
QUALITY ASSURANCE

1

Fault Injection in Production

Making the case for resilience testing

John Allspaw, Etsy

When we build Web infrastructures at Etsy, we aim to make them resilient. This means designing
them carefully so that they can sustain their (increasingly critical) operations in the face of failure.
Thankfully, there have been a couple of decades and reams of paper spent on researching how fault
tolerance and graceful degradation can be brought to computer systems. That helps the cause.

To make sure that the resilience built into Etsy systems is sound and that the systems behave as
expected, we have to see the failures being tolerated in production.

Why production? Why not simulate this in a QA or staging environment? First, the existence of
any differences in those environments brings uncertainty to the exercise, and second, the risk of not
recovering has no consequences during testing, which can bring hidden assumptions into the fault-
tolerance design and into recovery. The goal is to reduce uncertainty, not increase it.

Forcing failures to happen, or even designing systems to fail on their own, generally isn’t
easily sold to management. Engineers are not conditioned to embrace their ability to respond to
emergencies; they aim to avoid them altogether. Taking a detailed look at how to respond better to
failure is essentially accepting that failure will happen, which you might think is counter to what
you want in engineering, or in business.

Take, for example, what you would normally think of as a simple case: the provisioning of a server
or cloud instance from zero to production:
1. Bare metal (or cloud-compute instance) is made available.
2. Base operating system is installed via PXE (preboot execution environment) or machine image.
3. Operating-system-level configurations are put into place (via configuration management or

machine image).
4. Application-level configurations are put into place (via configuration management, app

deployment, or machine image).
5. Application code is put into place and underlying services are started correctly (via configuration

management, app deployment, or machine image).
6. Systems integration takes place in the network (load balancers, VLANs, routing, switching, DNS,

etc.).
This is probably an oversimplification, and each step or layer is likely to represent a multitude of

CPU cycles; disk, network and/or memory operations; and various numbers of software mechanisms.
All of these come together to bring a node into production.

Operability means that you can have confidence in this node coming into production, possibly
joining a cluster, and serving live traffic seamlessly every time it happens. Furthermore, you want
and expect to have confidence that if the underlying power, configuration, application, or compute
resources (CPU, disk, memory, network, etc.) experience a fault, then you can survive such a fault
by some means: allowing the application to degrade gracefully, rebuild itself, take itself out of
production, and alert on the specifics of the fault, etc.

QUALITY ASSURANCE

2

This confidence is typically built in a number of ways:
• Hardware burn-in testing. You can run extreme tests on the various hardware components in a

node in order to confirm that none of them would experience faults at the onset of load. This may
not be necessary or feasible in a cloud-compute instance.

• Unit testing of components. Each service can be easily tested in isolation, and the configuration
can be checksummed to ensure it meets expectations.

• Functional testing of integrations. Each execution path (usually based on an application feature)
can be explored with some form of automated procedure to assure expected results.
Traditionally, these sensible measures to gain confidence are taken before systems or applications

reach production. Once in production, the traditional approach is to rely on monitoring and logging
to confirm that everything is working correctly. If it is behaving as expected, then you don’t have
a problem. If it is not, and it requires human intervention (troubleshooting, triage, resolution, etc.),
then you need to react to the incident and get things working again as fast as possible.

This implies that once a system is in production, “Don’t touch it!”—except, of course, when it’s
broken, in which case touch it all you want, under the time pressure inherent in an outage response.

This approach isn’t as fruitful as it could be, on a number of levels.
In the field, you need to prepare for undesirable circumstances. Power can get cut abruptly.

Changes to the application or configuration can produce unforeseen behaviors, no matter how
full the coverage of testing. Application behavior under various resource-contention conditions
(think traffic spikes from news events or firehose-like distributed denial-of-service attacks) can have
surprising results. This isn’t a purely academic curiosity; these types of faults can (and will) affect
production and, therefore, in Etsy’s case, our sellers and our business. These types of events,
however, are difficult to model and simulate with an accuracy that would inspire confidence in the
system’s behavior in the face of these problems.

The challenge is that Web systems (like many “complex” systems) are largely intractable, meaning
that:
• To be fully described, there are many details, not few.
• The rate of change is high; the systems change before a full description (and therefore

understanding) can be completed.
• How components function is partly unknown, as they resonate with each other across varying

conditions.
• Processes are heterogeneous and possibly irregular.

In other words, while testing outside of production is a very proper approach, it’s incomplete
because some behaviors can be seen only in production, no matter how identical a staging
environment can be made.

Therefore, another option must be added to the confidence-gaining arsenal: fault injection
exercises sometimes referred to as GameDay. The goal is to make these faults happen in production
in order to anticipate similar behaviors in the future, understand the effects of failures on the
underlying systems, and ultimately gain insight into the risks they pose to the business.

Causing failures in complex systems isn’t a new concept. Organizations such as fire departments
have been running full-scale disaster drills for decades. Web engineering has an advantage over
these types of drills in that the systems engineers can gather a massive amount of detail on any fault
at an extremely high resolution, wield a very large amount of control over the intricate mechanisms
of failures, and learn how to recover very quickly from them.

QUALITY ASSURANCE

3

FAULT INJECTION
Constructing a GameDay exercise at Etsy follows this pattern:
1. Imagine a possible untoward event in your infrastructure.
2. Figure out what is needed to prevent that event from affecting your business, and implement that.
3. Cause the event to happen in production, ultimately to prove the noneffect of the event and gain

confidence surrounding it.
The greatest advantage of a GameDay exercise is figuring out how to prevent a failure from

affecting the business. It’s hard to overstate the importance of steps 1 and 2. The idea is to get a
group of engineers together to brainstorm the various failure scenarios that a particular application,
service, or infrastructure could experience. This will help remove complacency about the safety of
the overall system. Complacency is an enemy of resilience. If a system has a period of little or no
degradation, there is a real risk of it drifting toward failure on multiple levels, because engineers can
become convinced—falsely—that the system is experiencing no problems because it is inherently
safe.

Imagining failure scenarios and asking, “What if…?” can help combat this thinking and bring a
constant sense of unease to the organization. This sense of unease is a hallmark of high-reliability
organizations. Think of it as continuously deploying a BCP (business continuity plan).

BUSINESS JUSTIFICATION
In theory, the idea of GameDay exercises may seem sound: you make an explicit effort to anticipate
failure scenarios, prepare to handle them gracefully, and then confirm this behavior by purposely
injecting those failures into production. In practice, this idea may not be appealing: it brings risk to
the forefront, and without context, causing failures on purpose may seem crazy. What if something
goes wrong?

The traditional view of failure in production is avoidance at all costs. The assumption is that
failure is entirely preventable, and if it does happen, then find the persons responsible (usually those
closest to the code or systems) and fire them, in the belief that getting rid of “bad apples” is how you
bring safety to an organization.

This perspective is, of course, ludicrous. Fault injection and GameDay scenarios can produce a
more pragmatic and realistic view.

When I approached Etsy’s executive team with the idea of GameDay exercises, I explained that
it’s not that we want to cause failures out of some perverse need to watch infrastructure crumble; it’s
that we know that parts of the system will inevitably fail, and we need to gain confidence that the
system is resilient enough to handle failure gracefully.

The concept, I explained to the executives, is that building resilient systems requires experience
with failure, and that we want to anticipate and confirm our expectations surrounding failure more
often, not less often. Shying away from the effects of failure in a misguided attempt to reduce risk
will result in poor designs, stale recovery skills, and a false sense of safety.

In other words, it’s better to prepare for failures in production and cause them to happen while we
are watching, instead of relying on a strategy of hoping the system will behave correctly when we
aren’t watching. The worst-case scenario with a GameDay exercise is that something will go wrong
during the exercise. In that case, an entire team of engineers is ready to respond to the surprises, and
the system will become stronger as a result.

QUALITY ASSURANCE

4

The worst-case scenario in the absence of a GameDay exercise is that something in production
will fail that wasn’t anticipated or prepared for, and it will happen when the team isn’t expecting or
watching closely for it.

How can you assure that injecting faults into a live production system doesn’t affect actual
traffic, revenue, and the end-user experience? This can be done by treating the fault-toleration and
graceful degradation mechanisms as features. This means bringing all the other confidence-building
techniques (unit and functional testing, staging hardware environments, etc.) to these resilience
measures until you’re satisfied. Just like every other feature of the application, it’s not finished until
you’ve deployed it to production and have verified that it’s working correctly.

CASE: PAYMENTS SYSTEM
Earlier this year Etsy rolled out a new payment system (http://www.etsy.com/blog/news/2012/
announcing-direct-checkout/) to provide more flexibility and reliability for buyers and sellers on the
site. Obviously, resilience was of paramount importance to the success of the project. As with many
Etsy features, the new system was rolled out to production in a gradual ramp-up. Sellers who wanted
to use this new payment method could opt in, and Etsy turned the functionality on for groups of
sellers at a time.

As you might imagine, the payment system is not particularly simple. It has fraud-detection
components, audit trails, security mechanisms, processing-state machines, and other components
that need to interact with each other. Thus, Etsy has a complex mission-critical system with very
high expectations for resiliency.

To confirm its ability to withstand failures gracefully, Etsy put together a list of reasonable
scenarios to prepare for, develop against, and test in production, including the following:
• One of the app servers dies (power cable yanked out).
• All of the app servers leave the load-balancing pool.
• One of the app servers gets wiped clean and needs to be fully rebuilt from scratch.
• Database dies (power cable yanked out and/or process is killed ungracefully).
• Database is fully corrupt and needs full restore from backup.
• Offsite database replica is needed to investigate/restore/replay single transactions.
• Connectivity to third-party sites is cut off entirely.

The engineers then put together all of the expectations for how the system would behave if these
scenarios occurred in production, and how they could confirm these expectations with logs, graphs,
and alerts. Once armed with these scenarios, they worked on how to make these failures either:

—not matter at all (transparently recover and continue on with processing),
—matter only temporarily (gracefully degrade with no data loss and provide constructive
feedback to the user),
—or matter only to a minimal subset of users (including an audit log for reconstructing and
recovering quickly and possibly automatically).

After these mechanisms were written and tested in development, the time came to test them in
production. The Etsy team was cognizant of how much activity the system was seeing; the support
and product groups were on hand to help with any necessary communication; and team members
went through each of the scenarios, gathering answers to questions such as:
• Were they successful in transparently recovering, through redundancy, replication, queuing, etc.?

http://www.etsy.com/blog/news/2012/announcing-direct-checkout/
http://www.etsy.com/blog/news/2012/announcing-direct-checkout/

QUALITY ASSURANCE

5

• How long did each process take—in the case of rebuilding a node automatically from scratch,
recovering a database, etc.?

• Could they confirm that no data was lost during the entire exercise?
• Were there any surprises?

The team was able to confirm most of the expected behaviors, and the Etsy community (sellers
and buyers) was able to continue with its experience on the site, unimpeded by failure.

There were some surprises along the way, however, which the Etsy team took as remediation
items after the exercise. First, during the payments process, a third-party fraud-detection service
was contacted with information about the transaction. While Etsy uses a number of external APIs
(fraud, device reputation, etc.), this particular service had no specified timeout on the external call.
When testing the inability to contact the service, the Etsy team used firewall rules both to hard
close the connection and to attempt to hang it open. Having no specified timeout meant that they
were relying on the default, which was much too long at 60 seconds. The intended behavior was
to fail open, which meant that the transaction could continue if the external service was down.
This worked, but only after the 60-second timeout, which caused live payments to take longer than
necessary during the exercise.

This was both a surprise and relatively easy to fix, but it was nonetheless an oversight that affected
production during the test.

Recovering from database corruption also took longer than expected. The GameDay exercise was
performed on one side of a master-master pair of databases, and while the recovery happened on the
corrupted server, the remaining server in the pair took all reads and writes for production. While no
production data was lost, exposure with reduced capacity occurred for longer than expected, so the
Etsy team began to profile and then try to reduce this recovery time.

The cultural effect of the exercise was palpable. It greatly decreased anxiety about the ramp-up of
the payments system; it exposed a few darker-than-desired corners of the code and infrastructure to
improve; and it increased overall confidence in the system. Complacency is not an immediate threat
to the system as a result.

LIMITATIONS
The goal of fault injection and GameDay exercises is to increase confidence in an otherwise
complicated or complex system’s ability to stay resilient, but they have limitations.

First, the exercises aren’t meant to discover how engineering teams handle working under
time pressure with escalating and sometimes disorienting scenarios. That needs to come from the
postmortems of actual incidents, not from handling faults that have been planned and designed for.

The faults and failure modes are contrived. They reflect the fault designer’s imagination and
therefore can’t be comprehensive enough to guarantee the system’s safety. While any increase in
confidence in the system’s resiliency is positive, it’s still just that: an increase, not a completion of
perfect confidence. Any complex system can (and will) fail in surprising ways, no matter how many
different types of faults you inject and recover from.

Some have suggested that continually introducing failures automatically is a more efficient way
to gain confidence in the adaptability of the system than manually running GameDay exercises as
an engineering-team event. Both approaches have the same limitation mentioned here, that they
increase confidence but can’t be used to achieve sufficient safety coverage.

QUALITY ASSURANCE

6

Automated fault injection can carry with it a paradox. If the faults that are injected (even at
random) are handled in a transparent and graceful way, then they can go unnoticed. You would
think this was the goal: for failures not to matter whatsoever when they occur. This masking of
failures, however, can result in the very complacency that they are intended (at least should be
intended) to decrease. In other words, when you’ve got randomly generated and/or continual fault
injection and recovery happening successfully, care must be taken to raise the detailed awareness
that this is happening—when, how, where, etc. Otherwise, the failures themselves become
another component that increases complexity in the system while still having limitations to their
functionality (because they are still contrived and therefore insufficient).

FEAR
A lot of what I’m proposing should simply be an extension of the confidence-building tools that
organizations already have. Automated quality assurance, fault tolerance, redundancy, and A/B
testing are all in the same category of GameDay scenarios, although likely with less drama.

Should everything have an associated GameDay exercise? Maybe, or maybe not, depending on
your level of confidence in the components, interactions, and levels of complexity found in your
application and infrastructure. Even if your business doesn’t think that GameDay exercises are
warranted, however, they ought to have a place in your engineering toolkit.

SAFETY VACCINES
Why would you introduce faults into an otherwise well-behaved production system? Why would
that be useful?

First, these failure-inducing exercises can serve as “vaccines” to improve the safety of a system—a
small amount of failure injected to help the system learn to recover. It also keeps a concern about
failure alive in the culture of engineering teams, and it keeps complacency at bay.

It gathers groups of people who might not normally get together to share in experiencing failures
and to build fault tolerance. It can also help bring the concept of operability in production closer to
developers who might not be used to it.

At a high level, production fault injection should be considered one of many approaches used to
gain confidence in the safety and resiliency of a system. Like unit testing, functional testing, and
code review, this approach is limited as to which surprising events it can prevent, but it also has
benefits, many of which are cultural. We certainly can’t imagine working without it.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

JOHN ALLSPAW is senior vice president of tech operations at Etsy. He has worked in systems operations
for more than 14 years in biotech, government, and online media. He started out tuning parallel clusters
running vehicle crash simulations for the U.S. government and then moved on to the Internet in 1997. He
built the backing infrastructures at Salon, InfoWorld, Friendster, and Flickr. He is the author of The Art of
Capacity Planning (O’Reilly Media, 2008) and Web Operations (O’Reilly, 2010).
© 2012 ACM 1542-7730/12/0800 $10.00

mailto:feedback@acmqueue.com

