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1 Introduction

In this paper, we describe and analyze three Bayesian network inference algorithms: variable elim-
ination, likelihood weighting, and Gibbs sampling. Variable Elimination is an exact inference
algorithm, while likelihood weighting and gibbs sampling are approximate inference algorithms.
For each algorithm we study thier performance under different conditions. In section 2, we analyze
variable elimination and study how different elimination orders affect performance. In section 3,
we validate and describe our likelihood weghting implementation. In section 4 we analyze Gibbs
sampling and experiment with the effect of burn-in (length of the initial prefix that is thrown away)
on estimation accuracy. In section 5 we measure the performance of the two approximate inference
algorithms in terms of their running times versus the quality of their results. We also draw conclu-
sions on which algorithm is more appropriate for the different bayesian networks. In section 6, we
describe another take on the study of how burn-in affects Gibbs sampling performance.

2 Variable Elimination

We implemented the variable elimination algorithm outlined in [1]. Given a Bayesian network,
assignments of some variables e (evidence), a query node X, and an elimination order, our variable
elimination implementation calculates P(X]|e).

One interesting thing about our variable elimination implementation is that when the factors
are restricted to the evidence, not only are the entries with incongruent evidence set to 0.0, we also
sum over the evidence variable so as to eliminate extra entries in the factors. This optimization in
the variable elimination implementation significantly decreases runtime for the Insurance network
queries because of the presence of loops in the Insurance network.

2.1 Validation

To test our implementation of variable elimination, we used the following test cases:
Burglary Network:

P(Burglary|JohnCalls = true, MaryCalls = true) (1)

P(Earthquake|JohnCalls = true, Burglary = true) (2)



Burglary | Probability
false 0.7158281646356071
true 0.2841718353643929

Table 1: Results to Burglary:(1): Distribution over Burglary given that both John and Mary calls.

Burglary | Probability
false 0.9979800168901211
true 0.002019983109878836

Table 2: Results to Burglary:(2): Distribution over Earthquake given that both Burglary is true
and John calls.

Insurance Network:
P(PropCost|Age = Adolescent, Antilock = False, Mileage = Fiftythou) (3)

Our results for each test case are shown in Tables 1-3 respectively. The results to the Burglary
network were compared to the results of the provided Enumeration Solver and are correct. The
result of the Insurance network was compared to the answers given in the Project handout and are
correct.

2.2 Experiments

In this section we will run some queries on the Insurance and Carpo Bayesian networks. We will
show the results of the queries obtained from variable elimination and then give some intuition
behind the results.

2.2.1 Insurance Query 1

The results to Insurance Query 1, given by the following equation, are shown in Table 4.

P(PropCost|Age = Adolescent, Antilock = False, Mileage = FiftyThou, MakeModel = SportsCar)
(4)

Property Cost Probability

Hundred Thousand | 0.17297869189641366
Million 0.02709352198178344
Ten Thousand 0.3427002442093676
Thousand 0.4572275419124353

Table 3: Results to Insurance:(3): Distribution over property cost for an adolescent driving a car
with 50k miles and no anti-lock brakes.



Property Cost Probability
Hundred Thousand | 0.17179333672003955

Million 0.0309387733436524
Ten Thousand 0.3459303973796924
Thousand 0.45133749255661576

Table 4: Results to Insurance Query 1: Distribution over property cost for an adolescent driving a
sports car with 50k miles and no anti-lock brakes.

This probability distribution (i.e. Table 4) is similar to the probability distribution shown in Table
3, except that the former has one additional evidence variable: the make model of the client’s car is
a Sports car. This is on top of the three original evidence variables: that the client is an adolescent,
the car does not have antilock brakes, and the mileage is about fifty thousand.

Intuitively, the additional evidence might affect the property cost of the car in several ways.
Below are some of these effects:

e Example 1: The fact that the client is driving a Sports car suggests a high socio-economic
background, and hence will live in a higher-class neighborhood with relatively low crime rate.
Therefore, it is likely that part of the property cost that is attributed to thefts will decrease.
This is shown in the Bayesian network as the following chain: MakeModel -> SocioEcon
-> HomeBase -> Theft -> ThisCarCost -> PropCost.

e Example 2: Sports cars are relatively more expensive, hence we would expect that the prop-
erty cost would increase. This is shown in the Bayesian network as the following chain:
MakeModel -> CarValue (-> Thief) -> ThisCarCost -> PropCost.

Note that we cannot infer the following conclusion:

e Example 3: Most sports cars are equiped with advanced features such as Antilock braking, and
are therefore less likely to be involved in an accident. This is shown in the Bayesian network
as the following chain: MakeModel -> Antilock -> Accident -> OtherCarCost ->
PropCost.

This is because Antilock is observed: we already know that the car does not have an antilock
brake. Therefore, no new information can travel from MakeModel to PropCost through the path
MakeModel -> Antilock -> Accident -> OtherCarCost -> PropCost.

In the three examples we have presented above, the first two examples show how PropCost
might be affected by a new piece of knowledge: the make/model of a car. The first of the two
examples suggests that the property cost would go down (since theft becomes unlikely). However,
the second of the two examples suggests that property cost would go up. In fact, all the other
possible paths between MakeModel and PropCost cause conflicting effects. Therefore, it is difficult
to intuitively infer the net effect the make/model of the car has on the property cost. One possible
answer is to take into account the length of the path that gets us from MakeModel to PropCost. The
longer the path between two variables (evidence and query) , the less effect the evidence variable
has on the query. This is because a lot of other variables compete to affect the query variable (i.e.
PropCost). The second of the two examples (i.e. MakeModel -> CarValue -> ThisCarCost



-> PropCost) seems to be much shorter than any of the other paths. Therefore, we would suspect
that its effect will dominate, i.e. the property cost will increase.

In fact, we can only be sure of the net effect of make/model on property cost by doing compu-
tation on the Bayesian network, and Variable Elimination does just that. At first glance, it is not
clear in Table 3 and 4 that there is a difference between the two probability distributions. Upon
closer examination of the results, however, we see that both the probabilities of property cost in
Thousands and in Hundred Thousands decreased in Table 4. On the other hand, the probabilities
of property cost in Ten Thousands and in Millions increased in Table 4.

One explanation for these results is that there are two types of people who insure their cars.
The first type of person incurrs property cost between Thousands and Ten Thousands, while the
second type of person incurrs property cost between Hundred Thousands and Millions. By splitting
the population into two, it is easier to observe that the property cost will indeed increase in light
of the new fact that the car is a Sports car. Now, the first type of person will more likely incur Ten
Thousands than before and less likely to incur Thousands. Similarly they second type of persion
will now more likely incur Millions than before and less likely to incur Hundred Thousands. In
fact, upon calculation of the mean (expected) property cost, we see an increase from $ 241,380 to
$ 260,140. These means are calculated by assuming the middle value of thousands, ten thousands,
hundred thousands and millions to be $ 5000, $ 50000, $ 500000, and $ 5000000 respectively.

2.2.2 Insurance Query 2

The results to the Insurance Query 2 described below are shown in Table 5.

P(PropCost|Age = Adolescent, Antilock = False, Mileage = FiftyThou, GoodStudent = True)
(5)

The probability distribution shown in Table 5 is similar to the probability distribution shown
in Table 3, except that it is has an additional piece of evidence: the client is a good student. This
is on top of the three original pieces of evidence: the client is an adolescent, the car does not have
antilock brakes, and the mileage is about fifty thousand.

The fact the client is a good student can only affect property cost through the fact that it is
more likely that the client is of good socio-economic background. The other way that property cost
could have been affected is through the Age, but we know it’s impossible because we already know
that the student is an adolescent.

Since the new fact can only affect property cost through SocioFcon, it is not clear that any of
the paths from GoodStudent to PropCost would dominate. We also know that the paths will have
conflicting affects:

e The client is more likely to be risk averse and have a better driving skills, since he/she is a
good student. Therefore, property cost will decrease since the client is now less likely to get
into an accident.

e The client is more likely to have a more expensive car, due to his/her high socio-economic
status. Therefore, property cost will go up.

Therefore, we can only find out the final outcome through computation. As shown in Table
3 and 5, we see a slight increase in the property cost. Again, we see an increase in the expected



Property Cost Probability
Hundred Thousand | 0.18374679176160608

Million 0.029748793596801576
Ten Thousand 0.32771416728772235
Thousand 0.45879024735387

Table 5: Results to Insurance Query 2: Distribution over property cost for an adolescent, who is a
good student, driving a car with 50k miles and no anti-lock brakes.

N112 | Probability
“0” 0.9880400004226929
“1” 0.01195999957730707

Table 6: Results to Carpo Query 1: Distribution over N112 given N64 = “3”, N113 = “1”, N116
— “077

property cost from $ 241,380 to $ 259,300. These means are calculated by assuming the middle
value of thousands, ten thousands, hundred thousands and millions to be $ 5000, $ 50000, $ 500000,
and $ 5000000 respectively.

2.2.3 Carpo Query 1

The results to the Carpo Query 1 shown below are shown in Table 6.

P(N112‘N64 — “3”,N113 — “1”,N116 — “0//) (6)

2.2.4 Carpo Query 2

The results to the Carpo Query 2 are shown in Table 7.

P(N143|N146 = “3",N116 = “1”, N121 = “0") (7)

2.3 Elimination Orderings

N143 | Probability
“0” 0.8999999969611722
“1” 0.10000000303882782

Table 7: Results to Carpo Query 1: Distribution over N143 given N146 = “1”, N116 = “0”, N121
— “1’7



To see how different elimination order affects the running time of our Variable Elimination
algorithm, we randomize the elimination order with some uniform distribution. By uniform dis-
tribution, we mean that any elimination variables (node) are equally likely to be the first to be
eliminated, the remainings are equally likely to be the next to be eliminated, and so on. Recall
that elimination variables does not include query variable and any of the evidence variables.

By repeating many times the Variable Elimination algorithm with random elimination order
explained above, we can learn:

e What would be, on average, the computation time would be

e How large does the computation time varies with different elimination order, in other words,
how important it is to choose the “right” elimination order

Again, we use the following 4 probability calculation (used in the previous) subsection as benchmark

1. Probability distribution shown in equation (4):
P(PropCost|Age = Adolescent, Antilock = False, Mileage = FiftyThou, MakeModel = SportsCar)

with distribution shown in Table 4.

After 20 sampling of Variable Elimination algorithm with random elimination order we see
a distribution of running time, shown in Figure 1. From the figure, we can see that Variable
Elimination takes less than 10 minutes more than half of the times. (Of course, our confidence
will get better with more sampling). Computing mean running time is hard (if not impossible),
since all runs that takes more than 10 minutes are lumped together in the last group (10-11
minutes). Even though Variable Elimination will eventually terminates, it will take a very
long time on the worst case, since it solves an NP hard problem (if not harder). However, we
can bound mean time by setting up the following model:

We run the Variable Elimination algorithm with random elimination for N minutes,
here we use N to be 10. If program doesn’t terminate after 10 minutes, we kill (force
terminate) the program and re-sample a new random elimination order. We then
run the algorithm for another 10 minutes. We keep repeating the process until a
program terminates within 10 minutes.

We have essentially set up a Stochastic model, where at each “coin flips” (i.e. runs),
we have some probability of winning (finished VariableElimination algorithm in
time.

Since, each run lasts 10 minutes, and the probability of succeeding in a run can be estimated as
the proportion of our actual test runs that finishes within 10 minutes, we can use expectation
(mean) formula of exponential distribution:

1
(finishes in 10 minutes)

E[running time] = 10 minutes x 2

Since, % = 0.6 of the runs finishes in less than 10 minutes, the mean running time is 10 x ﬁ =

17 minutes.



Insurance query 1 — Execution time histogram of 20 runs
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Figure 1: Distribution of running time of 20 independent runs of Variable Elimination algorithm
with random elimination order. All runs that takes more than 10 minutes are lumped into the last
group (i.e. 10-11 minutes).

2. Probability distribution shown in equation (5):
P(PropCost|Age = Adolescent, Antilock = False, Mileage = FiftyT hou, GoodStudent = True)

with distribution shown in Table 5.

After 20 sampling of Variable Elimination algorithm with random elimination order we see
a distribution of running time, shown in Figure 2. Unlike the previous testcase, most of our
runs now take more than 10 minutes (in which case our VariableElimination times out and
terminates with no result).

We have 2% = 0.25 of the runs finishes in less than 10 minutes. Hence, assumming the model
that we have set up previously, the mean running time is 10 x ﬁ = 40 minutes.
3. Probability distribution shown in equation (6):
P(N112|N64 = “3" N113 = “1”, N116 = “0")

with distribution shown in Table 6.

After 20 sampling of Variable Elimination algorithm with random elimination order we see
a distribution of running time, shown in Figure 3. This particular test case has the largest
variance of execution time: it’s either very short or very long (the later being the most
probable).

We have % = 0.05 of the runs finishes in less than 10 minutes. Hence, assumming the model
that we have set up previously, the mean running time is 10 x ﬁ = 200 minutes.
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Insurance query 2 — Execution time histogram of 20 runs
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Figure 2: Distribution of running time of 20 independent runs of Variable Elimination algorithm
with random elimination order. All runs that takes more than 10 minutes are lumped into the last
group (i.e. 10-11 minutes).

4. Probability distribution shown in equation (7):
P(N143|N146 = “3",N116 = “1”, N121 = “0")

with distribution shown in Table 7. After 20 sampling of Variable Elimination algorithm
with random elimination order we see a distribution of running time, shown in Figure 4. This
particular test case does not show as large of a variance of execution time as the last one,but
it’s still relatively large.

We have % = 0.2 of the runs finishes in less than 10 minutes. Hence, assumming the model

that we have set up previously, the mean running time is 10 x 0% = 50 minutes.

Here, we see that some Bayesian network are more sensitive to elimination order than the other:
the Carpo network is more sensitive than the Insurance network. We can see this from the layout
diagram of the Carpo network (see Project 2 assignment - 6.825 Fall 04). Each node is connected
with a varying number of neighboring (i.e parent and children) nodes. For instance, a good number
of nodes are connected with only one or two nodes (so eliminating these nodes first would yield a
factor of size one or two). However, some nodes are connected with more than ten neighbors (some
even up to 15 neighboring nodes). Eliminating these nodes too early will causes a prohibitively
(but unnecessarily) huge intermediate factors. On the other hand, the insurance network, albeit
being complicated has relatively uniform degree of connectivity in all of its nodes: most of them are
connected to 3-6 neighbors. Therefore, we would always produce factor tables that mostly contain
3-6 variables (and the same time discarding the factors that we have finished multiplying, which



Carpo query 1 — Execution time histogram of 20 runs
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Figure 3: Distribution of running time of 20 independent runs of Variable Elimination algorithm
with random elimination order. All runs that takes more than 10 minutes are lumped into the last
group (i.e. 10-11 minutes).

mostly also contain 3-6 vairables). Therefore, even though the elimination order affects Variable
Elimination of any network (i.e. Some runs takes less than a minute, but some takes more than 1
hour or even causes the computer to run out of memory, for both Insurance and Carpo network),
some network are more affected than the others.

2.4 Greedy Elimination

After realizing how important the elimination ordering is towards the performance (and even feasi-
bility) of Variable Elimination algorithm in computing conditional probability (and other interesting
problems), we will attempt to compute a “good” elimination order. Note that computing the best
elimination order is an NP or harder problem. We will therefore use a greedy algorithm to compute
a “semi-optimal” or “good” elimination order.

Our greedy algorithm chooses, at each elimination iteration, a node that when eliminated will
produces a factor with the smallest variable number. Of course, the elimination order is pre-
computed before the actual Variable Elimination algorithm is run, hence setting a level playing
ground for every method that we use, since all of them precomputed elimination order prior to actual
query of the Bayesian network. Note however, that it has been observed that greedy algorithm
precomputation of semi-optimal elimination order takes less than 1 second for all test cases.

Table 8 shows the performance comparison of Variable Elimination algorithm given different
elimination ordering: reverse topological, random, and greedy ordering.

We see that greedy algorithm is almost always faster than the other two methods. An exception
is found on testcase 4 (which is a test on the Carpo network), where Reverse Topological ordering



Carpo query 2 — Execution time histogram of 20 runs
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Figure 4: Distribution of running time of 20 independent runs of Variable Elimination algorithm
with random elimination order. All runs that takes more than 10 minutes are lumped into the last
group (i.e. 10-11 minutes).

Testcase Reverse Topological | Random (expected) | Greedy Algorithm
1 (Insurance) 7.5 sec 17 min 1 sec
2 (Insurance) 22.5 sec 40 min 5.5 sec
3 (Carpo) 224 msec 200 min 210 msec
4 (Carpo) 183 msec 50 min 223 msec

Table 8: Performance comparison between reverse topological ordering, randomized ordering, and
ordering obtained from greedy algorithm
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gives a better performance that that obtained from greedy algorithm. This supports our earlier
observations that greedy algorithm only guarantees “semi-optimal” answer. This is because, it
might be stuck in some local minimum of the search space.
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Burglary | Probability KL Divergence
false 0.8071153021860509 0.024194
true 0.19288469781394904 -

Table 9: Results from likelihood weighting to query described by equation (1).

Burglary | Probability KL Divergence
false 0.9981937989056889 1.22% 1075
true 0.0018062010943110723 -

Table 10: Results from likelihood weighting to query described by equation (2).

3 Likelihood Weighting

We implemented Likelihood Weighting as described in [2]. Given a Bayesian network, assignments of
some variables e (evidence),and a query node X, our likelihood weighting implementation estimates
P(X]le).

3.1 Validation

The results of the queries given by equations (1)-(7) are shown in Tables 8-14 respectively. Each
query was run for 10,000 samples.

We evaluated the accuracy of the likelihood weighting estimates using the Kullback-Leibler
divergence (KL divergence) between the estimate and the true distribution (from variable elimina-
tion). The smaller the KL divergence, the better the estimate. KL divergence is given by:

Z P(z|e)log <]?(m]e)> (8)
X P(xle)

In Tables 8-14, the first entry in the third column shows the KL divergence of the likelihood
weighting results to the true distribution given by variable elimination. As can be seen from the
very small KL divergences, our implementation of likelihood weighting is correct.

Property Cost Probability KL Divergence
Hundred Thousand | 0.1728511874428114 0.000238
Million 0.026064452637473152 -
Ten Thousand 0.3524424295237774 -
Thousand 0.4486419303959379 -

Table 11: Results from likelihood weighting to query described in (3)
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Property Cost Probability KL Divergence
Hundred Thousand | 0.17016701486884045 1.11 %1075
Million 0.031112169971533002 -
Ten Thousand 0.34577087074979307 -
Thousand 0.45294994440983355 -

Table 12: Results from likelihood weighting to query described in (4)

Property Cost Probability KL Divergence
Hundred Thousand | 0.182654291932025 9.27 %1075
Million 0.03191464153881571 -
Ten Thousand 0.32953975403946134 -
Thousand 0.4558913124896979 -

Table 13: Results from likelihood weighting to query described in (5)

N143 | Probability KL Divergence
“0” 0.987323593420549 2.09% 1075
“17 0.012676406579450994 -

Table 14: Results from likelihood weighting to query described in equation (6)

N143 | Probability KL Divergence
“0” 0.9020458194381775 2.35% 1075
“1” 0.09795418056182242 -

Table 15: Results from likelihood weighting to query described in equation (7)
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Burglary | Probability KL Divergence
false 0.7148 2.59 %1076
true 0.2852 -

Table 16: Results from Gibbs Sampling to query described by equation (1).

Burglary | Probability KL Divergence
false 0.9981 3.72%1076
true 0.0019 -

Table 17: Results from Gibbs Sampling to query described by equation (2).

4 Gibbs Sampling

Given a Bayesian network, assignments of some variables e (evidence),and a query node X, our
Gibbs sampling implementation estimates P(X|e). We implemented Gibbs sampling slightly dif-
ferently from the outline given in [2]. As suggested in lecture, instead of updating the count
right after assigning each non evidence variable, we wait until all the non evidence variables have
been assigned before updating the count. Using our implementation we would generate the exact
number of samples specified by the input. The Gibbs sampling described in [2] would generate
N x (numbero fnonevidencevariables) samples.

4.1 Validation

The results of the queries given by equations (1)-(7) are shown in Tables 15-21 respectively. Each
query was run for a total of 11,000 samples, of which 10,000 samples were counted and the first 1000
samples were discarded (burn-in). The first entry of the third column of each table shows the KL
divergence of the results. As can be seen from the very small KL divergences, our implementation
of Gibbs sampling is correct.

4.2 Experimenting with Burn-in

We studied the effect of burn-in on the accuracy of the estimate given by Gibbs sampling. We define
burn-in as the number of initial samples that are thrown away (not counted in the estimate). We
expected that accuracy would increase as burn-in is increased because burn-in will erase the initial

Property Cost Probability KL Divergence

Hundred Thousand | 0.1467 0.004893
Million 0.0188 -
Ten Thousand 0.3456 -
Thousand 0.4889 -

Table 18: Results from Gibbs Sampling to query described in (3).
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Property Cost Probability KL Divergence
Hundred Thousand | 0.1987 0.003494
Million 0.0344 -
Ten Thousand 0.3157 -
Thousand 0.4512 -

Table 19: Results from Gibbs Sampling to query described in (4).

Property Cost Probability KL Divergence
Hundred Thousand | 0.1905 0.001513
Million 0.0319 -
Ten Thousand 0.3024 -
Thousand 0.4752 -

Table 20: Results from Gibbs Sampling to query described in (5).

N143 | Probability KL Divergence
“0” 0.9867 7.08 1075
“17 0.0133 -

Table 21: Results from likelihood weighting to query described in equation (6).

N143 | Probability KL Divergence
“0” 0.9143 0.001244
“17 0.0857 -

Table 22: Results from likelihood weighting to query described in equation (7).
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bias due to the random initial setting of the variables. In order to isolate the effect of burn-in, we
fixed the number of samples for each run while varying the burn-in. Also, we picked a high value
for the number of samples so that the variation in the estimates is more likely due to the burn-in
than the inaccuracy due to few samples.

For each query described by equations (4)-(7), we fixed the number of samples to 10,000 and
experimented with the following values of burnin: 0, 5, 25, 125, 625, 1250, 5000.

We evaluated the accuracy of the estimates using KL divergence. Figures 5 - 8 show plots of
KL divergence vs. Burn-in for the queries given by equations (4)-(7). As shown in Figures 5 - 8,
the trend is that the larger number of burn-in, the better the estimate. However, after a certain
number of burn-in (B*), increasing burn-in will only increase accuracy by smaller and smaller
amounts. After throwing away B* samples, the sampler has gotten rid of almost all of the initial
bias from the random initialization of variables at the beginning of the run. We define B* as the
burn-in number where the curve just starts to flatten.

For each of the queries given by equations (4-7) we identified b* as the closest burn-in from our
set of burn in values [0, 5, 25, 125, 625, 1250, 5000] that best fits our definition of B*. These b*
values will be used as the burn-in for later analysis with Gibbs Sampling in the next section. For
each of the queries described in equations (4-7), the b* values are:

e Equation (4): b* = 1250 samples

e Equation (5): b* = 625 samples

(4):

(5):
e Equation (6): b* = 1250 samples

(7)

e Equation (7): b* = 1250 samples

16
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5 Performance vs. Runtime of Likelihood Weighting and Gibbs
Sampling

In order to study the accuracy of the estimates vs. runtime for each of the approximate inference
algorithms, we ran 10 experiments for each of the queries described in equations (4)-(7). Each
experiment, for a particular query and approximate inference algorithm, consisted of one run of
the algorithm with the maximum number of samples to generate set to 10,000. In each run, KL
divergence is calculated after the following number of samples have been generated: 0, 10, 30, 100,
300, 1000, 3000. In the experiments using Gibbs sampling, the burn-in is set to the b* values
obtained in the previous section. Again, these best burn-in values for each query are:

e Equation (4): b* = 1250 samples

e Equation (5): b* = 625 samples

):
)E
): b* = 1250 samples
)E

(

(
e Equation (6

(

e Equation (7): b* = 1250 samples

Figures 9 - 12 show KL divergence vs. number of samples for the likelihood weighting algorithm.
Figures 13 - 16 show the KL divergence vs. number of samples for the Gibbs sampling algorithm.
The figures correspond to the queries described by equations (4)-(7).

As can be seen by the Figures 9 - 16, increasing the number of samples decreases KL divergence
(increases accuracy) for both likelihood weighting and Gibbs sampling. This is in line with our
general intuition because as the number of samples increase, the estimate gets closer to the true
value. We have proved in lecture that likelihood weighting and Gibbs sampling give consistent
estimates. The curves from different runs intersect with each other because of the following two
reasons.

1. The error associated with our measurement causes the best fit curve that we have generate
to slightly deviate from the true curve. Therefore, as more samplings are obtained, our best
fit curve will converge to the true model curves, which might not intersects with each other

2. However, even the true model curves might intersect with each other. This is because, each
iteration performs a random sampling. Therefore, a program might make a good progress
during some iteration (and pushes KL downward greatly), and might not do so well at some
iterations. Therefore, we see a “race” to bring KL towards zero, and it’s possible for some
instance of runs to “overtake” some other instances during this “race”.
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Insurance query 1: Likelihood Weighting: KL divergence vs. log(number of samples)
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Figure 9: Insurnace Query 1: Ten runs: KL divergence vs. number of samples

Insurance query 2: Likelihood Weighting: KL divergence vs. log(number of samples)
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Figure 10: Insurance Query 2: Ten runs: KL divergence vs. number of samples

Figures 17 - 20 show the average KL divergence vs. number of samples for both the likelihood
weighting and Gibbs sampling algorithms. As can be see from these figures, after a certain number
of samples S*, the divergence does not decrease by much. Therefore there is no point in sampling
above S*. |77 S* however depends on the query. If the true distribution of the query is heavily
biased, then S* is smaller? than if the query distribution is more evenly distributed between the
different values of the domain.??;
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Carpo query 1: Likelihood Weighting: KL divergence vs. log(number of samples)
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Figure 11: Carpo Query 1: Ten runs: KL divergence vs. number of samples

Carpo query 2: Likelihood Weighting: KL divergence vs. log(number of samples)
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Figure 12: Carpo Query 2: Ten runs: KL divergence vs. number of samples
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Figure 13: Insurance Query 1: Ten runs: KL divergence vs. number of samples
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Insurance query 2 Gibbs
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Figure 14: Insurance Query 2: Ten runs: KL divergence vs. number of samples
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Figure 15: Carpo Query 1: Ten runs: KL divergence vs. number of samples
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Figure 16: Carpo Query 2: Ten runs: KL divergence vs. number of samples
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Insurance query 1: Likelihood Weighting: Average KL divergence vs. log(number of samples
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Figure 17: Insurance Query 1: LW: Ten runs: Average KL divergence vs. number of samples

Insurance query 2: Likelihood Weighting: Average KL divergence vs. log(number of samples
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Figure 18: Insurance Query 2: LW:Ten runs: Average KL divergence vs. number of samples

Carpo query 1: Liklihood Weighting: Average KL divergence vs. log(number of samples)
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Figure 19: Carpo Query 1: LW: Ten runs: Average KL divergence vs. number of samples
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Carpo query 2: Likelihood Weighting: Average KL divergence vs. log(number of samp
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Figure 20: Carpo Query 2: LW: Ten runs: Average KL divergence vs. number of samples
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Insurance query 1: Gibb’s Sampling: Average KL divergence vs. log(number of burn-ins)
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Figure 21: Insurance Query 1: Gibbs: Ten runs: Average KL divergence vs. number of samples

Insurance query 2: Gibb’s Sampling: Average KL divergence vs. log(number of burn-ins)
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Figure 22: Insurance Query 2: Gibbs: Ten runs: Average KL divergence vs. number of samples

For each query, Table 22 shows the number of samples for which the computation time of
each approximate inference algorithm (for each query) equals the computation time of variable
elimination (using topological elimination ordering). We realize that the number of samples shown
in Table 22 is dependent on the implementation of these algorithms. Therefore these numbers will
vary depending on how optimized our implementations are.

Using our current implementations and the values in Table 22, we would use variable elimina-
tion for the carpo network, sampling method for insurance network, and variable elimination for
Burglary. In insurance network, both sampling method (i.e. Likelihood Weighting and Gibbs Sam-
pling) give a good performance (i.e. low KL). Likelihood Weighting seems to be better for the first
query (i.e. insurance Q1). For the second query (i.e. insurance Q2), both methods give a similar
KL measurement. Therefore, we pick Likelihood Weighting, because it achieved similar KL error
with less iteration (i.e. longer computation time per iteration). This means that if we optimize our
code for Likelihood, we can generate the same amount of samples in less time. Therefore Liklihood
may take less time.
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Carpo query 1: Gibb's Sampling: Average KL divergence vs. log(number of burn-ins)
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Figure 23: Carpo Query 1: Gibbs: Ten runs: Average KL divergence vs. number of samples

Carpo query 2: Gibb's Sampling: Average KL divergence vs. log(number of burn-ins)
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Figure 24: Carpo Query 2: Gibbs: Ten runs: Average KL divergence vs. number of samples
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From Table 22, we see that Likelihood weighting is very slow compared to variable elimination.
For the Carpo network, variable elimination completes in the time it takes to generate 6-8 samples.
The slow speed of Likelihood weighting relative to variable elimination is partially due to the fact
that our implementation is not optimized, and variable elimination on the carpo network using
topological ordering is very fast.
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Query Num. Samples Variable Elim Runtime (ms) | Approx KL Div.
Insurance Q1 (LW) 142 7627 less than 0.05
Insurance Q1 (Gibbs) | 2709 7627 less than 0.1
Insurance Q2 (LW) 405 22650 less than 0.05
Insurance Q2 (Gibbs) | 7249 22650 less than 0.05
Carpo Q1 (LW) 8 224 very large
Carpo Q1 (Gibbs) 59 224 very large
Carpo Q2 (LW) 6 183 large
Carpo Q2 (Gibbs) 49 183 large

Table 23: Variable elimination running time expressed in terms of number of samples that can be
generated by each approximate inference algorithm.

6 Work In Progress/Future Work

An alternative way of analyzing the affect of burn-in on Gibbs sampling accuracy is to fix number of
samples 4+ burn-in. When this value is fixed, as burn-in increases, the number of samples counted
decreases. This analysis of burn-in is interesting because it attempts to answer the question of
what is the best burn-in value given that your running time is limited. In our previous analysis
of burn-in, we investigated the question of what is the best burn-in for a given query without any
constraint on running time.

Since the running time is fixed, we expect that as burn in increases, the accuracy will initially
increase (KL divergence decreases). Then after some burn-in value, the accuracy will decrease
because the number of counted samples will be too low.

We ran some experiments using the following values of burnin and samples. Their sum is fixed
at 10,000.

Figures 25 - 28 show our initial results for each problem. The results did not turn out as we
expected. Instead of a U shape, the points are very scattered. We hypothesis that this is due to
the variation in initial assignments. Some experiments got lucky and picked a good initialization,
therefore although the burn-in is small, accuracy is still high. Other experiments were unlucky and
therefore even with higher burn-in, accuracy is low.

To eliminate the effect of the initialization, we can either re-run our experiments with a fixed
initialization of variables. Or, we could run a set of experiments with our current setting and
then take an average of the results. Due to time constraints, we were not able to explore these
possibilities.
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Figure 25: Insurance Query 1: Fixed (burnin in + samples)=10,000
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Figure 26: Insurance Query 2: Fixed (burnin in + samples)=10,000
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Figure 27: Carpo Query 1: Fixed (burnin in 4+ samples)=10,000
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