interrupted on the out-of-line
code, we have to wait until those return from there. As
you know, in the case of the non-preemptive kernel,
interrupted kernel threads never call scheduler. Thus,
to solve this issue, we decided to use the scheduler
synchronization. Since the synchronize_sched()
function waits until the scheduler is invoked on all pro-
cessors, we can ensure all interrupts, which were oc-
curred before calling this function, finished.
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2.2.2 Simultaneous Execution Issue on Preemptive
Kernel

This wait-on-synchronize_sched method is
premised on the fact that the kernel is never pre-
empted. In the preemptive kernel, we must use another
function to wait the all threads sleep on the known
places, because some threads may be preempted on
the DCR. We discussed this issue deeply and decided
to use the freeze_processes() recommended
by Ingo Molnar [6]. This function tries to freeze all
active processes including all preempted threads. So,
preempted threads wake up and run after they call the
try_to_freeze() or the refrigerator().
Therefore, if the freeze_processe() succeeds,
all threads are sleeping on the refrigerator()
function, which is a known place.

2.3 Cross Self-modifying Issue

The last issue is related to a processor specific erratum.
The Intel R© processor has an erratum about unsynchro-
nized cross-modifying code [4]. On SMP machine, if
one processor modifies the code while another proces-
sor pre-fetches unmodified version of the code, unpre-
dictable General Protection Faults will occur. We sup-
posed this might occur as a result of hitting a cache-
line boundary. On the i386 architecture, the instruc-
tions which are bigger than 2 bytes may be across the
cache-line boundary. These instructions will be pre-
fetched twice from 2nd cache. Since a break-point in-
struction will change just a one byte, it is pre-fetched at
once. Other bigger instructions, like a long jump, will
be across the cache-alignment and will cause an unex-
pected fault. In this erratum, if the other processors issue
a serialization such as CPUID, the cache is serialized
and the cross-modifying is safely done.

Therefore, after writing the break-point, we do not write
the whole of the jump code at once. Instead of that, we
write only the jump address next to the break-point. And
then we issue the CPUID on each processor by using
IPI (Inter Processor Interrupt). At this point, the cache
of each processor is serialized. After that, we overwrite
the break-point by a jump op-code whose size is just one
byte.

2.4 Functionality-Performance Tradeoff Issue

From Figure 1, djprobe (and kprobe-booster) does not
call post_handler(). We thought that is a trade-
off between speed and the post_handler. Fortu-
nately, the SystemTap [3], which we were assuming
as the main use of kprobe and djprobe, did not use
post_handler. Thus, we decided to choose speed
rather than the post_handler support.

3 Design and Implementation

Djprobe was originally designed as a wrapper routine
of kprobes. Recently, it was re-designed as a jump op-
timization functionality of kprobes.1 This section ex-
plains the latest design of djprobe on i386 architecture.

3.1 Data Structures

To integrate djprobe into kprobes, we introduce the
length field in the kprobe data structure to spec-
ify the size of the DCR in bytes. We also introduce
djprobe_instance data structure, which has three
fields: kp, list, and stub. The kp field is a kprobe
that is embedded in the djprobe_instance data
structure. The list is a list_head for registration
and unregistration. The stub is an arch_djprobe_
stub data structure to hold a out-of-line buffer.

From the viewpoint of users, a djprobe_instance
looks like a special aggregator probe, which aggregates
several probes on the same probe point. This means that
a user does not specify the djprobe_instance data
structure directly. Instead, the user sets a valid value
to the length field of a kprobe, and registers that.
Then, that kprobe is treated as an aggregated probe
on a djprobe_instance. This allows you to use
djprobe transparently as a kprobe. Figure 5 illustrates
these data structures.

3.2 Static Code Analysis

Djprobe requires the safety checks, that were discussed
in Section 2.1, before calling register_kprobe().
Static code analysis tools, djprobe_static_code_
analyzer, is available from djprobe development
site [5]. This tool also provides the length of DCR.
Static code analysis is done as follows.

1For this reason, djprobe is also known as jump optimized
kprobe.
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[37af1b] subprogram
sibling [37af47]
external yes
name "register_kprobe"
decl_file 1
decl_line 874
prototyped yes
type [3726a0]
low_pc 0xc0312c3e
high_pc 0xc0312c46
frame_base 2 byte block
[ 0] breg4 4

Figure 6: Example of debuginfo output by eu-readelf

3.2.1 Function Bottom Check

djprobe_static_code_analyzer requires a
debuginfo file for the probe target kernel or module. It
is provided by the kernel compilation option if you use
vanilla kernel. Or it is provided as debuginfo package
in the distro.

Figure 6 shows what debuginfo looks like.

First of all, this tool uses the debuginfo file to find
the top (low_pc) and bottom (high_pc) addresses of the
function where the probe point is included, and makes
a list of these addresses. By using this list, it can check
whether the DCR bottom exceeds function bottom. If it
finds this to be true, it returns 0 as “can’t probe at this
point.”

There are two exceptions to the function bottom check.
If the DCR includes an absolute jump instruction or a
function return instruction, and the last byte of these in-
structions equals the bottom of the function, the point

can be probed by djprobe, because direct execution of
those instructions sets IP to valid place in the kernel and
there is no need to jump back.

3.2.2 Jump in JTPR Check

Next, djprobe_static_code_analyzer disassem-
bles the probed function of the kernel (or the module)
by using objdump tool. The problem is the current
version of objdump cannot correctly disassemble if the
BUG() macro is included in the function. In that case, it
simply discards the output following the BUG() macro
and retries to disassemble from right after the BUG().
This disassembly provides not only the boundaries in-
formation in DCR but also the assembler code in the
function.

Then, it checks that all of jump or call instructions in
the function do not target JTPR. It returns 0, if it find an
instruction target JTPR.

If the probe instruction is 5 bytes or more, it simply re-
turns the length of probed instruction, because there is
no boundary change in JTPR.

3.2.3 Prohibited Relative Addressing Mode and In-
struction Check

djprobe_static_code_analyzer checks that DCR
does not include a relative jump instruction or prohibited
instructions.

3.2.4 Length of DCR

Djprobe requires the length of DCR as an argu-
ment of register_kprobe() because djprobe does
not have a disassembler in the current implemen-
tation. djprobe_static_code_analyzer ac-
quires it and returns the length in case that the probe
point passes all checks above.

3.3 Registration Procedure

This is done by calling the register_kprobe()
function. Before that, a user must set the address of a
probe point and the length2 of DCR.

2If the length field of a kprobe is cleared, it is not treated as a
djprobe but a kprobe.
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3.3.1 Checking Conflict with Other Probes

First, register_kprobe() checks whether other
probes are already inserted on the DCR of the specified
probe point or not. These conflicts can be classified in
following three cases.

1. Some other probes are already inserted in the same
probe point. In this case, register_kprobe()
treats the specified probe as one of the collocated
probes. Currently, if the probe which previously
inserted is not djprobe, the jump optimization is not
executed. This behavior should be improved to do
jump optimization when feasible.

2. The DCR of another djprobe covers the speci-
fied probe point. In this case, currently, this
function just returns -EEXIST. However, ide-
ally, the djprobe inserted previously should be un-
optimized for making room for the specified probe.

3. There are some other probes in the DCR of the
specified djprobe. In this case, the specified
djprobe becomes a normal kprobe. This means the
length field of the kprobe is cleared.

3.3.2 Creating New djprobe_instance Object

Next, register_kprobe() calls the register_
djprobe() function. It allocates a djprobe_
instance object. This function copies the values of
addr field and length field from the original kprobe
to the kp field of the djprobe_instance. Then, it
also sets the address of the djprobe_pre_handler()
to the pre_handler field of the kp field in the
djprobe_instance. Then, it invokes the arch_
prepare_djprobe_instance() function to pre-
pare an out-of-line buffer in the stub field.

3.3.3 Preparing the Out-of-line Buffer

Figure 7 illustrates how an out-of-line buffer is com-
posed.

The arch_prepare_djprobe_instance() allo-
cates a piece of executable memory for the out-of-line
buffer by using __get_insn_slot() and setup its
contents. Since the original __get_insn_slot()

Template code

Template code The instructions in DCR

Template code

Call 0 

Call djprobe_callback() 

jump 

Out-of-line buffer

 Copy the template code

  Embed the address of
  djprobe_callback()

 Copy the instructions and
 write a jump

Figure 7: Preparing an out-of-line buffer

function can handle only single size of memory slots, we
modified it to handle various length memory slots. After
allocating the buffer, it copies the template code of the
buffer from the djprobe_template_holder()
and embeds the address of the djprobe_instance
object and the djprobe_callback() function
into the template. It also copies the original code
in the DCR of the specified probe to the next to the
template code. Finally, it adds the jump code which
returns to the next address of the DCR and calls
flush_icache_range() to synchronize i-cache.

3.3.4 Register the djprobe_instance Object

After calling arch_prepare_djprobe_
instance(), register_djprobe() regis-
ters the kp field of the djprobe_instance
by using __register_kprobe_core(), and
adds the list field to the registering_list
global list. Finally, it adds the user-defined
kprobe to the djprobe_instance by using the
register_aggr_kprobe() and returns.

3.4 Committing Procedure

This is done by calling the commit_djprobes()
function, which is called from commit_kprobes().

3.4.1 Check Dynamic Safety

The commit_djprobes() calls the check_
safety() function to check safety of dynamic-
self modifying. In other words, it ensures that
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Figure 8: Optimization Procedure

no thread is running on the DCR nor is it pre-
empted. For this purpose, check_safety()
call synchronize_sched() if the kernel is
non-preemptive, and freeze_processes() and
thaw_processes() if the kernel is preemptive.
These functions may take a long time to return, so we
call check_safety() only once.

3.4.2 Jump Optimization

Jump optimization is done by calling the
arch_preoptimize_djprobe_instance() and
the arch_optimize_djprobe_instance(). The
commit_djprobes() invokes the former function
to write the destination address (in other words, the
address of the out-of-line buffer) into the JTPR of
the djprobe, and issues CPUID on every online CPU.
After that, it invokes the latter function to change
the break-point instruction of the kprobe to the jump
instruction. Figure 8 illustrates how the instructions
around the insertion address are modified.

3.4.3 Cleanup Probes

After optimizing registered djprobes, the commit_
djprobe() releases the instances of the djprobe in
the unregistering_list list. These instances are
linked by calling unregister_kprobe() as de-
scribed Section 3.6. Since the other threads might be
running on the out-of-line buffer as described in the Sec-
tion 2.2, we can not release it in the unregister_
kprobe(). However, the commit_djprobe() al-
ready ensured safety by using the check_safety().
Thus we can release the instances and the out-of-line
buffers safely.

Original
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Figure 9: Probing Procedure

3.5 Probing Procedure

Figure 9 illustrates what happens when a process hits a
probe point.

When a process hits a probe point, it jumps to the out-
of-line buffer of a djprobe. And it emulates the break-
point on the first-half of the buffer. This is accom-
plished by saving the registers on the stack and calling
the djprobe_callback() to call the user-defined
handlers related to this probe point. After that, djprobe
restores the saved registers, directly executes continuing
several instructions copied from the DCR, and jumps
back to the RA which is the next address of the DCR.

3.6 Unregistration Procedure

This is done by calling unregister_kprobe().
Unlike the registration procedure, un-optimization is
done in the unregistration procedure.

3.6.1 Checking Whether the Probe Is Djprobe

First, the unregister_kprobe() checks whether
the specified kprobe is one of collocated kprobes. If
it is the last kprobe of the collocated kprobes which
are aggregated on a aggregator probe, it also tries
to remove the aggregator. As described above, the
djprobe_instance is a kind of the aggregator
probe. Therefore, the function also checks whether the
aggregator is djprobe (this is done by comparing the
pre_handler field and the address of djprobe_
pre_handler()). If so it calls unoptimize_
djprobe() to remove the jump instruction written by
the djprobe.
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Figure 10: Un-optimization Procedure

3.6.2 Probe Un-optimization

Figure 10 illustrates how a probe point is un-optimized.

The unoptimized_djprobe() invokes arch_

unoptimize_djprobe_instance() to restore the
original instructions to the DCR. First, it inserts a break-
point to IA for protect the DCR from other threads,
and issues CPUID on every online CPUs by using IPI
for cache serialization. After that, it copies the bytes
of original instructions to the JTPR. At this point, the
djprobe becomes just a kprobe, this means it is un-
optimized and uses a break-point instead of a jump.

3.6.3 Removing the Break-Point

After calling unoptimize_djprobe(), the
unregister_kprobe() calls arch_disarm_
kprobe() to remove the break-point of the kprobe,
and waits on synchronize_sched() for cpu
serialization. After that, it tries to release the aggregator
if it is not a djprobe. If the aggregator is a djprobe, it just
calls unregister_djprobe() to add the list
field of the djprobe to the unregistering_list
global list.

4 Performance Gains

We measured and compared the performance of djprobe
and kprobes. Table 1 and Table 2 show the processing
time of one probing of kprobe, kretprobe, its boosters,
and djprobes. The unit of measure is nano-seconds. We
measured it on Intel R© Pentium R© M 1600MHz with UP
kernel, and on Intel R© CoreTM Duo 1667MHz with SMP
kernel by using linux-2.6.21-rc4-mm1.

method orignal booster djprobe
kprobe 563 248 49

kretprobe 718 405 211

Table 1: Probing Time on Pentium R© M in nsec

method orignal booster djprobe
kprobe 739 302 61

kretprobe 989 558 312

Table 2: Probing Time on CoreTM Duo in nsec

We can see djprobe could reduce the probing overhead
to less than 0.1 usec (100 nsec) on each processor. Thus,
it achived our target performance. Moreover, kretprobe
can also be accelerated by djprobe, and the djprobe-
based kretprobe is as fast as kprobe-booster.

5 Example of Djprobe

Here is an example of djprobe. The differences between
kprobe and djprobe can be seen at two points: setting the
length field of a kprobe object before registration,
and calling commit_kprobes() after registration and
unregistration.

/* djprobe_ex.c -- Direct Jump Probe Example */
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kprobes.h>

static long addr=0;
module_param(addr, long, 0444);
static long size=0;
module_param(size, long, 0444);

static int probe_func(struct kprobe *kp,
struct pt_regs *regs) {

printk("probe point:%p\n", (void*)kp->addr);
return 0;

}

static struct kprobe kp;

static int install_probe(void) {
if (addr == 0) return -EINVAL;

memset(&kp, sizeof(struct kprobe), 0);
kp.pre_handler = probe_func;
kp.addr = (void *)addr;

kp.length = size;

if (register_kprobe(&kp) != 0) return -1;

commit_kprobes();
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return 0;
}

static void uninstall_probe(void) {
unregister_kprobe(&kp);

commit_kprobes();
}

module_init(install_probe);
module_exit(uninstall_probe);
MODULE_LICENSE("GPL");

6 Conclusion

In this paper, we proposed djprobe as a faster probing
method, discussed what the issues are, and how djprobe
can solve them. After that, we described the design and
the implementation of djprobe to prove that our proposal
can be implemented. Finally, we showed the perfor-
mance improvement, and that it could reduce the prob-
ing overhead dramatically. You can download the latest
patch set of djprobe from djprobe development site [5].
Any comments and contributions are welcome.

7 Future Works

We have some plans about future djprobe development.

7.1 SystemTap Enhancement

We have a plan to integrate the static analysis tool into
the SystemTap for accelerating kernel probing by using
djprobe.

7.2 Dynamic Code Modifier

Currently, djprobe just copies original instructions from
DCR. This is the main reason why the djprobe cannot
probe the place where the DCR is including execution-
address-sensitive code.

If djprobe analyzes these sensitive codes and replaces
its parameter to execute it on the out-of-line buffer, the
djprobe can treat those codes. This idea is basically
done by kerninst [1, 11] and GILK [8].

7.3 Porting to Other Architectures

Current version of djprobe supports only i386 architec-
ture. Development for x86_64 is being considered. Sev-
eral difficulties are already found, such as RIP relative
instructions. In x86_64 architecuture, RIP relative ad-
dressing mode is expanded and we must assume it might
be used. Related to dynamic code modifier, djprobe
must modify the effective address of RIP relative ad-
dressing instructions.

To realize this, djprobe requires instruction boundary in-
formation in DCR to recognize every instruction. This
should be provided by djprobe_static_code_
analyser or djprobe must have essential version of
disassembler in it.

7.4 Evaluating on the Xen Kernel

In the Xen kernel, djprobe has bigger advantage than
on normal kernel, because it does not cause any inter-
rupts. In the Xen hypervisor, break-point interruption
switches a VM to the hypervisor and the hypervisor up-
calls the break-point handler of the VM. This procedure
is so heavy that the probing time becomes almost dou-
ble.

In contrast, djprobe does not switch the VM. Thus, we
are expecting the probing overhead of djprobe might be
much smaller than kprobes.
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Abstract

The BlueZ project has enhanced the Bluetooth imple-
mentation for Linux over the last two years. It now
seamlessly integrates with D-Bus and provides a really
simple and easy to use interface for the UI applications.
The current API covers all needed Bluetooth core func-
tionalities and allows running the same daemons on all
Linux distributions, the Maemo or OpenMoko frame-
works, and other embedded systems. The user interface
is the only difference between all these systems. This al-
lows GNOME and KDE applications to share the same
list of remote Bluetooth devices and many more com-
mon settings. As a result of this, the changes to integrate
Bluetooth within the UI guidelines of Maemo or Open-
Moko are really small. In return, all Maemo and Open-
Moko users help by fixing bugs for the Linux desktop
distributions like Fedora, Ubuntu, etc., and vice versa.

1 Introduction

The desktop integration of Bluetooth technology has
always been a great challenge since the Linux kernel
was extended with Bluetooth support. For a long time,
most of the Bluetooth applications were command-line
utilities only. With the D-Bus interface for the BlueZ
protocol stack, it became possible to write desktop-
independent applications. This D-Bus interface has
been explicitly designed for use by desktop and embed-
ded UI applications (see Figure 1).

For the desktop integration of Bluetooth, three main ap-
plications are needed:

• Bluetooth status applet;

• Bluetooth properties dialog;

• Bluetooth device wizard.

Figure 1: D-Bus API overview

2 Bluetooth applet

The Bluetooth applet is the main entry point when it
comes to device configuration and handling of security-
related interactions with the user, like the input of a PIN
code.

One of the simple tasks of the applet is to display a Blue-
tooth icon that reflects the current status of the Blue-
tooth system such as whether a device discovery is in
progress, or a connection has been established, and so
on. It is up to the desktop UI design guidelines to de-
cide if the icon itself should change or if notification
messages should be displayed to inform the user of sta-
tus changes.

Figure 2: Bluetooth applet notification

Besides the visible icon, the applet has to implement
the default passkey and authorization agent interfaces.

• 201 •
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These two interfaces are used to communicate with the
Bluetooth core daemon. The task of the applet is to dis-
play dialog boxes for requesting PIN codes or authoriza-
tion question to the end user. The input will be handed
back to the daemon which then actually interacts with
the Bluetooth hardware.

Additionally, the applet might provide shortcuts for fre-
quently used Bluetooth tasks. An example would be the
launch of the Bluetooth configuration dialog or device
setup wizard.

Figure 2 shows the notification of a pairing request for
the GNOME Bluetooth applet.

3 Bluetooth properties

While the applet shows the current status of the Blue-
tooth system and handles the security related tasks, the
properties dialog can be used to configure the local
Bluetooth adapter (see Figure 3).

Figure 3: Bluetooth adapter configuration

The D-Bus interface restricts the possible configurable
options to the local adapter name, class of device, and
mode of operation. No additional options have been
found useful. The Bluetooth core daemon can adapt
other options automatically when needed.

Figure 4: Bluetooth adapter configuration

In addition to the Bluetooth adapter configuration, the
Bluetooth properties application can also control the be-
havior of the applet application (see Figure 4)—for ex-
ample, the visibility of the Bluetooth status icon. It is
possible to hide the icon until an interaction with the
user is required.

These additional configuration options are desktop- and
user-specific. The GNOME desktop might implement
them differently than KDE.

4 Bluetooth wizard

With the status applet and the properties dialog, the
desktop task for user interaction, notification, and the
general adapter configuration are covered. The missing
task is the setup of new devices. The Bluetooth wiz-
ard provides an automated process to scan for devices
in range and setup any discovered devices to make them
usable for the user (see Figure 5).

The wizard uses the basic Bluetooth core adapter in-
terface to search for remote devices in range. Then, it
presents the user a list of possible devices filtered by the
class of device. After device selection, the wizard tries
to automatically setup the services. For these tasks it
uses special Bluetooth service daemons.
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Currently the Bluetooth subsystem provides the follow-
ing service daemons that can be used by the wizard or
any other Bluetooth application:

• Network service

– PAN support (NAP, GN and PANU)

– LAN access (work in progress)

– ISDN dialup (work in progress)

• Input service

– HID support (report mode with recent kernel
versions)

– Emulated input devices (headset and propri-
etary protocols)

– Wii-mote and PlayStation3 Remote

• Audio service

– Headset and Handsfree support

– High quality audio support (work in progress)

• Serial service

– Emulated serial ports

Figure 5: Bluetooth device selection

5 Big picture

The BlueZ architecture has grown rapidly and the whole
system became really complex. Figure 6 shows a sim-
plified diagram of the current interactions between the
Bluetooth subsystem of the Linux kernel, the Bluetooth
core daemons and services, and the user interface appli-
cations.

Figure 6: BlueZ architecture

All communication between daemons and a user appli-
cation are done via D-Bus. Figure 7 gives an overview
on how this interaction and communication via D-Bus
works.

Figure 7: D-Bus communication

6 Conclusion

The bluez-gnome project provides an implementation
for all three major Bluetooth applications needed by a
modern GNOME desktop. For KDE 4, a similar set of
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applications exists that uses the same D-Bus infrastruc-
ture for Bluetooth. A KDE 3 backport is currently not
planned.

The desktop applications don’t have to deal with any
Bluetooth low-level interfaces. These are nicely ab-
stracted through D-Bus. This allows other desktop or
embedded frameworks like Maemo or OpenMoko to re-
place the look and feel quite easily (see Figure 6).

Figure 8: User interface separation

The goal of the BlueZ Project is to unify desktop and
embedded Bluetooth solutions. While the user interface
might be different, the actual protocol and service im-
plementation will be the same on each system.
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Abstract

Unlike when running a native OS, power management
activity has different types in a virtualization world: vir-
tual and real. A virtual activity is limited to a virtual
machine and has no effect on real power. For example,
virtual S3 sleep only puts the virtual machine into sleep
state, while other virtual machines may still work. On
the other hand, a real activity operates on the physical
hardware and saves real power. Since the virtual ac-
tivity is well controlled by the guest OS, the remaining
problem is how to determine the real activity according
to the virtual activity. There are several approaches for
this problem.

1. Purely based on the virtual activity. Virtual Sx state
support is a good example. Real S3 sleep will be
executed if and only if all the virtual S3 are exe-
cuted.

2. Purely based on the global information, regardless
of the virtual activity. For example, CPU Px state
can be determined by the global CPU utilization.

3. Combination of (1) and (2): in some environments,
VM can directly access physical hardware with as-
sists from hardware (e.g., Intel Virtualization Tech-
nology for Directed I/O, a.k.a. VT-d). In this case,
the combination of (1) and (2) will be better.

This paper first presents the overview of power man-
agement in virtualization. Then it describes how each
power management state (Sx/Cx/Px) can be handled in
a virtualization environment by utilizing the above ap-
proaches. Finally, the paper reviews the current status
and future work.

1 Overview of Power Management in Virtual-
ization

This section introduces the ACPI power management
state and virtualization mode, and later the overview of

a power management implementation in virtualization.

1.1 Power Management state in ACPI

ACPI [1] is an open industry specification on power
management and is well supported in Linux 2.6, so this
paper focuses on the power management states defined
in the ACPI specification.

ACPI defines several kinds of power management state:

• Global System state (G-state): they are: G0
(working), G1 (sleeping), G2 (soft-off) and G3
(mechanical-off).

• Processor Power state (C-state): in the G0 state,
the CPU has several sub-states, C0 ∼ Cn. The CPU
is working in C0, and stops working in C1 ∼ Cn.
C1 ∼ Cx differs in power saving and entry/exit la-
tency. The deeper the C-state, the more power sav-
ing and the longer latency a system can get.

• Processor Performance state (P-state): again, in
C0 state, there are several sub-CPU performance
states (P-States). In P-states, the CPU is working,
but CPU voltage and frequency vary. The P-state is
a very important power-saving feature.

• Processor Throttling state (T-state): T-state is
also a sub state of C0. It saves power by only
changing CPU frequency. T-state is usually used
to handle thermal event.

• Sleeping state: In G1 state, it is divided into sev-
eral sub state: S1 ∼ S4. They differs in power sav-
ing, context preserving and sleep/wakeup latency.
S1 is lightweight sleep, with only CPU caches lost.
S2 is not supported currently. S3 has all context lost
except system memory. S4 save context to disk and
then lost all context. Deeper S-state is, more power
saving and the longer latency system can get.

• 205 •
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• Device states (D-state): ACPI also defines power
state for devices, i.e. D0 ∼ D3. D0 is working state
and D3 is power-off state. D1 and D2 are between
D0 and D3. D0 ∼ D3 differs in power saving, de-
vice context preserving and entry/exit latency.

Figure 1 in Len’s paper [2] clearly illustrates the state
relationship.

1.2 Virtualization model

Virtualization software is emerging in the open source
world. Different virtualization model may have differ-
ent implementation on power management, so it is better
to check the virtualization model as below.

• Hypervisor model: virtual machine monitor
(VMM) is a new layer below operation system
and owns all the hardware. VMM not only needs
to provide the normal virtualization functionality,
e.g. CPU virtualization, memory virtualization, but
also needs to provide the I/O device driver for ev-
ery device.

• Host-based model: VMM is built upon a host op-
erating system. All the platform hardware includ-
ing CPU, memory, and I/O device, is owned by the
host OS. In this model, VMM usually exists as a
kernel module and can leverage much of the host
OS functionality, e.g. I/O device driver, scheduler.
Current KVM is host-based model.

• Hybrid model: VMM is a thin layer compared
to the hypervisor model, which only covers basic
virtualization functionality (CPU, memory, etc.),
and leave I/O device to a privileged VM. This
privileged VM provides I/O service to other VM
through inter-VM communication. Xen [3] is hy-
brid model.

Meanwhile, with some I/O virtualization technology in-
troduced, e.g. Intel R© Virtualization Technology for Di-
rected I/O, aka VT-d, the I/O device can be directly
owned by a virtual machine.

1.3 Power Management in Virtualization

Power Management in virtualization basically has the
following two types:

• Virtual power management: this means the
power management within the virtual machine.
This power management only has effects to the
power state of VM and does not affect other VM or
hypervisor/host OS. For example, virtual S3 sleep
only brings VM into virtual sleep state, while hy-
pervisor/host OS and other VM is still working.
Virtual power management usually does not save
real power, but sometimes it can affect real power
management.

• Real power management: this means the power
management in the global virtual environment, in-
cluding the VMM/Host OS, and all VMs. This
will operate on real hardware and save real power.
The main guideline for global power management
is that only the owner can do real power manage-
ment operation to that device. And VMM/Host OS
is responsible for coordinating the power manage-
ment sequence.

This paper will elaborate how power management state
(Sx/Cx/Px/Dx) is implemented for both virtual and real
types.

2 Sleep States (Sx) Support

Linux currently supports S1 (stand-by), S3 (suspend-to-
ram) and S4 (suspend-to-disk). This section mainly dis-
cusses the S3 and S4 state support in the virtualization
environment. S1 and S3 are similar, so the S3 discussion
can also apply to S1.

2.1 Virtual S3

Virtual S3 is S3 suspend/resume within a virtual ma-
chine, which is similar to native. When guest OSes see
that the virtual platform has S3 capability, it can start
S3 process either requested by user or forced by con-
trol tool under certain predefined condition (e.g. VM be-
ing idle for more than one hour). Firstly, the Guest OS
freezes all processes and also write a wakeup vector to
virtual ACPI FACS table. Then, the Guest OS saves all
contexts, including I/O device context and CPU context.
Finally, the Guest OS will issue hardware S3 command,
which is normally I/O port writing. VMM will capture
the I/O port writing and handle the S3 command by re-
setting the virtual CPU. The VM is now in virtual sleep
state.
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Figure 1: ACPI State Relationship

Guest OS S3 wakeup is a reverse process. Firstly, VMM
will put the virtual CPU into real mode, and start virtual
CPU from guest BIOS POST code. BIOS POST will
detect that it is a S3 wakeup and thus jump to the S3
wakeup vector stored in guest ACPI FACS table. The
wakeup routine in turn will restore all CPU and I/O con-
text and unfreeze all processes. Now the Guest OS re-
sumes to working state.

From the above virtual S3 suspend/resume process, it
is easy to see that VMM needs the following work to
support virtual S3:

• Guest ACPI Table: the ACPI DSDT table should
have _S3 package to tell guest OS that the virtual
platform has S3 capability, otherwise, guest OS
won’t even start S3 sleep. Guest ACPI table can
also have optional OEM-specific fields if required.

• Guest BIOS POST Code: Logic must be added
here to detect the S3 resume and get wakeup vector
address from ACPI FACS table, and then jump to
wakeup vector.

• S3 Command Interception: Firstly, device model
should emulate the ACPI PM1A control register,
so that it can capture the S3 request. In KVM and
Xen case, this can be done in QEMU side, and is

normally implemented as a system I/O port. Sec-
ondly, to handle S3 request, VMM need to reset all
virtual CPUs.

2.2 Real S3 State

Unlike virtual S3, Real S3 will put the whole system into
sleep state, including VMM/Host OS and all the virtual
machines. So it is more meaningful in terms of power
saving.

Linux already has fundamental S3 support, like to
freeze/unfreeze processes, suspend/resume I/O devices,
hotplug/unplug CPUs for SMP case, etc. to conduct a
complete S3 suspend/resume process.

Real S3 in virtualization also need similar sequence as
above. The key difference is that system resources may
be owned by different component. So the guideline is
to ensure right owner to suspend/resume its owned re-
source.

Take Xen as an example. The suspend/resume opera-
tion must be coordinated among hypervisor, privileged
VM and driver domain. Most I/O devices are owned
by a privileged VM (domain0) and driver domain, so
suspend/resume on those devices is mostly done in do-
main0 and driver domain. Then hypervisor will cover
the rest:
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• Hypervisor owned devices: APIC, PIC, UART,
platform timers like PIT, etc. Hypervisor needs to
suspend/resume those devices

• CPU: owned by hypervisor, and thus managed here

• Wakeup routine: At wakeup, hypervisor need to
be the first one to get control, so wakeup routine is
also provided by hypervisor.

• ACPI PM1x control register: Major ACPI sleep
logic is covered by domain0 with the only excep-
tion of PM1x control register. Domain0 will notify
hypervisor at the place where it normally writes to
PM1x register. Then hypervisor covers the above
work and write to this register at the final stage,
which means a physical S3 sleep.

For the driver domain that is assigned with physically
I/O device, hypervisor will notify these domains to do
virtual S3 first, so that these domains will power off their
I/O device before domain0 starts its sleep sequence.

Figure 2 illustrates the Xen Real S3 sequence.

2.3 Virtual S4 State and Real S4 State

Virtual S4 is suspend-to-disk within virtual machine.
Guest OS is responsible to save all contexts (CPU, I/O
device, memory) to disk and enter sleep state. Virtual
S4 is a useful feature because it can reduce guest OS
booting time.

From the VMM point of view, virtual S4 support imple-
mentation is similar as virtual S3. The guest ACPI also
needs to export S4 capability and VMM needs to cap-
ture the S4 request. The major difference is how VMM
handles the S3/S4 request. In S3, VMM needs resetting
VCPU in S3 and jumps to wakeup vector when VM re-
suming. In S4, VMM only needs to destroy the VM
since VMM doesn’t need to preserve the VM memory.
To resume from S4, user can recreate the VM with the
previous disk image, the guest OS will know that it is S4
resume and start resuming from S4.

Real S4 state support is also similar as native S4 state.
For host-based model, it can leverage host OS S4 sup-
port directly. But it’s more complex in a hybrid model
like Xen. The key design issue is how to coordinate hy-
pervisor and domain0 along the suspend process. For
example, disk driver can be only suspended after VMM

dumps its own memory into disk. Then once hypervisor
finishes its memory dump, later change on virtual CPU
context of domain0 can not be saved any more. After
wakeup, both domain0 and hypervisor memory image
need to be restored and sequence is important here. This
is still an open question.

3 Processor Power States (Cx) support

Processor power states, while in the G0 working state,
generally refer to active or idle state on the CPU. C0
stands for a normal power state where CPU dispatches
and executes instructions, and C1, C2 · · · Cn indicates
low-power idle states where no instructions are executed
and power consumption is reduced to a different level.
Generally speaking, a larger value of Cx brings greater
power savings, at the same time adds longer entry/exit
latency. It’s important for OSPM to understand ability
and implication of each C-state, and then define appro-
priate policy to suit activities of the time:

• Methods to trigger specific C-state

• Worst case latency to enter/exit C-state

• Average power consumption at given C-state

Progressive policy may hurt some components which
don’t tolerate big delay, while conservative policy
makes less use of power-saving capability provided by
hardware. For example, OSPM should be aware that
cache coherency is not maintained by the processor
when in C3 state, and thus needs to manually flush
cache before entering when in SMP environment. Based
on different hardware implementation, TSC may be
stopped and so does LAPIC timer interrupt. When Cx
comes into virtualization, things become more interest-
ing.

3.1 Virtual C-states

Virtual C-states are presented to VM as a ‘virtual’ power
capability on ‘virtual’ processor. The straight-forward
effect of virtual C-states is to exit virtual processor from
scheduler when Cx is entered, and to wake virtual pro-
cessor back to scheduler upon break event. Since virtual
processor is ‘virtual’ context created and managed by
VMM, transition among virtual C-states have nothing
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to do with power state on real processors, but does have
the ability to provide useful hints in some cases.

The way to implement virtual C-states can vary upon
the virtualization model. For example, a hardware-
assisted guest may be presented with C-states capability
fully conforming to ACPI specification, while a para-
virtualized guest can simply take quick hyper-call to re-
quest. Basically it doesn’t make much sense to differen-
tiate among C1, C2· · ·Cn in a virtualization world, but it
may be useful to some cases. One direct case is to test
processor power management logic of a given OSPM, or
even to try whether some newer C-state is a meaningful
model before hardware is ready. Another interesting us-
age would be to help physical C-state governor for right
decision, since virtual C-state request reveals activities
within a guest.

3.1.1 Para-virtualized guest

para-virtualized guest is a modified guest which can
cooprate with VMM to improve performance. virtual
C-state for a para-virtualized guest just borrows the term
from ACPI, but no need to bind with any ACPI context.
A simple policy can just provide ‘active’ and ‘sleep’ cat-
egories for a virtual processor, without differentiation
about C1· · ·Cn. When idle thread is scheduled without
anything to handle, time events in the near future are

walked for nearest interval which is then taken as pa-
rameter of sleep hyper-call issued to VMM. Then VMM
drops the virtual CPU from the run-queue and may wake
it up later upon any break event (like interrupt) or speci-
fied interval timeout. A perfect match on a tick-less time
model! Since it’s more like the normal ‘HALT’ instruc-
tion usage, the policy is simple which is tightly coupled
with time sub-system.

It’s also easy to extend para-virtualized guest with more
fine-grained processor power states, by extending above
hyper-calls. Such hyper-call based interface can be
hooked into generic Linux processor power manage-
ment infrastructure, with common policies unchanged
but a different low-level power control interface added.

3.1.2 Hardware-assisted guest

Hardware-assisted guest is the unmodified guest with
hardware (e.g. Intel VT or AMD-V) support. Not like
a para-virtualized guest who poses changes within the
guest, virtual platform (i.e., device model) needs ex-
port exact control interface conforming to ACPI spec
and emulate desired effect as what hardware-assisted
guest expects. By providing the same processor power
management capability, no change is required within
hardware-assisted guest.

• Virtual C2 – an ability provided by chipset which
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controls clock input signal. First device model
needs to construct correct ACPI table to expose re-
lated information, including trigger approach, la-
tency and power consumption as what ACPI spec
defines. ACPI FADT table contains fixed format
information, like P_LVL2 command register for
trigger. Recent ACPI version also adds a more
generic object _CST to describe all C-state infor-
mation, e.g. C state dependency and mwait ex-
tension. Device model may want to provide both
methods if taken as a test environment.

Device model then needs to send a notification
to VMM after detecting virtual C2 request from
guest. As acceleration, Cx information can be reg-
istered to VMM and then VMM can handle di-
rectly. Actually, for virtual C2 state, device model
doesn’t need to be involved at run time. C2 is de-
fined as a low-power idle state with bus snooped
and cache coherency maintained. Basic virtual
MMU management and DMA emulation have al-
ready ensured this effect at given time.

• Virtual C3 – almost the same as virtual C2,
P_LVL3 or _CST describe the basic infor-
mation. But virtual C3 also affects device
model besides virtual processor. Device model
needs to provide PM2_CNT.ARB_DIS which dis-
ables bus master cycles and thus DMA activi-
ties. PM1x_STS.BM_STS, an optional feature of
chipset virtualization, reveals bus activity status
which is a good hint for OSPM to choose C2 or
C3. More importantly, PM1x_CNT.BM_RLD pro-
vides option to take bus master requests as break
event to exit C3. To provide correct emulation,
tight cooperation between device model and VMM
is required which brings overhead. So it’s reason-
able for device model to give up such support, if
not aimed to test OSPM behavior under C3.

• Deeper virtual Cx – similar as C3, and more
chipset logic virtualization are required.

3.2 Real C-states

VMM takes ownership of physical CPUs and thus is
required to provide physical C-states management for
‘real’ power saving. The way to retrieve C-states in-
formation and conduct transition is similar to what to-
day OSPM does according to ACPI spec. For a host

based VMM like KVM, those control logic has been
there in the host environment and nothing needs to be
changed. Then, for a hybrid VMM like Xen, domain0
can parse and register C-state information to hypervi-
sor which is equipped with necessary low-level control
infrastructure.

There are some interesting implementation approaches
. For example, VMM can take a virtual Cx request into
consideration. Normally guest activities occupy major
portion of cpu cycles which can then be taken as a use-
ful factor for C-state decision. VMM may then track
the virtual C-state requests from different guests, which
represent the real activities on given CPU. That info can
be hooked into existing governors to help make better
decisions. For example:

• Never issue a C-x transition if no guest has such
virtual C-x request pending

• Only issue a C-x transition only if all guests have
same virtual C-x requests

• Pick the C-x with most virtual C-x requests in the
given period

Of course, the above is very rough and may not result in
a really efficient power saving model. For example, one
guest with poor C-state support may prevent the whole
system from entering a deeper state even when condi-
tion satisfies. But it does be a good area for research
to leverage guest policies since different OS may have
different policy for its specific workload.

4 Processor Performance States (Px) Support

P-states provide OSPM an opportunity to change both
frequency and voltage on a given processor at run-time,
which thus brings more efficient power-saving ability.
Current Linux has several sets of governors, which can
be user-cooperative, static, or on-demand style. P-states
within the virtualization world are basically similar to
the above C-states discussion in many concepts, and
thus only its specialties are described below.

4.1 Virtual P-states

Frequency change on a real processor has the net effect
to slow the execution flow, while voltage change is at
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fundamental level to lower power consumption. When
coming to virtual processor, voltage is a no-op but fre-
quency does have useful implication to the scheduler.
Penalty from scheduler has similar slow effect as fre-
quency change. Actually we can easily plug virtual P-
state requests into schedule information, for example:

• Half its weight in a weight-based scheduler

• Lower its priority in a priority-based scheduler

Furthermore, scheduler may bind penalty level to differ-
ent virtual P-state, and export this information to guest
via virtual platform. Virtual platform may take this info
and construct exact P-states to be presented to guest. For
example, P1 and P2 can be presented if scheduler has
two penalty levels defined. These setup the bridge be-
tween virtual P-states and scheduler hints. Based on this
infrastructure, VMM is aware of guest requirement and
then grant cycles more efficiently to guest with more ur-
gent workload.

4.2 Real P-states

Similar as real C-states for virtualization, we can either
reuse native policy or add virtualization hints. One in-
teresting extension is based on user space governor. We
can connect together all guest user space governors and
have one governor act as the server to collect that in-
formation. This server can be a user space governor in
host for a host-based VMM, or in privileged VM for hy-
brid VMM. Then, this user space governor can incorpo-
rate decisions from other user space governors and then
make a final one. Another good point for this approach
is that hybrid VMM can directly follow request from
privileged VM by a simple “follow” policy.

5 Device Power States (Dx) Support

Devices consume another major portion of power sup-
ply, and thus power feature on devices also plays an im-
portant role. Some buses, like PCI, have well-defined
power management feature for devices, and ACPI cov-
ers the rest if missing. Power state transition for a given
device can be triggered in either a passive or active way.
When OSPM conducts a system level power state tran-
sition, like S3/S4, all devices are forced to enter appro-
priate low power state. OSPM can also introduce active

on-demand device power management at run-time, on
some device if inactive for some period. Carefulness
must be taken to ensure power state change of one node
does not affect others with dependency. For example,
all the nodes on a waken path have to satisfy minimal
power requirement of that wake method.

5.1 Virtual D-states

Devices seen by a guest are basically split into three cat-
egories: emulated, para-virtualized, and direct-assigned.
Direct-assigned devices are real with nothing different
regarding D-states. Emulated and para-virtualized are
physically absent, and thus device power states on them
are also virtual.

Normally, real device class defines what subset of ca-
pabilities are available at each power level. Then, by
choosing the appropriate power state matching func-
tional requirement at the time, OSPM can request de-
vice switching to that state for direct power saving at
the electrical level. Virtual devices, instead, are com-
pletely software logics either emulated as a real device
or para-virtualized as a new device type. So virtual D-
states normally show as reduction of workload, which
has indirect effect on processor power consumption and
thus also contributes to power saving.

For emulated devices, the device model presents exact
same logic and thus D-states definition as a real one.
Para-virtualized devices normally consist of front-end
and back-end drivers, and connection states between
the pair can represent the virtual D-states. Both de-
vice model and back-end need to dispatch requests from
guest, and then handle with desired result back. Timer,
callback, and kernel thread, etc. are possible compo-
nents to make such process efficient. As a result of
virtual D-states change, such resources may be frozen
or even freed to reduce workload imposed on the phys-
ical processor. For example, the front-end driver may
change connection state to ‘disconnected’ when OSPM
in guest requests a D3 state transition. Then, back-end
driver can stop the dispatch thread to avoid any unneces-
sary activity caused in the idle phase. Same policy also
applies to device model which may, for example, stop
timer for periodically screen update.

Virtual bus power state can be treated with same policy
as virtual device power state, and in most time may be
just a no-op if virtual bus only consists of function calls.



212 • How virtualization makes power management different

5.2 Real D-states

Real device power states management in virtualization
case are a bit complex, especially when device may be
direct assigned to guests (known as a driver domain).
To make this area clear, we first show the case without
driver domain, and then unveil tricky issues when the
later is concerned.

5.2.1 Basic virtualization environment

Basic virtualization model have all physical devices
owned by one privileged component, say host Linux for
KVM and domain-0 for Xen. OSPM of that privileged
guy deploys policies and takes control of device power
state transitions. Device model or back-end driver are
clients on top of related physical devices, and their re-
quests are counted into OSPM’s statistics for given de-
vice automatically. So there’s nothing different to exist-
ing OSPM.

For example, OSPM may not place disk into deeper
D-states when device model or back-end driver is still
busy handling disk requests from guest which adds to
the workload on real disk.

As comparison to the OSPM within guests, we refer to
this special OSPM as the “dominate OSPM.” Also dom-
inator is alias to above host Linux and domain-0 in be-
low context for clear.

5.2.2 Driver domains

Driver domains are guests with some real devices as-
signed exclusively, to either balance the I/O virtual-
ization bottleneck or simply speed the guest directly.
The fact that OSPM needs to care about the device de-
pendency causes a mismatch on this model: dominate
OSPM with local knowledge needs to cover device de-
pendencies across multiple running environments.

A simple case (Figure 3) is to assign P2 under PCI
Bridge1 to guest GA, with the rest still owned by domi-
nator. Say an on-demand D-states governor is active in
the dominate OSPM, and all devices under Bridge1 ex-
cept P2 have been placed into D3. Since all the devices
on bus 1 are inactive now based on local knowledge,
dominate OSPM may further decide to lower power

Dominator GA

Bus0

Bridge1

P1 P3

Bus1

P2

OSPM

Figure 3: A simple case

voltage and stop clock on bus 1 by conducting Bridge1
into a deeper power state. Devil take it! P2 can never
work now, and GA has to deal with a dead device with-
out response.

Then, the idea is simple to kick this issue: extend lo-
cal dominate OSPM to construct full device tree across
all domains. The implication is that on-demand device
power governor can’t simply depend on in-kernel statis-
tics, and hook should be allowed from other compo-
nents. Figure 4 is one example of such extension:

Device assignment means grant of port I/O, MMIO, and
interrupt in substance, but the way to find assigned de-
vice is actually virtualized. For example, PCI device
discovery is done by PCI configuration space access,
which is virtualized in all cases as part of virtual plat-
form. That’s the trick of how the above infrastruc-
ture works. For hardware-assisted guest, device model
intercepts access by traditional 0xcf8/0xcfc or mem-
ory mapped style. Para-virtualized guest can have a
PCI frontend/backend pair to abstract PCI configuration
space operation, like already provided by today’s Xen.
Based on this reality, device model or PCI backend can
be good place to reveal device activity if owned by other
guests, since standard power state transition is done by
PCI configuration space access as defined by PCI spec.
Then based on hint from both in-kernel and other virtu-
alization related components, dominate OSPM can now
precisely decide when to idle a parent node if with child
nodes shared among guests.
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However, when another bus type is concerned with-
out explicit power definition, it’s more complex to
handle device dependency. For example, for devices
with power information provided by ACPI, the control
method is completely encapsulated within ACPI AML
code. Then the way to intercept power state change has
to be a case specific approach, based on ACPI internal
knowledge. Fortunately, most of the time only PCI de-
vices are preferred regarding the device assignment.

6 Current Status

Right now our work on this area is mainly carried on
Xen. Virtual S3/S4 to hardware-assisted guest has been
supported with some extension to ACPI component
within QEMU. This should also apply to other VMM
software with same hardware-assisted support.

Real S3 support is also ready. Real S3 stability relies
on the quality of Linux S3 support, since domain0 as
a Linux takes most responsibility with the only excep-
tion at final trigger point. Some linux S3 issues are
met. For example, SATA driver with AHCI mode has
stability issue on 2.6.18 which unfortunately is the do-
main0 kernel version at the time. Another example is the
VGA resume. Ideally, real systems that support Linux
should restore video in the BIOS. Real native Linux
graphics drivers should also restore video when they are

used. If it does not work, you can find some workaround
in documentation/power/video.txt. The positive
side is that Linux S3 support is more and more stable as
time goes by. Real S4 support has not been started yet.

Both virtual and real Cx/Px/Tx/Dx supports are in devel-
opment, which are areas with many possibilities worthy
of investigation. Efficient power management policies
covering both virtual and real activities are very impor-
tant to power saving in a run-time virtualization envi-
ronment. Forenamed sections are some early findings
along with this investigation, and surely we can antici-
pate more fun from this area in the future.
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Abstract

The ptrace system-call API, though useful for many
tools such as gdb and strace, generally proves unsat-
isfactory when tracing multithreaded or multi-process
applications, especially in timing-dependent debugging
scenarios. With the utrace kernel API, a kernel-side
instrumentation module can track interesting events in
traced processes. The uprobes kernel API exploits
and extends utrace to provide kprobes-like, breakpoint-
based probing of user applications.

We describe how utrace, uprobes, and kprobes together
provide an instrumentation facility that overcomes some
limitations of ptrace. For attendees, familiarity with a
tracing API such as ptrace or kprobes will be helpful
but not essential.

1 Introduction

For a long time now, debugging user-space applications
has been dependent on the ptrace system call. Though
ptrace has been very useful and will almost certainly
continue to prove its worth, some of the requirements it
imposes on its clients are considered limiting. One im-
portant limitation is performance, which is influenced
by the high context-switch overheads inherent in the
ptrace approach.

The utrace patchset [3] mitigates this to a large extent.
Utrace provides in-kernel callbacks for the same sorts
of events reported by ptrace. The utrace patchset re-
implements ptrace as a client of utrace.

Uprobes is another utrace client. Analogous to kprobes
for the Linux R© kernel, uprobes provides a simple, easy-
to-use API to dynamically instrument user applications.

Details of the design and implementation of uprobes
form the major portion of this paper.

We start by discussing the current situation in the user-
space tracing world. Sections 2 and 3 discuss the var-
ious instrumentation approaches possible and/or avail-
able. Section 4 goes on to discuss the goals that led
to the current uprobes design, while Section 5 details
the implementation. In the later sections, we put forth
some of the challenges, especially with regard to mod-
ifying text and handling of multithreaded applications.
Further, there is a brief discussion on how and where
we envision this infrastructure can be put to use. We fi-
nally conclude with a discussion on where this work is
headed.

2 Ptrace-based Application Tracing

Like many other flavors of UNIX, Linux provides the
ptrace system-call interface for tracing a running pro-
cess. This interface was designed mainly for debugging,
but it has been used for tracing purposes as well. This
section surveys some of the ptrace-based tracing tools
and presents limitations of the ptrace approach for low-
impact tracing.

Ptrace supports the following types of requests:

• Attach to, or detach from, the process being traced
(the “tracee”).

• Read or write the process’s memory, saved regis-
ters, or user area.

• Continue execution of the process, possibly until a
particular type of event occurs (e.g., a system call
is called or returns).

• 215 •
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Events in the tracee turn into SIGCHLD signals that
are delivered to the tracing process. The associated
siginfo_t specifies the type of event.

2.1 Gdb

gdb is the most widely used application debugger in
Linux, and it runs on other flavors of UNIX as well.
gdb controls the program to be debugged using ptrace
requests. gdb is used mostly as an interactive debugger,
but also provides a batch option through which a series
of gdb commands can be executed, without user inter-
vention, each time a breakpoint is hit. This method of
tracing has significant performance overhead. gdb’s ap-
proach to tracing multithreaded applications is to stop
all threads whenever any thread hits a breakpoint.

2.2 Strace

The strace command provides the ability to trace calls
and returns from all the system calls executed by
the traced process. strace exploits ptrace’s PTRACE_

SYSCALL request, which directs ptrace to continue ex-
ecution of the tracee until the next entry or exit from a
system call. strace handles multithreaded applications
well, and it has significantly less performance overhead
than the gdb scripting method; but performance is still
the number-one complaint about strace. Using strace
to trace itself shows that each system call in the tracee
yields several system calls in strace.

2.3 Ltrace

The ltrace command is similar to strace, but it traces
calls and returns from dynamic library functions. It can
also trace system calls, and extern functions in the traced
program itself. ltrace uses ptrace to place breakpoints at
the entry point and return address of each probed func-
tion. ltrace is a useful tool, but it suffers from the per-
formance limitations inherent in ptrace-based tools. It
also appears not to work for multithreaded programs.

2.4 Ptrace Limitations

If gdb, strace, and ltrace don’t give you the type of in-
formation you’re looking for, you might consider writ-
ing your own ptrace-based tracing tool. But consider the
following ptrace limitations first:

• Ptrace is not a POSIX system call. Its behavior
varies from operating system to operating system,
and has even varied from version to version in
Linux. Vital operational details (“Why do I get two
SIGCHLDs here? Am I supposed to pass the pro-
cess a SIGCONT or no signal at all here?”) are not
documented, and are not easily gleaned from the
kernel source.

• The amount of perseverence and/or luck you need
to get a working program goes up as you try to
monitor more than one process or more than one
thread.

• Overheads associated with accessing the tracee’s
memory and registers are enormous—on the order
of 10x to 100x or more, compared with equivalent
in-kernel access. Ptrace’s PEEK-and-POKE inter-
face provides very low bandwidth and incurs nu-
merous context switches.

• In order to trace a process, the tracer must become
the tracee’s parent. To attach to an already run-
ning process, then, the tracer must muck with the
tracee’s lineage. Also, if you decide you want to
apply more instrumentation to the same process,
you have to detach the tracer already in place.

3 Kernel-based Tracing

In the early days of Linux, the kernel code base was
manageable and most people working on the kernel
knew their core areas intimately. There was a definite
pushback from the kernel community towards including
any tracing and/or debugging features in the mainline
kernel.

Over time, Linux became more popular and the num-
ber of kernel contributors increased. A need for a flexi-
ble tracing infrastructure was recognized. To that end, a
number of projects sprung up and have achieved varied
degrees of success.

We will look at a few of these projects in this section.
Most of them are based on the kernel-module approach.

3.1 Kernel-module approach

The common thread among the following approaches
is that the instrumentation code needs to run in kernel
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mode. Since we wouldn’t want to burden the kernel at
times when the instrumentation isn’t in use, such code
is introduced only when needed, in the form of a kernel
module.

3.1.1 Kprobes

Kprobes [2] is perhaps the most widely accepted of all
dynamic instrumentation mechanisms currently avail-
able for the Linux kernel. Kprobes traces its roots back
to DProbes (discussed later). In fact, the first version of
kprobes was a patch created by just taking the minimal,
kernel-only portions of the DProbes framework.

Kprobes allows a user to dynamically insert “probes”
into specific locations in the Linux kernel. The user
specifies “handlers” (instrumentation functions) that run
before and/or after the probed instruction is executed.
When a probepoint (which typically is an architecture-
specific breakpoint instruction) is hit, control is passed
to the kprobes infrastructure, which takes care of execut-
ing the user-specified handlers. [2] provides an in-depth
treatment of the kprobes infrastructure (which, inciden-
tally, includes jprobes and function-return probes).

The kernel-module approach was a natural choice for
kprobes: after all, the goal is to access and instrument
the Linux kernel. Given the privilege and safety re-
quirements necessary to access kernel data structures,
the kernel-module approach works very well.

3.1.2 Utrace

A relatively new entrant to this instrumentation space
is utrace. This infrastructure is intended to serve as an
abstraction layer to write the next generation of user-
space tracing and debugging applications.

One of the primary grouses kernel hackers have had
about ptrace is the lack of separation/layering of
code between architecture-specific and -agnostic parts.
Utrace aims to mitigate this situation. Ptrace is now but
one of the clients of utrace.

Utrace, at a very basic level, is an infrastructure to mon-
itor individual Linux “threads”—each represented by a
task_struct in the kernel. An “engine” is utrace’s
basic control unit. Typically, each utrace client estab-
lishes an engine for each thread of interest. Utrace pro-
vides three basic facilities on a per-engine basis:

• Event reporting: Utrace clients register callbacks
to be run when the thread encounters specific
events of interest. These include system call en-
try/exit, signals, exec, clone, exit, etc.

• Thread control: Utrace clients can inject signals,
request that a thread be stopped from running in
user-space, single-step, block-step, etc.

• Thread machine state access: While in a callback,
a client can inspect and/or modify the thread’s core
state, including the registers and u-area.

Utrace works by placing tracepoints at strategic points in
kernel code. For traced threads, these tracepoints yield
calls into the registered utrace clients. These callbacks,
though happening in the context of a user process, hap-
pen when the process is executing in kernel mode. In
other words, utrace clients run in the kernel. Ptrace is
one utrace client that lives in the kernel. Other clients—
especially those used for ad hoc instrumentation—may
be implemented as kernel modules.

3.1.3 Uprobes

Uprobes is another client of utrace. As such, uprobes
can be seen as a flexible user-space probing mecha-
nism that comes with all the power, but not all the con-
straints, of ptrace. Just as kprobes creates and manages
probepoints in kernel code, uprobes creates and man-
ages probepoints in user applications. The uprobes in-
frastructure, like ptrace, lives in the kernel.

A uprobes user writes a kernel module, specifying for
each desired probepoint the process and virtual address
to be probed and the handler to run when the probepoint
is hit.

A uprobes-based module can also use the utrace and/or
kprobes APIs. Thus a single instrumentation module
can collect and correlate information from the user ap-
plication(s), shared libraries, the kernel/user interfaces,
and the kernel itself.

3.1.4 SystemTap

SystemTap [4] provides a mechanism to use the kernel
(and later, user) instrumentation tools, through a simple
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awk-like event/action scripting language. A SystemTap
script specifies code points to probe, and for each, the
instrumentation code to run when the probepoint is hit.
The scripting language provides facilities to aggregate,
collate, filter, present, and analyze trace data in a manner
that is intuitive to the user.

From a user’s script, the stap command produces and
loads a kernel module containing calls to the kprobes
API. Trace data from this module is passed to user space
using efficient mechanisms (such as relay channels), and
the SystemTap post-processing infrastructure takes care
of deciphering and presenting the gathered information
in the format requested by the user, on the stap com-
mand’s standard output.

SystemTap can be viewed as a wrapper that enables easy
use of kernel instrumentation mechanisms, including,
but not limited to, kprobes. Plans are afoot to exploit
utrace, uprobes, the “markers” static tracing infrastruc-
ture, and a performance-monitoring-hardware infras-
tructure (perfmon), as they become part of the mainline
kernel.

3.2 Interpreter-based approaches

Two more instrumentation tools, DProbes and DTrace,
bear mention. Both tools endeavor to provide integrated
tracing support for user applications and kernel code.

DProbes [1] traces its roots to IBM’s OS/2 R© operating
system, but has never found a foothold in Linux, ex-
cept as the forebear of kprobes. DProbes instrumenta-
tion is written in the RPN programming language, the
assembly language for a virtual machine whose inter-
preter resides in the kernel. For the i386 architecture,
the DProbes C Compiler (dpcc) translates instrumenta-
tion in a C-like language into RPN. Like kprobes and
uprobes, DProbes allows the insertion of probepoints
anywhere in user or kernel code.

DTrace is in use on Solaris and FreeBSD. Instrumenta-
tion is written in the D programming language, which
provides aggregation and presentation facilities similar
to those of SystemTap. As with DProbes, DTrace instru-
mentation runs on an interpreter in the kernel. DTrace
kernel probepoints are limited to a large but predefined
set. A DTrace probe handler is limited to a single basic
block (no ifs or loops).

Tool Event Counted Overhead (usec)
per Event

ltrace -c function calls 22
gdb -batch function calls 265
strace -c system calls 25
kprobes function calls 0.25
uprobes function calls 3.4
utrace system calls 0.16

Table 1: Performance of ptrace-based tools (top) vs. ad
hoc kernel modules (bottom)

3.3 Advantages of kernel-based application tracing

• Kernel-based instrumentation is inherently fast.
Table 1 shows comparative performance numbers
of ptrace-based tools vs. kernel modules using
kprobes, uprobes, and utrace. These measurements
were taken on a Pentium R© M (1495 MHz) running
the utrace implementation of ptrace.

• Most systemic problems faced by field engineers
involve numerous components. Problems can per-
colate from a user-space application all the way up
to a core kernel component, such as the block layer
or the networking stack. Providing a unified view
of the flow of control and/or data across user space
and kernel is possible only via kernel-based trac-
ing.

• Kernel code runs at the highest privilege and as
such, can access all kernel data structures. In ad-
dition, the kernel has complete freedom and access
to the process address space of all user-space pro-
cesses. By using safe mechanisms provided in ker-
nel to access process address spaces, information
related to the application’s data can be gleaned eas-
ily.

• Ptrace, long the standard method for user-space in-
strumentation, has a number of shortcomings, as
discussed in Section 2.4.

3.4 Drawbacks of kernel-based application tracing

• The kernel runs at a higher privilege level and in
a more restricted environment than applications.
Assumptions and programming constructs that are
valid for user space don’t necessarily hold for the
kernel.
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• Not everybody is a kernel developer. It’s not pru-
dent to expect someone to always write “correct”
kernel code. And, while dealing with the kernel,
one mistake may be too many. Most application
developers and system administrators, understand-
ably, are hesitant to write kernel modules.

• The kernel has access to user-space data, but can’t
easily get at all the information (e.g., symbol table,
debug information) to decode it. This information
must be provided in or communicated to the kernel
module, or the kernel must rely on post-processing
in user space.

SystemTap goes a long way in mitigating these draw-
backs. For kernel tracing, SystemTap uses the running
kernel’s debug information to determine source file, line
number, location of variables, and the like. For applica-
tions that adhere to the DWARF format, it wouldn’t be
hard for SystemTap to provide address/symbol resolu-
tion.

4 Uprobes Design Goals

The idea of user-space probes has been around for years,
and in fact there have been a variety of proposed imple-
mentations. For the current, utrace-based implementa-
tion, the design goals were as follows:

• Support the kernel-module approach. Uprobes fol-
lows the kprobes model of dynamic instrumenta-
tion: the uprobes user creates an ad hoc kernel
module that defines the processes to be probed, the
probepoints to establish, and the kernel-mode in-
strumentation handlers to run when probepoints are
hit. The module’s init function establishes the
probes, and its cleanup function removes them.

• Interoperate with kprobes and utrace. An instru-
mentation module can establish probepoints in the
kernel (via kprobes) as well as in user-mode pro-
grams. A uprobe or utrace handler can dynamically
establish or remove kprobes, uprobes, or utrace-
event callbacks.

• Minimize limitations on the types of applications
that can be probed and the way in which they
can be probed. In particular, a uprobes-based in-
strumentation module can probe any number of

processes of any type (related or unrelated), and
can probe multithreaded applications of all sorts.
Probes can be established or removed at any stage
in a process’s lifetime. Multiple instrumentation
modules can probe the same processes (and even
the same probepoints) simultaneously.

• Probe processes, not executables. In earlier ver-
sions of uprobes, a probepoint referred to a partic-
ular instruction in a specified executable or shared
library. Thus a probepoint affected all processes
(current and future) running that executable. This
made it relatively easy to probe a process right
from exec time, but the implications of this im-
plementation (e.g., inconsistency between the in-
memory and on-disk images of a probed page)
were unacceptable. Like ptrace, uprobes now
probes per-process, and uses access_process_
vm() to ensure that a probed process gets its own
copy of the probed page when a probepoint is in-
serted.

• Handlers can sleep. As discussed later in Sec-
tion 5, uprobes learns of each breakpoint hit via
utrace’s signal-callback mechanism. As a result,
the user-specified handler runs in a context where it
can safely sleep. Thus, the handler can access any
part of the probed process’s address space, resident
or not, and can undertake other operations (such as
registering and unregistering probes) that a kprobe
handler cannot. Compared with earlier implemen-
tations of uprobes, this provides more flexibility at
the cost of some additional per-hit overhead.

• Performance. Since a uprobe handler runs in the
context of the probed process, ptrace’s context
switches between the probed process and the in-
strumentation parent on every event are eliminated.
The result is significantly less overhead per probe
hit than in ptrace, though significantly more than in
kprobes.

• Safe from user-mode interference. Both uprobes
and the instrumentation author must account for the
possibility of unexpected tinkering with the probed
process’s memory—e.g., by the probed process it-
self or by a malicious ptrace-based program—and
ensure that while the sabotaged process may crash,
the kernel’s operation is not affected.

• Minimize intrusion on existing Linux code. For
hooks into a process’s events of interest, uprobes
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uses those provided by utrace. Uprobes creates
per-task and per-process data structures, but main-
tains them independently of the corresponding data
structures in the core kernel and in utrace. As a
result, at this writing, the base uprobes patch, in-
cluding i386 support, includes only a few lines of
patches against the mainline kernel source.

• Portable to multiple architectures. At the time of
this writing, uprobes runs on the i386 architec-
ture. Ports are underway to PowerPC, x86_64, and
zLinux (s390x). Except for the code for single-
stepping out of line, which you need (adapting
from kprobes, typically) if you don’t want to miss
probepoints in multithreaded applications, a typi-
cal uprobes port is on the order of 50 lines.

5 Uprobes Implementation
Overview

Uprobes can be thought of as containing the following
overlapping pieces:

• data structures;

• the register/unregister API;

• utrace callbacks; and

• architecture-specific code.

In this section, we’ll describe each of these pieces
briefly.

5.1 Data structures

Uprobes creates the following internal data structures:

• uprobe_process – one for each probed pro-
cess;

• uprobe_task – one for each thread (task) in a
probed process; and

• uprobe_kimg (Kernel IMaGe) – one for each
probepoint in a probed process. (Multiple uprobes
at the same address map to the same uprobe_
kimg.)

Each uprobe_task and uprobe_kimg is owned
by its uprobe_process. Data structures associated
with return probes (uretprobes) and single-stepping out
of line are described later.

5.2 The register/unregister API

The fundamental API functions are register_
uprobe() and unregister_uprobe(), each of
which takes a pointer to a uprobe object defined in the
instrumentation module. A uprobe object specifies the
pid and virtual address of the probepoint, and the han-
dler function to be run when the probepoint is hit.

The register_uprobe() function finds the
uprobe_process specified by the pid, or creates
the uprobe_process and uprobe_task(s) if
they don’t already exist. register_uprobe() then
creates a uprobe_kimg for the probepoint, queues
it for insertion, requests (via utrace) that the probed
process “quiesce,” sleeps until the insertion takes place,
and then returns. (If there’s already a probepoint at the
specified address, register_uprobe() just adds
the uprobe to that uprobe_kimg and returns.)

Note that since all threads in a process share the same
text, there’s no way to register a uprobe for a particular
thread in a multithreaded process.

Once all threads in the probed process have quiesced,
the last thread to quiesce inserts a breakpoint instruction
at the specified probepoint, rouses the quiesced threads,
and wakes up register_uprobe().

unregister_uprobe() works in reverse: Queue
the uprobe_kimg for removal, quiesce the probed
process, sleep until the probepoint has been removed,
and delete the uprobe_kimg. If this was the
last uprobe_kimg for the process, unregister_
uprobe() tears down the entire uprobe_process,
along with its uprobe_tasks.

5.3 Utrace callbacks

Aside from registration and unregistration, everything in
uprobes happens as the result of a utrace callback. When
a uprobe_task is created, uprobes calls utrace_
attach() to create an engine for that thread, and lis-
tens for the following events in that task:

• breakpoint signal (SIGTRAP on most architec-
tures): Utrace notifies uprobes when the probed
task hits a breakpoint. Uprobes determines which
probepoint (if any) was hit, runs the associated
probe handler(s), and directs utrace to single-step
the probed instruction.
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• single-step signal (SIGTRAP on most architec-
tures): Utrace notifies uprobes after the probed in-
struction has been single-stepped. Uprobes does
any necessary post-single-step work (discussed in
later sections), and directs utrace to continue exe-
cution of the probed task.

• fork/clone: Utrace notifies uprobes when a probed
task forks a new process or clones a new thread.
When a new thread is cloned for the probed pro-
cess, uprobes adds a new uprobe_task to the
uprobe_process, complete with an appropri-
ately programmed utrace engine. In the case
of fork(), uprobes doesn’t attempt to preserve
probepoints in the child process, since each uprobe
object refers to only one process. Rather, uprobes
iterates through all the probe addresses in the par-
ent and removes the breakpoint instructions in the
child.

• exit: Utrace notifies uprobes when a probed
task exits. Uprobes deletes the corresponding
uprobe_task. If this was the last uprobe_
task for the process, uprobes tears down the en-
tire uprobe_process. (Since the process is ex-
iting, there’s no need to remove breakpoints.)

• exec: Utrace notifies uprobes when a probed task
execs a new program. (Utrace reports exit events
for any other threads in the process.) Since probe-
points in the old program are irrelevant in the new
program, uprobes tears down the entire uprobe_
process. (Again, there’s no need to remove
breakpoints.)

• quiesce: Uprobes listens for the above-listed events
all the time. By contrast, uprobes listens for qui-
esce events only while it’s waiting for the probed
process to quiesce, in preparation for insertion or
removal of a breakpoint instruction. (See Sec-
tion 6.2).

5.4 Architecture-specific code

Most components of the architecture-specific code for
uprobes are simple macros and inline functions. Sup-
port for return probes (uretprobes) typically adds 10–40
lines. By far the majority of the architecture-specific
code relates to “fix-ups” necessitated by the fact that we
single-step a copy of the probed instruction, rather than
single-stepping it in place. See “Tracing multithreaded
applications: SSOL” in the next section.

6 Uprobes Implementation Notes

6.1 Tracing multithreaded applications: SSOL

Like some other tracing and debugging tools, uprobes
implements a probepoint by replacing the first byte(s)
of the instruction at the probepoint with a breakpoint
instruction, after first saving a copy of the original in-
struction. After the breakpoint is hit and the handler has
been run, uprobes needs to execute the original instruc-
tion in the context of the probed process. There are two
commonly accepted ways to do this:

• Single-stepping inline (SSIL): Temporarily replace
the breakpoint instruction with the original instruc-
tion; single-step the instruction; restore the break-
point instruction; and allow the task to continue.
This method is typically used by interactive debug-
gers such as gdb.

• Single-stepping out of line (SSOL): Place a copy of
the original instruction somewhere in the probed
process’s address space; single-step the copy; “fix
up” the task’s state as necessary; and allow the task
to continue. If the effect of the instruction depends
on its address (e.g., a relative branch), the task’s
registers and/or stack must be “fixed up” after the
instruction is executed (e.g., to make the program
counter relative to the address of the original in-
struction, rather than the instruction copy). This
method is used by kprobes for kernel tracing.

The SSIL approach doesn’t work acceptably for mul-
tithreaded programs. In particular, while the break-
point instruction is temporarily removed during single-
stepping, another thread can sail past the probepoint.
We considered the approach of quiescing, or otherwise
blocking, all threads every time one hits a probepoint, so
that we could be sure of no probe misses during SSIL,
but we considered the performance implications unac-
ceptable.

In terms of implementation, SSOL has two important
implications:

• Each uprobes port must provide code to do
architecture-specific post-single-step fix-ups.
Much of this code can be filched from kprobes,



222 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

but there are additional implications for uprobes.
For example, uprobes must be prepared to handle
any instruction in the architecture’s instruction set,
not just those used in the kernel; and for some
architectures, uprobes must be able to handle both
32-bit and 64-bit user applications.

• The instruction copy to be single-stepped must re-
side somewhere in the probed process’s address
space. Since uprobes can’t know what other
threads may be doing while a thread is single-
stepping, the instruction copy can’t reside in any
location legitimately used by the program. After
considering various approaches, we decided to al-
locate a new VM area in the probed process to hold
the instruction copies. We call this the SSOL area.

To minimize the impact on the system, uprobes allo-
cates the SSOL area only for processes that are actually
probed, and the area is small (typically one page) and
of fixed size. “Instruction slots” in this area are allo-
cated on a per-probepoint basis, so that multiple threads
can single-step in the same slot simultaneously. Slots
are allocated only to probepoints that are actually hit.
If uprobes runs out of free slots, slots are recycled on a
least-recently-used basis.

6.2 Quiescing

Uprobes takes a fairly conservative approach when in-
serting and removing breakpoints: all threads in the
probed process must be “quiescent” before the break-
point is inserted/removed.

Our approach to quiescing the threads started out fairly
simple: For each task in the probed process, the
[un]register_uprobe() function sets the UTRACE_
ACTION_QUIESCE flag in the uprobe_task’s en-
gine, with the result that utrace soon brings the task
to a stopped state and calls uprobes’s quiesce callback
for that task. After setting all tasks on the road to qui-
escence, [un]register_uprobe() goes to sleep.
For the last thread to quiesce, the quiesce callback in-
serts or removes the requested breakpoint, wakes up
[un]register_uprobe(), and rouses all the qui-
esced threads.

It turned out to be more complicated than that. For ex-
ample:

• If the targeted thread is already quiesced, setting
the UTRACE_ACTION_QUIESCE flag causes the
quiesce callback to run immediately in the context
of the [un]register_uprobe() task. This
breaks the “sleep until the last quiescent thread
wakes me” paradigm.

• If a thread hits a breakpoint on the road to quies-
cence, its quiesce callback is called before the sig-
nal callback. This turns out to be a bad place to stop
for breakpoint insertion or removal. For example,
if we happen to remove the uprobe_kimg for the
probepoint we just hit, the subsequent signal call-
back won’t know what to do with the SIGTRAP.

• If [un]register_uprobe() is called from a
uprobe handler, it runs in the context of the probed
task. Again, this breaks the “sleep until the last
quiescent thread wakes me” paradigm.

It turned out to be expedient to establish an “alternate
quiesce point” in uprobes, in addition to the quiesce call-
back. When it finishes handling a probepoint, the up-
robes signal callback checks to see whether the process
is supposed to be quiescing. If so, it does essentially
what the quiesce callback does: if it’s the last thread to
“quiesce,” it processes the pending probe insertion or re-
moval and rouses the other threads; otherwise, it sleeps
in a pseudo-quiesced state until the “last” thread rouses
it. Consequently, if [un]register_uprobe() sees
that a thread is currently processing a probepoint, it
doesn’t try to quiesce it, knowing that it will soon hit
the alternate quiesce point.

6.3 User-space return probes

Uprobes supports a second type of probe: a return probe
fires when a specified function returns. User-space re-
turn probes (uretprobes) are modeled after return probes
in kprobes (kretprobes).

When you register a uretprobe, you specify the process,
the function (i.e., the address of the first instruction), and
a handler to be run when the function returns.

Uprobes sets a probepoint at the entry to the function.
When the function is called, uprobes saves a copy of
the return address (which may be on the stack on in a
register, depending on the architecture) and replaces the
return address with the address of the “uretprobe tram-
poline,” which is simply a breakpoint instruction.



2007 Linux Symposium, Volume One • 223

When the function returns, control passes to the tram-
poline, the breakpoint is hit, and uprobes gains control.
Uprobes runs the user-specified handler, then restores
the original return address and allows the probed func-
tion to return.

In uprobes, the return-probes implementation differs
from kprobes in several ways:

• The user doesn’t need to specify how many
“return-probe instance” objects to preallocate.
Since uprobes runs in a context where it can use
kmalloc() freely, no preallocation is necessary.

• Each probed process needs a trampoline in its ad-
dress space. We use one of the slots in the SSOL
area for this purpose.

• As in kprobes, it’s permissible to unregister the re-
turn probe while the probed function is running.
Even after all probes have been removed, uprobes
keeps the uprobe_process and its uprobe_
tasks (and utrace engines) around as long as nec-
essary to catch and process the last hit on the uret-
probe trampoline.

6.4 Registering/unregistering probes in probe han-
dlers

A uprobe or uretprobe handler can call any of the func-
tions in the uprobes API. A handler can even unregister
its own probe. However, when invoked from a handler,
the actual [un]register operations do not take place im-
mediately. Rather, they are queued up and executed af-
ter all handlers for that probepoint have been run and
the probed instruction has been single-stepped. (Specif-
ically, queued [un]registrations are run right after the
previously described “alternate quiesce point.”) If the
registration_callback field is set in the uprobe
object to be acted on, uprobes calls that callback when
the [un]register operation completes.

An instrumentation module that employs such dynamic
[un]registrations needs to keep track of them: since a
module’s uprobe objects typically disappear along with
the module, the module’s cleanup function should not
exit while any such operations are outstanding.

7 Applying Uprobes

We envision uprobes being used in the following situa-
tions, for debugging and/or for performance monitoring:

• Tracing timing-sensitive applications.

• Tracing multithreaded applications.

• Tracing very large and/or complex applications.

• Diagnosis of systemic performance problems in-
volving multiple layers of software (in kernel and
user space).

• Tracing applications in creative ways – e.g., col-
lecting different types of information at different
probepoints, or dynamically adjusting which code
points are probed.

8 Future Work

What’s next for utrace, uprobes, and kprobes? Here are
some possibilities:

• Utrace += SSOL. As discussed in Section 6.1,
single-stepping out of line is crucial for the sup-
port of probepoints in multithreaded processes.
This technology may be migrated from uprobes to
utrace, so that other utrace clients can exploit it.
One such client might be an enhanced ptrace.

• SystemTap += utrace + uprobes. Some System-
Tap users want support for probing in user space.
Some potential utrace and uprobes users might be
more enthusiastic given the safety and ease of use
provided by SystemTap.

• Registering probes from kprobe handlers. Utrace
and uprobe handlers can register and unregister
utrace, uprobes, and kprobes handlers. It would be
nice if kprobes handlers could do the same. Per-
haps the effect of sleep-tolerant kprobe handlers
could be approximated using a kernel thread that
runs deferred handlers. This possibility is under
investigation.

• Tracing Java. Uprobes takes us closer to dynamic
tracing of the Java Virtual Machine and Java appli-
cations.



224 • Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of User Apps

• Task-independent exec hook. Currently, uprobes
can trace an application if it’s already running, or if
it is known which process will spawn it. Allowing
tracing of applications that are yet be started and
are of unknown lineage will help to solve problems
that creep in during application startup.
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Abstract

Virtualization is a hot topic in operating systems these
days. It is useful in many scenarios: server consolida-
tion, virtual test environments, and for Linux enthusiasts
who still can not decide which distribution is best. Re-
cently, hardware vendors of commodity x86 processors
have added virtualization extensions to the instruction
set that can be utilized to write relatively simple virtual
machine monitors.

The Kernel-based Virtual Machine, or kvm, is a new
Linux subsystem which leverages these virtualization
extensions to add a virtual machine monitor (or hyper-
visor) capability to Linux. Using kvm, one can create
and run multiple virtual machines. These virtual ma-
chines appear as normal Linux processes and integrate
seamlessly with the rest of the system.

1 Background

Virtualization has been around almost as long as com-
puters. The idea of using a computer system to emulate
another, similar, computer system was early recognized
as useful for testing and resource utilization purposes.
As with many computer technologies, IBM led the way
with their VM system. In the last decade, VMware’s
software-only virtual machine monitor has been quite
successful. More recently, the Xen [xen] open-source
hypervisor brought virtualization to the open source
world, first with a variant termed paravirtualization and
as hardware became available, full virtualization.

2 x86 Hardware Virtualization Extensions

x86 hardware is notoriously difficult to virtualize. Some
instructions that expose privileged state do not trap

when executed in user mode, e.g. popf. Some privileged
state is difficult to hide, e.g. the current privilege level,
or cpl.

Recognizing the importance of virtualization, hardware
vendors [Intel][AMD] have added extensions to the x86
architecture that make virtualization much easier. While
these extensions are incompatible with each other, they
are essentially similar, consisting of:

• A new guest operating mode – the processor can
switch into a guest mode, which has all the regu-
lar privilege levels of the normal operating modes,
except that system software can selectively re-
quest that certain instructions, or certain register
accesses, be trapped.

• Hardware state switch – when switching to guest
mode and back, the hardware switches the control
registers that affect processor operation modes, as
well as the segment registers that are difficult to
switch, and the instruction pointer so that a control
transfer can take effect.

• Exit reason reporting – when a switch from guest
mode back to host mode occurs, the hardware re-
ports the reason for the switch so that software can
take the appropriate action.

3 General kvm Architecture

Under kvm, virtual machines are created by opening a
device node (/dev/kvm.) A guest has its own memory,
separate from the userspace process that created it. A
virtual cpu is not scheduled on its own, however.
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Figure 1: kvm Memory Map

3.1 /dev/kvm Device Node

kvm is structured as a fairly typical Linux character de-
vice. It exposes a /dev/kvm device node which can
be used by userspace to create and run virtual machines
through a set of ioctl()s.

The operations provided by /dev/kvm include:

• Creation of a new virtual machine.

• Allocation of memory to a virtual machine.

• Reading and writing virtual cpu registers.

• Injecting an interrupt into a virtual cpu.

• Running a virtual cpu.

Figure 1 shows how guest memory is arranged. Like
user memory in Linux, the kernel allocates discontigu-
ous pages to form the guest address space. In addition,
userspace can mmap() guest memory to obtain direct
access. This is useful for emulating dma-capable de-
vices.

Running a virtual cpu deserves some further elabora-
tion. In effect, a new execution mode, guest mode is
added to Linux, joining the existing kernel mode and
user mode.

Guest execution is performed in a triply-nested loop:

Execute natively
in Guest Mode

Handle
Exit

I/O?

Signal
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Enter
Guest
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Issue Guest
Execution ioctl

Handle I/O
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Figure 2: Guest Execution Loop

• At the outermost level, userspace calls the kernel
to execute guest code until it encounters an I/O in-
struction, or until an external event such as arrival
of a network packet or a timeout occurs. External
events are represented by signals.

• At the kernel level, the kernel causes the hardware
to enter guest mode. If the processor exits guest
mode due to an event such as an external interrupt
or a shadow page table fault, the kernel performs
the necessary handling and resumes guest execu-
tion. If the exit reason is due to an I/O instruction
or a signal queued to the process, then the kernel
exits to userspace.

• At the hardware level, the processor executes guest
code until it encounters an instruction that needs
assistance, a fault, or an external interrupt.

Refer to Figure 2 for a flowchart-like representation of
the guest execution loop.
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3.2 Reconciling Instruction Set Architecture Dif-
ferences

Unlike most of the x86 instruction set, where instruc-
tion set extensions introduced by one vendor are adopted
by the others, hardware virtualization extensions are not
standardized. Intel and AMD processors have different
instructions, different semantics, and different capabili-
ties.

kvm handles this difference in the traditional Linux
way of introducing a function pointer vector, kvm_
arch_ops, and calling one of the functions it de-
fines whenever an architecture-dependent operation is
to be performed. Base kvm functionality is placed in a
module, kvm.ko, while the architecture-specific func-
tionality is placed in the two arch-specific modules,
kvm-intel.ko and kvm-amd.ko.

4 Virtualizing the MMU

As with all modern processors, x86 provides a virtual
memory system which translates user-visible virtual ad-
dresses to physical addresses that are used to access the
bus. This translation is performed by the memory man-
agement unit, or mmu. The mmu consists of:

• A radix tree ,the page table, encoding the virtual-
to-physical translation. This tree is provided by
system software on physical memory, but is rooted
in a hardware register (the cr3 register)

• A mechanism to notify system software of missing
translations (page faults)

• An on-chip cache (the translation lookaside buffer,
or tlb) that accelerates lookups of the page table

• Instructions for switching the translation root in or-
der to provide independent address spaces

• Instructions for managing the tlb

The hardware support for mmu virtualization provides
hooks to all of these components, but does not fully vir-
tualize them. The principal problem is that the mmu
provides for one level of translation (guestvirtual →
guest physical) but does not account for the sec-
ond level required by virtualization (guest physical →
host physical.)

The classical solution is to use the hardware virtualiza-
tion capabilities to present the real mmu with a sep-
arate page table that encodes the combined transla-
tion (guestvirtual → host physical) while emulating the
hardware’s interaction with the original page table pro-
vided by the guest. The shadow page table is built incre-
mentally; it starts out empty, and as translation failures
are reported to the host, missing entries are added.

A major problem with shadow page tables is keeping
the guest page table and the shadow page table synchro-
nized. Whenever the guest writes to a page table, the
corresponding change must also be performed on the
shadow page table. This is difficult as the guest page ta-
ble resides in ordinary memory and thus is not normally
trapped on access.

4.1 Virtual TLB Implementation

The initial version of shadow page tables algorithm in
kvm used a straightforward approach that reduces the
amount of bugs in the code while sacrificing perfor-
mance. It relies on the fact that the guest must use the tlb
management instructions to synchronize the tlb with its
page tables. We trap these instructions and apply their
effect to the shadow page table in addition to the normal
effect on the tlb.

Unfortunately, the most common tlb management in-
struction is the context switch, which effectively in-
validates the entire tlb.1 This means that workloads
with multiple processes suffer greatly, as rebuilding the
shadow page table is much more expensive than refilling
the tlb.

4.2 Caching Virtual MMU

In order to improve guest performance, the virtual mmu
implementation was enhanced to allow page tables to
be cached across context switches. This greatly in-
creases performance at the expense of much increased
code complexity.

As related earlier, the problem is that guest writes to the
guest page tables are not ordinarily trapped by the vir-
tualization hardware. In order to receive notifications of
such guest writes, we write-protect guest memory pages
that are shadowed by kvm. Unfortunately, this causes a
chain reaction of additional requirements:

1Actually, kernel mappings can be spared from this flush; but the
performance impact is nevertheless great.
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• To write protect a guest page, we need to know
which translations the guest can use to write to the
page. This means we need to keep a reverse map-
ping of all writable translations that point to each
guest page.

• When a write to a guest page table is trapped, we
need to emulate the access using an x86 instruction
interpreter so that we know precisely the effect on
both guest memory and the shadow page table.

• The guest may recycle a page table page into a nor-
mal page without a way for kvm to know. This can
cause a significant slowdown as writes to that page
will be emulated instead of proceeding at native
speeds. kvm has heuristics that determine when
such an event has occurred and decache the corre-
sponding shadow page table, eliminating the need
to write-protect the page.

At the expense of considerable complexity, these re-
quirements have been implemented and kvm context
switch performance is now reasonable.

5 I/O Virtualization

Software uses programmed I/O (pio) and memory-
mapped I/O (mmio) to communicate with hardware de-
vices. In addition, hardware can issue interrupts to re-
quest service by system software. A virtual machine
monitor must be able to trap and emulate pio and mmio
requests, and to simulate interrupts from virtual hard-
ware.

5.1 Virtualizing Guest-Initiated I/O Instructions

Trapping pio is quite straightforward as the hardware
provides traps for pio instructions and partially decodes
the operands. Trapping mmio, on the other hand, is quite
complex, as the same instructions are used for regular
memory accesses and mmio:

• The kvm mmu does not create a shadow page table
translation when an mmio page is accessed

• Instead, the x86 emulator executes the faulting in-
struction, yielding the direction, size, address, and
value of the transfer.

In kvm, I/O virtualization is performed by userspace.
All pio and mmio accesses are forwarded to userspace,
which feeds them into a device model in order to simu-
late their behavior, and possibly trigger real I/O such as
transmitting a packet on an Ethernet interface. kvm also
provides a mechanism for userspace to inject interrupts
into the guest.

5.2 Host-Initiated Virtual Interrupts

kvm also provides interrupt injection facilities to
userspace. Means exist to determine when the guest
is ready to accept an interrupt, for example, the inter-
rupt flag must be set, and to actually inject the interrupt
when the guest is ready. This allows kvm to emulate the
APIC/PIC/IOAPIC complex found on x86-based sys-
tems.

5.3 Virtualizing Framebuffers

An important category of memory-mapped I/O devices
are framebuffers, or graphics adapters. These have char-
acteristics that are quite distinct from other typical mmio
devices:

• Bandwidth – framebuffers typically see very high
bandwidth transfers. This is in contrast to typi-
cal devices which use mmio for control, but trans-
fer the bulk of the data with direct memory access
(dma).

• Memory equivalence – framebuffers are mostly just
memory: reading from a framebuffers returns the
data last written, and writing data does not cause
an action to take place.

In order to efficiently support framebuffers, kvm allows
mapping non-mmio memory at arbitrary addresses such
as the pci region. Support is included for the VGA win-
dows which allow physically aliasing memory regions,
and for reporting changes in the content of the frame-
buffer so that the display window can be updated incre-
mentally.

6 Linux Integration

Being tightly integrated into Linux confers some impor-
tant benefits to kvm:
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• On the developer level, there are many opportu-
nities for reusing existing functionality within the
kernel, for example, the scheduler, NUMA support,
and high-resolution timers.

• On the user level, one can reuse the existing Linux
process management infrastructure, e.g., top(1)
to look at cpu usage and taskset(1) to pin
virtual machines to specific cpus. Users can use
kill(1) to pause or terminate their virtual ma-
chines.

7 Live Migration

One of the most compelling reasons to use virtualiza-
tion is live migration, or the ability to transport a virtual
machine from one host to another without interrupting
guest execution for more than a few tens of millisec-
onds. This facility allows virtual machines to be relo-
cated to different hosts to suit varying load and perfor-
mance requirements.

Live migration works by copying guest memory to the
target host in parallel with normal guest execution. If a
guest page has been modified after it has been copied,
it must be copied again. To that end, kvm provides a
dirty page log facility, which provides userspace with a
bitmap of modified pages since the last call. Internally,
kvmmaps guest pages as read-only, and only maps them
for write after the first write access, which provides a
hook point to update the bitmap.

Live migration is an iterative process: as each pass
copies memory to the remote host, the guest generates
more memory to copy. In order to ensure that the pro-
cess converges, we set the following termination crite-
ria:

• Two, not necessarily consecutive, passes were
made which had an increase in the amount of mem-
ory copied compared to previous pass, or,

• Thirty iterations have elapsed.

8 Future Directions

While already quite usable for many workloads, many
things remain to be done for kvm. Here we describe the
major features missing; some of them are already work-
in-progress.

8.1 Guest SMP Support

Demanding workloads require multiple processing
cores, and virtualization workloads are no exception.
While kvm readily supports SMP hosts, it does not yet
support SMP guests.

In the same way that a virtual machine maps to a host
process under kvm, a virtual cpu in an SMP guest maps
to a host thread. This keeps the simplicity of the kvm
model and requires remarkably few changes to imple-
ment.

8.2 Paravirtualization

I/O is notoriously slow in virtualization solutions. This
is because emulating an I/O access requires exiting
guest mode, which is a fairly expensive operation com-
pared to real hardware.

A common solution is to introduce paravirtualized de-
vices, or virtual “hardware” that is explicitly designed
for virtualized environments. Since it is designed
with the performance characteristics of virtualization in
mind, it can minimize the slow operations to improve
performance.

8.3 Memory Management Integration

Linux provides a vast array of memory management
features: demand paging, large pages (hugetlbfs), and
memory-mapped files. We plan to allow a kvm guest
address space to directly use these features; this can en-
able paging of idle guest memory to disk, or loading a
guest memory image from disk by demand paging.

8.4 Scheduler Integration

Currently, the Linux scheduler has no knowledge that it
is scheduling a virtual cpu instead of a regular thread.
We plan to add this knowledge to the scheduler so that
it can take into account the higher costs of moving a
virtual cpu from one core to another, as compared to a
regular task.
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8.5 New Hardware Virtualization Features

Virtualization hardware is constantly being enhanced
with new capabilities, for example, full mmu virtualiza-
tion, a.k.a. nested page tables or extended page tables,
or allowing a guest to securely access a physical device
[VT-d]. We plan to integrate these features into kvm in
order to gain the performance and functionality benefits.

8.6 Additional Architectures

kvm is currently only implemented for the i386 and
x86-64 architectures. However, other architectures
such as powerpc and ia64 support virtualization, and
kvm could be enhanced to support these architectures as
well.

9 Conclusions

kvm brings an easy-to-use, fully featured integrated vir-
tualization solution for Linux. Its simplicity makes ex-
tending it fairly easy, while its integration into Linux
allows it to leverage the large Linux feature set and the
tremendous pace at which Linux is evolving.
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Abstract

This paper covers the topic of implementing voice ser-
vices in packet-switched Voice Over IP (VoIP) and
circuit-switched (traditional telephony) networks using
Linux and commodity hardware. It contains a short
introduction into general telephony, VoIP, and Public
Switched Telephony Networks (PSTN). It also provides
an overview of VoIP services, including the open-source
software packages used to implement them, and the ker-
nel interfaces they include. It explains kernel support
for connecting Public Switched Telephony Networks us-
ing digital interfaces (E1/T1) via the Zaptel framework,
and user-space integration issues. The conclusion ex-
amines current trends in Linux-based and open-source
telephony.

A basic understanding of networking concepts is helpful
for understanding this presentation.

1 Introduction to general telephony, VoIP and
PSTN

Although VoIP products like SkypeTM and Google TalkTM

are storming the telecommunications landscape, almost
everyone still owns a telephone and uses it daily. Under-
standing how telephony works is still an obscure topic
for most people. As a result, we would like to begin
our paper with a short introduction to telephony in gen-
eral, combined with two major types presently in use—
packet-switched and circuit-switched.

Every telephony system needs to transmit data between
parties, but before it can do so, it needs to find the other
party and a route to it. This is called call setup. Ac-
tivity of this nature is usually performed by a signalling
protocol. Data can be passed via the same route and
channel as signalling, or via the same route and a dif-
ferent channel, or via an entirely different route. There

are obvious quality of service (QOS) requirements for
signalling and data—signalling requires guaranteed de-
livery of every message, and data requires low-latency
transmission, but can lose individual samples/frames.

1.1 VoIP

Voice over IP (VoIP) is widely used to describe various
services, setups, and protocols that pass audio data in
pseudo real-time over IP networks. Although the actual
implementations are very different, the basic require-
ments are to pass voice data in two directions and to
allow two-party conversation. VoIP is packet-switched
telephony because the underlying network is packet-
switched. To make conversations possible a virtual cir-
cuit is built between parties.

There are many protocols used for VoIP conversa-
tions. The most widespread is Session Initiation Pro-
tocol (SIP). This is a signalling protocol in that it only
handles call setup and termination. Actual session setup
between endpoints is handled by SDP (Session Descrip-
tion Protocol), and data is transmitted by RTP (Real-
Time Protocol). SIP is described in RFC3561 and en-
dorsed by IETF as an Internet standard.

Another protocol with a large user-base is H.323. While
SIP is designed mostly by network people it is similar
to HTTP (its messages are text Name:Value pairs).
H.323, being endorsed by ITU—telephony people—
looks like a traditional telephony protocol. Its messages
and information elements are described in ASN.1 (Ab-
stract Syntax Notation) and coded by ASN.1 BER (Ba-
sic Encoding Rules). H.323 is also a signalling protocol,
and also uses RTP for data transmission.

Inter-Asterisk Exchange (IAX) is another major VoIP
protocol. It was invented by the Asterisk R© authors. In
this protocol, data and signalling streams are not sepa-
rated, which allows easier NAT traversal. IAX is also
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able to pack multiple conversations into a single stream,
thus reducing trunking overhead. There are two versions
of IAX, although IAX1 is deprecated, and IAX2 is used
under name of IAX.

Other lesser known VoIP protocols are either proprietary
(SCCP is used in Cisco phones) or designed for specific
purpose (MGCP—Media Gateway Control Protocol—
used to manipulate VoIP gateways). Some protocols al-
low direct conversation between endpoints while others
require a server to operate.

VoIP protocols define the way voice data should be
transmitted. Conversion of digitized audio into pay-
load (portions of data to be delivered by the VoIP pro-
tocol) is performed by voice codecs. The most popular
voice codecs are: G.711, G.723, G.726-G.729, iLBC,
GSM06.10, and Speex. Each has different bandwidth
requirements, CPU requirements, quality, and patents
associated with them. These codecs are not all VoIP-
specific—G.711 is used in traditional telephony, and
GSM06.10 is used in GSM mobile networks.

1.2 PSTN

Public Switched Telephony Network (PSTN) is the tra-
ditional telephony network. Capable nodes in this
network are addressed using global and unique E.164
addresses—telephone numbers. Nowadays PSTN in-
cludes not only traditional telephones, but mobile
phones as well. Most of the PSTN is digital (except
customer analog lines and very old installments in de-
veloping countries). PSTN is circuit-switched, which
means that the call setup procedure assembles a circuit
between the parties on the call for the duration of the
entire call. The circuit is either fixed-bandwidth digi-
tal (typically 64kbps for traditional telephone networks
and 9600bps for mobile networks) or analog—spanning
multiple units of communication equipment. In digi-
tal networks the circuit is made over E1 (for Europe)
or T1 (America) lines, which contain 31 or 24 DS0
(64kbps) circuits, TDM-multiplexed together and thus
often called timeslots.

The call management, call routing, circuit assignment
and maintenance procedures are performed by the sig-
naling protocol. The de facto standard for intercon-
necting networks is Signaling System 7 (SS7). Connec-
tions to customer PBX (Private Branch Exchange) are
often performed using ISDN PRI (Primary Rate Inter-
face) connections and ISDN Q.931 signaling. SS7 is not

a single protocol, but a protocol stack. It contains parts
which facilitate running SS7 itself and allows user parts
to run on top of it. The user part that is responsible for
voice call setup between parties is called ISUP (ISDN
User Part). Services for mobile subscribers, ranging
from registration to SMS, are handled by MAP over
TCAP (Mobile Application Part over Transaction Capa-
bilities Application Part) of SS7.

2 Implementing VoIP services on Linux

To implement any voice service using VoIP, we do not
need any special hardware. Both clients and servers are
done in software. We only need to implement a particu-
lar VoIP protocol (SIP, H.323, IAX, MGCP, SCCP) and
a particular set of voice codecs.

After we have everything ready on the protocol and
codec sides, we can implement the voice service. For
example, we can build a server that will handle client
registrations and calls to each other. This piece of soft-
ware is typically called a softswitch because it func-
tions much like a hardware switch—building virtual cir-
cuits between parties. Softswitches typically have the
ability to provide optional services commonly found in
traditional proprietary PBXes like conferencing, voice-
mail, and IVR (Interactive Voice Responce) for an addi-
tional charge. Modern opensource VoIP software logic
is driven by powerful scripting languages—domain-
specific (for building dialplans) or general purpose. This
allows us to integrate with almost anything. For exam-
ple, we can try opensource speech synthesis/recognition
software.

Many softswitches utilize special properties of partic-
ular VoIP protocols. For example, SIP and the H.323
architecture provide the ability to pass data directly be-
tween endpoints to reduce contention and minimize la-
tency. Thousands of endpoints can be registered to one
SIP server to control only signalling, allowing billing
and additional services. This is much better than sit-
ting in the middle of RTP streams between those clients.
Moreover, sometimes it is possible to pass data directly
between two endpoints while one of them is using SIP
and another—H.323. This setup is called a signalling
proxy.

Some softswitches are suitable only for VoIP clients (in-
cluding VoIP-PSTN gateways acting as VoIP endpoint)
while more general solutions are able to act as a switch
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between different VoIP protocols and PSTN itself. The
softswitches of the first kind are, for example, SIP
Express Router and sipX, while the major play-
ers of the second kind are: Asterisk, CallWeaver
(described later on), YATE, and FreeSwitch.

To test the most widespread softswitch—Asterisk—
using VoIP only, download its source code from http:

//asterisk.org, compile it, and install. With-
out any additional software you have out-of-the-box
support for SIP and IAX, a working IVR demo (in
extensions.conf file), and many functions which
you can attach to numbers in extensions.conf—asterisk
applications. However, conferencing won’t work and
music-on-hold can stutter.

Call-center solutions based on Asterisk usually utilize
Queue() application. Using different AGI (Asterisk
Gateway Interface) scripts and builtin applications like
SayNumber(), you can build an automatic answer-
ing machine which reports the current time or account
balance. Asterisk can make outgoing calls as well if a
specifically formatted text-file is added to the special di-
rectory for each call.

Another software package to try is Yate. Its architec-
ture is different, however, you still can easily test basic
functions of an IP PBX. Yate can be configured to be
a signalling proxy between H.323 and SIP—a desired
usage when building VoIP exchanges.

What does Linux support for VoIP mean here? It means
fast, capable UDP (and ioctls which permit setting a
particular DSCP on outgoing packets), a CPU sched-
uler which will not starve us receiving (if we are using
blocking/threaded model), sending, and processing, and
a preemptive kernel to reduce receive latency. However,
there are still problems when a large number of clients
are passing data through a single server.

Recent improvements in the kernel, namely in the
scheduling, preemption, and high-precision timers have
greatly improved its ability to run userspace telephony
applications.

2.1 VoIP clients

There are two primary types of VoIP clients or end-
points—those running on dedicated hardware (handsets
plugged into Ethernet, analog telephone adapters, ded-
icated VoIP gateways), and softphones—installable ap-
plications for your favorite operating system.

Popular open source softphones include: Ekiga (pre-
viously Gnome Meeting), Kphone, and Kiax, which
support major protocols (H.323, SIP, and IAX). The
supported voice codecs list is not as long as it might be
due to patent issues. Even with access to an entirely free
alternative like Speex, the user is forced to use patented
codecs to connect to proprietary VoIP gateways and con-
sumer devices.

SkypeTM , a very popular proprietary softphone, imple-
ments its own proprietary VoIP protocol.

3 Connecting to PSTN

In order to allow PSTN users to use the services de-
scribed above, or at a minimum send and receive calls
from other VoIP users, they need to connect to the
PSTN. There are several ways to do that:

• analog connection, either FXO (office) or FXS
(station) side

• ISDN BRI (Basic Rate Interface) connection

• ISDN PRI or SS7 on E1/T1 line

We will concentrate on the most capable way to connect
a E1/T1 digital interface (supporting ISDN PRI or SS7
directly) to a VoIP server. Carrier equipment is intercon-
nected in this way. E1/T1-capable hardware and kernel
is required to support this.

The “original” digital telephony interface cards compat-
ible with Asterisk are manufactured by Digium R©. Each
contains up to 4 E1/T1/J1 ports. Other manufacturers
have also unveiled similar cards, namely Sangoma and
Cronyx. Clones of the Digium cards are also available
in the wild (OpenVox) which behave in exactly the same
way as the Digium ones.

One way to present telephony interfaces to an applica-
tion is by using the Zaptel framework. The official zap-
tel package, released by Digium together with Asterisk,
contains the zaptel framework and drivers for Digium
and Digium-endorsed hardware. Although drivers for
other mentioned hardware have different architectures,
they implement zaptel hooks and are thus compatible
(to a certain extent) with the largest user base of such
equipment. However, other software can use other ways
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of interacting with hardware. For example, Yate (par-
tially sponsored by Sangoma), can use native ways of
communicating with Sangoma cards. Extremely high
performance has been shown in those setups.

After you have ISDN PRI provisioned to you and a
Digium card at hand, obtain the latest Zaptel drivers
(also at http://asterisk.org) and compile them.
If everything goes well and you successfully insmod
(load) the right modules (and you have udev), you will
notice a couple of new device nodes under /dev/zap.
Before starting any telephony application, you need to
configure zaptel ports using ztcfg tool. After config-
uration you will have additional nodes /dev/zap/X,
one for each channel you configured. In ISDN PRI, the
16th timeslot of E1 is dedicated signalling channel (D-
chan). As a result it runs Q.931 over Q.921 over HDLC.
All other timeslots are clear-channels (B-chan) and are
used to transmit data. At a minimum, the ISDN PRI ap-
plication needs to talk Q.931 over the D-channel, negoti-
ate B-channel number for conversations, and read/write
digitized audio data from/to the specific B-channel.

Achieving SS7 connectivity is slightly more difficult.
Until 2006, there was no working opensource SS7 im-
plementation. Even today, you still need to find a carrier
who will allow an uncertified SS7 device on their net-
work. On the other hand, when you are the carrier, hav-
ing opensource SS7 is extremely useful for a number of
reasons. One might be your traditional PSTN switch—
which has only SS7 ports free when buying ISDN PRI
ports isn’t an option.

Today there is at least one usable SS7 implementation
for asterisk—Sifira’s chan_ss7, available at http:
//www.sifira.dk/chan-ss7/. An opensource SS7
stack for Yate (yss7) is in progress.

What kind of services can we implement here? VoIP-
PSTN gateway? Indeed, if we are able to capture
the voice onto the system, we can transmit and re-
ceive it over the network. Because we use an open-
source softswitch for this purpose, we get a full-fledged
IP-PBX with PSTN interface, capable of registering
softphones and hardphones and intelligently routing
calls between VoIP and PSTN. This also includes call-
center, IVR, and Voicemail out-of-the-box, and is flexi-
ble enough to add custom logic. If our network requires
multiple such gateways, we can replicate some of the
extra functionality between them and setup call routing
in a way that eliminates unneeded voice transfers over

the network, thus reducing latency.

The described setup can also be used as a dedicated
PSTN system. With this method, you can still use the
networking features if your setup consists of more than
one node—for configuration data failover or bridging of
calls terminated on different nodes.

Advanced usage scenarios for hardware with single
or multiple E1 interfaces are usually targeted for sig-
nalling. If we take a card with 2 E1 interfaces, cross-
connect together all the timeslots except 16 from port
1 to port 2, and then run an application which speaks
Q.931 on timeslot 16 of port 1, and transparently trans-
late it to SS7 ISUP on timeslot 16 of port 2, we will have
a signalling converter. This is used to connect ISDN-
only equipment to a SS7-only switch. If we implement
SS7 TCAP/MAP, we can create a SMS center out of
the same hardware or build IN SCP (Intelligent Network
Service Control Point).

Although the E1/T1 connection option is used in the ma-
jority of large-scale voice services, you may still need
an analog or ISDN BRI line to connect to your server.
Digium and others vendors offer analog and ISDN BRI
cards which also fit into the Zaptel framework.

3.1 Echo

When interconnecting VoIP and PSTN it is not uncom-
mon to have problems with echo. Hybrid transition
refers to the situation where the incoming and outgo-
ing signals are passed via a single 2-wire line and sep-
arated afterwards, thereby reflecting some of the outgo-
ing signal back. It is also possible for analog phones
or headsets to “leak” audio from headphones or speak-
ers to the microphone. Circuit-switched phone networks
are very fast and as a result echo is not noticeable. This
is because there are two digital-analog conversions on
each side and digitized audio is passed in single-byte
granularity resulting in low latency. VoIP installations
which include voice codecs (adding more overhead) and
passing multiple samples in one packet, may introduce
enough latency to result in noticable echo.

To eliminate echo, echo cancellation can be added
which subtracts the remnants of the outgoing signal
from the incoming channel, thus separating them. It is
worth mentioning, however, that if in an A-B conversa-
tion, party A hears an echo, there is nothing you can do
on the A side—the problem (unbalanced hybrid, audio
leak, broken echo canceller) is on the B side.
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3.2 Fax over IP transmission

Faxing over VoIP networks does not work for a num-
ber of reasons. First, voice codecs used to reproduce
voice data are lossy, which confuses faxmodems. Using
G.711 can be lossless if you are connected using a dig-
ital interface. This is because when used in PSTN DS0
circuits, the unmodified data is passed as the payload to
the VoIP protocol. If you do this, however, then echo
cancellation will still mangle the signal to the point that
modems cannot deal with. As a result, you also need to
turn off echo cancellation. Unfortunately, this means the
internal modem echo-canceller will not be able to deal
with VoIP echo and jitter to the point where it will not
work.

There are a number of solutions for this problem. The
first is called T.37—store and forward protocol. With
store and forward, the VoIP gateway on sending end
captures the fax and transmits it to the gateway on the re-
ceiving side using SMTP. The second method is T.38—
which tries to emulate realtime fax behavior. This is
usually more convenient when you send faxes in the
middle of the conversation.

4 Zaptel architecture

Most digital interface cards come with one or a combi-
nation of interfaces, which together, form a span. Data
in G.703 E1 stream travels continuously, but cards are
usually programmed to signal an interrupt after a pre-
determined configured amount of data is receiveed in a
buffer. In addition, the interrupt is generated when data
transmission is finished.

The Zaptel hardware driver provides the following func-
tionality:

• empty data from the device receive buffer, rear-
range it channelwise (if needed) and fill the zaptel
receive buffer

• call echo cancellation hooks and call zt_
receive(&p->span)—on the receive path

• call zt_transmit(&p->span), call echo can-
cellation hooks, empty data of zaptel transmit
buffer, rearrange it channelwise and put into device
from the transmit buffer, and queue transmission—
on the transmit path.

This basic API makes writing drivers very easy. Ad-
vanced features can also be implemented too. For ex-
ample, some E1 cards have the ability to cross-connect
timeslots without passing the data to the software—
useful when both parties are sharing channels of the
same span, or for special telephony applications. This
feature can be implemented (with some effort) and is
supported by current versions of Asterisk.

Clear channels, used for voice data, are passed to
userspace unmodified. Signalling channels, however,
need modification performed by the Zaptel level. ISDN
signalling (Q.931 on top of Q.921) requires HDLC
framing in the channel, which must be implemented in
the kernel. The ztcfg tool is used to configure the
channel as D-chan.

While HDLC framing is done at the kernel-level, Q.931
signalling itself must be done in userspace. Digium of-
fers a library (libpri) for this. This driver was origi-
nally used in the zaptel channel driver in asterisk—used
now in most ISDN-capable software. SS7 signalling is
slightly more difficult as it requires continuous Fill-In
Signal Unit (FISU) generation which must be placed in
the kernel (at the zaptel level) for reliability.

4.1 Code quality issues

Although the zaptel-related hardware driver part seems
straighforward, zaptel itself isn’t that good. Its 200-
kilobyte, 7,000 line single source file includes every-
thing plus the kitchen sink which Asterisk depends
heavily on. Due to the continuous flow of data, zap-
tel devices are often used a as stable source of timing,
particularly in the IAX trunking implementation and for
playing Music-On-Hold to VoIP clients. To use this
feature without Zaptel hardware you need the special
ztdummy driver which uses RTC and emulates the zap-
tel timing interface. Also, for reasons we cannot ex-
plain, the zaptel kernel module contains a user-space
API for conferencing. This module allows the attach-
ment of multiple readers/writers to a particular device
node and does all mixing in kernel space. Thus, to en-
able asterisk conferencing, you also need zaptel hard-
ware or ztdummy. Echo cancellation is selectable and
configurable only at compile-time. This is inconvenient
when troubleshooting echo problems.

Consistent with every external kernel module that is
supposed to work with 2.4 and 2.6 kernels, zaptel con-
tains lots of #ifdefs and wrapper macros. It is unclear
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if Digium will ever try to push Zaptel to mainline—in its
current state we think that is impossible.

4.2 Cost, scalability and reliability

Most telco equipment is overpriced. Although we have
found PBXes with an E1 port and 30 customer ports for
a reasonable price, the base feature set is often very lim-
ited. Each additional feature costs additional money and
you still will not receive the level of flexibility provided
by open-source software packages. Options for inter-
connecting PSTN and IP are even more expensive.

Telco equipment is overpriced for a number of
reasons—mostly due to reliability and scalability. By
building a telco system out of commodity hardware, the
only expensive part is the E1 digital interface. Even
with this part we are able to keep the cost of single
unit low enough to allow 1+1 (or even 1+1+1spare)
configuration, and the price of hardware will still be
much lower. This approach allows us to reach an even
higher level of reliability than simply having one tele-
phony switch. This is because we can take units down
for maintenance one-by-one.

Combining different existing solutions also reduces
some limitations. For example, if the number of VoIP
clients in our VoIP-PBX with PSTN connection is so
high that asterisk cannot handle the load, we can put a
lightweight SIP proxy (OpenSER) in front of it, and all
internal VoIP calls will close there.

4.3 Performance issues

There are some inefficiencies in PSTN processing from
a performance point of view, which are dictated by the
Zaptel architecture. Some cards generate interrupts for
each port. For example, with a sample length of 1ms
(ZT_CHUNKSIZE == 8) there will be 1,000 interrupts
per second per port. If we add a large number of ports
in a single machine, this number will be multiplied ac-
cordingly. There are ways to reduce interrupt load. For
example, the card can generate a single interrupt for all
its ports. Another way is to use larger samples, but this
introduces significant latency and is thus discouraged.

Another zaptel problem is that it creates individual de-
vice nodes for every channel it handles. Although with
recent kernels, we can easily handle lots of minors, read-
ing from individual channels just does not scale. This

can be optimized by feeding all channels via a single
device node—but we need to be careful here, because
there will be signalling in some timeslots. Also, echo
cancellation and DTMF detection can double CPU load.
Offloading them to dedicated hardware can save 50% of
CPU time.

Better performance can also be achieved by simplifying
the hardware driver architecture by eliminating complex
processing—echo cancellation or DTMF detection—
in the kernel (or interrupt context) by coupling clear
channels together before feeding them to userspace.
Echo cancellation can be performed on hardware or
software—in userspace. However, using software echo
cancellation and DTMF detection can be more cost-
effective—compare the cost of adding another CPU vs.
the cost of hardware EC/DTMF detectors.

However, using more servers with less E1 ports may be
wise from a reliability point of view. Modern CPUs have
enough processing power to drive 4 E1 interfaces even
with a totally unoptimized zaptel stack and userspace.
Thus, for large setups we can have any number of 4-port
servers connected to a high-speed network. If we are
interconnecting with VoIP clients here, we can split the
load across the 4-port nodes, and the maximum number
of VoIP clients will be no more than 120.

5 Current trends

Until recently, Asterisk dominated the opensource tele-
phony landscape. Zaptel and Asterisk were directed by
Digium which sells its own telephony hardware. Re-
cently, however, other players stepped up both on the
hardware and software fronts.

Sangoma Technologies, a long time procucer of E1/T1
cards, modified its WANPIPE drivers to support Zap-
tel. Cronyx Engineering’s new drivers package also in-
cludes the zaptel protocol module.

There are three issues in the Asterisk universe which
resulted in the forking of OpenPBX, later renamed to
CallWeaver. Those issues are:

1. Requirement to disclaim all copyrights to Digium
on code submission, due to Asterisk dual-licensing
and Digium commercial offerings.
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2. Because of dual licensing, Asterisk is not depen-
dent on modern software libraries. Instead, it con-
tains embedded (dated) Berkeley DB version 1 for
internal storage.

3. Strict Digium control on what changes go into the
software.

CallWeaver was forked from Asterisk 1.2 and its devel-
opment is progressing very rapidly. Less than a year
ago they switched from a fragile custom build system
to automake, from zaptel timing to POSIX timers, from
zaptel conferencing to a userspace mixing engine, from
internal DSP functions to Steve Underwood’s SpanDSP
library, and from awkward db1 to flexible SQLite. Call-
Weaver has working T.38 support, and is still compatible
with zaptel hardware. CallWeaver developers are also
trying to fix architectural flaws in Asterisk by allow-
ing proper modularization and changing internal storage
from linked lists to hash tables.

Although CallWeaver contains many improvements
over Asterisk, it still shares its PBX core, which was de-
signed around some PSTN assumptions. For example,
it is assumed that audio data is sampled at 8khz. This is
good for pure PSTN applications (or PSTN/VoIP gate-
waying), but in VoIP environments we might want to
support other sampling rates and data flows.

FreeSWITCH is designed from the ground up to be
more flexible in its core, and uses as many existing li-
braries and tools as it can. Its development started in
January 2006, and although there aren’t any official re-
leases at the time of writing this paper, the feature set is
already complete—for a softswitch. Unfortunately there
is only basic support for PSTN, a native module for San-
goma.

Another software package is Yate, started three years
ago. It is written in C++, its source code is an order
of magnitude smaller than Asterisk, and it has a cleaner
architecture which grants much more flexibility. Yate
can use the native WANPIPE interface to drive Sangoma
hardware, delivering extremely high performance with
high-density Sangoma cards.

6 Conclusion

Running telephony systems with Linux implementaions
for the past three years has resulted in the following suc-
cessful working setups:

1. Pure VoIP IVR and information service for call-
center employees using Asterisk.

2. Software load testing of proprietary VoIP equip-
ment using Asterisk.

3. VoIP exchange using Yate.

4. Softswitch with call-center and two E1 PSTN in-
terfaces using Asterisk and Digium E1 equipment.

5. ISDN signalling proxy in Python, using Cronyx E1
equipment.

6. Hybrid PSTN/VoIP telephony network for Sara-
tov State University—multiple gateways using As-
terisk and (lately) OpenPBX plus OpenSER on
Cronyx E1 equipment.

All implementations were based on i386 and x86_64
hardware platforms and Linux as the operating system
kernel. Since these setups were put into operation, we
have had no problems with the reliability, stability, or
performance of the software we chose. This was a re-
sult of careful capacity planning, clustering, and 1 + 1
reservations of critical components.

In this paper, we have provided reasons for why build-
ing a softswitch or PSTN-connected system from com-
modity hardware and open-source software may be de-
sirable, and why Linux is a good platform for imple-
menting voice services. However, there are some defi-
ciencies in the current implementations, both in the ker-
nel and in some of the opensource packages, that can
potentially result in scalability issues. There are ways to
avoid these issues or solve them completely. Our sug-
gestions include improving the Zaptel framework or in-
troducing a new, more efficient framework.
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1 Introduction

The Linux kernel is one of the most popular Open
Source development projects, and yet not much atten-
tion has been placed on who is doing this development,
who is sponsoring this development, and what exactly is
being developed. This paper should help explain some
of these facts by delving into the kernel changelogs and
producing lots of statistics.

This paper will focus on the kernel releases of the past
two and 1/3 years, from the 2.6.11 through the 2.6.21
release.

2 Development vs. Stability

In the past, the Linux kernel was split into two different
trees, the development branch, and the stable branch.
The development branch was specified by using an odd
number for the second release number, while the stable
branch used an even number. As an example, the 2.5.32
release was a development release, while the 2.4.24 re-
lease is a stable release.

After the 2.6 kernel series was created, the developers
decided to change this method of having two different
trees. They declared that all 2.6 kernel releases would
be considered “stable,” no matter how quickly develop-
ment was happening. These releases would happen ev-
ery 2 to 3 months and would allow developers to add
new features and then stabilize them in time for the next
release. This was done in order to allow distributions to
be able to decide on a release point easier by always hav-
ing at least one stable kernel release near a distribution
release date.

To help with stability issues while the developers are
creating a new kernel version, a -stable branch was

created that would contain bug fixes and security up-
dates for the past kernel release before the next major
release happened.

This is best explained with the diagram shown in Fig-
ure 1. The kernel team released the 2.6.19 kernel as a
stable release. Then the developers started working on
new features and started releasing the -rc versions as
development kernels so that people could help test and
debug the changes. After everyone agreed that the de-
velopment release was stable enough, it was released as
the 2.6.20 kernel.

While the development of new features was happen-
ing, the 2.6.19.1, 2.6.19.2, and other stable kernel ver-
sions were released, containing bug fixes and security
updates.

For this paper, we are going to focus on the main kernel
releases, and ignore the -stable releases, as they con-
tain a very small number of bugfixes and are not where
any development happens.

3 Frequency of release

When the kernel developers first decided on this new
development cycle, it was said that a new kernel would
be released every 2-3 months, in order to prevent lots of
new development from being “backed up.” The actual
number of days between releases can be seen in Table 1.

It turns out that they were very correct, with the average
being 2.6 months between releases.

4 Rate of Change

When modifying the Linux kernel, developers break
their changes down into small, individual units of
change, called patches. These patches usually do only

• 239 •
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Figure 1: Kernel release cycles

one thing to the source tree, and are built on top of each
other, modifying the source code by changing, adding,
or removing lines of code. At each change point in time,
the kernel should be able to be successfully built and op-
erate. By enforcing this kind of discipline, the kernel
developers must break their changes down into small
logical pieces. The number of individual changes that
go into each kernel release is very large, as can be seen
in Table 2.

When you compare the number of changes per release,
with the length of time for each release, you can deter-
mine the number of changes per hour, as can be seen in
Table 3.

So, from the 2.6.11 to the 2.6.21 kernel release, a total of
852 days, there were 2.89 patches applied to the kernel

Kernel Days of
Version development

2.6.11 69
2.6.12 108
2.6.13 73
2.6.14 61
2.6.15 68
2.6.16 77
2.6.17 91
2.6.18 95
2.6.19 72
2.6.20 68
2.6.21 81

Table 1: Frequency of kernel releases

Kernel Changes per
Version Release

2.6.11 4,041
2.6.12 5,565
2.6.13 4,174
2.6.14 3,931
2.6.15 5,410
2.6.16 5,734
2.6.17 6,113
2.6.18 6,791
2.6.19 7,073
2.6.20 4,983
2.6.21 5,349

Table 2: Changes per kernel release

Kernel Changes
Version per Hour

2.6.11 2.44
2.6.12 2.15
2.6.13 2.38
2.6.14 2.69
2.6.15 3.31
2.6.16 3.10
2.6.17 2.80
2.6.18 2.98
2.6.19 4.09
2.6.20 3.05
2.6.21 2.75

Table 3: Changes per hour by kernel release
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tree per hour. And that is only the patches that were
accepted.

5 Kernel Source Size

The Linux kernel keeps growing in size over time, as
more hardware is supported, and new features added.
For the following numbers, I count everything in the
released Linux source tarball as “source code” even
though a small percentage is the scripts used to config-
ure and build the kernel, as well as a minor amount of
documentation. This is done because someone creates
those files, and are worthy of being mentioned.

The information in Table 4 show the number of files and
lines in each kernel version.

Kernel
Version Files Lines

2.6.11 17,091 6,624,076
2.6.12 17,361 6,777,860
2.6.13 18,091 6,988,800
2.6.14 18,435 7,143,233
2.6.15 18,812 7,290,070
2.6.16 19,252 7,480,062
2.6.17 19,554 7,588,014
2.6.18 20,209 7,752,846
2.6.19 20,937 7,976,221
2.6.20 21,281 8,102,533
2.6.21 21,615 8,246,517

Table 4: Size per kernel release

Over these releases, the kernel team has a very constant
growth rate of about 10% per year, a very impressive
number given the size of the code tree.

When you combine the number of lines added per re-
lease, and compare it to the amount of time per release,
you can get some very impressive numbers, as can be
seen in Table 5.

Summing up these numbers, it comes to a crazy 85.63
new lines of code being added to the kernel tree every
hour for the past 2 1/3 years.

6 Where the Change is Happening

The Linux kernel source tree is highly modular, en-
abling new drivers and new architectures to be added

Kernel Lines per
Version Hour

2.6.11 77.6
2.6.12 59.3
2.6.13 120.4
2.6.14 105.5
2.6.15 90.0
2.6.16 102.8
2.6.17 49.4
2.6.18 72.3
2.6.19 129.3
2.6.20 77.4
2.6.21 74.1

Table 5: Lines per hour by kernel release

quite easily. The source code can be broken down into
the following categories:

• core: this is the core kernel code, run by every-
one and included in all architectures. This code
is located in the subdirectories block/, ipc/,
init/, kernel/, lib/, mm/, and portions of
the include/ directory.

• drivers: these are the drivers for different hardware
and virtual devices. This code is located in the
subdirectories crypto/, drivers/, sound/,
security/, and portions of the include/ di-
rectory.

• architecture: this is the CPU specific code, where
anything that is only for a specific processor lives.
This code is located in the arch/, and portions of
the include/ directory.

• network: this is the code that controls the differ-
ent networking protocols. It is located in the net/
directory and the include/net subdirectory.

• filesystems: this is the code that controls the differ-
ent filesystems. It is located in the fs/ directory.

• miscellaneous: this is the rest of the kernel source
code, including the code needed to build the ker-
nel, and the documentation for various things. It is
located in Documentation/, scripts/, and
usr/ directories.
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The breakdown of the 2.6.21 kernel’s source tree by
the number of different files in the different category is
shown in Table 6, while Table 7 shows the breakdown
by the number of lines of code.

Category Files
% of

kernel

core 1,371 6%
drivers 6,537 30%
architecture 10,235 47%
network 1,095 5%
filesystems 1,299 6%
miscellaneous 1,068 5%

Table 6: 2.6.21 Kernel size by files

Category
Lines of

Code
% of

kernel

core 330,637 4%
drivers 4,304,859 52%
architecture 2,127,154 26%
network 506,966 6%
filesystems 702,913 9%
miscellaneous 263,848 3%

Table 7: 2.6.21 Kernel size by lines of code

In the 2.6.21 kernel release, the architecture section of
the kernel contains the majority of the different files, but
the majority of the different lines of code are by far in
the drivers section.

I tried to categorize what portions of the kernel are
changing over time, but there did not seem to be a simple
way to represent the different sections changing based
on kernel versions. Overall, the percentage of change
seemed to be evenly spread based on the percentage that
the category took up within the overall kernel structure.

7 Who is Doing the Work

The number of different developers who are doing
Linux kernel development, and the identifiable compa-
nies1 who are sponsoring this work, have been slowly
increasing over the different kernel versions, as can be
seen in Table 8.

1The identification of the different companies is described in the
next section.

Kernel Number of Number of
Version Developers Companies

2.6.11 479 30
2.6.12 704 38
2.6.13 641 39
2.6.14 632 45
2.6.15 685 49
2.6.16 782 56
2.6.17 787 54
2.6.18 904 60
2.6.19 887 67
2.6.20 730 75
2.6.21 838 68

All 2998 83

Table 8: Number of individual developers and employ-
ers

Factoring in the amount of time between each individ-
ual kernel releases and the number of developers and
employers ends up showing that there really is an in-
crease of the size of the community, as can be shown in
Table 9.

Despite this large number of individual developers,
there is still a small number who are doing the majority
of the work. Over the past two and one half years, the
top 10 individual developers have contributed 15 per-
cent of the number of changes and the top 30 developers

Kernel
Version

Number of
Developers

per day

Number of
Companies

per day

2.6.11 6.94 0.43
2.6.12 6.52 0.35
2.6.13 8.78 0.53
2.6.14 10.36 0.74
2.6.15 10.07 0.72
2.6.16 10.16 0.73
2.6.17 8.65 0.59
2.6.18 9.52 0.63
2.6.19 12.32 0.93
2.6.20 10.74 1.10
2.6.21 10.35 0.84

Table 9: Number of individual developers and employ-
ers over time
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have contributed 30 percent. The list of individual de-
velopers, the number of changes they have contributed,
and the percentage of the overall total can be seen in
Table 10.

Name
Number of
Changes

Percent of
Total

Al Viro 1326 2.2%
David S. Miller 1096 1.9%

Adrian Bunk 1091 1.8%
Andrew Morton 991 1.7%

Ralf Baechle 981 1.7%
Andi Kleen 856 1.4%

Russell King 788 1.3%
Takashi Iwai 764 1.3%

Stephen Hemminger 650 1.1%
Neil Brown 626 1.1%
Tejun Heo 606 1.0%

Patrick McHardy 529 0.9%
Randy Dunlap 486 0.8%

Jaroslav Kysela 463 0.8%
Trond Myklebust 445 0.8%

Jean Delvare 436 0.7%
Christoph Hellwig 435 0.7%

Linus Torvalds 433 0.7%
Ingo Molnar 429 0.7%

Jeff Garzik 424 0.7%
David Woodhouse 413 0.7%

Paul Mackerras 411 0.7%
David Brownell 398 0.7%

Jeff Dike 397 0.7%
Ben Dooks 392 0.7%

Greg Kroah-Hartman 388 0.7%
Herbert Xu 376 0.6%
Dave Jones 371 0.6%

Ben Herrenschmidt 365 0.6%
Mauro Chehab 365 0.6%

Table 10: Individual Kernel contributors

8 Who is Sponsoring the Work

Despite the broad use of the Linux kernel in a wide
range of different types of devices, and reliance of it
by a number of different companies, the number of indi-
vidual companies that help sponsor the development of
the Linux kernel remains quite small as can be seen by
the list of different companies for each kernel version in
Table 8.

The identification of the different companies was de-
duced through the use of company email addresses and

the known sponsoring of some developers. It is pos-
sible that a small number of different companies were
missed, however based on the analysis of the top con-
tributors of the kernel, the majority of the contributions
are attributed in this paper.

The large majority of contributions still come from in-
dividual contributors, either because they are students,
they are contributing on their own time, or their employ-
ers are not allowing them to use their company email
addresses for their kernel development efforts. As seen
in Table 11 almost half of the contributions are done by
these individuals.

Company Number of Percent of
Name Changes Total

Unknown 27976 47.3%
Red Hat 6106 10.3%

Novell 5923 10.0%
Linux Foundation 4843 8.2%

IBM 3991 6.7%
Intel 2244 3.8%
SGI 1353 2.3%

NetApp 636 1.1%
Freescale 454 0.8%
linutronix 370 0.6%

HP 360 0.6%
Harvard 345 0.6%

SteelEye 333 0.6%
Oracle 319 0.5%

Conectiva 296 0.5%
MontaVista 291 0.5%
Broadcom 285 0.5%

Fujitsu 266 0.4%
Veritas 219 0.4%

QLogic 218 0.4%
Snapgear 214 0.4%

Emulex 147 0.2%
LSI Logic 130 0.2%

SANPeople 124 0.2%
Qumranet 106 0.2%

Atmel 91 0.2%
Toshiba 90 0.2%

Samsung 82 0.1%
Renesas Technology 81 0.1%

VMWare 78 0.1%

Table 11: Company Kernel Contributions

9 Conclusion

The Linux kernel is one of the largest and most success-
ful open source projects that has ever come about. The
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huge rate of change and number of individual contrib-
utors show that it has a vibrant and active community,
constantly causing the evolution of the kernel to survive
the number of different environments it is used in. How-
ever, despite the large number of individual contributors,
the sponsorship of these developers seem to be consol-
idated in a small number of individual companies. It
will be interesting to see if, over time, the companies
that rely on the success of the Linux kernel will start to
sponsor the direct development of the project, to help
ensure that it remains valuable to those companies.
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The information for this paper was retrieved di-
rectly from the Linux kernel releases as found
at the kernel.org web site and from the git
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addresses changing over time, and minor typos
in authorship information. A spreadsheet was
used to compute a number of the statistics. All
of the logs, scripts, and spreadsheet can be found
at http://www.kernel.org/pub/linux/
kernel/people/gregkh/kernel_history/



Implementing Democracy
a large scale cross-platform desktop application

Christopher James Lahey
Participatory Culture Foundation

clahey@clahey.net

Abstract

Democracy is a cross-platform video podcast client. It
integrates a large number of functions, including search-
ing, downloading, and playing videos. Thus, it is a
large-scale application integrating a number of software
libraries, including a browser, a movie player, a bittor-
rent client, and an RSS reader.

The paper and talk will discuss a number of techniques
used, including using PyRex to link from python to C li-
braries, using a web browser and a templating system to
build the user interface for cross-platform desktop soft-
ware (including a different web browser on each plat-
form), and our object store used to keep track of every-
thing in our application, store our state to disk, and bring
updates to the UI.

1 Internet video

Internet video is becoming an important part of modern
culture, currently through video blogs, video podcasts,
and YouTube. Video podcasting gives everyone the abil-
ity to decide what they want to make available, but the
spread of such systems as YouTube and Google Video
suggest that large corporations will have a lot to say in
the future of internet video.

The most popular use of internet video right now is
YouTube. YouTube videos are popping up all over the
place. Unfortunately, this gives one company a lot of
power over content. It lets them take down whatever
they find inconvenient or easily block certain content
from reaching certain people.

Video podcasts are RSS feeds with links to videos. Pod-
casting allows the publisher to put whatever videos he
wants on his personal webspace. Podcasting clients
download these videos for display on different devices.

This gets around the problem of one company control-
ling everything. That is, except for the fact that the
most prominent podcast client is iTunes and it’s used
for downloading to iPods. Once again, the company has
the ability to censor.

Some folks in Worcester, Massachusetts saw this as a
problem and so sought funding and formed the non-
profit Participatory Culture Foundation. The goal of the
Participatory Culture Foundation is to make sure that ev-
eryone has a voice and that no one need be censored. We
are approaching this from a number of different angles.
We have a project writing tutorials for people that want
to make and publish internet video. We are in planning
for a server project to let people post their video pod-
casts. And most importantly, we write the Democracy
player.

The reason the player is so important to us is that we
want to make sure that publishing and viewing are in-
dependent. If they aren’t, then there are two types of
lock-in. Firstly, if a user wants to see a particular video,
they’re forced to use the particular publisher’s viewing
software. Secondly, once a user starts using a partic-
ular publisher’s viewing software, that publisher gains
control over what the viewer can see. These two could
easily join together in a feedback loop that leads to a
monopoly situation.

However, to separate publishing and viewing, we need
a standard for communication. RSS fills this role per-
fectly. In fact, it’s already in use for this purpose. The
role we want Democracy to fill is that of a good player
that encourages viewers to use RSS. Well, we also just
want it to be a great video player.

2 Democracy

Democracy’s main job is to download and play videos
from RSS feeds. We also decided to make it able to be
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the heart of your video experience. Thus it plays local
videos, searches for videos on the internet, and handles
videos downloaded in your web browser.

To do all this we integrated a number of other tools.
We included other python projects wholesale, like feed-
parser and BitTorrent. We link to a number of stan-
dard libraries through either standard python interfaces
or through the use of Pyrex as a glue language.

For widest adoption, we decided it was important for
Democracy to be cross-platform. Windows and Mac
would get us the most users, but Linux is important to us
since we create free software. So far two of our new de-
velopers (myself included) have come from Linux-land
and one from OSX-land.

3 Major objects in Democracy

There are two major object types that we deal with:
Feeds and Items.

Feeds tend to be RSS feeds, but they can also be scrapes
of HTML pages, watches on local directories, and other
things. Since we don’t know at feed creation time
whether a URL will return an RSS feed or an HTML
page, we create a Feed object which is mainly a proxy
to a FeedImpl object that can be created later. python
makes this proxy action almost completely transparent.
We implement a __getattr__ handler which gets
called for methods and data that aren’t defined in the
Feed object. In this handler, we simply return the cor-
responding method or data for the FeedImpl object. We
use this trick in a couple of other similar proxy situations
in Democracy.

Items are individual entries in an RSS feed. Most of
them represent a video that democracy could potentially
download. You can also use democracy to download
either directories of multiple videos or non-video files.
They can be either available, downloading, or down-
loaded. We also have FileItems which are used to des-
ignate local files that don’t have a corresponding URL.
These can either be the children videos of a directory we
download, or files found on the local disk. We have spe-
cial feeds that monitor a local directory and create any
found files. You can also pass Democracy a filename
and it will create an item for that video.

We’ve spent a lot of time tweaking the behavior of all of
these objects. One of the things we’ve discovered is that

the more features that we have, the harder new features
are to implement. Anyone who has any experience at all
shouldn’t be surprised to hear this, but it’s amazing the
difference between hearing about it in books and getting
specific examples in your work.

4 Object Store

To keep track of everything that is happening in our ap-
plication, we have a collection of objects. Every impor-
tant object has a global ID. This includes all feeds and
items, as well as playlists and channel guides.

However, we need fast access to different sets of objects.
We need a list of all items in a particular feed, for exam-
ple. To implement this, we have a system of views into
the database. Each view acts like another database and
can thus have subviews. We have a number of different
view types. The first is filters, which are subsets of the
database. The second is maps, which create a new ob-
ject for each member of the original database. The third
is indexes, which create a whole bunch of subdatabases
and put each item in one of the subdatabases. Finally
we have sorts, though these are redundant, as the other
view types can be sorted as well.

The other important part of the object database is that
you can monitor a view for changes. We send signals on
new objects being added or removed. Each object has
a signalChange function which signals that the data in
that object has changed. You monitor this by watching
for changes on a database view.

This in-memory object database has worked quite well
for us. We have a list of all objects that we care about,
while still being able to have lists of the objects that we
care about right now. An example of a use of views is
that each feed doesn’t keep a list of its items. It just has
a view into the database and as the items get created, the
feed gets that item added to its item list. However, the
biggest use of views is in our cross-platform UI.

5 Cross Platform UI

To implement the cross-platform user interface, we use
HTML with CSS. We have two main HTML areas and
platform-specific menus and buttons. The HTML is
generated automatically based on the objects in our ob-
ject database.
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We start with XML templates that are compiled into
python code that in turn generates HTML. You can pass
in plain XHTML and it will work. To start with, we had
a series of key-value pairs that were set in python code
and could then be accessed within the templates. That
proved to be a pain of having to change the python ev-
ery time we needed to change a referenced key, so we
switched to simply allowing the python to be embedded
directly in the XML. This is safe, since we provide all
the XML and don’t take any from the outside world, and
it’s much more maintainable.

The template system can do a number of different things
with the results of the python. It can embed the result
directly in the HTML. It can encode as a string and then
embed the result in the HTML.

Slightly more interestingly, it can hide a chunk of
HTML based on the return value. It can update a sec-
tion of the template whenever a view changes. The most
interesting part though is that it can repeat a section of
HTML for every object in a view.

repeatForView takes a chunk of template and re-
peats it for every object in a view. When an object is
added to or removed from the view, it adds or removes
the corresponding HTML. When an object changes, it
recalculates the HTML for that object.

Some of our team members are not entirely happy with
HTML as our solution. It means working within the
system that the browser gives us. It also means sup-
porting both OSX’s webkit and mozilla with our code
(we use gtkmozembed on Linux and xul on Win-
dows.) Finally, it sticks us with xul on Windows. We
originally tried using the Windows framework by hand.
We decided this was just too much work from python.
When that didn’t work, we tried using gtk and embed-
ding mozilla, but found that gtkmozembed doesn’t
work on Windows. Finally we switched to xul, but
xul is much harder to code to than either OSX or gtk.
We may switch to using gtk+ on Windows, and to sup-
port that, we would switch to using some other render-
ing system, perhaps our own XML language that maps
to cairo on gtk+ and something else on OSX.

I personally would prefer to stick with HTML plus CSS.
It gives us a wide range of developers who know our
rendering model. It gives us a bunch of free code to do
the rendering. The only problem is getting one of those
sets of code to work on Windows.

6 LiveStorage

To save our database to disk, we originally just pickled
the object database to disk. Python pickle is a library
that takes a python object and encodes all the data in
it to an on-disk format. The same library will then de-
code that data and create the corresponding objects in
memory again. It handles links to other objects includ-
ing reference loops and it handles all the standard string
and number data types.

This worked as long as we didn’t change the in-memory
representation of any of our objects. We worked around
a number of different issues, but in the end we decided
to remove some classes, and pickle throws an exception
if it has an object on disk that doesn’t have a correspond-
ing class in memory.

The next step was to add a system that copied the data
into python dictionaries and then pickled that created
object. To do this, we created a schema object which
describes what sort of data gets stored. This makes re-
moving a field trivial. The system that copies the data
out of the python dictionaries at load time simply ig-
nores any fields not listed in the schema.

Adding fields is a bit more complicated, but to solve
this, we store a version number in the database. Every
time we change the schema, we increment this version
number. At load time, the system compares the version
in the database to the version in the running applica-
tion and runs a series of upgrades on the data. These
upgrades happen on the dictionary version of the ob-
jects and thus involve no running code. They can also
remove or add objects, which allows us to remove old
classes that aren’t necessary and add objects that are.

Our next problem with data storage was that it was super
slow to save the database. The larger the database got,
the slower it was, to the tune of 45 seconds on large
data sets, and we want to save regularly so that the user
doesn’t lose any data.

To solve this, we decided to save each object individu-
ally. Unfortunately, the objects referred to one another.
Pickle handles this just fine when you ask it to pickle all
the objects at once, but it isn’t able to do that when you
want to pickle just a single object (in fact, it will basi-
cally pickle every object related to the one you requested
and then at load time will not connect the objects saved
in different pickle runs.) The biggest example of this
was that each feed kept a list of the items in that feed.



248 • Implementing Democracy

So the first step was to make the objects not refer to
each other. For the most part we wanted to do this
by just replacing references to other objects with their
database ID. This works, but we also decided that we
didn’t want to keep redundant data. For example, a sim-
ple replacement of references with IDs in the database
would lead to a feed having a list of items in that feed
and the items each having the ID of their feed. Luck-
ily, our in-memory database already had filters. We just
made the feeds not store their children, and instead the
list of children is simply a database filter.

After this, we replaced the single pickle with a Berkeley
database storing the list of objects. We still had to worry
about keeping changes in sync. For example, when first
creating a feed, you need to make sure that all of the
items are saved as well. To solve this, we simply stored
the list of changed items and did the actual save to the
database in a timeout loop. We used a transaction, and
since the old database save happened in a timeout loop
as well, we have the exact same semantics for syncing
of different objects.

This worked great for a good while. We even used
the schema upgrade functions to do things other than
database upgrades, such as to automatically work
around bugs in old versions. In fact we had no prob-
lem with this on Linux or Windows, but on Mac OSX,
we got frequent reports of database errors on load and
many people lost their data. We tried reproducing the
error to debug it and we asked about the issue on Berke-
ley DB’s usenet groups (where we’d gotten useful infor-
mation before,) but there was no response. From there
we decided to switch to sqlite. We’re still using it to
just store a list of pickled objects, but it’s working fairly
well for us.

The next step we’d like to take is not to have the entire
database in memory at all times. Having it in memory
increases our memory usage and limits the number of
feeds a user can monitor. We’d like to change to using
a more standard relational database approach to storing
our data. This would, however, completely change how
we access our data. We’ve decided that the size of this
change means we should wait until after 1.0 to make this
change.

There are some other major obstacles to making this
change other than the number of pieces of code that
would have to change. The first is that we use change
notification extensively. An object changes and people

interested in that object are notified. Similarly, objects
added to or removed are signalled. To get around this,
we would need either a relational database that does
change notifications of this sort, or we would need to
add a change notification layer on top of the database.
Currently these notifications happen based on the differ-
ent filters in our database, so we would need to dupli-
cate the SQL searches that we do as monitoring code to
know who needs to be signalled. For this reason, we’re
hoping that we find a relational database that will han-
dle live sql searches and send notification of changes,
additions, and removals.

The second obstacle is less of a problem with the change
and more a reason that it won’t help. Specifically, we
touch most of the database at load time anyway. It would
mean that we could start the user interface having loaded
less data, but we queue an update of every RSS feed at
load time. To run this update, we need to load all the
items in that feed so we can compare them to the items
we download (so that we don’t create duplicate items.)
At that point we could unload all that data.

7 BitTorrent

We act as a bittorrent client as well. This can either be
by loading a BitTorrent file by hand or by including it
in an RSS player. As a user, I found it very pleasant to
have things just download. In fact, at first, I didn’t real-
ize that I was using a BitTorrent client. I think this can
help increase usage of BitTorrent since people won’t be
intimidated by technology if they don’t know they’re us-
ing it. Another good example of this is the downloader
used for World of Warcraft.

Unfortunately, the primary BitTorrent source code has
become non-free software. For this reason, we eventu-
ally switched to using BitTornado. Unfortunately Bit-
Tornado introduced a number of bugs, and we decided
that for us, fixing those bugs would be harder than recre-
ating the new features that BitTornado supplied. We still
don’t have all the features that we want, but in switching
back to the old BitTorrent code, we’ve got a codebase
that tends to work quite well.

Looking into the future, we’d love to see a free software
BitTorrent client take off. Post 1.0, we’re considering
adding a bunch of new BitTorrent features and proto-
col improvements to the code base we’re currently us-
ing. Our goal would certainly be to maintain the code
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as a separate project so we don’t waste our time and so
that the free software community gets a good BitTorrent
client. Of course, this would depend on other develop-
ers, but we will see what happens.

8 FeedParser

For parsing RSS feeds, we’ve had a huge amount of
success with feedparser.py. It’s a feed parser de-
signed to be used either separately or as a library. It
parses the RSS feeds and gives them to us as useful data
structures. So far the library has just worked for us in
almost every situation.

The only thing we’ve had trouble with has been that
feedparser derives a new class based on python dictio-
naries. It does this so that it can treat a number of dif-
ferent keys as the same key. For instance, url and
location are treated as the same key, so that if you
set either one of them, parser_dict["url"] will
give the value. Unfortunately, this aggregation is done
at read time instead of write time. This makes the dic-
tionary a bit slower to use, but more importantly, it’s
meant that the == operator doesn’t have the behavior
that you might naively expect. We’ve had to write a
fairly complicated replacement for it which is proba-
bly much slower than == on two dictionaries. We may
change this behavior going forward to change the keys
when writing to the dictionaries instead, but I will resist
it until we have profiling data that shows that it slows
things down.

9 Unicode

python currently has two classes to represent strings.
The first is str, which is a list of bytes, and the second
is unicode, which is a list of characters. These two
classes automatically convert back and forth as needed,
but this conversion can both get the wrong value and can
cause exceptions. This usually happens because the au-
tomatic conversion isn’t quite the conversion you were
expecting. It actually assumes ASCII on many machines
and just throws an exception when you mix a str ob-
ject and a unicode object with characters greater than
127.

Unfortunately, these sorts of bugs rarely show up for an
English speaker because most text is ASCII and thus
converts correctly. Therefore the bugs can be hard to
reproduce and since can happen all over the place.

A reasonable solution might be to use unicode ev-
erywhere. This was our general policy for a long time,
but there were exceptions. The first was developer for-
getfulness. When you write a literal string in python,
unless you specify that it’s unicode, it creates a str
object. The second exception is that there are certain
python classes that only work with str objects, such
as cStringIO. For these classes we would convert
into strs of a certain encoding, but we would some-
times forget and we would do multiple conversion steps
in some cases. Thirdly, there are OS differences. Specif-
ically, filenames are actually different classes on differ-
ent OSes. When you do a listdir on Windows, you
get unicode objects in the returned list, but on Linux
and OSX, you get str objects.

Our recently introduced policy is twofold. First is
that you can use different types of objects in differ-
ent places. We define three object types. There’s
str, there’s unicode, and there’s filenameType.
filenameType is defined in the platform-specific
code, so it is different on the different platforms.

In the platform-specific code, we also provide con-
version functions between the different types. There’s
unicodeToFilename and filenameToUnicode
which do the obvious conversion. They do not do re-
versible conversions, but instead provide a conversion
that a user would be happy to see. We also have
makeURLSafe, and because we need to undo that
change, unmakeURLSafe. unmakeURLSafe
(makeURLSafe(obj)) == obj if obj is a
filenameType. We will see if these conversion
functions are sufficient or if we need to make more
functions like this.

The second part of our policy is that we enforce the
types passed to and returned from many functions.
We’ve introduced functions that take a passed-in object
and check that they’re of the right type and we’ve in-
troduced decorators that check the return value of the
method. In both cases, an exception is thrown if an ob-
ject is of the wrong type. This means that we see many
bugs much sooner than if we just waited for them to be
found by people using other languages.

There has been a period of transition to these new poli-
cies, since all the exposed bugs have to be fixed. We’re
still going through this transition phase, but it’s going
well so far.
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10 More info

You can learn more about the democracy
project at getdemocracy.com and more
about the Participatory Culture Foundation at
participatoryculture.org.
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Abstract

One often wonders how well Linux scales. We fre-
quently get suggestions that Linux cannot scale because
it is a monolithic operating system kernel. However, mi-
crokernels have never scaled well and Linux has been
scaled up to support thousands of processors, terabytes
of memory and hundreds of petabytes of disk storage
which is the hardware limit these days. Some of the
techniques used to make Linux scale were per cpu ar-
eas, per node structures, lock splitting, cache line op-
timizations, memory allocation control, scheduler opti-
mizations and various other approaches. These required
significant detail work on the code but no change in the
general architecture of Linux.

The presentation will give an overview of why Linux
scales and shows the hurdles microkernels would have
to overcome in order to do the same. The presentation
will assume a basic understanding of how operating sys-
tems work and familiarity with what functions a kernel
performs.

1 Introduction

Monolithic kernels are in wide use today. One wonders
though how far a monolithic kernel architecture can be
scaled, given the complexity that would have to be man-
aged to keep the operating system working reliably. We
ourselves were initially skeptical that we could go any
further when we were first able to run our Linux kernel
with 512 processors because we encountered a series of
scalability problems that were due to the way the op-
erating system handled the unusually high amounts of
processes and processors. However, it was possible to
address the scalability bottlenecks with some work us-
ing a variety of synchronization methods provided by
the operating system and we were then surprised to only
encounter minimal problems when we later doubled the
number of processors to 1024. At that point the primary

difficulties seemed to shift to other areas having more
to do with the limitation of the hardware and firmware.
We were then able to further double the processor count
to two thousand and finally four thousand processors
and we were still encountering only minor problems that
were easily addressed. We expect to be able to handle
16k processors in the near future.

As the number of processors grew so did the amount of
memory. In early 2007, machines are deployed with 8
terabytes of main memory. Such a system with a huge
amount of memory and a large set of processors creates
the high performance capabilities in a traditional Unix
environment that allows for the running of traditional
applications, avoiding major efforts to redesign the ba-
sic logic of the software. Competing technologies, such
as compute clusters, cannot offer such an environment.
Clusters consist of many nodes that run their own oper-
ating systems whereas scaling up a monolithic operating
system has a single address space and a single operating
system. The challenge in clustered environments is to
redesign the applications so that processing can be done
concurrently on nodes that only communicate via a net-
work. A large monolithic operating system with lots of
processors and memory is easier to handle since pro-
cesses can share memory which makes synchronization
via Unix shared memory possible and data exchange
simple.

Large scale operating systems are typically based on
Non-Uniform Memory Architecuture (NUMA) technol-
ogy. Some memory is nearer to a processor than other
memory that may be more distant and more costly to ac-
cess. Memory locality in such a system determines the
overall performance of the applications. The operating
system has a role in that context of providing heuristics
in order to place the memory in such a way that memory
latencies are reduced as much as possible. These have to
be heuristics because the operating system cannot know
how an application will access allocated memory in the
future. The access patterns of the application should ide-
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ally determine the placement of data but the operating
system has no way of predicting application behavior.
A new memory control API was therefore added to the
operating system so that applications can set up memory
allocation policies to guide the operating system in allo-
cating memory for the application. The notion of mem-
ory allocation control is not standardized and so most
contemporary programming languages have no ability
to manage data locality on their own.1 Libraries need to
be provided that allow the application to provide infor-
mation to the operating system about desirable memory
allocation strategies.

One idea that we keep encountering in discussions of
these large scale systems is that Micro-kernels should
allow us to handle the scalability issues in a better way
and that they may actually allow a better designed sys-
tem that is easier to scale. It was suggested that a micro-
kernel design is essential to manage the complexity of
the operating systems and ensure its reliable operation.
We will evaluate that claim in the following sections.

2 Micro vs. Monolithic Kernel

Microkernels allow the use of the context control primi-
tives of the processor to isolate the various components
of the operating system. This allows a fine grained de-
sign of the operating system with natural APIs at the
boundaries of the subsystems. However, separate ad-
dress spaces require context switches at the boundaries
which may create a significant overhead for the proces-
sors. Thus many micro kernels are compromises be-
tween speed and the initially envisioned fine grained
structure (a hybrid approach). To some extent that prob-
lem can be overcome by developing a very small low
level kernel that fits into the processor cache (for exam-
ple L4) [11], but then we no longer have an easily pro-
grammable and maintainable operating system kernel.
A monolithic kernel usually has a single address space
and all kernel components are able to access memory
without restriction.

2.1 IPC vs. function call

Context switches have to be performed in order to iso-
late the components of a microkernel. Thus commu-

1There are some encouraging developments in this area with
Unified Parallel C supporting locality information in the language
itself. See Tarek, [2].

nication between different components must be con-
trolled through an Inter Process Communication mech-
anism that incurs similar overhead to a system call in
monolithic kernel. Typically microkernels use message
queues to communicate between different components.
In order to communicate between two components of a
microkernel the following steps have to be performed:

1. The originating thread in the context of the orig-
inating component must format and place the re-
quest (or requests) in a message queue.

2. The originating thread must somehow notify the
destination component that a message has arrived.
Either interrupts (or some other form of signal-
ing) are used or the destination component must be
polling its message queue.

3. It may be necessary for the originating thread to
perform a context switch if there are not enough
processors around to continually run all threads
(which is common).

4. The destination component must now access the
message queue and interpret the message and then
perform the requested action. Then we potentially
have to redo the 4 steps in order to return the result
of the request to the originating component.

A monolithic operating system typically uses function
calls to transfer control between subsystems that run in
the same operating system context:

1. Place arguments in processor registers (done by the
compiler).

2. Call the subroutine.

3. Subroutine accesses registers to interpret the re-
quest (done by compiler).

4. Subroutine returns the result in another register.

From the description above it is already evident that the
monolithic operating system can rely on much lower
level processor components than the microkernel and
is well supported by existing languages used to code
for operating system kernels. The microkernel has to
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manipulate message queues which are higher level con-
structs and—unlike registers—cannot be directly modi-
fied and handled by the processor.2

In a large NUMA system an even more troubling issue
arises: while a function call uses barely any memory
on its own (apart from the stack), a microkernel must
place the message into queues. That queue must have a
memory address. The queue location needs to be care-
fully chosen in order to make the data accessible in a fast
way to the other operating system component involved
in the message transfer. The complexity of making the
determination where to allocate the message queue will
typically be higher than the message handling overhead
itself since such a determination will involve consult-
ing system tables to figure out memory latencies. If
the memory latencies are handled by another compo-
nent of the microkernel then queuing a message may
require first queuing a message to another subsystem.
One may avoid the complexity of memory placement in
small configurations with just a few memory nodes but
in a very large system with hundreds of nodes the dis-
tances are a significant performance issue. There is only
a small fraction of memory local to each processor and
so it is highly likely that a simple minded approach will
cause excessive latencies.

It seems that some parts of the management of memory
latency knowledge cannot be handled by a subsystem
but each subsystem of the microkernel must include the
necessary logic to perform some form of advantageous
data placement. It seems therefore that each microker-
nel component must at least contain pieces of a memory
allocator in order to support large scale memory archi-
tectures.

2.2 Isolation vs. integration of operating system
components

The fundamental idea of a microkernel is to isolate com-
ponents whereas the monolithic kernel is integrating all
the separate subsystems into one common process envi-
ronment. The argument in favor of a microkernel is that
it allows a system to be fail safe since a failure may be
isolated into one system component.

2There have been attempts to develop processors that handle
message queues but no commercially viable solution exists. In con-
temporary High Performance Computing messages based interfaces
are common for inter process communication between applications
running on different machines.

However, the isolation will introduce additional com-
plexities. Operating systems usually service applica-
tions running on top of them. The operating system
must track the state of the application. A failure of one
key component typically includes also the loss of rele-
vant state information about the application. Some mi-
crokernel components that track memory use and open
files may be so essential to the application that the ap-
plication must terminate if either of these components
fails. If one wanted to make a system fail safe in a mi-
crokernel environment then additional measures, such
as check pointing, may have to be taken in order to
guarantee that the application can continue. However,
the isolation of the operating system state into different
modules will make it difficult to track the overall system
state that needs to be preserved in order for check point-
ing to work. The state information is likely dispersed
among various separate operating system components.

The integration into a single operating system process of
a monolithic operating system enables access to all state
information that the operating system keeps on a certain
application. This seems to be a basic requirement in or-
der to enable fail safe mechanisms like check pointing.
Isolation of operating system components may actually
make reliable systems more difficult to realize.

Performance is also a major consideration in favor of
integration. Isolation creates barriers for accessing op-
erating system state information that may be required
in order for the operating system to complete a certain
task. Integration allows access to all state information
by any operating system component.

Monolithic kernels today are complex. An operating
system may contain millions of lines of code (Linux
currently has 1.4 million lines). There is the impossi-
bility of auditing all that code in order to be sure that the
operating system stays secure. An approach that iso-
lates operating system components is certainly benefi-
cial to insure secure behavior of the components. In a
monolithic kernel methods have to be developed to au-
dit the kernel automatically or manually by review. In
the Linux kernel we have the example of a community
review network that keeps verifying large sections of the
kernel. Problems can be spotted early to secure the in-
tegrity of the kernel. However, such a process may be
only possible for community based code development
where a large number of developers is available. A sin-
gle company may not have the resources to keep up the
necessary ongoing review of source code.
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2.3 Modularization

Modularization is a mechanism to isolate operating sys-
tem components that may also occur in monolithic ker-
nels. In microkernels this is the prime paradigm and
modularization results in modules with a separate pro-
cess state, a separate executable and separate source
code. Each component can be separately maintained
and built. The strong modularization usually does not
work well for monolithic operating systems. Any part
of the operating system may refer to information from
another part. Mutual dependencies exist between many
of the components of the operating system. Therefore
the operating system kernel has to be built as a whole.
Separate executable portions can only be created by re-
stricting the operating system state information accessi-
ble by the separated out module.

What has been done in monolithic operating systems is
the implementation of a series of weaker modes of mod-
ularization at a variety of levels.

2.3.1 Source code modularization

There are a number of ways to modularize source code.
Code is typically arranged into a directory structure that
in itself imposes some form of modularization. Each
C source code piece can also be seen as a modular unit.
The validity of identifiers can be restricted to one source
module only (for example through the static attribute in
C). The scoping rules of the compiler may be used to
control access to variables. Hidden variables are still
reachable within the process context of the kernel but
there is no way to easily reach these memory locations
via a statement in C.

Header files are another typical use of modularization
in the kernel. Header files allow the exposing of a con-
trolled API to the rest of the kernel. The other compo-
nents must use that API in order to use the exported ser-
vices. In many ways this is similar to what the strict iso-
lation in a microkernel would provide. However, since
there is no limitation to message passing methods, more
efficient means of providing functionality may be used.
For example it is typical to define macros for perfor-
mance sensitive operations in order to avoid function
calls. Another method is the use of in line functions that
also avoid function calls. Monolithic kernels have more

flexible ways of modularization. It is not that the gen-
eral idea of modularization is rejected, it is just that the
microkernels carry the modularization approach too far.
The rigidity of microkernel design limits the flexibility
to design APIs that provide the needed performance.

2.3.2 Loadable operating system modules

One way for monolithic operating systems to provide
modularity is through loadable operating system mod-
ules. This is possible by exposing a binary kernel API.
The loaded modules must conform to that API and the
kernel will have to maintain compatibility to that API.
The loaded modules run in the process context of the
kernel but have only access to the rest of the kernel
through the exported API.

The problem with these approaches is that the API be-
comes outdated over time. Both the kernel and the
operating system modules must keep compatibility to
the binary API. Over time updated APIs will invari-
ably become available and then both components may
have to be able to handle different releases of the
APIs. Over time the complexity of API—and the nec-
essary workarounds to handle old versions of the API—
increases.

Some open source operating systems (most notably
Linux) have decided to not support stable APIs. Instead
each kernel version exports its own API. The API fluc-
tuates from kernel release to kernel release. The idea of
a stable binary API was essentially abandoned. These
approaches work because of source code availability.
Having no stable API avoids the work of maintaining
backward compatibility to previous APIs. Changes to
the API are easy since no guarantee of stability has been
given in the first place. If all the source code of the op-
erating system and of the loadable modules is available
then changes to the kernel APIs can be made in one pass
through all the different components of the kernel. This
will work as long as the API stays consistent within the
source of one kernel release but it imposed a mandate to
change the whole kernel on those submitting changes to
the kernel.

2.3.3 Loadable drivers

A loadable driver is simply a particular instance of a
loadable operating system module. The need to support
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loadable device drivers is higher though than the need to
support loadable components of the operating system in
general since operating systems have to support a large
quantity of devices that may not be in use in a particu-
lar machine on which the operating system is currently
running. Having loadable device drivers cuts down sig-
nificantly in terms of the size of the executable of the
operating system.

Loadable device drivers are supported by most operating
systems. Device drivers are a common source of failures
since drivers are frequently written by third parties with
limited knowledge about the operating system. How-
ever, even here different paradigms exist. In the Linux
community, third party writing of drivers is encouraged
but then community review and integration into the ker-
nel source itself is suggested. This usually means an
extended review process in which the third party device
driver is verified and updated to satisfy all the require-
ments of the kernel itself. Such a review process in-
creases the reliability and stability of device drivers and
reduces the failure rate of device drivers.

Another solution to the frequent failure of device drivers
is to provide a separate execution context for these de-
vice drivers (as done in some versions of the Microsoft
Windows operating system). That way failures of de-
vice drivers cannot impact the rest of the operating sys-
tem. In essence this is the same approach as suggested
by proponents of microkernels. Again these concepts
are used in a restricted context. Having a special op-
erating system subsystem that creates a distinct context
for device drivers is expensive. The operating system
already provides such contexts for user space. The logi-
cal path here would be to have device drivers that run in
user space thus avoiding the need to maintain a process
context for device drivers.

3 Techniques Used to Scale Monolithic Ker-
nels

Proper serialization is needed in order for monolithic
operating systems—such as Linux—to run on large pro-
cessor counts. Access to core memory structures needs
to be serialized in such a way that a large number of
processors can access and modify the data as needed.
Cache lines are the units in which a processor handles
data. Cache lines that are read-only are particularly im-
portant for performance since these cache lines can be

shared. A cache line that is written has first to be re-
moved from all processors that have a copy of that cache
line. It is therefore desirable to have data structures that
are not frequently written to.

The methods that were used to make Linux scale are
discussed in the following sections. They are basically
a variety of serialization methods. As the system was
scaled up to higher and higher processor counts a vari-
ety of experiments were performed to see how each data
structure needed to be redesigned and what type of se-
rialization would need to be employed in order to reach
the highest performance. Development of higher scal-
ability is an evolutionary approach that involves vari-
ous attempts to address the performance issues that were
discovered during testing.

3.1 Serialization

The Linux kernel has two basic ways of locking.
Semaphores are sleeping locks that require a user pro-
cess context. A process will go to sleep and the sched-
uler will run other processes if the sleeping lock has al-
ready been taken by another process. Spinlocks are used
if there is no process context. Without the process con-
text we can only repeatedly check if the lock has been
released. A spinlock may create high processor usage
because the processor is busy continually checking for
a lock to be released. Spinlocks are only used for locks
that have to be held briefly.

Both variants of locking come in a straight lock/unlock
and a reader/writer lock version. Reader/writer locks al-
lows multiple readers and only one writer. Lock/unlock
is used for simple exclusion.

3.2 Coarse vs. fine grained locking

The Linux kernel first became capable of supporting
multiprocessing by using a single large lock, the Big
Kernel Lock (BKL).3 Over time, coarse grained locks
were gradually replaced with finer grained locks. The
evolution of the kernel was determined by a contin-
ual stream of enhancements by various contributors to
address performance limitations that were encountered
when running common computing loads. For example

3And the BKL still exists for some limited purposes. For a the-
oretical discussion of such a kernel, see Chapter 9, “Master-Slave
Kernels,” in [12].
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the page cache was initially protected by a single global
lock that covered every page. Later these locks did be-
come more fine grained. Locks were moved to the pro-
cess level and later to sections of the address space.
These measures gradually increased performance and
allowed Linux to scale better and better on successively
larger hardware configurations. Thereby it became pos-
sible to support more memory and more processors.4

A series of alternate locking mechanisms were pro-
posed. In addition to the four types of locking men-
tioned above, new locking schemes for special situations
were developed. For example seq_locks emerged as a
solution to the problem of reading a series of values to
determine system time. seq_locks do not block, they
simply repeat a critical section until sequence counters
taken at the beginning and end of the critical section in-
dicate that the result was consistent.5

Creativity to develop finer-grained locking that would
reach higher performance was targeted to specific areas
of the kernel that were particularly performance sensi-
tive. In some areas locking was avoided in favor of
lockless approaches using atomic operations and Read-
Copy-Update (RCU) based techniques. The evolution of
new locking approaches is by no means complete. In the
area of page cache locking there exists—for example—
a project to develop ways to do page cache accesses
and updates locklessly via a combination of RCU and
atomic operations [9].

The introduction of new locking methods involves var-
ious tradeoffs. Finer grained locking requires more
locks and more complex code to handle the locks the
right way. Multiple locks may be interacting in complex
ways in order to ensure that a data structure maintains
its consistency. The justification of complex locking
schemes became gradually easier as processor speeds
increased and memory speeds could not keep up. Pro-
cessors became able to handle complex locking proto-
cols using locking information that is mostly in the pro-
cessor caches to negotiate access to data in memory that
is relatively expensive to access.

3.3 Per cpu structures

Access to data via locking is expensive. It is therefore
useful to have data areas that do not require locking.

4See Chapter 10, “Spin-locked Kernels,” in [12].
5For more details on synchronization under Linux, see [5].

One such natural area is data that can only be accessed
by a single processor. If no other processors use the data
then no locking is necessary. This means that a thread of
execution needs to be bound to one single processor as
long as the per cpu data is used. The process can only be
moved to another processor if no per cpu data is used.

Linux has the ability to switch the rescheduling a ker-
nel thread off by disabling preemption. A counter of the
number of preemptions taken is kept to allow nested ac-
cess to multiple per cpu data structures. The execution
thread will only be rescheduled to run on other proces-
sors if the preemption counter is zero.

Each processor usually has its own memory cache hier-
archy. If a cache line needs to be written then it needs to
be first cleared from the caches of all other processors.
Thus dirtying a cache line is an expensive operation if
copies of a cache line exist in the caches of other pro-
cessors. The cost of dirtying a cache line increases with
the number of processors in the system and with the la-
tency to reach memory.

Per cpu data has performance advantages because it is
only accessed by a single cpu. There will be no need
to clear cache lines on other processors. Memory for
per cpu areas is typically set up early in the bootstrap
process of the kernel. At that point it can be placed in
memory that has the shortest latency for the processor
the memory is attached to. Thus memory accesses to per
cpu memory are usually the fastest possible. The per cpu
cache lines will stay in the cpu caches for a long time—
even if they are dirtied—since no other processor will
invalidate the cache lines by writing to per cpu variables
of another processor.6

A typical use of per cpu data is to manage informa-
tion about available local memory. If a process requires
memory and we can satisfy it from local memory that is
tracked via structures in per cpu memory then the per-
formance of the allocator will be optimal. Most of the
Linux memory allocators are structured in such a way to
minimize access to shared memory locations. Typically
it takes a significant imbalance in memory use for an
allocator to start assigning memory that is shared with
other processors. The sweet point in terms of scalability
is encountered when the allocator can keep on serving
only local memory.

6Not entirely true. In special situations (for example setup and
tear down of per cpu areas) such writes will occur.
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Another use of per cpu memory is to keep statistics.
Maintaining counters about resource use in the system
is necessary for the operating system to be able to adjust
to changing computing loads. However, these counters
should not impact performance negatively. For that rea-
son Linux keeps essential counters in per processor ar-
eas. These counters are periodically consolidated in or-
der to maintain a global state of memory in the system.

The natural use of per cpu data is the maintenance of
information about the processor stats and the environ-
ment of the processor. This includes interrupt handling,
where local memory can be found, timer information as
well as other hardware information.

3.4 Per node structures

A node in the NUMA world refers to a section of the
system that has its own memory, processors and I/O
channels. Per node structures are not as lightweight as
per cpu variables because multiple processors on one
node may use that per node information. Synchroniza-
tion is required. However, per node accesses stay within
the same hardware enclosure meaning that per node ref-
erences are to local memory which is more efficient than
accessing memory on other nodes. It is advantageous if
only local processors use the per node structures. But
other remote processors from other nodes may also use
any per node structures since we already need locks to
provide exclusion for the local processors. Performance
is acceptable as long as the use from remote processors
is not excessive.

It is natural to use per node structures to manage the
resources of such a NUMA node. Allocators typically
have first of all per cpu queues where some objects are
held ready for immediate access. However, if those per
cpu queues are empty then the allocators will fall back
to per node resources and attempt to fill up their queues
first from the local node and then—if memory gets tight
on one node—from remote nodes.

Performance is best if the accesses to per node structures
stay within the node itself. Off node allocation scenar-
ios usually involve a degradation in system performance
but that may be tolerable given particular needs of an ap-
plication. Applications that must access more memory
than available on one node will have to deal with the
effects of intensive off node memory access traffic. In

that case it may be advisable to spread out the mem-
ory accesses evenly via memory policies in order to not
overload a single node.

3.5 Lock locality

In a large system the location of locks is a performance
critical element. Lock acquisition typically means gain-
ing exclusive access to a cache line that may be heav-
ily contended. Some processors in the system may be
nearer to the cache line than others. These will have
an advantage over the others that are more remote. If
the cache line becomes heavily contended then pro-
cesses on remote nodes may not be able to make much
progress (starvation). It is therefore imperative that the
system implement some way to give each processor a
fair chance to acquire the cache line. Frequently such
an algorithm is realized in hardware. The hardware so-
lutions have turned out to be effective so far on the plat-
forms that support high processor counts. It is likely
though that commodity hardware systems now growing
into the space, earlier only occupied by the highly scal-
able platforms, will not be as well behaved. Recent dis-
cussions on the Linux kernel mailing lists indicate that
these may not come with the advanced hardware that
solve the lock locality issues. Software solutions to this
problem—like the hierarchical back off lock developed
by Zoran Radovic—may become necessary [10].

3.6 Atomic operations

Atomic operations are the lowest level synchroniza-
tion primitives. Atomic operations are used as building
blocks for higher level constructs. The locks mentioned
earlier are examples of such higher level synchroniza-
tion constructs that are realized using atomic operations.

Linux defines a rich set of atomic operations that can be
used to improvise new forms of locking. These opera-
tions include both bit operations and atomic manipula-
tion of integers. The atomic operation themselves can
be used to synchronize events if they are used to gener-
ate state transitions. However, the available state transi-
tions are limited and the set of state transitions observ-
able varies from processor to processor. A library of
widely available state transitions via atomic operations
has been developed over time. Common atomic opera-
tions must be supported by all processors supported by
Linux. However, some of the rarer breeds of processors
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may not support all necessary atomic operations. Emu-
lation of some atomic operations using locking may be
necessary. Ironically the higher level constructs are then
used to realize low level atomic operations.

Atomic operations are the lowest level of access to
synchronization. Many of the performance critical
data structures in Linux are customarily modified using
atomic operations that are wrapped using macros. For
example the state of the pages in Linux must be modi-
fied in such a way. Kernel components may rely on state
transitions of these flags for synchronization.

The use of these lower level atomic primitives is com-
plex and therefore the use of atomic operations is typ-
ically reserved for performance critical components
where enough human resources are available to main-
tain such custom synchronization schemes. If one of
these schemes turns out to be unmaintainable then it is
usually replaced by a locking scheme based on higher
level constructs.

3.7 Reference counters

Reference counters are a higher level construct real-
ized in Linux using atomic operations. Reference coun-
ters use atomic increment and decrement instructions
to track the number of uses of an object in the kernel,
that way concurrent operation on objects can be per-
formed. If a user of the structure increments the ref-
erence counter then the object can be handled with the
knowledge that it cannot concurrently be freed. The
user of a structure must decrement the reference counter
when the object is no longer needed.

The state transition to and from zero is of particular im-
portance here since a zero counter is usually used to in-
dicate that no references exist anymore. If a reference
counter reaches zero then an object can be disposed and
reclaimed for other uses.

One of the key resources managed using reference coun-
ters are the operating system pages themselves. When a
page is allocated then it is returned from the page allo-
cator with a reference count of one. Over the lifetime
multiple references may be established to the page for
a variety of purposes. For example multiple applica-
tions may map the same memory page into their process
memory. The function to drop a reference on a page
checks whether the reference count has reached zero.

If so then the page is returned to the page allocator for
other uses.

One problem with reference counters is that they re-
quire write access to a cache line in the object. Con-
tinual establishment of new references and the drop-
ping of old references may cause cache line contention
in the same way as locking. Such a situation was re-
cently observed with the zero page on a 1024 proces-
sor machine. A threaded application began to read con-
currently from unallocated memory (which causes ref-
erences to the zero page to be established). It took a long
time for the application to start due to the cache line with
the reference counter starting to bounce back and forth
between the caches of various processors that attempted
to increment or decrement the counter. Removal of ref-
erence counting for the zero page resulted in dramatic
improvements in the application startup time.

The establishment of a reference count on an object
is usually not sufficient in itself because the reference
count only guarantees the continued existence of the ob-
ject. In order to serialize access to attributes of the ob-
ject, one still will have to implement a locking scheme.
The pages in Linux have an additional page lock that has
to be taken in order to modify certain page attributes.
The synchronization of page attributes in Linux is com-
plex due to the interaction of the various schemes that
are primarily chosen for their performance and due to
the fluctuation over time as the locking schemes are
modified.

3.8 Read-Copy-Update

RCU is yet another method of synchronization that be-
comes more and more widespread as the common lock-
ing schemes begin to reach their performance limits.
The main person developing the RCU functionality for
Linux has been Paul McKenney.7 The main advantage
of RCU over a reference counter is that object existence
is guaranteed without reference counters. No exclusive
cache line has to be acquired for object access which is
a significant performance advantage.

RCU accomplishes that feat through a global serializa-
tion counter that is used to establish when an object can
be freed. The counter only reaches the next state when

7See his website at http://www.rdrop.com/users/
paulmck/RCU/. Retrieved 12 April, 2007. A recent publication
is [3], which contains an extensive bibliography.
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no references to RCU objects are held by a process. Ob-
jects can be reclaimed when they have been expired. All
processes referring to the object must have only refer-
enced the object in earlier RCU periods.

RCU is frequently combined with the use of other
atomic primitives as well as the exploiting of the atom-
icity of pointer operations. The combination of atomic
operations and RCU can be tricky to manage and it is
not easy to develop a scheme that is consistent and has
no “holes” where a data structure can become inconsis-
tent. Projects to implement RCU measures for key sys-
tem components can take a long time. For example the
project to develop a lockless page cache using RCU has
already taken a couple of years.8

3.9 Cache line aliasing / placement

Another element necessary to reach high performance
is the careful placement of data into cache lines. Ac-
quiring write access to a cache line can cause a perfor-
mance issue because it requires exclusive access to the
cache line. If multiple unrelated variables are placed
in the same cache line then the performance of the ac-
cess to one variable may be affected by frequents up-
dates of another (false aliasing) because the cache line
may need to be frequently reacquired due to eviction to
exclusive accesses by other processors. A hotly updated
variable may cause a frequently read variable to become
costly to access because the cache line cannot be contin-
ually kept in the cache hierarchy. Linux solves this issue
by providing a facility to arrange variables according to
their access patterns. Variables that are commonly read
and rarely written to can be placed in a separate sec-
tion through a special attribute. The cache lines from
the mostly read section can then be kept in the caches of
multiple processors and are rarely subject to expulsion
due to a write request.

Fields of key operating system structures are similarly
organized based on common usage and frequency of us-
age. If two fields are frequently needed in the same
function then it is advantageous to put the fields next
to each other which increases the chance that both are
placed in the same cache line. Access to one field makes
the other one available. It is typical to place frequently
used data items at the head of a structure to have as many
as possible available with a single cache line fetch. In

8See the earlier mentioned work by Nick Piggin, [9].

order to guarantee the proper cache line alignment of
the fields it is customary to align the structure itself on a
cache line boundary.

If one can increase the data density in the cache lines
that are at the highest level of the cpu cache stack then
performance of the code will increase. Rearranging data
in proper cache lines is an important measure to reach
that goal.

3.10 Controlling memory allocation

The arrangement in cache lines increases the density of
information in the cpu cache and can be used to keep
important data near to the processor. In a large system,
memory is available at various distances to a proces-
sor and the larger the system the smaller the amount of
memory with optimal performance for a processor. The
operating system must attempt to provide fast memory
so that the processes running on the processor can run
efficiently.

However, the operating system can only provide heuris-
tics. The usual default is to allocate memory as local
to the process as possible. Such an allocation method
is only useful if the process will keep on running ex-
clusively on the initial processor. Multithreaded appli-
cations may run on multiple processors that may have
to access a shared area of memory. Care must be taken
about how shared memory is allocated. If a process is
started on a particular processor and allocates the mem-
ory it needs then the memory will be local to the startup
processor. The application may then spawn multiple
threads that work on the data structures allocated. These
new processes may be moved to distant processors and
will now overwhelmingly reference remote memory that
is not placed optimally. Moreover all new processes
may concurrently access the memory allocated on the
node of the initial processor which may exhaust the pro-
cessing power of the single memory node.

It is advisable that memory be allocated differently in
such scenarios. A common solution is to spread the
memory out over all nodes that run processes for the ap-
plication. This will balance the remote cache line pro-
cessing load over the system. However, the operating
system has no way of knowing what the processes of the
application will do. Linux has a couple of subsystems
that allow the processes to specify memory allocation
policies and allocation constraints for a process. Mem-
ory can be placed optimally if an application sets up the
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proper policies depending on how it will access the data.
However, this memory control mechanism is not stan-
dardized. One will have to link programs to special li-
braries in order to make use of these facilities. There
are new languages on the horizon though that may inte-
grate the locality specification into the way data struc-
tures are defined.9 These new languages may eventually
standardize the specification of allocation methods and
avoid the use of custom libraries.

3.11 Memory coverage of Translation Lookaside
Buffers (TLB)

Each of the processes running on modern processors has
a virtual address space context. The address space con-
text is provided by TLB entries that are cached by the
processor in order to allow a user process access to phys-
ical memory. The amount of TLB entries in a processor
is limited and the limit on the number of TLB entries in
turn limits the amount of physical memory that a pro-
cessor may access without incurring a TLB miss. The
size of available physical memory is ever growing and
so the fraction of memory physically accessible without
a TLB miss is ever shrinking.

Under Linux, TLB misses are a particular problem since
most architectures use a quite small page size of 4 kilo-
bytes. The larger systems support 16 kilobytes. On the
smaller systems—even with a thousand TLB entries—
one will only be able to access 4 megabytes without a
TLB miss. TLB miss overhead varies between proces-
sors and ranges from a few dozen clock cycles if the
corresponding page table entry is in the cache (Intel-
64) to hundreds and occasionally even a few thousand
cycles on machines that require the implementation of
TLB lookups as an exception handler (like IA64).

For user processes, Linux is currently restricted to a
small 4k page size. In kernel space an attempt is made
to directly map all of memory via 1-1 mappings. These
are TLB entries that provide no translation at all. The
main use of these TLBs is to specify the access param-
eters for kernel memory. Many processors also support
a larger page size. It is therefore common that the ker-
nel itself use larger TLB entries for its own memory.
This increases the TLB coverage when running in kernel
mode significantly. The sizes in use on larger Linux ma-
chines (IA64) are 16M TLB entries whereas the smaller

9As realized for example in Unified Parallel C.

(Intel-64 based) machines provide 2M TLB entries to
map kernel memory.

In order to increase the memory coverage, another sub-
system has been added to Linux that is called the hugetlb
file system. On Intel-64 this will allow the management
of memory mapped via 2M TLB entries. On IA64 mem-
ory can be managed in a variety of sizes from 2M to 1
Gigabytes. However, hugetlb memory cannot be treated
like regular memory. Most importantly files cannot be
memory mapped using hugetlbfs. I/O is only possible
in 4 kilobyte blocks through buffered file I/O and direct
I/O. Projects are underway to use huge pages for exe-
cutables and provide transparent use of huge pages for
process data [6].

A microkernel would require the management of ad-
ditional address spaces via additional TLB entries that
would compete for the limited TLB slots in a proces-
sor. TLB pressure would increase and we would have
more overhead coming about through the separate ad-
dress spaces of a microkernel that would degrade per-
formance.

4 Multicore / Chip Multithreading

Recent developments are leading to increased multi
threading on a single processor. Multiple cores are
placed on a single chip. The inability to increase the
clock frequency of processors further leads to the de-
velopment of processors that are able to execute a large
number of threads concurrently. In essence we see the
miniaturization of contemporary supercomputers on a
chip. The complex interaction of the memory caches of
multi core processors will present additional challenges
to organizing memory and to balancing of a computing
load to run with maximum efficiency. It seems that the
future is owned by multithreaded applications and oper-
ating system kernels that have to use complex synchro-
nization protocols in order to extract the maximum per-
formance from the available computational resources.

Rigid microkernel concepts require isolation of kernel
subsystems. It is likely going to be a challenge to imple-
ment complex locking protocols between kernel compo-
nents that can only communicate via messages or some
form of inter process communication. Instead processes
wanting to utilize the parallel execution capabilities to
the fullest must have a shared address space in which it
is possible to realize locking schemes as needed to deal
with the synchronization of the individual tasks.
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5 Process Contention for System Resources

The scaling of individual jobs on a large system de-
pends on the use of shared resources. Processes that
only access local resources and that have separate ad-
dress spaces run with comparable performance to that
on smaller machines since there is minimal locking
overhead. On a machine with a couple of thousand pro-
cessors, one can run a couple of thousand independent
processes that all work with their own memory with-
out scaling concerns. This ability shows that the op-
erating system itself has been optimized to fully take
advantage of process isolation for scaling. The situa-
tion becomes different if all these processes share a sin-
gle address space. In that case certain functions—like
the mapping of a page into the common memory space
of these processes—must be serialized by the operating
system. Performance bottlenecks can result if many of
the processes perform operations that require the same
operating system resource. At that point the synchro-
nization mechanisms of the operating system become
key to reduce the performance impact of contention for
operating system resources.

However, the operating system itself cannot foresee,
in detail, how processes will behave. Policies can be
specified describing how the operating system needs to
manage resources but the operating system itself can
only provide heuristics for common process behavior.
Invariably sharing resources in a large supercomputer
for complex applications requires careful planning and
proper setup of allocation policies so that bottleneck can
be avoided. It is necessary to plan how to distribute
shared memory depending on the expected access pat-
terns to memory and common use of operating system
resources. Applications can be run on supercomputers
without such optimizations but then memory use, oper-
ating system resource use may not be optimal.

6 Conclusion

A monolithic operating system such as Linux has no re-
strictions on how locking schemes can be developed. A
unified address space exists that can be accessed by all
kernel components. It is therefore possible to develop
a rich multitude of synchronization methods in order to
make best use of the processor resources. The freedom
to do so has been widely used in the Linux operating
system to scale to high processor counts. The lock-
ing methodology can be varied and may be alternatively

coarse grained or more refined depending on the per-
formance requirements for a kernel component. Critical
operating system paths can be successively refined or
even be configurable for different usage scenarios. For
example the page table locking scheme in Linux is con-
figurable depending on the number of processors. For a
small number of processors, there will be only limited
contention on page table and therefore a single page ta-
ble lock is sufficient. If a large number of processors ex-
ists in a system then contention may be an issue and hav-
ing smaller grained locks is advantageous. For higher
processor counts the Linux kernel can implement a two
tier locking scheme where the higher page table layers
are locked by a single lock whereas the lowest layer has
locks per page of page table entries. The locking scheme
becomes more complicated—which will have a slight
negative performance impact on smaller machines—but
provides performance advantages for highly concurrent
applications.

As a result, the Linux operating system as a mono-
lithic operating system can adapt surprisingly well to
high processor counts and large memory sizes. Perfor-
mance bottlenecks that were discovered while the sys-
tem was gradually scaled up to higher and higher pro-
cessor counts were addressed through alternating ap-
proaches using a variety of locking approaches. In 2007
Linux supports up to 4096 processors with around 16
terabytes of memory on 1024 nodes. Configurations
of up to 1024 processors are supported by commercial
Linux distributions. There are a number of supercom-
puter installation that use these large machines for sci-
entific work at the boundaries of contemporary science.

The richness of the locking protocols that made the scal-
ing possible requires an open access policy within the
kernel. It seems that microkernel based designs are
fundamentally inferior performance-wise because the
strong isolation of the components in other process con-
texts limits the synchronization methods that can be em-
ployed and causes overhead that the monolithic kernel
does not have to deal with. In a microkernel data struc-
tures have to be particular to a certain subsystem. In
Linux data structures may contain data from many sub-
systems that may be protected by a single lock. Flex-
ibility in the choice of synchronization mechanism is
core to Linux success in scaling from embedded sys-
tems to supercomputers. Linux would never have been
able to scale to these extremes with a microkernel based
approach because of the rigid constraints that strict mi-
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crokernel designs place on the architecture of operating
system structures and locking algorithms.
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Abstract

The performance of Linux servers running in mission-
critical environments such as telecommunication net-
works is a critical attribute. Its importance is growing
due to incorporated high availability approaches, espe-
cially for servers requiring five and six nines availability.
With the growing number of requirements that Linux
servers must meet in areas of performance, security, re-
liability, and serviceability, it is becoming a difficult task
to optimize all the architecture layers and parameters to
meet the user needs.

Other Linux servers, those not operating in a mission-
critical environment, also require different approaches
to optimization to meet specific constraints of their op-
erating environment, such as traffic type and intensity,
types of calculations, memory, and CPU and IO use.

This paper proposes and discusses the design and imple-
mentation of a tool called the Performance and Avail-
ability Characterization tool, PAC for short, which op-
erates with over 150 system parameters to optimize over
50 performance characteristics. The paper discusses the
PAC tool’s architecture, multi-parametric analysis algo-
rithms, and application areas. Furthermore, the paper
presents possible future work to improve the tool and ex-
tend it to cover additional system parameters and char-
acteristics.

1 Introduction

The telecommunications market is one of the fastest
growing industries where performance and availabil-
ity demands are critical due to the nature of real-time
communications tasks with requirement of serving thou-
sands of subscribers simultaneously with defined quality
of service. Before Y2000, telecommunications infras-
tructure providers were solving performance and avail-
ability problems by providing proprietary hardware and

software solutions that were very expensive and in many
cases posed a lock-in with specific vendors. In the cur-
rent business environment, many players have come to
the market with variety of cost-effective telecommuni-
cation technologies including packed data technologies
such as VoIP, creating server-competitive conditions for
traditional providers of wireless types of voice commu-
nications. To be effective in this new business environ-
ment, the vendors and carriers are looking for ways to
decrease development and maintenance costs, and de-
crease time to market for their solutions.

Since 2000, we have witnessed the creation of several
industry bodies and forums such as the Service Avail-
ability Forum, Communications Platforms Trade As-
sociation, Linux Foundation Carrier Grade Linux Ini-
tiative, PCI Industrial Computer Manufacturers Group,
SCOPE Alliance, and many others. Those industry
forums are working on defining common approaches
and standards that are intended to address fundamental
problems and make available a modular approach for
telecommunication solutions, where systems are built
using well defined hardware specifications, standards,
and Open Source APIs and libraries for their middle-
ware and applications [11] (“Technology Trends” and
“The .org player” chapters).

The Linux operating system has become the de facto
standard operating system for the majority of telecom-
munication systems. The Carrier Grade Linux initia-
tive at the Linux Foundation addresses telecommunica-
tion system requirements, which include availability and
performance [16].

Furthermore, companies as Alcatel, Cisco, Ericsson,
Hewlett-Packard, IBM, Intel, Motorola, and Nokia use
Linux solutions from MontaVista, Red Hat, SuSE, and
WindRiver for such their products as softswitches, tele-
com management systems, packet data gateways, and
routers [13]. Examples of existing products include Al-
catel Evolium BSC 9130 on the base of the Advanced
TCA platform, and Nortel MSC Server [20], and many

• 263 •
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more of them are announced by such companies as Mo-
torola, Nokia, Siemens, and Ericsson.

As we can see, there are many examples of Linux-based,
carrier-grade platforms used for a variety of telecommu-
nication server nodes. Depending on the place and func-
tionality of the particular server node in the telecommu-
nication network infrastructure, there can be different
types of loads and different types of performance bot-
tlenecks.

Many articles and other materials are devoted to ques-
tions like “how will Linux-based systems handle per-
formance critical tasks?” In spite of the availability
of carrier-class solutions, the question is still important
for systems serving a large amount of simultaneous re-
quests, e.g. WEB Servers [10] as Telecommunication-
specific systems.

Telecommunication systems such as wireless/mobile
networks have complicated infrastructures imple-
mented, where each particular subsystem solves its spe-
cific problem. Depending on the problem, the critical
systems’ resource could be different. For example, Dy-
namic Memory Allocation could become a bottleneck
for Billing Gateway, Fraud Control Center (FCC), and
Data Monitoring (DMO) [12] even in SMP architecture
environment. Another example is WLAN-to-WLAN
handover in UMTS networks where TCP connection re-
establishment involves multiple boxes including HLR,
DHCP servers and Gateways, and takes significant time
(10–20 sec.) which is absolutely unacceptable for VoIP
applications [15]. A similar story occurred with TCP
over CDMA2000 Networks, where a bottleneck was
found in the buffer and queue sizes of a BSC box [17].
The list of the examples can be endless.

If we consider how the above examples differ, we would
find out that in most cases performance issues appear to
be quite difficult to deal with, and usually require rework
and redesign of the whole system, which may obviously
be very expensive.

The performance improvement by itself is quite a well-
known task that is being solved by the different ap-
proaches including the Clustering and the Distributed
Dynamic Load Balancing (DDLB) methods [19]; this
can take into account load of each particular node (CPU)
and links throughput. However, a new question may
arise: “Well. We know the load will be even and dy-
namically re-distributed, but what is the maximum sys-
tem performance we can expect?” Here we are talking

not about performance problems, but about performance
characterization of the system. In many cases, people
working on the new system development and fortunately
having performance requirements agreed up front use
prototyping techniques. That is a straightforward but
still difficult way, especially for telecommunication sys-
tems where the load varies by types, geographic loca-
tion, time of the day, etc. Prototyping requires creation
of an adequate but inexpensive model which is problem-
atic in described conditions.

The authors of this paper are working in telecommu-
nication software development area and hence tend to
mostly consider problems that they face and solve in
their day-to-day work. It was already said that perfor-
mance issues and characterization are within the area of
interest for a Linux-based system developer. Character-
ization of performance is about inexpensive modeling
of the specific solution with the purpose of predicting
future system performance.

What are the other performance-related questions that
may be interesting when working in telecommunica-
tions? It isn’t just by chance we placed the word Per-
formance close to Availability; both are essential char-
acteristics of a modern telecommunication system. If
we think for a moment about the methods of achiev-
ing of some standard level of availability (let’s say the
five- or six- nines that are currently common industry
standards), we will see that it is all about redundancy,
reservation, and recovery. Besides specific requirements
to the hardware, those methods require significant soft-
ware overhead functionality. That means that in addi-
tion to system primary functions, it should provide al-
gorithms for monitoring failure events and providing ap-
propriate recovery actions. These algorithms are obvi-
ously resource-consuming and therefore impact overall
system performance, so another problem to consider is
a reasonable tradeoff between availability and produc-
tivity [8], [18].

Let’s consider some more problems related to telecom-
munication systems performance and availability char-
acterization that are not as fundamental as those de-
scribed above, but which are still important (Figure 1).

Performance profiling. The goal of performance pro-
filing is to verify that performance requirements have
been achieved. Response times, throughput, and other
time-sensitive system characteristics should be mea-
sured and evaluated. The performance profiling is ap-
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Figure 1: Performance and Availability Characterization
target problems

plicable for release-to-release testing.

Load testing. The goal of load testing is to determine
and ensure that the system functions properly beyond
the expected maximum workload. The load testing sub-
jects the system to varying workloads to evaluate the
performance behaviors and ability of the system to func-
tion properly under these different workloads. The load
testing also could be applicable on design stage of a
project to choose the best system architecture and ensure
that requirements will be achieved under real/similar
system workloads [21], [22].

Stress testing. The goal of stress testing is to find per-
formance issues and errors due to low resources or com-
petition for resources. Stress testing can also be used to
identify the peak workload that the system can handle.

Performance issue investigation. Any type of perfor-
mance testing in common with serious result analysis
could be applicable here. Also in some cases, snap-
shot gathering of system characteristics and/or profiling
could be very useful.

Performance Tuning. The goal of performance tuning
is to find optimal OS and Platform/Application settings,
process affinity, and schedule policy for load balancing
with the target of having the best compromise between
performance and availability. The multi-objective op-
timization algorithm can greatly reduce the quantity of
tested input parameter combinations.

This long introduction was intended to explain why we
started to look at performance and availability character-
ization problems and their applications to Linux-based,
carrier-grade servers. Further along in this paper, we
will consider existing approaches and tools and share

one more approach that was successfully used by the
authors in their work.

2 Overview of the existing methods for Perfor-
mance and Availability Characterization

A number of tools and different approaches for perfor-
mance characterization exist and are available for Linux
systems. These tools and approaches target different
problems and use different techniques for extracting
system data to be analyzed as well, and support differ-
ent ways to represent the results of the analysis. For the
simplest cases of investigating performance issues, the
standard Linux tools can be used by anyone. For exam-
ple, the GNU profiler gprof provides basic information
about pieces of code that are consuming more time to
be executed, and which subprograms are being run more
frequently than others. Such information offers under-
standing where small improvements and enhancements
can give significant benefits in performance. The cor-
responding tool kprof gives an opportunity to analyze
graphical representation gprof outputs in form of call-
trees, e.g. comprehensive information about the system
can be received from /proc (a reflection of the system in
memory). Furthermore, for dealing with performance
issues, a variety of standard debugging tools such as in-
strumentation profilers (oprofile which is a system-wide
profiler), debuggers kdb and kgdb, allowing kernel de-
bugging up to source code level as well as probes crash
dumps and many others are described in details in pop-
ular Linux books [3]. These tools are available and pro-
vide a lot of information. At the same time a lot of work
is required to filter out useful information and to analyze
it. The next reasonable step that many people working
on performance measurement and tuning attempt to do
is to create an integrated and preferably automated so-
lution which incorporates in it the best features of the
available standalone tools.

Such tools set of benchmarks and frameworks have ap-
peared such as the well known package lmbench, which
is actually a set of utilities for measurement of such
characteristics as memory bandwidth, context switch-
ing, file system, process creating, signal handling la-
tency, etc. It was initially proposed and used as a univer-
sal performance benchmarking tool for Unix-based sys-
tems. There were several projects intended to develop
new microbenchmark tools on the basis of lmbench in
order to improve measurement precision and applica-
bility for low-latency events by using high-resolution
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timers and internal loops with measurement of the av-
erage length of events calculated through a period of
time, such as Hbench-OS package [4]. It is notice-
able that besides widely used performance benchmarks,
there are examples of availability benchmarks that are
specifically intended to evaluate a system from the high
availability and maintainability point of view by simu-
lating failure situations over a certain amount of time
and gathering corresponding metrics [5].

Frameworks to run and analyze the benchmarks were
the next logical step to customize this time-consuming
process of performance characterization. Usually a
framework is an automated tool providing additional
customization, automation, representation, and analysis
means on top of one or several sets of benchmarks. It
makes process of benchmarking easier, including auto-
mated decision making about the appropriate amount of
cycles needed to get trustworthy results [23].

Therefore, we can see that there are a number of tools
and approaches one may want to consider and use to
characterize a Linux-based system in terms of perfor-
mance. Making the choice we always keep in mind the
main purpose of the performance characterization. Usu-
ally people pursue getting these characteristics in order
to prove or reject the assumption that a particular system
will be able to handle some specific load. So if you are
working on a prototype of a Linux-based server for use
as a wireless base site controller that should handle e.g.
one thousand voice and two thousand data calls, would
you be happy to know from the benchmarks that your
system is able to handle e.g. fifty thousand TCP connec-
tions? The answer isn’t trivial in this case. To make
sure, we have to prepare a highly realistic simulated en-
vironment and run the test with the required number of
voice and data calls. It is not easy, even if the system is
already implemented, because you will have to create or
simulate an external environment that is able to provide
an adequate type and amount of load, and which behaves
similarly to a live wireless infrastructure environment.
In case you are in the design phase of your system, it
is just impossible. You will need to build your conclu-
sion on the basis of a simplified system model. Fortu-
nately, there is another approach—to model the load, not
the system. Looking at the architecture, we can assume
what a specific number of voice and data calls will en-
tail in the system in terms of TCP connections, memory,
timers, and other resources required. Having this kind
of information, we can use benchmarks for the iden-

tified resources and make the conclusion after running
and analyzing these benchmarks on the target HW/SW
platform, without the necessity of implementing the ap-
plication and/or environment. This approach is called
workload characterization [2].

Looking back to the Introduction section, we see that
all the target questions of Performance and Availability
characterization are covered by the tools we have briefly
looked through above. At the same time there is no sin-
gle universal tool that is able to address all these ques-
tions. Further in the paper we are introducing the Perfor-
mance and Availability Characterization (PAC) tool that
combines the essential advantages of all the approaches
considered in this chapter and provides a convenient
framework to perform comprehensive Linux-based plat-
forms characterization for multiple purposes.

3 Architectural Approach

3.1 Experimental Approach

Anyone who is trying to learn about the configuration of
Linux servers running in mission-critical environments
and running complex applications systems will have to
address the following challenges:

• An optimal configuration, suitable for any state of
environmental workload, does not exist;

• Systems are sophisticated: Distributed, Multipro-
cessor, Multithreaded;

• Hundreds or even thousands of configuration pa-
rameters can be changed;

• Parameters can be poorly documented, so the result
of a change for a group of parameters or even single
parameter can be totally unpredictable.

Based on the above described conditions, an analytical
approach is scarcely applicable, because a system model
is not clear. An empirical approach could be more appli-
cable to find optimal configuration of a system, but only
experimental evaluation can be used to validate the cor-
rectness of optimal configuration on a real system. The
heart of PAC is the concept of the experimentation. A
single experiment consists of the following parts:
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• Input parameters: let us call them Xs. Input pa-
rameters are all that you want to set up on a target
system. Typical examples here are Linux kernel
variables, loader settings, and any system or appli-
cation settings.

• Output parameters: let us call them Ys. Output pa-
rameters are all that you want to measure or gather
on a target system: CPU and Memory utilization,
any message throughput and latency, system ser-
vices bandwidth, and more. Sources for Ys could
be: /proc file system, loaders output, profiling
data, and any other system and application output.

• Experiment scenarios: An experiment scenario is a
description of actions which should be executed on
target hosts.

Typical experiment scenario follows a sequence of ac-
tion: setup Xs that can’t be applied on-the-fly (includ-
ing execution required actions to apply such Xs like
restart node or processes, down and up network inter-
faces, etc.), then setup Xs that can be applied on-the-fly
and loader’s Xs, start loaders, next setup Xs like: sched-
ule policy, priority, CPU binding etc., finally collect Ys
such as CPU/Memory usage, stop loaders, and overall
statistics.

Every scenario file may use preprocessor directives and
S-Language statements. S-Language is a script lan-
guage which is introduced specifically for the project.
Both preprocessor and S-Language are described in
more detail following. One of the important parts of the
scenario executor is a dynamic table of variables. Vari-
able is a pair-variable name and variable value. There
are two sources of the variables in the dynamic table:

• Xs (Input variables). They are coming from an ex-
periment.

• Ys (Collected variables). They are coming from
remote hosts.

In the case of input variables, the names of the variables
are provided by the XML-formatted single experiment
file. In the case of collected variables, the names of
the variables are provided by scripts or other executa-
bles on the target hosts’ side. Whenever the same exe-
cutable could be run on many different hosts, a names-
pace mechanism is introduced for the variable names.
A host identifier is used as a namespace of the variable
name.

3.2 Overview of PAC Architecture

Host 1

Test Case

XML

Scenario

SKL

Results

XML

Test Case Processor

ELF

Single Experiment

XML

Experiment Results

XML

Preprocessor 
& substitution logic

ELF

Scenario
Executor

ELF

Scenario  Processor

PAC Engine

Logs

Host 2

Host N

Figure 2: PAC Architecture

A test case consists of a set of experiments. Each ex-
periment is essentially a set of Xs that should be used
while executing a scenario. Set of Xs within one Test
Case boundaries is constant and only values of these Xs
are variable. Each experiment is unambiguously linked
to a scenario. A scenario resides in a separate file or
in a group of files. The PAC engine overall logic is as
follows:

• Takes a test case file;

• For each experiment in the test case, performs the
steps below;

• Selects the corresponding scenario file;

• Executes all the scenario instructions using settings
for fine tuning the execution logic;

• Saves the results into a separate result file;
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• Saves log files where the execution details are
stored.

Test Cases The basic unit of test execution is an experi-
ment. A single experiment holds a list of variables, and
each variable has a unique name. Many experiments
form a test case. The purpose of varying Xs’ values de-
pends on a testing goal. Those Xs’ names are used in
scenarios to be substituted with the values for a certain
experiment.

Scenarios A scenario is a description of actions which
should be executed on target hosts in a sequence or in
parallel in order to set up Xs’ values in accordance with
Test Case/Experiments and gather the values of Ys. The
solution introduces a special language for writing sce-
narios. The language simplifies description of actions
that should be executed in parallel on many hosts, data
collection, variable values, substitution, etc.

Results The results files are similar to Test Case files.
However, they contain set of Ys coming from target
hosts and from input experiment variables (Xs).

The scenario processor consists of two stages, as de-
picted in the figure above. At the bottom line there is a
scenario executor which deals with a single scenario file.
From the scenario executor’s point of view, a scenario is
a single file; however, it is a nice feature to be able to
group scenario fragments into separate files. To support
this feature the preprocessor and substitution logic is in-
troduced in the first stage. The standard C programming
language preprocessor is used at this stage, so anything
which is supported by the preprocessor can be used in a
scenario file. Here is a brief description of the C prepro-
cessor features which is not a complete one and is given
here for reference purposes only:

• Files inclusion;

• Macro substitutions;

• Conditional logic.

Summarizing, the complete sequence of actions is as
follows: The single experiment from the Test Case is ap-
plied to the scenario file. It assumes macro substitutions
of the experiment values (Xs), file inclusions, etc. The
scenario executor follows instructions from the scenario
file. While executing the scenario some variables (Ys)

are collected from target hosts. At the end of the sce-
nario execution, two files are generated: a log file and a
results file. The log file contains the report on what was
executed and when, on which host, as well as the return
codes of the commands. The results file contains a set
of collected variables (Xs and Ys).

The main purpose of the introduced S-Language is to
simplify a textual description of the action sequences
which are being executed consecutively and/or in par-
allel on many hosts. Figure 3 shows an example task
execution sequence.

Task 2

Task 5

Task 4

Task 3

Task 1

(a) Block diagram
TITLE ‘‘Scenario example’’

#include "TestHosts.incl"
#include "CommonDef.incl"

/* Task1 */

WAIT ssh://USER:PASSWD @ {X_TestHost} "set_kernel_tun.sh SEM \
{X_IPC_SEM_KernelSemmni} {X_IPC_SEM_KernelSemopm}"

PARALLEL
{

/* Task2 */
COLLECT @ X_TestHost "sem_loader -d {X_Duration} \
-r {X_IPC_SEM_NumPVOps} -t {X_IPC_SEM_LoaderNumThreads}"

SERIAL
{

/* Task3&4 */
COLLECT @ {X_TestHost} "get_overall_CPUusage.pl -d

{X_Duration}"
COLLECT [exist(Y_Memory_Free)] @ {X_TestHost} \
"get_overall_Memoryusage.pl -d X_Duration"
}

}
/* Task5 */
NOWAIT [IPC_iteration >1] @ {X_TestHost} ‘‘cleanup_timestamps.sh’’

(b) S-Language Code

Figure 3: Scenario Example

ExecCommand is a basic statement of the S-Language.
It instructs the scenario executor to execute a command
on a target host. The non-mandatory Condition ele-
ment specifies the condition on when the command is to
be executed. There are five supported command mod-
ifiers: RAWCOLLECT, COLLECT, WAIT, NOWAIT,
and IGNORE. The At Clause part specifies on which
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host the command should be executed. The At Clause is
followed by a string literal, which is the command to be
executed. Substitutions are allowed in the string literal.

3.3 PAC Agents

We are going to refer to all software objects located
on a target system as PAC agents. The server side of
PAC does not contain any Performance and Availability
specifics, but it is just intended to support any type of
complex testing and test environment. Everybody can
use PAC itself to implement their own scenario and tar-
get agents in order to solve their own specific problem
related to the system testing and monitoring.

PAC agents, which are parts of the PAC tool, are the
following:

• Linux service loaders;

• Xs adjusting scripts;

• Ys gathering scripts.

In this paper, we consider only loaders as more inter-
esting part of PAC agents. The diagram in Figure 4 is
intended to show the common principle of the loader
implementation. Every loader receives a command line

sleep

Base Interval

time

Does not meet

rate requirements

F ( )
{
    for ( NumberOfCycles )
    {
        RequiredFunctionality();
    }
}

F ( )

Time taken 

by F( )
Time 

slice

F (functionality): 
the function that performs a load;
depends on loader type 
(file operations, queue operations, ...)

Rate: 
number of time slices
per base interval

F ( )

Figure 4: Loader Implementation

argument which provides the number of time slices a
base interval (usually one second) is going to be divided
into. For example: <loader> --rate 20 means
that a one-second interval will be divided into 20 slices.

At the very beginning of each time slice, a loader calls
a function which performs a required functionality/load.

The functionality depends on a loader type. For exam-
ple, the file system loader performs a set of file opera-
tions, while the shared memory loader performs a set of
shared memory operations, and so on. If the required
functionality has been executed before the end of the
given time slice, a loader just sleeps until the end of
the slice. If the functionality takes longer than a time
slice, the loader increments the corresponding statistic’s
counter and proceeds.

There are several common parameters for loaders.

Input:

• The first one is a number of threads/processes. The
main thread of each loader’s responsibility is to
create the specified number of threads/processes
and wait until they are finished. Each created
thread performs the loader-specific operations with
the specified rate.

• The second common thing is the total loader work-
ing time. This specifies when a loader should stop
performing operations.

• Loaders support a parameter which provides the
number of operations per one “call of F() function-
ality.” For example, a signal loader takes an argu-
ment of how many signals should be sent per time
slice. This parameter, together with the number of
threads, rate, and number of objects to work with
(like number of message queues), gives the actual
load.

• Besides that, each loader accepts specific parame-
ters (shared memory block size in kilobytes, mes-
sage size, and signal number to send, and so on).

Output:

• Number of fails due to the rate requirement not be-
ing met.

• Statistics—figures which are specific for a loader
(messages successfully sent, operations success-
fully performed, etc.)

The loaders implementation described above allows not
only the identification of Linux service breakpoints, but
also—with help of fine rate/load control—the discovery
of the service behavior at different system loads and set-
tings. The following loaders are available as part of PAC
tool:
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• IPC loaders:

– Shared memory loader;

– Semaphore loader;

– Message queues loader;

– Timer loader.

• CPU loaders:

– CPU loader;

– Signal loader;

– Process loader.

• IP loaders:

– TCP loader;

– UDP loader.

• FS loader (File & Storage);

• Memory loader.

One more PAC agent is PPA (Precise Process Ac-
counting). PPA is a kernel patch that has been con-
tributed by Motorola. PPA enhances the Linux ker-
nel to accurately measure user/system/interrupt time
both per-task and system wide (all stats per CPU).
It measures time by explicitly time-stamping in the
kernel and gathers vital system stats such as system
calls, context switches, scheduling latency, and ad-
ditional ones. More information on PPA is avail-
able from the PPA SourceForge web site: http://
sourceforge.net/projects/ppacc/.

4 Performance and Availability Characteriza-
tion in Use

Let us assume that you already have the PAC tool and
you have decided to use it for your particular task. First
of all, you will have to prepare and plan your experi-
ments:

• Identify list of input parameters (Xs) that you
would like to set up on the target. That could be
kernel parameters, a loader setting like operational
rate, number of processes/threads, CPU binding,
etc.

• Identify list of output parameters (Ys) that you
would like to measure during an experiment: ev-
erything you want to learn about the system when
it is under a given load.

If we are talking about Linux systems, you are lucky
then, because you can find in the PAC toolset all the
necessary components for the PAC agent that have been
already implemented: set scripts for Xs, get scripts for
Ys, and predefined scenarios for Linux’s every service.

If you are not using Linux, you can easily implement
your own scripts, scenarios, and loaders. When you
have identified all the parameters that you want to set up
and measure, you can move on to plan the experiments
to run.

We will start with some semaphore testing for kernels
2.4 and 2.6 on specific hardware. Let’s consider the first
test case (see Table 1). Every single line represents a
single experiment that is a set of input values. You can
see some variation for number of semaphores, operation
rate, and number of threads for the loader; all those val-
ues are Xs. A test case also has names of the values that
should be collected—Ys.

As soon as the numbers are collected, let’s proceed to
the data analysis. Having received results of the experi-
ments for different scenarios, we are able to build charts
and visually compare them. Figure 5 shows an example
of semaphore charts for two kernels: 2.4 on the top, and
2.6 on the bottom. The charts show that kernel 2.4 has a
lack of performance in the case of many semaphores. It
is not easy to notice the difference between the kernels
without having a similar tool for collecting performance
characteristics. The charts in Figure 6 are built from
the same data as the previous charts; however, a CPU
measurement parameter was chosen for the vertical axis.
The charts show that the CPU consumption is consider-
ably less on 2.6 kernel in comparison with 2.4. In the
Introduction section, we presented some challenges re-
lated to performance and availability. In this section, we
will cover how we face these challenges by experiment
planning and appropriate data analysis approach.

Performance Profiling

• Set up predefined/standard configuration for the
kernel and system services.

• Setup loaders to generate the workload as stated in
your requirements.
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30 18 32000 800 1024 300 170 8 1 3 0 0 8061550592 300 52132.7 52132.7 0.0666667
30 19 32000 800 1024 300 300 8 3 0 1 0 8055160832 300 89916.8 89916.8 0
30 20 32000 800 1024 300 800 8 0 3 9 3 8053686272 300 233750 233750 0
30 21 32000 800 1024 300 1700 8 7 0 6 0 8054013952 300 494471 494471 0
30 22 32000 800 1024 300 2000 8 7 14 7 14 8059387904 300 584269 584269 0.0777778
30 23 32000 800 1024 300 2300 8 16 0 8 8 8058470400 300 674156 674156 0.0333333
30 24 32000 800 1024 300 2700 8 19 10 0 9 8062369792 300 791193 791193 0.0666667
30 25 32000 800 1024 1 10000 20 1 0 0 0 8045821952 1 9712.8 9712.8 0
30 26 32000 800 1024 1 50000 20 0 0 0 4 8059224064 1 48474.1 48474.1 0
30 27 32000 800 1024 1 100000 20 8 0 0 0 8068726784 1 96912.2 96912.2 0
30 28 32000 800 1024 1 250000 20 0 21 0 0 8060928000 1 242340 242340 0
30 29 32000 800 1024 1 500000 20 0 41 0 0 8052441088 1 484651 484651 0
30 30 32000 800 1024 1 600000 20 2 47 0 0 8070725632 1 581599 581599 0
30 31 32000 800 1024 1 700000 20 0 57 0 0 8054112256 1 678266 678266 0
30 32 32000 800 1024 1 800000 20 59 0 0 0 8082391040 0 775435 775435 0
30 33 32000 800 1024 100 100 20 0 0 0 0 8063451136 100 9991.11 9991.11 0
30 34 32000 800 1024 100 500 20 1 1 0 0 8058863616 100 50958.4 50958.4 0
30 35 32000 800 1024 100 1000 20 0 0 1 0 8046870528 100 98917.5 98917.5 0
30 36 32000 800 1024 100 2500 20 4 1 3 4 8058142720 100 242667 242667 0
30 37 32000 800 1024 100 5000 20 11 0 0 3 8047525888 100 485289 485289 0
30 38 32000 800 1024 100 6000 20 8 9 0 9 8052932608 100 584133 584133 0

Table 1: Table of Experiments

• Perform experiments.

• Check whether the measured data shows that re-
quirements are met.

Load Testing

• Set up predefined/standard configuration for the
kernel and system services.

• Use a long experiment duration.

• Mix the workload for all available services.

• Vary workloads.

• Vary the number of threads and instances for the
platform component.

• Analyze system behavior.

• Check that Ys are in valid boundaries.

Stress Testing

• Use a high workload.

• Operate by the loader with the target to exhaust
system resources like CPU, memory, disk space,
etc.

• Analyze system behavior.

• Check that all experiments are done and Ys are in
valid boundaries.

Performance tuning

• Plan your experiments from a workload perspec-
tive with the target to simulate a real load on the
system.

• Vary Linux settings, process affinity, schedule po-
lice, number of threads/instances, etc.

• Analyze the results in order to identify the optimal
configuration for your system. Actually we believe
a multi-objective optimization can be very useful
for that. This approach is described in more detail
later on.

System Modeling

• Take a look at your design. Count all the system
objects that will be required from an OS perspec-
tive, like the number of queues, TCP/UDP link,
timers, semaphores, shared memory segment, files,
etc.

• Examine your requirements in order to extrapolate
this on every OS service workload.

• Prepare test case(s).



272 • Performance and Availability Characterization for Linux Servers

(a) kernel 2.4

(b) kernel 2.6

Figure 5: Semaphore chart

• Analyze the obtained results to understand whether
your hardware can withstand your design.

5 Future Plans for Further Approaches Devel-
opment

In its current version, the PAC tool allows us to reach
the goals we set for ourselves, and has a lot of poten-
tial opportunities for further improvements. We realize
a number of areas where we can improve this solution
to make it more and more applicable for a variety of
performance- and availability-related testing.

Through real applications of the PAC tool to existing
telecommunication platforms, we realized that this ap-
proach from the experimental perspective could be very
fruitful. However, we noticed that results may vary de-
pending on the overall understanding and intuition of
the person performing the planning of the experiments.
If a person using PAC does not spend enough time to
investigate the nature of the system, she/he may need
to spend several cycles of experiments-planning before

(a) kernel 2.4

(b) kernel 2.6

Figure 6: CPU usage chart

she/he identifies right interval of system parameters—
i.e., where to search for valuable statistical results. This
is still valuable, but requires the boring sorting of a sig-
nificant amount of statistical information. In reality,
there may be more than one hundred tunable parame-
ters. Some of them will not have any impact on certain
system characteristics; others will certainly have impact.
It is not always easy to predict it just from common per-
spective. An even more difficult task is to imagine and
predict the whole complexity of the inter-relationships
of parameters. Automation of this process seems to be
reasonable here and there is a math theory devoted to
this task that we believe could be successfully applied.

We are talking about multi-parametric optimization. It
is a well described area of mathematics, but many
constraints are applied to make this theory applica-
ble for discrete and non-linear dependencies (which is
true for most of dependencies we can meet in sys-
tem tunable parameters area). We are currently look-
ing for numeric approaches for these kinds of multi-
parametric optimizations—e.g., NOMAD (Nonlinear
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Optimization for Mixed variables and Derivatives) [1],
GANSO (Global And Non-Smooth Optimization) [7],
or ParEGO Hybrid algorithm [14]. A direct search
for the optimal parameters combination would take too
much time (many years) to sort out all possible combi-
nations, even with fewer than one hundred parameters.
Using math theory methods, we will cut the number of
experiments down to a reasonable number and shorten
the test cycle length in the case of using PAC for load
and stress testing purposes.

Our discussion in the previous paragraph is about per-
formance tuning, but it is not the only task that we per-
form using the PAC tool. Another important thing where
the PAC tool is very valuable is the investigation of per-
formance and availability issues. Currently, we perform
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Kst 7 5 5 7 8 8 8
Grace 6 7 8 7 8 6 7
LabPlot 8 2 7 7 8 8 7
KDEedu (KmPlot) 7 2 2 7 2 2 8
Metagraf-3D - - - 2 - - 6
GNUPLOT 6 7 5 8 4 6 4
Root 6 7 8 8 8 8 9

Table 2: Visualization tools

analysis of the results received manually through the use
of packages such as MiniTAB, which in many case is
time consuming. Our plan is to incorporate statistical
analysis methods in the PAC tool in order to allow it to
generate statistical analysis reports and to perform re-
sults visualization automatically by using GNU GSL or
similar packages for data analysis, and such packages as
GNUPLOT, LabPlot, or Root for visualization [9][6].

6 Conclusion

In this paper, we have provided an overview of specific
performance and availability challenges encountered in
Linux servers running on telecommunication networks,
and we demonstrated a strong correlation between these
challenges and the current trend from Linux vendors to
focus on improving the performance and availability of
the Linux kernel.

We have briefly described the existing means to address
basic performance and availability problem areas, and

presented the reason why in each particular case the
set of tools used should be different, as well as men-
tioned that in general the procedure of performance and
availability characterization is very time- and resource-
consuming.

We presented on the need to have a common integrated
approach, i.e., the PAC tool. We discussed the tool ar-
chitecture and used examples that significantly simplify
and unify procedures of performance and availability
characterization and may be used in any target problem
areas starting from Linux platform parameters tuning,
and finishing with load/stress testing and system behav-
ior modeling.
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Abstract

HugeTLBFS was devised to meet the needs of large
database users. Applications use filesystem calls to ex-
plicitly request superpages. This interface has been ex-
tended over time to meet the needs of new users, leading
to increased complexity and misunderstood semantics.
For these reasons, hugeTLBFS is unsuitable for poten-
tial users like HPC, embedded, and the desktop. This
paper will introduce a new interface abstraction for su-
perpages, enabling multiple interfaces to coexist, each
with separate semantics.

To begin, a basic introduction to virtual memory and
how page size can affect performance is described.
Next, the differing semantic properties of common
memory object types will be discussed with a focus on
how those differences relate to superpages. A brief his-
tory of hugeTLBFS and an overview of its design is pre-
sented, followed by an explanation of some of its prob-
lems. Next, a new abstraction layer that enables alter-
native superpage interfaces to be developed is proposed.
We describe some extended superpage semantics and a
character device that could be used to implement them.
The paper concludes with some goals and future work
items.

1 Introduction

Address translation is a fundamental operation in virtual
memory systems. Virtual addresses must be converted
to physical addresses using the system page tables. The
Translation Lookaside Buffer (TLB) is a hardware cache
that stores these translations for quick retrieval. While
system memory sizes increase exponentially, the TLB
has remained small. TLB coverage, the percent of total
virtual memory that can be translated into physical ad-
dresses directly through the cache, has decreased by a
factor of 100 in the last ten years [4]. This has resulted
in a greater number of TLB misses and reduced system
performance.

This paper will discuss extensions provided by hardware
which can serve to alleviate TLB coverage issues. Prop-
erly leveraging these extensions in the operating sys-
tem is challenging due to the persistent trade-offs be-
tween code complexity, performance benefits, and the
need to maintain system stability. We propose an exten-
sible mechanism that enables TLB coverage issues to be
solved without adverse effects.

2 Hardware Management

Virtual memory is a technique employed by most mod-
ern computer hardware and operating systems. The con-
cept can be implemented in many ways but this paper fo-
cuses on the Linux virtual memory manager (VM). The
physical memory present in the system is divided into
equally-sized units called page frames. Memory within
these page frames can be referred to by a hardware-
assigned location called a physical address. Only the
operating system kernel has direct access to page frames
via the physical address. Programs running in user mode
must access memory through a virtual address. This ad-
dress is software-assigned and arbitrary. The VM is re-
sponsible for establishing the mapping from virtual ad-
dresses to physical addresses so that the actual data in-
side of the page frame can be accessed. In addition to
address translation, the VM is responsible for knowing
how each page frame is being used. Quite a few data
structures exist for tracking this information. A page ta-
ble entry (PTE), besides storing a physical address, lists
the access permissions for a page frame. The assigned
permissions are enforced at the hardware level. A struct
page is also maintained for each page frame in the sys-
tem [2]. This structure stores status information such as
the number of current users and whether the page frame
is undergoing disk I/O.

When a program accesses a block of memory for the
first time, a translation will not be available to the CPU
so control is passed to the VM. A page frame is allocated

• 277 •
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for the process and a PTE is inserted into the page ta-
bles. The TLB is filled with the new virtual to physical
translation and execution continues. Subsequent refer-
ences to this page will trigger a TLB look-up in hard-
ware. A TLB hit occurs if the translation is found in
the cache and execution can continue immediately. Fail-
ure to find the translation is called a TLB miss. When a
TLB miss occurs, a significant amount of overhead is
incurred. The page tables must be traversed to find the
page frame which results in additional memory refer-
ences.

The TLB is conceptually a small array, each slot con-
taining translation information for one page of memory.
Over time it has remained small, generally containing
128 or fewer entries [6]. On a system where the page
size is 4 KiB, a TLB with 128 slots could cache transla-
tions for 512 KiB of memory. This calculation provides
a measure of TLB reach. Maximizing TLB reach is a
worthy endeavor because it will reduce TLB misses.

The increasing complexity of today’s applications re-
quire large working sets. A working set is the smallest
collection of information that must be present in main
memory to ensure efficient operation of the program [1].
When TLB reach is smaller than the working set, a prob-
lem may arise for programs that do not exhibit locality
of reference. The principle states that data stored in the
same place is likely to be used at the same time. If a
large working set is accessed sparsely, the limited num-
ber of TLB entries will suffer a cycle of eviction and
refilling called TLB thrashing.

Scientific applications, databases, and various other
workloads exhibit this behavior and the resulting
marginalization of the TLB. One way to mitigate the
problem is to increase TLB reach. As a simple prod-
uct, it can be increased either by enlarging the TLB or
by increasing the page size. Hardware vendors are ad-
dressing the issue by devoting more silicon to the TLB
and by supporting the use of an increasing number of
page sizes. It is up to the operating system to leverage
these hardware features to realize the maximum bene-
fits.

2.1 Superpages

Superpages is the term used to refer to any page with a
size that is greater than the base page size. Significant
research has been done to develop algorithms for, and
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Figure 1: Example page table structure given different
page sizes

measure the performance of superpages. Some work-
loads such as scientific applications and large databases
commonly see gains between 10 and 15 percent when
using superpages. Gains as high as 30% have been mea-
sured in some cases [5]. Superpages are ideal for an
application that has a persistent, large, densely accessed
working set. The best candidates tend to be computa-
tionally intensive.

Virtual memory management with superpages is more
complex. Due to the way a virtual address indexes the
page table structures and the target page, multiple page
sizes necessitate multiple page table formats. Figure 1
contrasts the page table layout for two different page
sizes using the x86 architecture as an example. As the
figure shows, a virtual address is divided into a series of
offsets. The page offset must use enough bits to refer-
ence every byte in the page to which the virtual address
refers. A 4 KiB page requires 12 bits but a 2 MiB page
needs 21. Since, in this example, the virtual address is
only 32 bits, supporting a big page offset necessitates
changes to the other offsets. In this example, the pmd
page table level is simply removed which results in a
two level page table structure the 2 MiB pages.

For most workloads, superpages have no effect or may
actually hinder performance. Due to internal fragmen-
tation, larger page sizes can result in wasted memory
and additional, unnecessary work for the operating sys-
tem. For example, to satisfy security requirements a
newly allocated page must be filled with zeroes before
it is given to a process. Even if the process only intends
to use a small portion of the page, the entire page must
be allocated and zeroed. This condition is worst for ap-
plications that sparsely access their allocated memory.
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Although superpages are complex and improve perfor-
mance only for programs with a specific set of charac-
teristics, where they do help the impact is great. For
this reason, any implementation of superpages should be
flexible to maximize performance potential while plac-
ing as small of a burden on the system as possible.

3 Address Space Management

By insulating the application from the physical mem-
ory layout, the kernel can regulate memory usage to im-
prove security and performance. Programs can be guar-
anteed private memory allowing sharing only under con-
trolled circumstances. Optimizations, such as automat-
ically sharing common read-only data among processes
is made possible. This leads to memory with different
semantic characteristics, two of which are particularly
relevant when discussing superpages and their imple-
mentation in Linux.

3.1 Shared Versus Private

A block of memory can be either shared or private to
a process. When memory is being accessed in shared
mode, multiple processes can read and, depending on
access permissions, write to the same set of pages which
are shared among all the attached processes. This means
that modifications made to the memory by one process
will be seen by every other process using that memory.
This mode is clearly useful for things such as interpro-
cess communication.

Memory is most commonly accessed with private se-
mantics. A private page appears exclusive to one ad-
dress space and therefore only one process may modify
its contents. As an optimization, the kernel may share a
private page among multiple processes as long as it re-
mains unmodified. When a write is attempted on such a
page it must first be unshared. This is done by creating
a new copy of the original page and permitting changes
only to the new copy. This operation is called copy on
write (COW) [2].

3.2 File-backed Versus Anonymous

The second semantic characteristic concerns the source
of the data that occupies a memory area. Memory can
be either file-backed or anonymous. File-backed mem-
ory is essentially an in memory cache of file data from

a disk or other permanent storage. When pages of this
memory type are accessed, the virtual memory manager
transparently performs any disk I/O necessary to ensure
the in memory copy of the data is in sync with the mas-
ter version on disk. Maintaining the coherency of many
copies of the same data is a significant source of com-
plexity in the Linux memory management code.

Anonymous memory areas generally have no associated
backing data store. Under memory pressure, the data
may be associated with a swap file and written out to
disk, but this is not a persistent arrangement as with file-
backed areas. When pages are allocated for this type of
memory, they are filled with zeroes.

Linux is focused on furnishing superpage memory with
anonymous and shared semantics. This means that su-
perpages can be trivially used with only a small subset
of the commonly used memory objects.

3.3 Memory Objects

Memory is used by applications for many different pur-
poses. The application places requirements on each
area, for example the code must be executable and the
data writable. The operating system enforces additional
constraints, such as preventing writes to the code or pre-
venting execution of the stack. Together these define the
required semantics for each area.

The stack is crucial to the procedural programming
model. It is organized into frames, where each frame
stores the local variables and return address for a func-
tion in the active function call chain. Memory in this
area is private and anonymous and is typically no larger
than a few base pages. The access pattern is localized
since executing code tends to only access data in its own
frame at the top of the stack. It is unlikely that such a
small, densely accessed area would benefit from super-
pages.

Another class of objects are the memory resident com-
ponents of an executable program. These can be fur-
ther divided into the machine executable code (text) and
the program variables (data). These objects use file-
backed, private memory. The access pattern depends
heavily on the specific program, but when they are suf-
ficiently large, superpages can provide significant per-
formance gains. The text and data segments of shared
libraries are handled slightly different but have similar
semantic properties to executable program segments.
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The heap is used for dynamic memory allocation such
as with malloc. It is private, anonymous memory and
can be fairly trivially backed with superpages. Programs
that use lots of dynamic memory may see performance
gains from superpages.

Shared memory segments are used for interprocess
communication. Processes attach them by using a
global shared memory identifier. Database management
systems use large shared memory segments to cache
databases in memory. Backing that data with super-
pages has demonstrated substantial benefits and inspired
the inclusion of superpage support in Linux.

It is already possible to use superpages for some mem-
ory types directly. Shared memory segments and spe-
cial, explicit memory maps are supported. By using li-
braries, superpages can be extended in a limited way to
a wider variety of memory objects such as the heap and
program segments.

4 Introduction to HugeTLBFS

In 2002, developers began posting patches to make su-
perpages available to Linux applications. Several ap-
proaches were proposed and, as a result of the ensuing
discussions, a set of requirements evolved. First and
foremost, the existing VM code could not be unduly
complicated by superpage support. Second, databases
were the application class most likely to benefit from
superpage usage at the time, so the interface had to be
suitable for them. HugeTLBFS was deemed to satisfy
these design requirements and was merged at the end of
2002.

HugeTLBFS is a RAM-based filesystem. The data
it contains only exists within superpages in mem-
ory. There is no backing store such as a hard disk.
HugeTLBFS supports one page size called a huge page.
The size of a huge page varies depending on the archi-
tecture and other factors. To access huge page backed
memory, an application may use one of two methods.
A file can be created and mmap()ed on a mounted
hugeTLBFS filesystem, or a specially created shared
memory segment can be used. HugeTLBFS continues to
serve databases well, but other applications use memory
in different ways and find this mechanism unsuitable.

The last few years have seen a dramatic increase in en-
thusiasm for superpages from the scientific community.
Researchers run multithreaded jobs to process massive
amounts of data on fast computers equipped with huge
amounts of memory. The data sets tend to reside in
portions of memory with private semantics such as the
BSS and heap. Heavy usage of these memory areas is a
general characteristic of the Fortran programming lan-
guage. To accommodate these new users, private map-
ping support was added to hugeTLBFS in early 2006.
LibHugeTLBFS was written to facilitate the remapping
of executable segments and heap memory into huge
pages. This improved performance for a whole new
class of applications, but for a price.

For shared mappings, the huge pages are reserved at cre-
ation time and are guaranteed to be available. Private
mappings are subject to non-deterministic COW opera-
tions which make it impossible to determine the number
of huge pages that will actually be needed. For this rea-
son, successful allocation of huge pages to satisfy a pri-
vate mapping is not guaranteed. Huge pages are a scarce
resource and they frequently run out. If this happens
while trying to satisfy a huge page fault, the application
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will be killed. This unfortunate consequence makes the
use of private huge pages unreliable.

The data mapped into huge pages by applications is ac-
cessible in files via globally visible mount points. This
makes it easy for any process with sufficient privileges
to read, and possibly modify, the sensitive data of an-
other process. The problem can be partially solved
through careful use of multiple hugeTLBFS mounts
with appropriate permissions. Despite safe file per-
missions, an unwanted covert communication channel
could still exist among processes run by the same user.

HugeTLBFS has become a mature kernel interface with
countless users who depend on consistency and stability.
Adapting the code for new superpage usage scenarios,
or even to fix the problems mentioned above has become
difficult. As hardware vendors make changes to solve
TLB coverage issues such as adding support for multiple
superpage sizes, Linux is left unable to capitalize due to
the inflexibility of the hugeTLBFS interface.

For a real example of these problems, one must
only look back to the addition of demand faulting
to hugeTLBFS. Before enablement of this feature,
huge pages were always prefaulted. This means that
when huge pages were requested via an mmap() or
shmat() system call, all of them were allocated and
installed into the mapping immediately. If enough pages
were not available or some other error occurred, the sys-
tem call would fail right away. Demand faulting de-
lays the allocation of huge pages until they are actually
needed. A side effect of this change is that huge page
allocation errors are delayed along with the faults.

A commercial database relied on the strict accounting
semantics provided by prefault mode. The program
mapped one huge page at a time until it failed. This ef-
fectively reserved all available huge pages for use by the
database manager. When hugeTLBFS switched to de-
mand faulting, the mmap() calls would never fail so the
algorithm falsely assumed an inflated number of huge
pages were available and reserved. Even with a smarter
huge page reservation algorithm, the database program
could be killed at a non-deterministic point in the future
when the huge page pool is exhausted.

5 Page Table Abstraction

HugeTLBFS is complex and its semantics are rigid.
This makes it an unsuitable vehicle for future develop-
ment. To quantify the potential benefits of expanded
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Figure 3: How hugeTLBFS interacts with the rest of the
kernel

superpage usage, a mechanism for testing competing
and potentially incompatible semantics and interfaces
is needed. Making this possible requires overriding the
superpage-related special cases that are currently hard-
wired to hugeTLBFS.

In finding a solution to this problem, it is important to
remember the conditions that grounded the development
of hugeTLBFS. Additional complexity cannot be added
to the VM. Transparent, fully-integrated superpage sup-
port is thus an unrealistic pursuit. As with any kernel
change, care must be taken to not disturb existing users.
The behavior of hugeTLBFS must not change and per-
formance regressions of any kind must be avoided. Fur-
ther, a complete solution must fully abstract existing
special cases but remain extensible.

Like any other filesystem, hugeTLBFS makes use of
an abstraction called the virtual filesystem (VFS) layer.
This object-oriented interface is what makes it possible
for the VM to consistently interact with a diverse array
of filesystems. Many of the special cases introduced by
supporting superpages are hidden from the VM through
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hugeTLBFS’ effective use of the VFS API. This inter-
face was not designed to solve page size issues so some
parts of the kernel remain hugeTLBFS-aware. Most of
these cases are due to the need for an alternate page table
format for superpages. Figure 3 shows how hugeTLBFS
fits into the VFS layer as compared to other filesystems.

Taking the VFS layer as inspiration, we propose an ab-
straction for page table operations that is capable of un-
wiring the remaining hugeTLBFS-specific hooks. It is
simply a structure of six function pointers that fully rep-
resent the set of special page table operations needed.

fault() is called when a page fault occurs somewhere
inside a VMA. This function is responsible for finding
the correct page and instantiating it into the page tables.

copy_vma() is used during fork to copy page table
entries from a VMA in the parent process to a VMA in
the child process.

change_protection() is called to modify the pro-
tection bits of PTEs for a range of memory.

pin_pages() is used to instantiate the pages in a
range of userspace memory. The kernel is not gen-
erally permitted to take page faults. When accessing
userspace, the kernel must first ensure that all pages in
the range to be accessed are present.

unmap_page_range() is needed when unmapping
a VMA. The page tables are traversed and all instan-
tiated pages for a given memory range are unmapped.
The PTEs for the covered range are cleared and any
pages which are no longer in use are freed.

free_pgtable_range() is called after all of the
PTEs in a mapping are cleared to release the pages that
were used to store the actual page tables.

5.1 Evaluating the Solution

The page table operations produce a complete and ex-
tensible solution. All the infrastructure is in place to
enable hugeTLBFS to be built as a module, further sep-
arating it from the core VM. Other independent super-
page interface modules can be added to the system with-
out causing interference.

The implementation is simple. The existing,
hugeTLBFS page table manipulation functions are

collected into an operations structure without modi-
fying them in any way. Instead of calling hard-wired
functions, the function to call is looked up in the page
table operations. Changing only these two elements
ensures that hugeTLBFS behavior is unchanged.

Superpages exist solely for performance reasons so an
implementation that is inefficient serves only to under-
mine its own existence. Two types of overhead are
considered with respect to the proposed changes. One
pointer will be added to the VMA. Already, this struc-
ture does not fit into a cache line on some CPUs, so
care must be taken to place the new field at a sensi-
ble offset within the structure definition. To this end,
the pagetable_ops pointer has been placed near the
vm_ops and vm_flags fields, which are also used
frequently when manipulating page tables.

The second performance consideration is related to the
pointer indirection added when a structure of function
pointers is used. Instead of simply jumping to an ad-
dress that can be determined at link time, a small amount
of additional work is required. The address of the as-
signed operations is looked up in the VMA. This ad-
dress, plus an offset, is dereferenced to yield the ad-
dress of the function to be called. VMAs that do not
implement the page table operations do not incur any
overhead. Instead of checking vm_flags for VM_
HUGETLB, pagetable_ops is checked for a NULL
value.

6 Using the Abstraction Interface

With a small amount of simple abstraction code, the ker-
nel has become more flexible and is suitable for further
superpage development. HugeTLBFS and its existing
users remain undisturbed and performance of the sys-
tem has not been affected in any measurable way. We
now describe some possible applications of this new ex-
tensible interface.

A character device is an attractive alternative to the
existing filesystem interface for several reasons. Its
semantics provide a more natural and secure method
for allocating anonymous, private memory. The inter-
face code is far simpler than that of hugeTLBFS which
makes it a much more agile base for the following ex-
tensions.

The optimal page size for a particular memory area de-
pends on many factors such as: total size, density of
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struct pagetable_operations_struct page_pagetable_ops = {
.copy_vma = copy_hugetlb_page_range,
.pin_pages = follow_hugetlb_page,
.unmap_page_range = unmap_hugepage_range,
.change_protection = hugetlb_change_protection,
.free_pgtable_range = hugetlb_free_pgd_range,
.fault = page_fault,

};

Figure 4: A sample page table operations structure

access, and frequency of access. If the page size is
too small, the system will have to service more page
faults, the TLB will not be able to cache enough virtual
to physical translations, and performance will suffer. If
the page size is too large, both time and memory are
wasted. On the PowerPC R© architecture, certain proces-
sors can use pages in sizes of 4KiB, 64KiB, 16MiB, and
larger. Other platforms can also support more than the
two page sizes Linux allows. Architecture specific code
can be modified to support more than two page sizes at
the same time. Fitted with a mechanism to set the de-
sired size, a character device will provide a simple page
allocation interface and make it possible to measure the
effects of different page sizes on a wide variety of appli-
cations.

Superpages are a scarce resource. Fragmentation of
memory over time makes allocation of large, contiguous
blocks of physical memory nearly impossible. Without
contiguous physical memory, superpages cannot be con-
structed. Unlike with normal pages, swap space cannot
be used to reclaim superpages. One strategy for dealing
with this problem is demotion. When a superpage al-
location fails, a portion of the process’ memory can be
converted to use normal pages. This allows the process
to continue running in exchange for a sacrifice of some
of the superpage performance benefits.

Selecting the best page size for the memory areas of a
process can be complex because it depends on factors
such as application behavior and the general system en-
vironment. It is possible to let the system choose the
best page size based on variables it can monitor. For ex-
ample, a population map can be used to keep track of
allocated base pages in a memory region [5]. Densely
populated regions could be promoted to superpages au-
tomatically.

6.1 A Simple Character Device

The character device is a simple driver modeled after
/dev/zero. While the basic functionality could be
implemented via hugeTLBFS, that would subject it to
the functional limitations previously described. Addi-
tionally, it could not be used to support development of
the extensions just described. For these reasons, the im-
plementation uses page table abstraction and is indepen-
dent of hugeTLBFS.

The code is self contained and can be divided into three
distinct components. The first component is the stan-
dard infrastructure needed by all drivers. This device
is relatively simple and needs only a small function to
register with the driver layer.

The second component is the set of device-specific
structures that define the required abstracted operations.
Figure 4 shows the page table operations for the charac-
ter device. Huge page utility functions are already well
separated from the hugeTLBFS interface which makes
code reuse possible. Five of the six page table opera-
tions share the same functions used by hugeTLBFS.

The third component is what makes this device unique.
It handles page faults differently than hugeTLBFS so
a special fault() function is defined in the page
table operations. This function is simpler than the
hugeTLBFS fault handler because it does not need to
handle shared mappings or filesystem operations such
as truncation. Most of the proposed semantic changes
can be implemented by further modifying the fault han-
dler.

7 Conclusions

The page table operations abstraction was developed
to enable advanced superpage development and work
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around some problems in hugeTLBFS. It does not alter
the behavior of the current interface nor complicate the
kernel in any significant way. No performance penalty
could be measured. Work on the topics previously de-
scribed can now begin.

The described changes have also led to some general
improvements in the way hugeTLBFS interacts with
the rest of the kernel. By collecting a set of dispersed
hugeTLBFS-specific page table calls into one structure,
the list of overloaded operations becomes clear. This
API, when coupled with other pending cleanups, re-
moves hard-coded special cases from the kernel. The
result is a hugeTLBFS implementation that is even fur-
ther “on the side” and decoupled from the core memory
manager.

8 Future Work

During development of the page table abstraction inter-
face and the character device, a few additional oppor-
tunities to clean up the interface between hugeTLBFS
and the rest of the kernel became apparent. Every effort
should be made to extricate the remaining hugeTLBFS
special cases from the kernel. Moving superpage-
related logic behind the appropriate abstractions makes
for a simpler VM and at the same time enables richer
superpage support.

The work presented in this paper enables a substantial
body of research and development using Linux. We
intend to implement different superpage semantics and
measure their performance effects across a variety of
workloads and real applications. If good gains can be
achieved with reasonable code we hope to see those
gains realized outside of our incubator in production
kernels.

A separate effort to reduce memory fragmentation is un-
derway [3]. If this body of work makes it into the kernel,
it will have a positive effect on the usability of super-
pages in Linux. When contiguous blocks of physical
memory are readily available, superpages can be allo-
cated and freed as needed. This makes them easier to
use in more situations and with greater flexibility. For
example, page size promotion and demotion become
more effective if memory can be allocated directly from
the system instead of from the static pool of superpages
that exists today.
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Abstract

The paper outlines various means of resource man-
agement available in the Linux kernel, such as per-
process limits (the setrlimit(2) interface), shows
their shortcomings, and illustrates the need for another
resource control mechanism: beancounters.

Beancounters are a set of per-process group parameters
(proposed and implemented by Alan Cox and Andrey
Savochkin and further developed for OpenVZ) which
can be used with or without containers.

Beancounters history, architecture, goals, efficiency, and
some in-depth implementation details are given.

1 Current state of resource management in the
Linux kernel

Currently the Linux kernel has only one way to con-
trol resource consumption of running processes—it is
UNIX-like resource limits (rlimits).

Rlimits set upper bounds for some resource usage pa-
rameters. Most of these limits apply to a single process,
except for the limit for the number of processes, which
applies to a user.

The main goal of these limits is to protect processes
from an accidental misbehavior (like infinite memory
consumption) of other processes. A better way to or-
ganize such a protection would be to set up a minimal
amount of resources that are always available to the pro-
cess. But the old way (specifying upper limits to catch
some cases of excessive consumption) may work, too.

It is clear that the reason for introducing limits was
the protection against an accidental misbehavior of pro-
cesses. For example, there are separate limits for the
data and stack size, but the limit on the total memory
consumed by the stack, data, BSS, and memory mapped
regions does not exist. Also, it is worth to note that the

RLIMIT_CORE and RLIMIT_RSS limits are mostly
ignored by the Linux kernel.

Again, most of these resource limits apply to a single
process, which means, for example, that all the memory
may be consumed by a single user running the appropri-
ate number of processes. Setting the limits in such a way
as to have the value of multiplying the per-process limit
by the number of processes staying below the available
values is impractical.

2 Beancounters

For some time now Linus has been accepting patches
adding the so-called namespaces into the kernel.
Namespaces allow tasks to observe their own set of par-
ticular kernel objects such as IPC objects, PIDs, network
devices and interfaces, etc. Since the kernel provides
such a grouping for tasks, it is necessary to control the
resource consumption of these groups.

The current mainline kernel lacks the ability to track the
kernel resource usage in terms of arbitrary task groups,
and this ability is required rather badly.

The list of the resources that the kernel provides is huge,
but the main resources are:

• memory,

• CPU,

• IO bandwidth,

• disk space,

• Networking bandwidth.

This article describes the architecture, called “bean-
counters,” which the OpenVZ team proposes for con-
trolling the first resource (memory). Other resource con-
trol mechanisms are outside the scope of this article.

• 285 •
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2.1 Beancounters history

All the deficiencies of the per-process resource account-
ing were noticed by Alan Cox and Andrey Savochkin
long ago. Then Alan introduced an idea that crucial ker-
nel resources must be handled in terms of groups and set
the “beancounter” name for this group. He also stated
that once a task moves to a separate group it never comes
back and neither do the resources allocated on its re-
quests.

These ideas were further developed by Andrey Sav-
ochkin, who proposed the first implementation of bean-
counters [UB patch]. It included the tracking of process
page tables, the numbers of tasks within a beancounter,
and the total length of mappings. Further versions in-
cluded such resources as file locks, pseudo terminals,
open files, etc.

Nowadays the beancounters used by OpenVZ control
the following resources:

• kernel memory,

• user-space memory,

• number of tasks,

• number of open files and sockets,

• number of PTYs, file locks, pending signals, and
iptable rules,

• total size of network buffers,

• active dentry cache size, i.e. the size of the dentries
that cannot be shrunk,

• dirty page cache that is used to track the IO activity.

2.2 The beancounters basics

The core object is the beancounter itself. The bean-
counter represents a task group which is a resource con-
sumer.

Basically a beancounter consists of an ID to make it
possible to address the beancounter from user space for
changing its parameters and the set of usage-limit pairs
to control the usage of several kernel resources.

More precisely, each beancounter contains not just
usage-limit pairs, but a more complicated set. It in-
cludes the usage, limit, barrier, fail counter, and max-
imal usage values.

The notion of “barrier” has been introduced to make it
possible to start rejecting the allocation of a resources
before the limit has been hit. For example when a bean-
counter hits the mappings barrier, the subsequent sbrk
and mmap calls start to fail, although execve, which
maps some areas, still works. This allows the adminis-
trator to “warn” the tasks that a beancounter is short of
resources before the corresponding group hits the limit
and the tasks start dying due to unrecoverable rejections
of resource allocation.

Allocating a new resource is preceded by “charging” it
to the beancounter the current task belongs to. Essen-
tially the charging consists of an atomic checking that
the amount of resource consumed doesn’t exceed the
limit, and adding the resource size to the current usage.

Here is a list of memory resources controlled by the
beancounters subsystem:

• total size of allocated kernel space objects,

• size of network buffers,

• lengths of mappings, and

• number of physical pages.

Below are some details on the implementation.

3 Memory management with beancounters

This section describes the way beancounters are used to
track memory usage. The kernel memory is accounted
separately from the userspace one. First, the userspace
memory management is described.

3.1 Userspace memory management

The kernel defines two kinds of requests related to mem-
ory allocation.

1. The request to allocate a memory region for phys-
ical pages. This is done via the mmap(2) system
call. The process may only work within a set of
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mmap-ed regions, which are called VMAs (virtual
memory areas). Such a request does not lead to al-
location of any physical memory to the task. On
the other hand, it allows for a graceful reject from
the kernel space, i.e. an error returned by the sys-
tem call makes it possible for the task to take some
actions rather than die suddenly and silently.

2. The request to allocate a physical page within one
of the VMAs created before. This request may also
create some kernel space objects, e.g. page tables
entries. The only way to reject this request is to
send a signal—SEGV, BUS, or KILL—depending
on the failure severity. This is not a good way of
rejecting as not every application expects critical
signals to come during normal operation.

The beancounters introduce the “unused page” term
to indicate a page in the VMA that has not yet been
touched, i.e. a page whose VMA has already been al-
located with mmap, but the page itself is not yet there.
The “used” pages are physical pages.

Kernel VMAs may be classified as:

• reclaimable VMAs, which are backed by some file
on the disk. For example, when the kernel needs
some more memory, it can safely push the pages
from this VMA to the disk with almost no limita-
tion.

• unreclaimable VMAs, which are not backed by any
file and the only way to free the pages within such
VMAs is push the page to the swap space. This
way has certain limitations in that the system may
have no swap at all or the swap size may be too
small. The reclamation of pages from this kind of
VMAs is more likely to fail in comparison with the
previous kind.

In the terms defined above, the OpenVZ beancounters
account for the following resources:

• the number of used pages within all the VMAs,

• the sum of unused and used pages within unre-
claimable VMAs and used pages in reclaimable
VMAs.
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Figure 1: User space memory management

The first resource is account-only (i.e. not limited) and is
called “physpages.” The second one is limited in respect
of only unused pages allocation and is called “privvm-
pages.” This is illustrated in Figure 1.

The only parameter that remains unlimited—the size of
pages touched from a disk file—does not create a secu-
rity hole since the size of files is limited by the OpenVZ
disk quotas.

3.2 Physpages management

While privvmpages accounting works with whole
pages, physpages accounts for page fractions in the case
some pages are shared among beancounters [RSS]. This
may happen if a task changes its beancounter or if tasks
from different groups map and use the same file.

This is how it works. There is a many-to-many depen-
dence between the mapped pages and the beancounters
in the system. This dependence is tracked by a ring of
page beancounters associated with each mapped page
(see Figure 2). What is important is that each page has
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its associated circular list of page beancounters and the
head of this list has a special meaning.

page

. . .

BC2BC1

BC3

BCN

Figure 2: Page shared among beancounters

Naturally, if a page is shared among N beancounters,
each beancounter is to get a 1

N -th part of it. This ap-
proach would be the most precise, but also the worst,
because adding a page to a new beancounter would re-
quire an update of all the beancounters among which the
page is already shared.

Instead of doing that, parts of the page equal to

1
2shi f t(page,beancounter)

are charged, where shi f t(page,beancounter) is calcu-
lated for

∑
beancounters

1
2shi f t(page,beancounter) = 1

to be true for each page.

When mapping a page into a new beancounter, half of
the part charged to the head of the page’s beancounters
list is moved to the new beancounter. Thus when the
page is sequentially mapped to 4 different beancounters,
its fractions would look like

bc1 bc2 bc3 bc4
1 1

2 1
2

1
2

3 1
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1
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4 1
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When unmapping a page from a beancounter, the frac-
tion of the page charged to this beancounter is returned
to one or two of the beancounters on the page list.

For example, when unmapping the page from bc4 the
fractions would change like

{1
4
,
1
4
,
1
4
,
1
4
}→ {1

2
,
1
4
,
1
4
}

ı.e. a fraction from bc4 was added to only one
beancounter—bc3.

Next, when unmapping the page from bc3 with fraction
of 1

2 its charge will be added to two beancounters to keep
fractions be the powers of two:

{1
2
,
1
4
,
1
4
}→ {1

2
,
1
2
}

With that approach the following has been achieved:

• algorithm of adding and removing references to
beancounters has O(1) complexity;

• the sum of the physpages values from all the bean-
counters is the number of RAM pages actually used
in the kernel.

3.2.1 Dirty page cache management

The above architecture is used for dirty page cache and
thus IO accounting.

Let’s see how IO works in the Linux kernel [RLove].
Each page may be either clean or dirty. Dirty pages are
marked with the bit of the same name and are about to
be written to disk. The main point here is that dirtying
a page doesn’t imply that it will be written to disk im-
mediately. When the actual writing starts, the task (and
thus the beancounter) that made the page dirty may al-
ready be dead.

Another peculiarity of IO is that a page may be marked
as dirty in a context different from the one that really
owns the page. Arbitrary pages are unmapped when the
kernel shrinks the page cache to free more memory. This
is done by checking the pte dirty flag set by a CPU.

Thus it is necessary to save the context in which a page
became dirty until the moment the page becomes clean,
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i.e. its data is written to disk. To track the context in
question, an IO beancounter is added between the page
and its page beancounters ring (see Figure 3). This IO
beancounter keeps the appropriate beancounter while
the page stays dirty.

page

IO

. . .

BC2BC1

BC3

BCN

Figure 3: Tracking the dirtier of the page

To determine the context of a page, the page bean-
counter ring mentioned above is used. When a page
becomes dirty in a synchronous context, e.g. a regular
write happens, the current beancounter is used. When
a page becomes dirty in an arbitrary context, e.g. from
a page shrinker, the first beancounter from this ring is
used.

3.3 Kernel memory management

Privvmpages allow a user to track the memory usage
of tasks and give the applications a chance for a grace-
ful exit rather than being killed, but they do not provide
any protection. Kernel memory size—the “kmemsize”
in the beancounters terms—is the way to protect the sys-
tem from a DoS attack from userspace.

The kernel memory is a scarce resource on 32-bit sys-
tems due to the limited normal zone size. But even on
64-bit systems, applications causing the kernel to con-
sume the unlimited amount of RAM can easily DoS it.

There is a great difference between the user memory and

the kernel memory which results in dramatic difference
in implementation.

When a user page is freed, the task and thus the bean-
counter it belongs to is always well known. When a ker-
nel space object is freed, the beancounter it belongs to is
almost never known due to refcounting mechanism and
RCU. Thus each kernel object should carry a pointer on
the beancounter it was allocated by.

The way beancounters store this pointer differs between
different techniques of allocating objects.

There are three mechanisms for object allocation in the
kernel:

1. buddy page allocator – the core mechanism used
directly and by the other two. To track the bean-
counter of the directly allocated page there is an
additional pointer on struct page. Another
possible way would be to allocate a mirrored to
mem_map array of pointers, or reuse mapping
field on struct page.

2. vmalloc – To track the owner of vmalloc-ed object
the owner of the first (more precisely—the zeroth)
page is used. This is simple as well.

3. kmalloc – the way to allocate small objects (down
to 32 bytes of size). Many objects allocated with
kmalloc must be tracked and thus have a pointer
to the corresponding beancounter. First versions
of beancounters changed such objects explicitly by
adding struct beancounter *owner field
in structures. To unify this process in new ver-
sions, mm/slab.c is modified by adding an ar-
ray of pointers on beancounters at the tail of each
slab (see Figure 4). This array is indexed with the
sequence number of the object on the slab.

Such an architecture has two potential side effects:

1. slabs will become shorter, i.e. one slab will carry
less objects than it did before; and

2. slabs may become “offslab” as the gap will exceed
the offslab border.

Table 1 shows the results for size-X caches. As seen
from this table less than 1% of available objects from
“on-page” slabs are lacking. “Offslab” caches do not
lack any objects and no slabs become offslab.
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Figure 4: Extending a slab for the kernel memory track-
ing

Slab size
# of objects offslab-ness

before after before after
size-32 113 101 − −
size-64 59 56 − −
size-128 30 29 − −
size-256 15 15 − −
size-512 8 8 + +
size-1024 4 4 + +
size-2048 2 2 + +
size-4096 . . . 1 1 + +

Table 1: The comparison of size-X caches with and
without beancounters patch

3.4 Network buffers management

Network buffers management [AFTM] fundamentally
differs for the send and receive buffers. Basically, the
host does not control the incoming traffic and fully con-
trol the outgoing traffic.

Unfortunately, the mainstream kernel socket accounting
mechanism cannot be reused, as it has known deficien-
cies:

• slab overhead is not included into the accounted
packet size. For Ethernet the difference is around
25%–30% as size-2048 slab is used for pack-
ets. Unfortunately, skb->truesize calcula-
tions can’t be changed without massive TCP/IP

stack fix, as this would lead to serious performance
degradation due to TCP window reduction; and

• the accounting is not strict, and limits can be over-
used.

3.4.1 Send buffer space

TCPv4 now and TCPv6 with DCCP in the future are
accounted separately from all the other outgoing traffic.
Only the packets residing in the socket send queue are
charged since skb “clones” sent to device for transmis-
sion have a very limited lifetime.

Netlink send operations charging is not uniform in re-
spect to send direction. The buffers are charged for user
socket only even if they are sent from the kernel. This is
fair as, usually, data stream from the kernel to a user is
initiated by the user.

Beancounters track memory usage with the appropriate
overheads on per-socket basis. Each socket has a guar-
antee calculated as

limit−barrier
Nsockets

,

where Nsockets is the limit of sockets of appropriate type
on the beancounter.

Beancounters don’t break a semantics of the select
system call, i.e. if it returns that the socket can be writ-
ten to, write will send at least one byte. To achieve
this goal an additional field for the socket structure had
been introduced, namely, poll_reserve. So, actual
resource usage is shown as

∑
s∈sockets

(spoll_reserv + ∑
skb∈swrite_queue

skbsize)

3.4.2 Receive buffer space

Management of the receive buffers for non-TCP sockets
is simple. Incoming packets are simply dropped if the
limit is hit. This is normal for raw IP sockets and UDP,
as there is no protocol guarantee that the packet will be
delivered.

Though, there is a problem with the netlink sockets. In
general, the user (ip or similar tool) sends a request
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to the kernel and starts waiting for an answer. The an-
swer may never arrive as the kernel does not retransmit
netlink responses. Though, the practical impact of this
deficiency is acceptable.

TCP buffer space accounting is mostly the same except
for the guarantee for one packet. The amount equal
to Nsockets ∗max_advmss is reserved for this purpose.
Beancounters rely on the generic code for TCP window
space shrinking. Though, a better window management
policy for all sockets inside a beancounter is being in-
vestigated.

4 Performance

The OpenVZ team spent a lot of time improving the per-
formance of the beancounters patches. The following
techniques are employed:

• Pre-charging of resources on a task creation.
When the task later tries to charge a new portion
of resource, it may take the desired amount from
this reserve. The same technique is used in net-
work buffers accounting, but pre-charge is stored
on socket.

• On-demand accounting. Per-group accounting
is not performed when the overall resource con-
sumption is low enough. When a system becomes
low of some resource per-beancounter accounting
is turned on and vice-versa—when a system has a
lot of free resources, per-beancounter accounting is
turned off. Nevertheless this switch is rather slow
as it implies seeking for all resources belonging to
a beancounter and thus it should happen rarely.

Test name Vanilla OVZ %
Process Creation 7456 7288 97%
Execl Throughput 2505 2490 99%
Pipe Throughput 4071 4084 100%
Shell Scripts 4521 4369 96%
File Read 1051 1041 99%
File Write 1070 1086 101%

Table 2: Unixbench results comparison (p.1)

The results of unixbench test are shown for the follow-
ing kernels:

Test name Vanilla OVZ %
Process Creation 7456 6788 91%
Execl Throughput 2505 2290 91%
Pipe Throughput 4071 4064 99%
Shell Scripts 4521 3969 87%
File Read 1051 1031 98%
File Write 1070 1066 99%

Table 3: Unixbench results comparison (p.2)

• Vanilla 2.6.18 kernel,

• OpenVZ 2.6.18-028stab025 kernel,

• OpenVZ 2.6.18-028stab025 kernel without pages
sharing accounting.

Tests were run on Dual-Core Intel® Xeon™ CPU
3.20GHz machine with 3Gb of RAM.

Table 2 shows the results of comparing the vanilla ker-
nel against the OpenVZ kernel without page-sharing ac-
counting; and Table 3, for the vanilla kernel against the
full beancounters patch.

5 Conclusions

Described in this article is the memory management
made in “beancounters” subsystem. The userspace
memory including RSS accounting and the kernel mem-
ory including network buffers management were de-
scribed.

Beancounters architecture has proven its efficiency and
flexibility. It has been used in OpenVZ kernels for all
the time OpenVZ project exists.

The questions that are still unsolved are:

• TCP window management based on the bean-
counter resource availability;

• on-demand RSS accounting; and

• integration with the mainstream kernel.
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Abstract

Virtual Appliances are a relatively new phenomenon,
and expectations vary widely on their use and precise
benefits. This paper details some usage models, how re-
quirements vary depending on the environment the ap-
pliance runs in, and the challenges connected to them.
In particular, appliances for the enterprise have to fit
into already existing infrastructure and work with ex-
isting sitewide services such as authentication, logging,
and backup.

Appliances can be most simply distributed and deployed
as binary images; this requires support in existing tools
and a metadata format to describe the images. A sec-
ond approach, basing appliances entirely on a metadata
description that includes their setup and configuration,
gives users the control they need to manage appliances
in their environment.

1 Introduction

Virtual Appliances promise to provide a simple and
cost-efficient way to distribute and deploy applications
bundled with the underlying operating system as one
unit. At its simplest, an appliance consists of disk im-
ages and a description how these disk images can be
used to create one or more virtual machines that pro-
vide a particular function, such as a routing firewall, or a
complete webmail system. Distributing a whole system
instead of an application that the end user has to install
themselves has clear benefits: installing the appliance is
much simpler than setting up an application, the appli-
ance supplier tests the appliance as a whole, and tunes
all its components for the appliance’s needs. In addi-
tion, appliances leave the appliance supplier much more
latitude in the selection of the underlying operating sys-
tem; this is particularly attractive for applications that
are hard to port even amongst successive versions of the
same distribution.

In addition to these installation-related benefits, some
of the more general benefits of virtualization make ap-
pliances attractive, especially hardware isolation, better
utilization of existing systems, and isolation of applica-
tions for improved security and reliability.

Because of their novelty, there is little agreement on
what kind of appliance is most beneficial in which sit-
uation, how different end user requirements influence
the tooling around appliances, and how users deploy and
maintain their appliances. Examples of applications that
are readily available as appliances range from firewalls
and asterisk-based VoIP appliances, to complete Wikis
and blogs, and database servers and LAMP stacks.

A survey of existing appliances makes one thing clear:
there are many open questions around appliances; for
them to fulfill their potential, these questions must be
answered, and those answers must be backed by work-
ing, useful tools.

Comparing how current Linux distributions are built,
delivered and managed to what is available for appli-
ances points to many of these shortcomings: installing
an appliance is a completely manual process, getting
it to run often requires an intimate understanding of
the underlying virtualization platform, and the ability
to configure the virtual machine for the appliance man-
ually; managing it depends too often on appliance-
specific one-off solutions. As an example, for an ap-
pliance based on paravirtualized Xen, the host and the
appliance must agree on whether to use PAE or not, a
build-time configuration. A mismatch here leads to an
obscure error message when the appliance is started. As
another example, in an effort to minimize the size of the
appliance image, appliance builders sometimes strip out
vital information such as the package database, making
it impossible to assess whether the appliance is affected
by a particular security vulnerability, or, more impor-
tantly, update it when it is.

In addition, appliances bring some problems into the

• 293 •
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spotlight that exist for bare-metal deployments, too, but
are made more pressing because appliances rely on the
distribution of entire systems. The most important of
these problems is that of appliance configuration—very
few appliances can reasonably be deployed without any
customization by the end-user. While appliances will
certainly be a factor in pushing the capabilities and use
of current discovery and zeroconf mechanisms, it is un-
likely that that is enough to address all the needs of users
in the near future.

We restrict ourselves to appliances consisting of a single
virtual machine. It is clear that there are uses for appli-
ances made up of multiple virtual machines, for exam-
ple, for three-tier web applications, with separate virtual
machines for the presentation logic, the business logic,
and the database tier. Such appliances though add con-
siderable complexity to the single-VM case: the virtual
machines of the appliance need to be able to discover
each other, might want to create a private network for
intra-appliance communication, and might want to con-
strain how the virtual machines of the appliance should
be placed on hosts. For the sake of simplicity, and
given that handling single-VM appliances well is a nec-
essary stepping stone to multi-VM appliances, we ex-
clude these issues and focus solely on single-VM appli-
ances.

The rest of the paper is organized as follows: Section 2
discusses appliance builders and users, and how their
expectations for appliances vary depending on the en-
vironment in which they operate, Section 3 introduces
images and recipes, two different approaches to appli-
ances, Sections 4 and 5 describe images and recipes in
detail, and the final Section 6 discusses these two con-
cepts, and some specific problems around appliances
based on the example of a simple web appliance.

2 Builders and Users

Appliances available today cover a wide variety of ap-
plications and therefore target users: from consumer
software to applications aimed at SMB’s, to enterprise
software. It is worthwhile to list in more detail the ex-
pectations and needs of different applications and target
audiences—it is unlikely that the differences that exist
today between a casual home user and a sysadmin in a
large enterprise will disappear with appliances.

Two separate groups of people are involved with ap-
pliances: appliance builders, who create and distribute

appliances, and appliance users who deploy and run
them. We call the first group builders rather than de-
velopers for two reasons: while appliance creation will
often involve a heavy dose of software development,
it will, to a large extent, be very similar to traditional
development for bare-metal systems and the need for
appliance-specific development tools will be minimal;
besides creating appliances through very specific devel-
opment, they can also be created by assembling existing
components with no or minimal custom development.
The value of these appliances comes entirely from them
being approved, pretested and tuned configurations of
software. In that sense, a sysadmin in an enterprise who
produces “golden images” is an appliance builder.

What all appliance builders have in common is that they
need to go through repeated cycles of building the ap-
pliance from scratch, and running, testing and improv-
ing it. They therefore need ways to make these steps
repeatable and automatable. Of course, they also share
the goal of distributing the appliance, externally or inter-
nally, which means that they need to describe the appli-
ance in as much detail as is necessary for users to deploy
them easily and reliably.

Users and their expectations vary as much as the envi-
ronments in which they operate, and expectations are
closely coupled to the environment in which the appli-
ance will run. Because of the differences in users, the
requirements on the appliances themselves should nat-
urally vary, too: whereas for consumer software ease
of installation and configuration is crucial, appliances
meant for an enterprise setting need to focus on being
manageable in bulk and fitting into an environment with
preexisting infrastructure and policies. As an example, a
typical hardware appliance, a DSL router with a simple
web configuration interface is a great consumer device,
since it lets consumers perform complicated tasks with
ease, while it is completely unsuited for a data center,
where ongoing, automated management of a large num-
ber of routers is more important than the ease of first-
time setup.

These differences have their repercussions for virtual
appliances, too: an appliance developer for a consumer
appliance will put more emphasis on an easy-to-use in-
terface, whereas for enterprise appliances the emphasis
will be on reliability, manageability and the problems
that only appear in large-scale installations. Building the
user interface for a consumer appliance is tightly cou-
pled to the appliance’s function, and we consider it part
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of the custom development for the appliance; address-
ing the concerns of the enterprise user, the sysadmin,
requires tools that go beyond the individual appliance,
and therefore should be handled independently of the
function of the appliance.

While for consumer appliances it is entirely reasonable
to predefine what can and can not be configured about
the appliance, this is not feasible for data center appli-
ances: the infrastructures and policies at different sites
are too varied to allow an appliance developer to antici-
pate all the changes that are required to make the appli-
ance fit in. Often, these changes will have little bearing
on the functioning of the appliance, and are concerned
with issues such as logging to a central logging server,
auditing shell access, monitoring the appliance’s perfor-
mance and resource usage etc. At the same time, enter-
prise users will demand that they can intervene in any
aspect of the appliance’s functioning should that become
necessary, especially for security reasons.

Consumers and enterprise users also differ sharply in
their expectations for a deployment tool: for a con-
sumer, a simple graphical tool such as virt-manager
is ideal, and adding features for downloading and run-
ning an appliance to it will provide consumers with a
good basis for appliance use. For enterprise users, who
will usually be sysadmins, it is important that appliances
can be deployed, configured and managed in a way as
automated as possible.

3 Images and Recipes

This paper details two different approaches to build-
ing and distributing appliances: Appliance Images, ap-
pliances distributed as one or more disk images and
a description of how to create a virtual machine from
them, and Appliance Recipes, appliances completely de-
scribed in metadata.

Appliances can be built for any number of virtualization
technologies and hypervisors; deployment tools for ap-
pliances should be able to understand appliance descrip-
tions regardless of the virtualization technology they
are built on, and should be able to at least let the user
know ahead of time if a given appliance can be de-
ployed on a given host. The appliance description there-
fore needs to carry information on the expected plat-
form. Rather than encode this knowledge in appliance-
specific deployment tools, we base the appliance de-
scription on libvirt and its XML metadata format for

virtual machines, since libvirt can already deal with a
number of virtualization platforms such as paravirtual-
ized and fully-virtualized Xen hosts, qemu, and kvm
and abstracts differences between them away. This ap-
proach also makes it possible for related tools such as
virt-manager [1] and virt-factory [2] to in-
tegrate appliance deployment and management seam-
lessly.

The goal of both the image and recipe approach is to
describe appliances in a way that integrates well with
existing open-source tools, and to introduce as fewer ad-
ditional requirements on the infrastructure as possible.

Deployment of Appliance Images is very simple, con-
sisting of little more than creating a virtual machine us-
ing the disk images; for Appliance Recipes, additional
steps amounting to a system install are needed. On the
other hand, changing the configuration of Appliance Im-
ages is much harder and requires special care to ensure
changes are preserved across updates, especially when
updates are image-based, whereas Appliance Recipes
provide much more flexibility in this area. In addition,
Appliance Recipes provide a clear record of what ex-
actly goes into the appliance, something that can be hard
to determine with image-based appliances.

By virtue of consisting of virtual machines, appliances
share some characteristics with bare-metal machines,
and some of the techniques for managing bare-metal
machines are also useful for appliances: for example,
Stateless Linux [3] introduced the notion of running a
system readonly root by making almost the entire file
system readonly. For Stateless, this allows running mul-
tiple clients off the same image, since the image is guar-
anteed to be immutable. For image-based appliances,
this can be beneficial since it cleanly delineates the parts
of the appliance that are immutable content from those
that contain user data. It does make it harder for the user
to modify arbitrary parts of the appliance, especially its
configuration, though Stateless provides mechanisms to
make parts of the readonly image mutable, and to pre-
serve client-specific persistent state.

Similarly, managing the configuration of machines is
not a problem unique to appliances, and using the same
tools for managing bare-metal and appliance configura-
tions is very desirable, especially in large-scale enter-
prise deployments.
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3.1 Relation to Virtual Machines

Eventually, an appliance, i.e., the artifacts given to the
appliance user by the appliance builder, is used to create
and run a virtual machine. If a user will only ever run
the appliance in a single virtual machine, the appliance
and the virtual machine are interchangeable, particularly
for Appliance Images, in the sense that the original im-
age the appliance user received is the one off which the
virtual machine runs.

When a user runs several instances of the same ap-
pliance in multiple virtual machines, for example, to
balance the load across several instances of the same
web appliance, this relation is more complicated: appli-
ances in general are free to modify any of their disk im-
ages, so that each virtual machine running the appliance
must run off a complete copy of all of the appliance’s
disk images. The existence of the copies complicates
image-based updates as the copy for each virtual ma-
chine must be found and updated, making it necessary to
track the relation between original appliance image and
the images run by each virtual machine. For Appliance
Recipes, this is less of an issue, since the metadata takes
the place of the original appliance image, and a separate
image is created for every virtual machine running that
appliance recipe.

3.2 Combining Images and Recipes

Appliance Images and Appliance Recipes represent two
points in a spectrum of ways to distribute appliances.
Image-based appliances are easy to deploy, whereas
recipe-based appliances give the user a high degree of
control over the appliance at the cost of a more demand-
ing deployment.

A hybrid approach, where the appliance is completely
described in metadata, and shipped as an image com-
bines the advantages of both approaches: to enable this,
the appliance builder creates images from the recipe
metadata, and distributes both the metadata and the im-
ages together.

4 Appliance Images

The description of an Appliance Image, by its very na-
ture, is focused on describing a virtual machine in a
transportable manner. Such a description is not only

useful for distributing appliances, but also anywhere
where a virtual machine and all its parts need to be
saved and recreated over long distances or long periods
of time, for example for archiving an entire application
and all its dependencies.

Appliance Images are also suitable for situations where
the internals of the virtual machine are unimportant, or
because the appliance is running an O/S that the rest of
the environment can’t understand in more detail.

With no internals exposed, the appliance then consists
just of a number of virtual disks, descriptions of needed
virtual hardware, most importantly a NIC, and con-
straints on which virtualization platform the appliance
can run.

Appliance Images need to carry just enough metadata
in their description to allow running them safely in an
environment that knows nothing but the metadata about
them. To enable distribution, Appliance Images need to
be bundled in a standard format that makes it easy to
download and install them. For simplicity, we bundle
the metadata, as an XML file, and the disk images as
normal tarballs.

Ultimately, we need to create a virtual machine based on
the appliance metadata and the disk images; therefore, it
has to be possible to generate a libvirt XML description
of the virtual machine from the appliance’s metadata.
Using libvirt XML verbatim as the appliance description
is not possible, since it contains some information, such
as the MAC address for the appliance’s NIC, that clearly
should be determined when the appliance is deployed,
not when it is built.

4.1 Metadata for Appliance Images

The metadata for an Appliance Image consists of three
parts:

1. General information about the appliance, such as a
name and human-readable label

2. The description of the virtual machine for the ap-
pliance

3. The storage for the appliance, as a list of image
files
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4.1.1 Virtual Machine Descriptor

The metadata included with an appliance needs to con-
tain enough information to make a very simple decision
that anybody (and any tool) wanting to run the appli-
ance will be faced with: can this appliance run on this
host? Since the differences between running a virtual
machine on a paravirtualized and fully-virtualized host
from an application’s point of view are small, the ap-
pliance metadata allows describing them simultaneously
with enough detail for tools to determine how to boot the
appliance ahead of time; for each supported virtualiza-
tion platform, the metadata lists how to boot the virtual
machine on that platform, together with a description of
the platform.

The boot descriptor roughly follows libvirt’s <os> ele-
ment: for fully-virtualized domains, it contains an indi-
cation of which bootloader and what boot device to use,
and for paravirtualized domains, it either lists the kernel
and initrd together or that pygrub should be used as
well as the root device and possible kernel boot options.
If the kernel/initrd are mentioned explicitly, they must
be contained in the tarball used to distribute the appli-
ance as separate files.

The platform description, based on libvirt’s capabili-
ties, indicates the type of hypervisor (for example, xen
or hvm), the expected architecture (for example, i686
or ia64), and additional features such as whether the
guest needs pae or not.

Besides these two items, the virtual machine metadata
lists how the disk images should be mapped into the vir-
tual machine, how much memory and how many virtual
CPUs it should receive, whether a (graphical) console is
provided, and which network devices to create.

4.1.2 Disk Images

The disk images for the appliance are simple files; for
the time being, we use only (sparse) raw files, though it
would be desirable to use compressed qcow images for
disks that are rarely written to.1

Disk images are classified into one of three categories
to enable a simple update model where parts of the ap-
pliance are replaced on update. Such an update model

1Unfortunately, the Xen blktap driver has a bug that makes it
impossible to use qcow images that were not created by Xen tools.

requires that the appliance separates the user’s data from
the appliance’s code, and keeps them on separate disks.
The image categories are:

• system disks that contain the O/S and application
and are assumed to not change materially over the
appliance’s lifetime

• data disks that contain application data that must
be preserved across updates

• scratch disks that can be erased at will between
runs of the appliance

The classification of disk images mirrors closely how a
filesystem needs to be labeled for Stateless Linux: in a
Stateless image, most files are readonly, and therefore
belong on a system disk. Mutable files come in two fla-
vors: files whose content needs to be preserved across
reboots of the image, which therefore belong on a data
disk, and files whose content is transient, and therefore
belong on a scratch disk.

Updates of an Appliance Image can be performed in one
of two ways: by updating from within, using the up-
date mechanisms of the appliance’s underlying operat-
ing system, for example, yum, or by updating from the
outside, replacing some of the appliance’s system disks.
If the appliance is intended to be updated by replacing
the system disks, it is very desirable, though not strictly
necessary, that the system disks are mounted readonly
by the appliance; to prepare the appliance for that, the
same techniques as for Stateless Linux need to be ap-
plied, in particular, marking writable parts of the filesys-
tem in /etc/rwtab and /etc/statetab.

Data disks don’t have to be completely empty when the
appliance is shipped: as an example, a web application
with a database backend, bundled as an appliance will
likely ship with a database that has been initialized and
the application’s schema loaded.

4.2 Building an Appliance Image

An appliance supplier creates the appliance by first in-
stalling and configuring the virtual machine for the ap-
pliance any way they see fit; typically this involves in-
stalling a new virtual machine, starting it, logging into it
and making manual configuration changes. Even though
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these steps will produce a distributable Appliance Im-
age, they will generally not make building the Appliance
Image reproducible in an automated manner. When this
is important, for example, when software development
rather than simple assembly is an important part of the
appliance build process, the creation of the Appliance
Image should be based on an Appliance Recipe, even if
the appliance is ultimately only distributed as an image.

Once the appliance supplier is satisfied with the setup of
the virtual machine, they create an XML description of
the appliance, based on the virtual machine’s character-
istics. Finally, the virtual machine’s disk is compressed
and, together with the appliance descriptor, packed into
a tarball.

This process contains some very mechanical steps, par-
ticularly creating the initial appliance descriptor and
packing the tarball that will be supported by a tool. The
tool will similarly support unpacking, installing, and
image-based updating of the appliance.

4.3 Deploying an Appliance Image

An appliance user deploys an appliance in two steps:
first, she downloads and installs the appliance into a
well-known directory, uncompressing the disk images.

As a second step, the user simply runs virt-install
to create the virtual machine for the appliance;
virt-install is a command line tool generally used
to provision operating systems into virtual machines.
For Appliance Images, it generates the libvirt XML de-
scriptor of the appliance’s virtual machine from the ap-
pliance descriptor and additional user-provided details
such as an explicit MAC address for the virtual ma-
chine’s NIC, or whether and what kind of graphical con-
sole to enable.

To allow for multiple virtual machines running the
same appliance concurrently, the disk images for
the appliance are copied into per-VM locations, and
virt-install records the relation between the ap-
pliance and the VM image. This is another reason
why using qcow as the image format is preferrable to
simple raw images, as it has a facility for overlay im-
ages that only record the changes made to a base im-
age. With qcow images, instantiating a virtual machine
could avoid copying the usually large system disks, cre-
ating only an overlay for them. Data disks, of course,

still should be created through copying from the original
appliance image, while scratch disks should be created
as new files, as they are empty by definition.

It is planned to integrate Appliance Image deploy-
ment into virt-manager, too, to give users a simple
graphical interface for appliance deployment.

In both cases, the tools check that the host requirements
in the appliance descriptor are satisfied by the actual
host on which the appliance is deployed.

4.4 Packaging Appliance Images as RPM’s

Packaging appliances as tarballs provides a lowest-
common-denominator for distributing appliances that is
distribution, if not operating system, agnostic. Most dis-
tributions already have a package format tailored to dis-
tributing and installing software and tools built around
them.

For RPM-based distributions, it seems natural to pack-
age appliances as RPMs, too. This immediately sets a
standard for, amongst others, how appliances should be
made available (as RPMs in yum repositories), how their
authenticity can be guaranteed (by signing them with a
key known to RPM), and how they are to be versioned.

5 Appliance Recipes

Appliance Recipes describe a complete virtual machine
in metadata during its whole lifecycle from initial pro-
visioning to ongoing maintenance while the appliance is
in use. The recipe contains the specification of the ap-
pliance’s virtual machine, which is very similar to that
for Appliance Images, and a description of how the ap-
pliance is to be provisioned initially and how it is to be
configured. In contrast to Appliance Images, it does not
contain any disk images. An Appliance Recipe consists
of the following parts:

1. An appliance descriptor describing the virtual ma-
chine; the descriptor is identical to that for Appli-
ance Images, except that it must contain the size of
each disk to be allocated for the virtual machine.

2. A kickstart file, used to initially provision the vir-
tual machine from the recipe.
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3. A puppet manifest, describing the appliance’s con-
figuration. The manifest is used both for initial pro-
visioning, and during the lifetime of the appliance;
updating the manifest provides a simple way to up-
date existing appliances without having to reprovi-
sion them.

Before an appliance based on a recipe can be deployed
in a virtual machine, the virtual machine’s disks need
to be created and populated, by installing a base system
into empty disk images. Once the disk images have been
created, deployment follows the same steps as that for
an Appliance Image.

The Appliance Recipe shifts who builds the disk im-
ages from the appliance builder to the appliance user,
with one very important difference: the appliance user
has a complete description of the appliance, consum-
able by tools, that they can adapt to their needs. With
that, the appliance user can easily add site-specific cus-
tomizations to the appliance, by amending the appli-
ance’s metadata; for example, if all syslog messages
are to be sent to a specific server, the appliance user can
easily add their custom syslog.conf to the appli-
ance’s description. It also provides a simple mechanism
for the appliance builder to leave certain parts of the ap-
pliance’s configuration as deploy-time choices, by pa-
rameterizing and templating that part of the appliance’s
metadata.

We use kickstart, Fedora’s automated installer, for the
initial provisioning of the appliance image, and puppet,
a configuration management tool, for the actual configu-
ration of the appliance. It is desirable to expose as much
of the appliance’s setup to puppet and to only define a
very minimal system with kickstart for several reasons:
keeping the kickstart files generic makes it possible to
share them across many appliances and rely only on a
small set of well-tested stock of kickstart files; since
kickstarting only happens when a virtual machine is
first provisioned, any configuration the kickstart file per-
forms is hard to track over the appliance’s lifetime; and,
most importantly, by keeping the bulk of the appliance’s
configuration in the puppet manifest it becomes possi-
ble for the appliance user to adapt as much as possible
of the appliance to their site-specific needs. The base
system for the appliance only needs to contain a mini-
mal system with a DHCP client, yum, and the puppet
client.

Strictly speaking, an Appliance Recipe shouldn’t carry
a full kickstart file, since it contains many directives that
should be controlled by the appliance user, not the ap-
pliance builder, such as the timezone for the appliance’s
clock. The most important parts of the kickstart file that
the appliance builder needs to influence are the layout of
the appliance’s storage and how disks are mounted into
it, and the yum repositories needed during provision-
ing. The recipe should therefore only ship with a partial
kickstart file that is combined with user- or site-specific
information upon instantiation of the image.

5.1 Configuration Management

The notion of Appliance Recipes hinges on describing
the configuration of a virtual machine in its entirety in
a simple, human-readable format. That description has
to be transported from the appliance builder to the ap-
pliance user, leaving the appliance user the option of
overriding almost arbitrary aspects of the configuration.
These overrides must be kept separate from the origi-
nal appliance configuration to make clean upgrades of
the latter possible: if the user directly modifies the orig-
inal appliance configuration, updates will require cum-
bersome and error-prone merges.

The first requirement, describing the configuration of a
system, is the bread and butter of a number of configu-
ration management tools, such as cfengine, bcfg2, and
puppet. These tools are also geared towards managing
large numbers of machines, and provide convenient and
concise ways to expressing the similarities and differ-
ences between the configuration of individual machines.
We chose puppet as the tool for backing recipes, since it
meets the other two requirements of making configura-
tions transportable and overridable particularly well.

The actual setup and configuration of an appliance, i.e.
the actual appliance functionality, is expressed as a pup-
pet manifest. The manifest, written in puppet’s declar-
ative language, describes the configuration through a
number of resource definitions that describe basic prop-
erties of the configuration, such as which packages have
to be installed, what services need to be enabled, and
what custom config files to deploy. Files can either be
deployed as simple copies or by instantiating templates.

Resource definitions are grouped into classes, logical
units describing a specific aspect of the configuration;
for example, the definition of a class webserver
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might express that the httpd package must be in-
stalled, the httpd service must be enabled and run-
ning, and that a configuration file foo.conf must be
deployed to /etc/httpd/conf.d.

The complete configuration of an actual system is made
up of mapping any number of classes to that system, a
node in puppet’s lingo. This two-level scheme of classes
and nodes is at the heart of expressing the similarities
and differences between systems, where, for example,
all systems at a site will have their logging subsystem
configured identically, but the setup of a certain web ap-
plication may only apply to a single node.

Site-specific changes to the original appliance config-
uration fall into two broad categories: overriding core
parts of the appliance’s configuration, for example, to
have its webserver use a site-specific SSL certificate,
and adding to the appliance’s setup, without affecting its
core functionality, for example, to send all syslog mes-
sages to a central server.

These two categories are mirrored by two puppet fea-
tures: overrides are performed by subclassing classes
defined by the appliance and substituting site-specific
bits in the otherwise unchanged appliance configuration.
Additions are performed by mapping additional, site-
specific classes to the node describing the appliance.

The configuration part of an Appliance Recipe consists
of a puppet module, a self-contained unit made up of the
classes and supporting files. Usually, puppet is used in
client/server mode, where the configuration of an entire
site is stored on a central server, the puppetmaster, and
clients receive their configuration from it. In that mode,
the appliance’s module is copied onto the puppetmaster
when the recipe is installed.

5.2 Deploying an Appliance Recipe

Deploying an Appliance Recipe requires some infras-
tructure that is not needed for Appliance Images, ow-
ing to the fact that the appliance’s image needs to be
provisioned first. Recipes are most easily deployed us-
ing virt-factory, which integrates all the neces-
sary tools on a central server. It is possible though to
use a recipe without virt-factory’s help; all that is
needed is the basic infrastructure to perform kickstart-
based installs with virt-install, and a puppetmas-
ter from which the virtual machine will receive its con-
figuration once it has been booted.

In preparation for the appliance instantiation, the appli-
ance’s puppet manifest has to be added to the puppet-
master by copying it to the appropriate place on the pup-
petmaster’s filesystem. With that in place, the instantia-
tion is entirely driven by virt-install, which per-
forms the following steps:

1. Create empty image files for the virtual machine

2. Create and boot the virtual machine and install it
according to the appliance’s kickstart file

3. Bootstrap the puppet client during the install

4. Reboot the virtual machine

5. Upon reboot, the puppet client connects to the pup-
petmaster and performs the appliance-specific con-
figuration and installation

5.3 Creating an Appliance Recipe

For the appliance builder, creating an Appliance Recipe
is slightly more involved than creating an Appliance Im-
age. The additional effort is caused by the need to cap-
ture the appliance’s configuration in a puppet manifest.
The manifest can simply be written by hand, being little
more than formalized install instructions.

It is more convenient though to use cft [4], a tool that
records changes made to a system’s configuration and
produces a puppet manifest from that. Besides notic-
ing and recording changes made to files, it also records
more complex and higher-level changes such as the in-
stallation of a package, the modification of a user, or the
starting and enabling of a service.

With that, the basic workflow for creating an Appliance
Recipe is similar to that for an Appliance Image:

1. Write (or reuse) a kickstart file and install a base
system using virt-install

2. Start the virtual machine with the base system

3. Log into the virtual machine and start a cft session
to capture configuration changes

4. Once finished configuring the virtual machine, fin-
ish the cft session and have it generate the puppet
manifest
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5. Generate the appliance descriptor for the virtual
machine

6. Package appliance descriptor, kickstart file, and
puppet manifest into an Appliance Recipe

Note that all that gets distributed for an Appliance
Recipe is a number of text files, making them con-
siderably smaller than Appliance Images. Of course,
when the user instantiates the recipe, images are created
and populated; but that does not require that the user
downloads large amounts of data for this one appliance,
rather, they are more likely to reuse already existing lo-
cal mirrors of yum repositories.

6 Example

As an example, we built a simple web calendaring ap-
pliance based on kronolith, part of the horde PHP web
application framework; horde supports various storage
backends, and we decided to use PostgreSQL as the stor-
age backend.

To separate the application from its data, we created a
virtual machine with two block devices: one for the ap-
plication, and one for the PostgreSQL data, both based
on 5GB raw image files on the host. We then installed a
base system with a DHCP client, yum and puppet on
it and started the virtual machine.

After logging in on the console, we started a cft session
and performed the basic setup of kronolith: installing
necessary packages, opening port 80 on the firewall, and
starting services such as httpd and postgresql.
Following kronolith’s setup instructions, we created a
database user and schema for it, and gave the web ap-
plication permission to connect to the local PostgreSQL
database server. Using a web browser we used horde’s
administration UI to change a few configuration options,
in particular to point it at its database, and to create a
sample user.

These steps gave us both an Appliance Image and an
Appliance Recipe: the Appliance Image consists of the
two image files, the kernel and initrd for the virtual ma-
chine, and the appliance XML description. The Appli-
ance Recipe consists of the appliance XML description,
the kickstart file for the base system, and the puppet
manifest generated by the cft session.

Even an application as simple as kronolith requires a
small amount of custom development to be fully func-
tional as an appliance. For kronolith, there were two
specific problems that need to be addressed: firstly, kro-
nolith sends email alerts of upcoming appointments to
users, which means that it has to be able to connect to a
mailserver, and secondly, database creation is not fully
scripted.

We addressed the first problem, sending email, in two
different ways for the image and the recipe variant of the
appliance: for the image variant, kronolith’s web inter-
face can be used to point it to an existing mail hub. Since
this modifies kronolith’s configuration files in /etc,
these files need to be moved to the data disk to ensure
that they are preserved during an image-based update.
For the recipe case, we turned the appropriate config file
into a template, requiring that the user has to fill in the
name of the mail hub in a puppet manifest before de-
ployment.

The fact that database creation is not fully scripted is
not a problem for the kronolith Appliance Image, since
the database is created by the appliance builder, not the
user. For the recipe case, recipe instantiation has to be
fully automated; in this case though, the problem is eas-
ily addressed with a short shell script that is included
with the puppet manifest and run when the appliance is
instantiated.

Another issue illustrates how low-level details of the ap-
pliance are connected to the environment in which it is
expected to run: as the appliance is used over time, it is
possible that its data disk fills up. For consumer or SMB
use, it would be enough to provide a page in the web UI
that shows how full the appliance’s disk is—though a
nontechnical user will likely lack the skill to manually
expand the data disk, and therefore needs the appliance
to provide mechanisms to expand the data disk. The
appliance can not do that alone though, since the file
backing the data disk must be expanded from outside
the appliance first. For this use, the appliance tools have
to provide easy-to-use mechanisms for storage manage-
ment.

For enterprise users, the issue presents itself completely
differently: such users in general have the necessary
skills to perform simple operations such as increasing
storage for the appliance’s data. But they are not very
well served by an indication of how full the data disk
is in the appliance’s UI because such mechanisms scale
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poorly to large numbers of machines; for the same rea-
son, sending an email notification when the data disk
becomes dangerously full is not all that useful either.
What serves an enterprise user best is being able to in-
stall a monitoring agent inside the appliance. Since dif-
ferent sites use different monitoring systems, this is a
highly site-dependent operation. With the recipe-based
appliance, adding the monitoring agent and its configu-
ration to the appliance is very simple, no different from
how the same is done for other systems at the site. With
the image-based appliance, whether this is possible at all
depends on whether the appliance builder made it possi-
ble to gain shell access. Other factors, such as whether
the appliance builder kept a package database in the ap-
pliance image and what operating system and version
the appliance is based on, determine how hard it is to
enable monitoring of the appliance.

Over time, and if appliances find enough widespread
use, we will probably see solutions to these problems
such as improved service discovery and standardized
interfaces for monitoring and storage management that
alleviate these issues. Whether they can cover all the
use cases that require direct access to the insides of the
appliance is doubtful, since in aggregate they amount
to managing every aspect of a system from the out-
side. In any event, such solutions are neither mature
nor widespread enough to make access and use of tradi-
tional management techniques unnecessary in the near
future.

Details of the kronolith example, including the appli-
ance descriptor and the commented recipe can be found
on a separate website [5].
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Abstract

Libferris is a user address space virtual (Semantic)
filesystem. Over the years it has grown to be able
to mount relational databases, XML, and many appli-
cations including X Window. Rich support for in-
dex and search has been added. Recently the similari-
ties between modern Linux kernel filesystem, Semantic
Filesystems and the XML data model has been exploited
in libferris. This leads to enabling XSLT filesystems
and the evaluation of XQuery directly on a filesystem.
XQueries are evaluated using both indexing and shortcut
loading to allow things like db4 files or kernel filesys-
tems with directory name caching to be used in XQuery
evaluation so that large lookup tables can be efficiently
queried. As the result of XQuery is usually XML—As
the similarities between XML and filesystems are dis-
cussed, the option is there for queries to generate filesys-
tems.

Prior knowledge of the existance of Extended Attributes
as well as some familiarity with XML and XQuery will
be of help to the reader.

1 Introduction

Libferris [2, 9, 11, 13, 14] is a user address space virtual
filesystem [1]. The most similar projects to libferris are
gnome-vfs and kio_slaves. However, the scope of libfer-
ris is extended both in terms of its capability to mount
things, its indexing and its metadata handling.

Among its “non conventional” data sources, libferris is
able to mount relational databases, XML, db4, Evolu-
tion, Emacs, Firefox and X Window.

The data model of libferris includes rich support for uni-
fying metadata from many sources and presenting appli-
cable metadata on a per filesystem object basis. Index-
ing and querying based on both fulltext and metadata
predicates complements this data model allowing users

to create virtual filesystems which satisfy their informa-
tion need. It should be noted that metadata can be asso-
ciated with any filesystem object, for example a tuple in
a mounted database.

The paper now moves to discuss what semantic filesys-
tems are and in particular what libferris is, and how it re-
lates to the initial designs of a semantic filesystems. The
similarities and differences between the libferris, tradi-
tional Linux kernel filesystem and XML data models
is then discussed with mention of how issues with data
model differences have been resolved where they arise.
The focus is then turned to information indexing and
search. The indexing section is more an overview of pre-
vious publications in the area to give the reader familiar-
ity for the example in the XQuery section. The treatment
of XQuery evaluation both directly on a filesystem and
on its index then rounds out the paper.

2 Semantic Filesystems

The notion of a semantic filesystem was originally pub-
lished by David K. Gifford et al. in 1991 [4].

A semantic file system differs from a traditional file sys-
tem in two major ways:

• Interesting meta data from files is made available
as key-value pairs.

• Allowing the results of a query to be presented as a
virtual file system.

The notion of interesting meta data is similar to modern
Linux kernel Extended Attributes. The main difference
being that meta data in a Semantic Filesystem is inferred
at run time whereas Linux kernel Extended Attributes
are read/write persisted byte streams. In the context of
libferris, the term Extended Attributes can refer to both
persisted and inferred data. In this way the Extended
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Foo.png

1024

Extended Attributes

+width = 1024

+height = 768
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Figure 1: The image file Foo.png is shown with it’s byte
contents displayed from offset zero on the left extend-
ing to the right. The png image transducer knows how
to find the metadata about the image file’s width and
height and when called on will extract or infer this in-
formation and return it through a metadata interface as
an Extended Attribute.

Attributes in libferris have been virtualized along with
the filesystem itself. The term Extended Attributes will
be used in the libferris sense unless otherwise qualified.

In a Semantic filesystem interesting meta data is ex-
tracted from a file’s byte content using what are referred
to as transducers [4]. An example of a transducer would
be a little bit of code that can extract the width of a spe-
cific image file format. A transducer to extract some
image related metadata is shown conceptually in Fig.1.
Image dimensions are normally available at specific off-
sets in the file’s data depending on the image format.
A transducer which understands the PNG image encod-
ing will know how to find the location of the width and
height information given a PNG image file.

Queries are submitted to the file system embedded in the
path and the results of the query form the content of the
virtual directory. For example, to find all documents that
have been modified in the last week one might read the
directory “/query/(mtime>=begin last week)/”. The re-
sults of a query directory are calculated every time it is
read. Any metadata which can be handled by the trans-
ducers [4] (metadata extraction process) can be used to
form the query.

Libferris allows the filesystem itself to automatically
chain together implementations. The filesystem imple-
mentation can be varied at any file or directory in the
filesystem. For example, in Figure 2 because an XML
file has a hierarchical structure it might also be seen
as a filesystem. The ability to select a different imple-
mentation at any directory in a URL requires various
filesystems to be overlaid on top of each other in order
to present a uniform filesystem interface.

When the filesystem implementation is varied at a file
or directory then two different filesystem handlers are
active at once for that point. The left side of Figure 2
is shown with more details in Figure 3. In this case
both the operating system kernel implementation and
the XML stream filesystem implementation are active
at the URL file://tmp/order.xml. The XML
stream implementation relies on the kernel implementa-
tion to provide access to a byte stream which is the XML
file’s contents. The XML implementation knows how to
interpret this byte stream and how to allow interaction
with the XML structure though a filesystem interface.

Note that because in the above the XML implementa-
tion can interact with the operating system kernel imple-
mentation to complete its task this is subtly different to
standard UNIX mounting where a filesystem completely
overrides the mount point.

<order>
  <customer id="111"/>
  ...
</order>

file:// postgresql://

tmp ...... localhost

mydatabase

customerstable

... 111-fred 112-frodo ...

order.xml

...

...

...
order

customer

Figure 2: A partial view of a libferris filesystem. Ar-
rows point from children to their parents, file names are
shown inside each rectangle. Extended Attributes are
not shown in the diagram. The box partially overlapped
by order.xml is the contents of that file. On the left
side, an XML file at path /tmp/order.xml has a filesys-
tem overlaid to allow the hierarchical data inside the
XML file to be seen as a virtual filesystem. On the right:
Relational data can be accessed as one of the many data
sources available though libferris.

The core abstractions in libferris can be seen as the abil-
ity to offer many filesystem implementations and select
from among them automatically where appropriate for
the user, the presentation of key-value attributes that
files posses, a generic stream interface [6] for file and
metadata content, indexing services and the creation of
arbitrary new files.

Filesystem implementations allow one to drill into com-
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file:// implementation

XML implementation

order

customer

tmp

order.xml

order.xml

Figure 3: The filesystem implementation for an XML
file is selected to allow the hierarchical structure of the
XML to be exposed as a filesystem. Two different
implementations exist at the “order.xml” file level: an
implementation using the operating system’s kernel IO
interface and an implementation which knows how to
present a stream of XML data as a filesystem. The XML
implementation relies on the kernel IO implementation
to provide the XML data itself.

posite files such as XML, ISAM1 databases or tar files
and view them as a file system. This is represented in
Figure 2. Having the virtual filesystem able to select
among filesystem implementations in this fashion al-
lows libferris to provide a single file system model on
top of a number of heterogeneous data sources.2

Presentation of key-value attributes is performed by ei-
ther storing attributes on disk or by creating synthetic
attributes who’s values can be dynamically generated
and can perform actions when their values are changed.
Both stored and generated attributes in libferris are re-
ferred to simply as Extended Attributes (EAs). Exam-
ples of EAs that can be generated include the width and
height of an image, the bit rate of an mp3 file or the
MD53 hash of a file. This arrangement is shown in Fig-

1Indexed Sequential Access Method, e.g., B-Tree data stores
such as Berkeley db.

2Some of the data sources that libferris currently handles include:
http, ftp, db4, dvd, edb, eet, ssh, tar, gdbm, sysV shared memory,
LDAP, mbox, sockets, mysql, tdb, and XML.

3MD5 hash function RFC, http://www.ietf.org/rfc/
rfc1321.txt

ure 4.

For an example of a synthetic attribute that is writable
consider an image file which has the key-value EA
width=800 attached to it. When one writes a value
of 640 to the EA width for this image then the file’s
image data is scaled to be only 640 pixels wide. Hav-
ing performed the scaling of image data the next time
the width EA is read for this image it will generate the
value 640 because the image data is 640 pixels wide.
In this way the differences between generated and stored
attributes are abstracted from applications.

Another way libferris extends the EA interface is by of-
fering schema data for attributes. Such meta data allows
for default sorting orders to be set for a datatype, filter-
ing to use the correct comparison operator (integer vs.
string comparison), and GUIs to present data in a for-
mat which the user will find intuitive.

3 Data models: XML and
Semantic Filesystems

As the semantic filesystem is designed as an extension
of the traditional Unix filesystem data model the two are
very similar. Considering the relatively new adoption of
Extended Attributes to kernel filesystems the data mod-
els between the two filesystem types are identical.

The main difference is the performance differences be-
tween deriving attributes (semantic filesystem and trans-
ducers) or storing attributes (Linux kernel Extended At-
tributes). Libferris extends the more traditional data
model by allowing type information to be specified for
its Extended Attributes and allowing many binary at-
tributes to form part of a classification ontology [12, 7].

Type information is exposed using the same EA in-
terface. For example an attribute foo would have
schema:foo which contains the URL of the schema
for the foo attribute. To avoid infinite nesting the
schema for schema:foo, ie, schema:schema:
foo will always have the type schema and there will
be no schema:schema:schema:foo.

As the libferris data model is a superset of the standard
Linux kernel filesystem data model one may ignore lib-
ferris specific features and consider the two data models
in the same light. This is in fact what takes place when
libferris is exposed as a FUSE filesystem [1].
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Figure 4: Metadata is presented via the same Extended Attribute (EA) interface. The values presented can be derived
from the file itself, derived from the values of other EA, taken from the operating system’s Extended Attribute
interface or from an external RDF repository.

Taking an abstract view of the data model of libferris
one arrives at: files with byte contents, files nested in
a hierarchy and arbitrary attributes associated with each
file. This is in many ways similar to the data model
of XML: elements with an ordered list of byte content,
elements nested in an explicit ordering with attributes
possibly attached to each element.

The differences between the data models may raise is-
sues and require explicit handling. The differences have
been found to be:

• XML elements can contain multiple contiguous
bytes serving as their “contents.” Files may have
many sections of contiguous bytes separated by
holes. Holes serve to allow the many sections of
contiguous bytes to appear in a single offset range.
For example, I could have a file with the two worlds
“alice” and “wonderland” logically separated by 10
bytes. The divergence of the data models in this re-
spect is that the many sections of contiguous bytes
in an XML element are not explicitly mapped into
a single logical contiguous byte range.

• XML elements are explicitly ordered by their phys-
ical location in the document. For any two ele-
ments with a common parent element it will be
apparent which element comes “before” the other.
Normally files in a filesystem are ordered by an im-
plementation detail—their inode. The inode is a

unique number (across the filesystem itself) iden-
tifying that file. Many tools which interact with a
filesystem will sort a directory by the file name to
be more palatable to a human reader.

• The notions of file name and element name have
different syntax requirements. A file name can
contain any character apart from the “/” charac-
ter. There are much more stringent requirements
on XML element names—no leading numbers, a
large range of characters which are forbidden.

• For all XML elements with a common parent it is
not required that each child’s name be unique. Any
two files in a directory must have different names.

The differences are shown in Figure 5.

The identification of this link between data models and
various means to address the issues where differences
arise helps both the semantic filesystem and XML com-
munities by bringing new possibilities to both. For ex-
ample, the direct evaluation of XQuery on a semantic
filesystem instead of on an XML document. The blur-
ring of the filesystem and XML also allows modern Of-
fice suites to directly manipulate filesystems [14].

The file name uniqueness issue is only present if XML is
being seen as a semantic filesystem. In this case it can be
acceptable to modify the file name to include a unique
number as a postfix. In cases such as resolution of XPath
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Child Order
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Hole

Figure 5: On the left an XML Element node is shown with some child nodes. On the right a filesystem node is
shown with some similar child nodes. Note that XML Text nodes can be considered to provide the byte content
of the synonymous filesystem abstraction but metadata about their arrangement can not be easily communicated.
Child nodes in the XML side do not need to have unique names for the given parent node and maintain a strict
document order. Child nodes on the filesystem side can contain more characters in their file names but the ordering
is implementation defined by default.

or XQueries file names should be tested without consid-
eration of the unique postfix so that query semantics are
preserved.

As XML elements can not contain the “/” character
exposing XML as a semantic filesystem poses no is-
sue with mapping XML element names into file names.
Unfortunately the heavy restrictions on XML element
name syntax does present an issue. The most convenient
solution has been found to be mapping illegal charac-
ters in file names into a more verbose description of the
character itself. For example a file name “foo<bar>.txt”
might be canonicalized to an XML element name of
“foo-lt-bar-gt.txt”. The original unmodified file name
can be accessed through a name spaced XML attribute
on the XML element.

XML element ordering can be handled by exposing
the place that the XML element appeared in document
order. For example, a document with “b” containing
“c,d,e” in that order the “c” file would have a place of
zero, and “e” would be two. With this attribute available
the original document ordering can be obtained through
the semantic filesystem by sorting the directory on that
attribute. As there is no (useful) document ordering for

a filesystem this is not an issue when exposing a filesys-
tem as XML.

There is no simple solution to the fact that XML ele-
ments can have multiple text nodes as children. In cases
where XML with multiple child nodes exist they are
merged into a single text node containing the concate-
nation in document order of the child text nodes. Files
with holes are presented as though the hole contained
null bytes.

4 Information Search

In recent years much emphasis has been placed on so
called “Desktop search”. Few machines exist as islands
and as such the index and search capabilities of any non
trivial system must allow seamless integration of Inter-
net, Intranet and desktop sources. The term “filesystem
search” at least removes the connotations that search is
limited to the desktop alone.

Details of indexing have been presented in prior publica-
tions [10, 9, 11]. Briefly the indexing capabilities in lib-
ferris are exposed through plugins. Much of the empha-
sis has been placed on indexing of metadata leaving full
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text indexing [17] to implementations such as Lucene
and TSearch2. Two of the main metadata plugins use
sorted Berkeley db4 files or a PostgreSQL database.

The chosen query syntax is designed based on the
“The String Representation of LDAP Search Fil-
ters” [5]. This is a very simple syntax which pro-
vides a small set of comparative operators to make
key operator value terms and a means to com-
bine these terms with boolean and, or and not. All
terms are contained in parenthesis with boolean com-
bining operators located before the terms they operate
on.

The comparative operators have been enhanced and in
some cases modified from the original semantics [5].
Syntax changes include the use of == instead of =
for equality testing. Approximate matching ~= was
dropped in favor of regular expression matching using
perl operator syntax =~. Operators which are specific to
the LDAP data model have been removed. The opera-
tors and semantics are presented in Table 1. Coercion of
rvalue is performed both for sizes and relative times.
For example, “begin today” will be converted into the
operating system’s time representation for the start of
the day that the query is executed.

OP Semantics
=~ lvalue matches the

regular expression in rvalue
== lvalue is exactly equal to rvalue
<= lvalue is less than or equal to rvalue
>= lvalue is greater than or

equal to rvalue

Table 1: Comparative operators supported by the libfer-
ris search syntax. The operators are used infix, there is
a key on the left side and a value on the right. The key
is used to determine which EA is being searched for.
The lvalue is the name of the EA being queried. The
rvalue is the value the user supplied in the query.

Resolution of the and and or is performed (conceptu-
ally) by merging the sets of matching file names using
either an intersection or union operation respectively.
The semantics of negation are like a set subtraction: the
files matching the negated subquery are removed from
the set of files matching the portion of the query that
the negation will combine with. If negation is applied
as the top level operation then the set of files to com-
bine with is considered to be the set of all files. The

nesting of and, or and not will define what files the
negation subquery will combine with. As an exam-
ple of negation resolution consider the fquery which
combines a width search with a negated size search:
(&(width<=640)(!(size<=900))). The set of files
which have a width satisfying the first subquery are
found and we call this set A. The set of files which
have a size matching the second part of the query, ie,
size<=900 are found and we call this set B. The re-
sult of the query is A\B.

The eaq:// virtual filesystem takes a query as a directory
name and will populate the virtual directory with files
matching the query. Other closely related query filesys-
tems are the eaquery:// tree. The eaquery:// filesystem is
has slightly longer URLs but it allows you to set limits
on the number of results returned and to set how con-
flicting file names are resolved. Some example queries
are shown in Figure 6. Normally a file’s URL is used as
its file name for eaquery:// filesystems. The shortnames
option uses just the file’s name and when two results
from different directories happen to have the exact same
file name it appends a unique number to one of the re-
sult’s file names. This is likely to happen for common
file names such as README.

Full text queries can be evaluated using the
fulltextquery:// or ftxq:// URL schemes.
Both metadata and fulltext predicates can be evaluated
to produce a single result filesystem [11].

One major area where the index and search in libferris
diverges from similar tools is the application of Formal
Concept Analysis (FCA) [3]. FCA can be seen as un-
supervised machine learning and is a formal method for
dealing with the natural groupings within a given set of
data. The result of FCA is a Concept Lattice. A Con-
cept Lattice has many formal mathematical properties
but may be considered informally as a specialization hi-
erarchy where the further down a lattice one goes the
more attributes the files in each node have. Files can
be in multiple nodes at the same time. For example, if
there are two attributes (mtime>=begin last week) and
(mtime>=begin last month) then a file with the first at-
tribute will also have the latter.

Using the SELinux type and identity of the example
201,759 files the concept lattice shown in Figure 7 is
generated. The concept 11 in the middle of the bot-
tom row shows that user_u identity is only active for
3 fonts_t typed files. Many of the links to the lower con-
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cepts are caused by the root and system identities being
mutually exclusive while the system identity combines
with every attribute that the root identity does.

Readers interested in FCA with libferris should see [8,
16, 15].

4.1 XQuery

Being able to view an entire filesystem as an XML data
model allows the evaluation of XQuery directly on the
filesystem.

Libferris implements the native XQilla data model and
attempts to offer optimizations to XQuery evaluation.
Some of the possibilities of this are very nice, bringing
together the db4, Postgresql, XML and file:// in a single
XQuery.

There are also many efficiency gains that are available
by having multiple data sources (filesystems) available.
In an XML only query if you are looking up a user by a
key things can be very slow. If you copy the users info
into a db4 file and use libferris to evaluate your XQuery
then a user lookup becomes only a handful of db4 btree
or hash lookups.

Mounted postgresql functions allow efficient access to
relational data from XQuery. Postgresql function ar-
guments are passed through the file path from XQuery
variables. This is a reasonable stop gap to being able
to use prepared SQL statements with arguments as a
filesystem. If the result is only a hand full of tuples with
it will be very quick for libferris to make available to the
xquery as a native document model.

A postgresql function is setup as shown in Figure 8.
This can subsequently be used as any other read only
filesystem as shown in Figure 9. A simple XQuery is
shown in Figure 10 and its evaluation in Figure 11.

A major area which is currently optimized in the eval-
uation of XQuery with libferris is the evaluation of
XPath expressions. This is done in the Node::
getAxisResult() method specifically when the
axis is XQStep::CHILD. Both files and direc-
tories are represented as Context objects in libfer-
ris. When seeking a specific child node Context::

isSubContextBound() is used to quickly test if such
a child exists. The isSubContextBound() method
indirectly calls Context::priv_getSubContext()

which is where filesystem plugins can offer the ability
to read a directory piecewise.

The normal opendir(3), readdir(3) sequence of events
to read a directory can be preempted by calls to
Context::priv_getSubContext() to discover
partial directory contents. As libferris is a virtual
filesystem some other filesystem implementations also
implement Context::priv_getSubContext() and
piecewise directory reading. A specific example is the
db4 filesystem which allows very efficient loading of a
hand full of files from a large directory.

Where the direct evaluation on a filesystem as shown
above becomes too slow the filesystem indexes can also
be used in an XQuery by making an XPath that uses the
filesystem interface to queries shown in Fig. 6.

A more complete example is shown in Figure 12. This
uses the filesystem index and search along with XQuery
variables to search for files which contain a person in
a given location as a boolean AND style full text query.
Note that multiple use of indexes, in particular the use
of federated filesystem indexes [11] is possible together
with immediate evaluation of other queries on db4 or
RDF files to generate a combined result.

5 The Future

Closer integration of XML and libferris and in partic-
ular the ability to arbitrarily stack the two in any or-
der. For example, being able to run an XQuery and
take its results as the input to xsltfs:// to gener-
ate an office document to edit with Open Office. As
xsltfs:// does not enforce a strict isomorphism be-
tween filesystems the resulting document when edited
and saved could effect changes on both the underlying
filesystem objects that the XQuery dealt with as well as
any other desired side effects.

More efficient and user friendly access to the Formal
Concept Analysis in libferris. There are still some com-
plex persistence and processing tasks which need to be
improved before the use of FCA on filesystems will see
broad adoption.
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# All files modified recently
$ ferrisls -lh "eaq://(mtime>=begin last week)"

# Same as above but limited to 100 results
# as an XML file
$ ferrisls --xml \
"eaquery://filter-100/(mtime>=begin last week)"

# limit of 10,
# resolve conflicts with version numbers
# include the desired metadata in the XML result
$ ferrisls --xml \

--show-ea=mtime-display,url,size-human-readable \
"eaquery://filter-shortnames-10/(mtime>=blast week)"

Figure 6: Query results as a filesystem.

Figure 7: Concept lattice for SELinux type and identity of files in /usr/share/ on a Fedora Core 4 Linux installation.
The Hasse diagram is arranged with three major sections; direct parents of the root are in a row across the top,
refinements of selinux_identity_system_u are down the right side with combinations of the top row in the middle and
left of the diagram. Attribute are shown above a node and they apply transitively to all nodes reachable downwards.
The number of files in each node is shown below it.
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$ psql junkdb
# CREATE TYPE junk_result

AS (f1 int, f2 text);
# drop function junk( int, int );
# CREATE FUNCTION junk( int, int )

returns setof junk_result
AS
$BODY$
DECLARE

iter int;
rec junk_result;
BEGIN

iter = $1;
for rec in select $1*10,$2*100 union

select $1 * 100, $2 * 1000
LOOP

return next rec;
END LOOP;
return;
END;
$BODY$

LANGUAGE ’plpgsql’ ;
# exit

Figure 8: Setting up a PostgreSQL function to be mounted by libferris

$ ferrisls --show-ea=f1,f2,name --xml
"postgresql://localhost/play/junk(1,2)"
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ferrisls>

<ferrisls f1="" f2="" name="junk(1,2)"
url="postgresql:///localhost/play/junk(1,2)">

<context f1="10" f2="200" name="10-200"/>
<context f1="100" f2="2000" name="100-2000"/>

</ferrisls>

</ferrisls>

$ fcat postgresql://localhost/play/junk(1,2)/10-200
...

$ ferriscp \
postgresql://localhost/play/junk(1,2)/10-200 \
/tmp/plan8.xml

Figure 9: Viewing the output of a PostgreSQL function with ferrisls

$ cat fdoc-pg.xq
<data>
{
for $b in ferris-doc("postgresql://localhost/play/junk(1,2)")
return $b

}
</data>

Figure 10: A Trivial XQuery to show the output of calling a PostgreSQL function through libferris
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$ ferris-xqilla --show-ea=f1,f2,name fdoc-pg.xq
<?xml version="1.0"?>
<data>

<junk_oper_1_comma_2_cper_ name="junk(1,2)">10,200
<number_10_dash_200 f1="10" f2="200" name="10-200">
&lt;context f1="10" f2="200" /&gt;
</number_10_dash_200>
<number_100_dash_2000 f1="100" f2="2000" name="100-2000">
&lt;context f1="100" f2="2000" /&gt;
</number_100_dash_2000></junk_oper_1_comma_2_cper_>
</data>

Figure 11: The evaluation of the XQuery in Figure 10. The embedded &lt; etc. shown below come from the
“content” of the file which in this case is the same as the above ferrisls command.

$ cat xquery-index.xq
declare variable $qtype := "boolean";
declare variable $person := "alice";
declare variable $location := "wonderland";
<data>
{
for $idx in ferris-doc( concat("fulltextquery://", $qtype, "/",

$person, " ", $location))
for $res in $idx/*

return
<match

name="{ $res/@name }" url="{ $res/@url }"
modification-time="{ $res/@mtime-display }"

>
</match>

}
</data>

$ ferris-xqilla xquery-index.xq
<?xml version="1.0"?>
<data>

<match modification-time="99 Jul 27 12:53"
name="file:///.../doc/CommandLine/command.txt ...>

<match modification-time="00 Mar 11 06:58"
name="file:///.../doc/Gimp/Grokking-the-GIMP-v1.0/node8.html
...>

...</data>

Figure 12: Running an XQuery which uses filesystem index and search. The idx XQuery variable will be the
virtual directory containing the query results and for the sake of clarity the idx is then looped over explicitly in
the XQuery. The person and location can easily be obtained from other sources making the fulltext query portion
complement a larger information goal.
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