
Programming Languages: Application and
Interpretation
Version Second Edition

Shriram Krishnamurthi

November 16, 2012

1

Contents
1 Introduction 7

1.1 Our Philosophy . 7
1.2 The Structure of This Book . 7
1.3 The Language of This Book . 7

2 Everything (We Will Say) About Parsing 10
2.1 A Lightweight, Built-In First Half of a Parser 10
2.2 A Convenient Shortcut . 10
2.3 Types for Parsing . 11
2.4 Completing the Parser . 12
2.5 Coda . 13

3 A First Look at Interpretation 13
3.1 Representing Arithmetic . 14
3.2 Writing an Interpreter . 14
3.3 Did You Notice? . 15
3.4 Growing the Language . 16

4 A First Taste of Desugaring 16
4.1 Extension: Binary Subtraction . 17
4.2 Extension: Unary Negation . 18

5 Adding Functions to the Language 19
5.1 Defining Data Representations . 19
5.2 Growing the Interpreter . 21
5.3 Substitution . 22
5.4 The Interpreter, Resumed . 23
5.5 Oh Wait, There’s More! . 25

6 From Substitution to Environments 25
6.1 Introducing the Environment . 26
6.2 Interpreting with Environments . 27
6.3 Deferring Correctly . 29
6.4 Scope . 30

6.4.1 How Bad Is It? . 30
6.4.2 The Top-Level Scope . 31

6.5 Exposing the Environment . 31

7 Functions Anywhere 31
7.1 Functions as Expressions and Values 32
7.2 Nested What? . 35
7.3 Implementing Closures . 37
7.4 Substitution, Again . 38
7.5 Sugaring Over Anonymity . 39

2

8 Mutation: Structures and Variables 41
8.1 Mutable Structures . 41

8.1.1 A Simple Model of Mutable Structures 41
8.1.2 Scaffolding . 42
8.1.3 Interaction with Closures . 43
8.1.4 Understanding the Interpretation of Boxes 44
8.1.5 Can the Environment Help? 46
8.1.6 Introducing the Store . 48
8.1.7 Interpreting Boxes . 49
8.1.8 The Bigger Picture . 54

8.2 Variables . 57
8.2.1 Terminology . 57
8.2.2 Syntax . 57
8.2.3 Interpreting Variables . 58

8.3 The Design of Stateful Language Operations 59
8.4 Parameter Passing . 60

9 Recursion and Cycles: Procedures and Data 62
9.1 Recursive and Cyclic Data . 62
9.2 Recursive Functions . 64
9.3 Premature Observation . 65
9.4 Without Explicit State . 66

10 Objects 67
10.1 Objects Without Inheritance . 67

10.1.1 Objects in the Core . 68
10.1.2 Objects by Desugaring . 69
10.1.3 Objects as Named Collections 69
10.1.4 Constructors . 70
10.1.5 State . 71
10.1.6 Private Members . 71
10.1.7 Static Members . 72
10.1.8 Objects with Self-Reference 72
10.1.9 Dynamic Dispatch . 74

10.2 Member Access Design Space . 75
10.3 What (Goes In) Else? . 75

10.3.1 Classes . 76
10.3.2 Prototypes . 78
10.3.3 Multiple Inheritance . 78
10.3.4 Super-Duper! . 79
10.3.5 Mixins and Traits . 79

3

11 Memory Management 81
11.1 Garbage . 81
11.2 What is “Correct” Garbage Recovery? 81
11.3 Manual Reclamation . 82

11.3.1 The Cost of Fully-Manual Reclamation 82
11.3.2 Reference Counting . 83

11.4 Automated Reclamation, or Garbage Collection 84
11.4.1 Overview . 84
11.4.2 Truth and Provability . 85
11.4.3 Central Assumptions . 85

11.5 Convervative Garbage Collection . 86
11.6 Precise Garbage Collection . 87

12 Representation Decisions 87
12.1 Changing Representations . 87
12.2 Errors . 89
12.3 Changing Meaning . 89
12.4 One More Example . 90

13 Desugaring as a Language Feature 91
13.1 A First Example . 91
13.2 Syntax Transformers as Functions 93
13.3 Guards . 95
13.4 Or: A Simple Macro with Many Features 95

13.4.1 A First Attempt . 95
13.4.2 Guarding Evaluation . 97
13.4.3 Hygiene . 98

13.5 Identifier Capture . 99
13.6 Influence on Compiler Design . 101
13.7 Desugaring in Other Languages . 101

14 Control Operations 102
14.1 Control on the Web . 102

14.1.1 Program Decomposition into Now and Later 104
14.1.2 A Partial Solution . 104
14.1.3 Achieving Statelessness . 106
14.1.4 Interaction with State . 107

14.2 Continuation-Passing Style . 109
14.2.1 Implementation by Desugaring 110
14.2.2 Converting the Example . 114
14.2.3 Implementation in the Core 115

14.3 Generators . 117
14.3.1 Design Variations . 117
14.3.2 Implementing Generators . 119

14.4 Continuations and Stacks . 121
14.5 Tail Calls . 123

4

14.6 Continuations as a Language Feature 124
14.6.1 Presentation in the Language 125
14.6.2 Defining Generators . 126
14.6.3 Defining Threads . 127
14.6.4 Better Primitives for Web Programming 131

15 Checking Program Invariants Statically: Types 131
15.1 Types as Static Disciplines . 133
15.2 A Classical View of Types . 134

15.2.1 A Simple Type Checker . 134
15.2.2 Type-Checking Conditionals 139
15.2.3 Recursion in Code . 139
15.2.4 Recursion in Data . 142
15.2.5 Types, Time, and Space . 144
15.2.6 Types and Mutation . 146
15.2.7 The Central Theorem: Type Soundness 147

15.3 Extensions to the Core . 148
15.3.1 Explicit Parametric Polymorphism 148
15.3.2 Type Inference . 155
15.3.3 Union Types . 164
15.3.4 Nominal Versus Structural Systems 170
15.3.5 Intersection Types . 171
15.3.6 Recursive Types . 172
15.3.7 Subtyping . 173
15.3.8 Object Types . 176

16 Checking Program Invariants Dynamically: Contracts 179
16.1 Contracts as Predicates . 181
16.2 Tags, Types, and Observations on Values 182
16.3 Higher-Order Contracts . 183
16.4 Syntactic Convenience . 187
16.5 Extending to Compound Data Structures 188
16.6 More on Contracts and Observations 189
16.7 Contracts and Mutation . 189
16.8 Combining Contracts . 190
16.9 Blame . 191

17 Alternate Application Semantics 195
17.1 Lazy Application . 196

17.1.1 A Lazy Application Example 196
17.1.2 What Are Values? . 197
17.1.3 What Causes Evaluation? 198
17.1.4 An Interpreter . 199
17.1.5 Laziness and Mutation . 201
17.1.6 Caching Computation . 201

17.2 Reactive Application . 201

5

17.2.1 Motivating Example: A Timer 202
17.2.2 Callback Types are Four-Letter Words 203
17.2.3 The Alternative: Reactive Languages 204
17.2.4 Implementing Transparent Reactivity 205

6

1 Introduction

1.1 Our Philosophy
Please watch the video on YouTube. Someday there will be a textual description here
instead.

1.2 The Structure of This Book
Unlike some other textbooks, this one does not follow a top-down narrative. Rather
it has the flow of a conversation, with backtracking. We will often build up programs
incrementally, just as a pair of programmers would. We will include mistakes, not
because I don’t know the answer, but because this is the best way for you to learn.
Including mistakes makes it impossible for you to read passively: you must instead
engage with the material, because you can never be sure of the veracity of what you’re
reading.

At the end, you’ll always get to the right answer. However, this non-linear path is
more frustrating in the short term (you will often be tempted to say, “Just tell me the
answer, already!”), and it makes the book a poor reference guide (you can’t open up to
a random page and be sure what it says is correct). However, that feeling of frustration
is the sensation of learning. I don’t know of a way around it.

At various points you will encounter this:
Exercise

This is an exercise. Do try it.

This is a traditional textbook exercise. It’s something you need to do on your own.
If you’re using this book as part of a course, this may very well have been assigned as
homework. In contrast, you will also find exercise-like questions that look like this:

Do Now!

There’s an activity here! Do you see it?

When you get to one of these, stop. Read, think, and formulate an answer before
you proceed. You must do this because this is actually an exercise, but the answer
is already in the book—most often in the text immediately following (i.e., in the part
you’re reading right now)—or is something you can determine for yourself by running
a program. If you just read on, you’ll see the answer without having thought about it
(or not see it at all, if the instructions are to run a program), so you will get to neither
(a) test your knowledge, nor (b) improve your intuitions. In other words, these are
additional, explicit attempts to encourage active learning. Ultimately, however, I can
only encourage it; it’s up to you to practice it.

1.3 The Language of This Book
The main programming language used in this book is Racket. Like with all operating
systems, however, Racket actually supports a host of programming languages, so you

7

http://www.youtube.com/watch?v=3N__tvmZrzc
http://www.racket-lang.org/

must tell Racket which language you’re programming in. You inform the Unix shell by
writing a line like
#!/bin/sh

at the top of a script; you inform the browser by writing, say,
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" ...>

Similarly, Racket asks that you declare which language you will be using. Racket lan-
guages can have the same parenthetical syntax as Racket but with a different semantics;
the same semantics but a different syntax; or different syntax and semantics. Thus ev-
ery Racket program begins with #lang followed by the name of some language: by
default, it’s Racket (written as racket). In this book we’ll almost always use the In DrRacket v. 5.3,

go to Language,
then Choose
Language, and
select “Use the
language declared
in the source”.

language

plai-typed

. When we deviate we’ll say so explicitly, so unless indicated otherwise, put
#lang plai-typed

at the top of every file (and assume I’ve done the same).
The Typed PLAI language differs from traditional Racket most importantly by be-

ing statically typed. It also gives you some useful new constructs: define-type,
type-case, and test. Here’s an example of each in use. We can introduce new There are additional

commands for
controlling the
output of testing,
for instance. Be
sure to read the
documentation for
the language In
DrRacket v. 5.3, go
to Help, then Help
Desk, and in the
Help Desk search
bar, type
“plai-typed”.

datatypes:

(define-type MisspelledAnimal

[caml (humps : number)]

[yacc (height : number)])

You can roughly think of this as analogous to the following in Java: an abstract class
MisspelledAnimal and two concrete sub-classes caml and yacc, each of which has
one numeric constructor argument named humps and height, respectively.

In this language, we construct instances as follows:

(caml 2)

(yacc 1.9)

As the name suggests, define-type creates a type of the given name. We can use this
when, for instance, binding the above instances to names:

(define ma1 : MisspelledAnimal (caml 2))

(define ma2 : MisspelledAnimal (yacc 1.9))

In fact you don’t need these particular type declarations, because Typed PLAI will infer
types for you here and in many other cases. Thus you could just as well have written

(define ma1 (caml 2))

(define ma2 (yacc 1.9))

8

but we prefer to write explicit type declarations as a matter of both discipline and
comprehensibility when we return to programs later.

The type names can even be used recursively, as we will see repeatedly in this book
(for instance, section 2.4).

The language provides a pattern-matcher for use when writing expressions, such as
a function’s body:

(define (good? [ma : MisspelledAnimal]) : boolean

(type-case MisspelledAnimal ma

[caml (humps) (>= humps 2)]

[yacc (height) (> height 2.1)]))

In the expression (>= humps 2), for instance, humps is the name given to whatever
value was given as the argument to the constructor caml.

Finally, you should write test cases, ideally before you’ve defined your function,
but also afterwards to protect against accidental changes:

(test (good? ma1) #t)

(test (good? ma2) #f)

When you run the above program, the language will give you verbose output telling
you both tests passed. Read the documentation to learn how to suppress most of these
messages.

Here’s something important that is obscured above. We’ve used the same name,
humps (and height), in both the datatype definition and in the fields of the pattern-
match. This is absolutely unnecessary because the two are related by position, not
name. Thus, we could have as well written the function as

(define (good? [ma : MisspelledAnimal]) : boolean

(type-case MisspelledAnimal ma

[caml (h) (>= h 2)]

[yacc (h) (> h 2.1)]))

Because each h is only visible in the case branch in which it is introduced, the two
hs do not in fact clash. You can therefore use convention and readability to dictate
your choices. In general, it makes sense to provide a long and descriptive name when
defining the datatype (because you probably won’t use that name again), but shorter
names in the type-case because you’re likely to use use those names one or more
times.

I did just say you’re unlikely to use the field descriptors introduced in the datatype
definition, but you can. The language provides selectors to extract fields without the
need for pattern-matching: e.g., caml-humps. Sometimes, it’s much easier to use the
selector directly rather than go through the pattern-matcher. It often isn’t, as when
defining good? above, but just to be clear, let’s write it without pattern-matching:

(define (good? [ma : MisspelledAnimal]) : boolean

(cond

[(caml? ma) (>= (caml-humps ma) 2)]

[(yacc? ma) (> (yacc-height ma) 2.1)]))

9

Do Now!

What happens if you mis-apply functions to the wrong kinds of values?
For instance, what if you give the caml constructor a string? What if you
send a number into each version of good? above?

2 Everything (We Will Say) About Parsing
Parsing is the act of turning an input character stream into a more structured, internal
representation. A common internal representation is as a tree, which programs can
recursively process. For instance, given the stream
23 + 5 - 6

we might want a tree representing addition whose left node represents the number 23
and whose right node represents subtraction of 6 from 5. A parser is responsible for
performing this transformation.

Parsing is a large, complex problem that is far from solved due to the difficulties of
ambiguity. For instance, an alternate parse tree for the above input expression might put
subtraction at the top and addition below it. We might also want to consider whether
this addition operation is commutative and hence whether the order of arguments can
be switched. Everything only gets much, much worse when we get to full-fledged
programming languages (to say nothing of natural languages).

2.1 A Lightweight, Built-In First Half of a Parser
These problems make parsing a worthy topic in its own right, and entire books, tools,
and courses are devoted to it. However, from our perspective parsing is mostly a dis-
traction, because we want to study the parts of programming languages that are not
parsing. We will therefore exploit a handy feature of Racket to manage the transfor-
mation of input streams into trees: read. read is tied to the parenthetical form of the
language, in that it parses fully (and hence unambiguously) parenthesized terms into
a built-in tree form. For instance, running (read) on the parenthesized form of the
above input—
(+ 23 (- 5 6))

—will produce a list, whose first element is the symbol '+, second element is the
number 23, and third element is a list; this list’s first element is the symbol '-, second
element is the number 5, and third element is the number 6.

2.2 A Convenient Shortcut
As you know you need to test your programs extensively, which is hard to do when you
must manually type terms in over and over again. Fortunately, as you might expect, the
parenthetical syntax is integrated deeply into Racket through the mechanism of quota-
tion. That is, '<expr>—which you saw a moment ago in the above example—acts as
if you had run (read) and typed <expr> at the prompt (and, of course, evaluates to
the value the (read) would have).

10

2.3 Types for Parsing
Actually, I’ve lied a little. I said that (read)—or equivalently, using quotation—will
produce a list, etc. That’s true in regular Racket, but in Typed PLAI, the type it returns
a distinct type called an s-expression, written in Typed PLAI as s-expression:
> (read)

- s-expression

[type in (+ 23 (- 5 6))]

'(+ 23 (- 5 6))

Racket has a very rich language of s-expressions (it even has notation to represent
cyclic structures), but we will use only the simple fragment of it.

In the typed language, an s-expression is treated distinctly from the other types,
such as numbers and lists. Underneath, an s-expression is a large recursive datatype that
consists of all the base printable values—numbers, strings, symbols, and so on—and
printable collections (lists, vectors, etc.) of s-expressions. As a result, base types like
numbers, symbols, and strings are both their own type and an instance of s-expression.
Typing such data can be fairly problematic, as we will discuss later [REF].

Typed PLAI takes a simple approach. When written on their own, values like num-
bers are of those respective types. But when written inside a complex s-expression—in
particular, as created by read or quotation—they have type s-expression. You have
to then cast them to their native types. For instance:
> '+

- symbol

'+

> (define l '(+ 1 2))

> l

- s-expression

'(+ 1 2)

> (first l)

. typecheck failed: (listof '_a) vs s-expression in:

first

(quote (+ 1 2))

l

first

> (define f (first (s-exp->list l)))

> f

- s-expression

'+

This is similar to the casting that a Java programmer would have to insert. We will
study casting itself later [REF].

Observe that the first element of the list is still not treated by the type checker as a
symbol: a list-shaped s-expression is a list of s-expressions. Thus,
> (symbol->string f)

. typecheck failed: symbol vs s-expression in:

symbol->string

f

11

symbol->string

f

first

(first (s-exp->list l))

s-exp->list

whereas again, casting does the trick:
> (symbol->string (s-exp->symbol f))

- string

"+"

The need to cast s-expressions is a bit of a nuisance, but some complexity is unavoid-
able because of what we’re trying to accomplish: to convert an untyped input stream
into a typed output stream through robustly typed means. Somehow we have to make
explicit our assumptions about that input stream.

Fortunately we will use s-expressions only in our parser, and our goal is to get away
from parsing as quickly as possible! Indeed, if anything this should be inducement to
get away even quicker.

2.4 Completing the Parser
In principle, we can think of read as a complete parser. However, its output is generic:
it represents the token structure without offering any comment on its intent. We would
instead prefer to have a representation that tells us something about the intended mean-
ing of the terms in our language, just as we wrote at the very beginning: “representing
addition”, “represents a number”, and so on.

To do this, we must first introduce a datatype that captures this representation. We
will separately discuss (section 3.1) how and why we obtained this datatype, but for
now let’s say it’s given to us:

(define-type ArithC

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)])

We now need a function that will convert s-expressions into instances of this datatype.
This is the other half of our parser:

(define (parse [s : s-expression]) : ArithC

(cond

[(s-exp-number? s) (numC (s-exp->number s))]

[(s-exp-list? s)

(let ([sl (s-exp->list s)])

(case (s-exp->symbol (first sl))

[(+) (plusC (parse (second sl)) (parse (third sl)))]

[(*) (multC (parse (second sl)) (parse (third sl)))]

[else (error 'parse "invalid list input")]))]

[else (error 'parse "invalid input")]))

12

Thus:
> (parse '(+ (* 1 2) (+ 2 3)))

- ArithC

(plusC

(multC (numC 1) (numC 2))

(plusC (numC 2) (numC 3)))

Congratulations! You have just completed your first representation of a program.
From now on we can focus entirely on programs represented as recursive trees, ignoring
the vagaries of surface syntax and how to get them into the tree form. We’re finally
ready to start studying programming languages!

Exercise

What happens if you forget to quote the argument to the parser? Why?

2.5 Coda
Racket’s syntax, which it inherits from Scheme and Lisp, is controversial. Observe,
however, something deeply valuable that we get from it. While parsing traditional lan-
guages can be very complex, parsing this syntax is virtually trivial. Given a sequence of
tokens corresponding to the input, it is absolutely straightforward to turn parenthesized
sequences into s-expressions; it is equally straightforward (as we see above) to turn s-
expressions into proper syntax trees. I like to call such two-level languages bicameral,
in loose analogy to government legislative houses: the lower-level does rudimentary
well-formedness checking, while the upper-level does deeper validity checking. (We
haven’t done any of the latter yet, but we will [REF].)

The virtues of this syntax are thus manifold. The amount of code it requires is
small, and can easily be embedded in many contexts. By integrating the syntax into
the language, it becomes easy for programs to manipulate representations of programs
(as we will see more of in [REF]). It’s therefore no surprise that even though many
Lisp-based syntaxes have had wildly different semantics, they all share this syntactic
legacy.

Of course, we could just use XML instead. That would be much better. Or JSON.
Because that wouldn’t be anything like an s-expression at all.

3 A First Look at Interpretation
Now that we have a representation of programs, there are many ways in which we might
want to manipulate them. We might want to display a program in an attractive way
(“pretty-print”), convert into code in some other format (“compilation”), ask whether
it obeys certain properties (“verification”), and so on. For now, we’re going to focus
on asking what value it corresponds to (“evaluation”—the reduction of programs to
values).

Let’s write an evaluator, in the form of an interpreter, for our arithmetic language.
We choose arithmetic first for three reasons: (a) you already know how it works, so we
can focus on the mechanics of writing evaluators; (b) it’s contained in every language

13

we will encounter later, so we can build upwards and outwards from it; and (c) it’s at
once both small and big enough to illustrate many points we’d like to get across.

3.1 Representing Arithmetic
Let’s first agree on how we will represent arithmetic expressions. Let’s say we want
to support only two operations—addition and multiplication—in addition to primitive
numbers. We need to represent arithmetic expressions. What are the rules that govern
nesting of arithmetic expressions? We’re actually free to nest any expression inside
another.

Do Now!

Why did we not include division? What impact does it have on the remarks
above?

We’ve ignored division because it forces us into a discussion of what expressions we
might consider legal: clearly the representation of 1/2 ought to be legal; the represen-
tation of 1/0 is much more debatable; and that of 1/(1-1) seems even more contro-
versial. We’d like to sidestep this controversy for now and return to it later [REF].

Thus, we want a representation for numbers and arbitrarily nestable addition and
multiplication. Here’s one we can use:

(define-type ArithC

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)])

3.2 Writing an Interpreter
Now let’s write an interpreter for this arithmetic language. First, we should think about
what its type is. It clearly consumes a ArithC value. What does it produce? Well,
an interpreter evaluates—and what kind of value might arithmetic expressions reduce
to? Numbers, of course. So the interpreter is going to be a function from arithmetic
expressions to numbers.

Exercise

Write your test cases for the interpreter.

Because we have a recursive datatype, it is natural to structure our interpreter as a
recursive function over it. Here’s a first template: Templates are

explained in great
detail in How to
Design Programs.

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) ...]

[multC (l r) ...]))

You’re probably tempted to jump straight to code, which you can:

14

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) (+ l r)]

[multC (l r) (* l r)]))

Do Now!

Do you spot the errors?

Instead, let’s expand the template out a step:

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) ... (interp l) ... (interp r) ...]

[multC (l r) ... (interp l) ... (interp r) ...]))

and now we can fill in the blanks:

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) (+ (interp l) (interp r))]

[multC (l r) (* (interp l) (interp r))]))

Later on [REF], we’re going to wish we had returned a more complex datatype than
just numbers. But for now, this will do.

Congratulations: you’ve written your first interpreter! I know, it’s very nearly an
anticlimax. But they’ll get harder—much harder—pretty soon, I promise.

3.3 Did You Notice?
I just slipped something by you:

Do Now!

What is the “meaning” of addition and multiplication in this new lan-
guage?

That’s a pretty abstract question, isn’t it. Let’s make it concrete. There are many
kinds of addition in computer science:

• First of all, there’s many different kinds of numbers: fixed-width (e.g., 32-
bit) integers, signed fixed-width (e.g., 31-bits plus a sign-bit) integers, arbitrary
precision integers; in some languages, rationals; various formats of fixed- and
floating-point numbers; in some languages, complex numbers; and so on. After
the numbers have been chosen, addition may support only some combinations of
them.

15

• In addition, some languages permit the addition of datatypes such as matrices.

• Furthermore, many languages support “addition” of strings (we use scare-quotes
because we don’t really mean the mathematical concept of addition, but rather
the operation performed by an operator with the syntax +). In some languages
this always means concatenation; in some others, it can result in numeric results
(or numbers stored in strings).

These are all different meanings for addition. Semantics is the mapping of syntax (e.g.,
+) to meaning (e.g., some or all of the above).

This brings us to our first game of:
Which of these is the same?

• 1 + 2

• 1 + 2

• '1' + '2'

• '1' + '2'

Now return to the question above. What semantics do we have? We’ve adopted
whatever semantics Racket provides, because we map + to Racket’s +. In fact that’s
not even quite true: Racket may, for all we know, also enable + to apply to strings, so
we’ve chosen the restriction of Racket’s semantics to numbers (though in fact Racket’s
+ doesn’t tolerate strings).

If we wanted a different semantics, we’d have to implement it explicitly.
Exercise

What all would you have to change so that the number had signed- 32-bit
arithmetic?

In general, we have to be careful about too readily borrowing from the host lan-
guage. We’ll return to this topic later [REF].

3.4 Growing the Language
We’ve picked a very restricted first language, so there are many ways we can grow it.
Some, such as representing data structures and functions, will clearly force us to add
new features to the interpreter itself (assuming we don’t want to use Gödel numbering).
Others, such as adding more of arithmetic itself, can be done without disturbing the
core language and hence its interpreter. We’ll examine this next (section 4).

4 A First Taste of Desugaring
We’ve begun with a very spartan arithmetic language. Let’s look at how we might
extend it with more arithmetic operations that can nevertheless be expressed in terms
of existing ones. We’ll add just two, because these will suffice to illustrate the point.

16

4.1 Extension: Binary Subtraction
First, we’ll add subtraction. Because our language already has numbers, addition, and
multiplication, it’s easy to define subtraction: a− b = a+−1× b.

Okay, that was easy! But now we should turn this into concrete code. To do so, we
face a decision: where does this new subtraction operator reside? It is tempting, and
perhaps seems natural, to just add one more rule to our existing ArithC datatype.

Do Now!

What are the negative consequences of modifying ArithC?

This creates a few problems. The first, obvious, one is that we now have to modify
all programs that process ArithC. So far that’s only our interpreter, which is pretty
simple, but in a more complex implementation, that could already be a concern. Sec-
ond, we were trying to add new constructs that we can define in terms of existing
ones; it feels slightly self-defeating to do this in a way that isn’t modular. Third, and
most subtly, there’s something conceptually wrong about modifying ArithC. That’s
because ArithC represents our core language. In contrast, subtraction and other ad-
ditions represent our user-facing, surface language. It’s wise to record conceptually
different ideas in distinct datatypes, rather than shoehorn them into one. The separa-
tion can look a little unwieldy sometimes, but it makes the program much easier for
future developers to read and maintain. Besides, for different purposes you might want
to layer on different extensions, and separating the core from the surface enables that.

Therefore, we’ll define a new datatype to reflect our intended surface syntax terms:

(define-type ArithS

[numS (n : number)]

[plusS (l : ArithS) (r : ArithS)]

[bminusS (l : ArithS) (r : ArithS)]

[multS (l : ArithS) (r : ArithS)])

This looks almost exactly like ArithC, other than the added case, which follows the
familiar recursive pattern.

Given this datatype, we should do two things. First, we should modify our parser to
also parse - expressions, and always construct ArithS terms (rather than any ArithC

ones). Second, we should implement a desugar function that translates ArithS values
into ArithC ones.

Let’s write the obvious part of desugar:
<desugar> ::=

(define (desugar [as : ArithS]) : ArithC

(type-case ArithS as

[numS (n) (numC n)]

[plusS (l r) (plusC (desugar l)

(desugar r))]

[multS (l r) (multC (desugar l)

(desugar r))]

<bminusS-case>))

17

Now let’s convert the mathematical description of subtraction above into code:
<bminusS-case> ::=

[bminusS (l r) (plusC (desugar l)

(multC (numC -1) (desugar r)))]

Do Now!

It’s a common mistake to forget the recursive calls to desugar on l and
r. What happens when you forget them? Try for yourself and see.

4.2 Extension: Unary Negation
Now let’s consider another extension, which is a little more interesting: unary negation.
This forces you to do a little more work in the parser because, depending on your
surface syntax, you may need to look ahead to determine whether you’re in the unary
or binary case. But that’s not even the interesting part!

There are many ways we can desugar unary negation. We can define it naturally as
−b = 0 − b, or we could abstract over the desugaring of binary subtraction with this
expansion: −b = 0 +−1× b.

Do Now!

Which one do you prefer? Why?

It’s tempting to pick the first expansion, because it’s much simpler. Imagine we’ve
extended the ArithS datatype with a representation of unary negation:

[uminusS (e : ArithS)]

Now the implementation in desugar is straightforward:

[uminusS (e) (desugar (bminusS (numS 0) e))]

Let’s make sure the types match up. Observe that e is a ArithS term, so it is valid to
use as an argument to bminusS, and the entire term can legally be passed to desugar.
It is therefore important to not desugar e but rather embed it directly in the generated
term. This embedding of an input term in another one and recursively calling desugar
is a common pattern in desugaring tools; it is called a macro (specifically, the “macro”
here is this definition of uminusS).

However, there are two problems with the definition above:

1. The first is that the recursion is generative, which forces us to take extra care. If you haven’t heard
of generative
recursion before,
read the section on
it in How to Design
Programs.
Essentially, in
generative recursion
the sub-problem is a
computed function
of the input, rather
than a structural
piece of it. This is
an especially simple
case of generative
recursion, because
the “function” is
simple: it’s just the
bminusS

constructor.

We might be tempted to fix this by using a different rewrite:

[uminusS (e) (bminusS (numS 0) (desugar e))]

which does indeed eliminate the generativity.

Do Now!

18

http://www.htdp.org/
http://www.htdp.org/

Unfortunately, this desguaring transformation won’t work at all! Do
you see why? If you don’t, try to run it.

2. The second is that we are implicitly depending on exactly what bminusS means;
if its meaning changes, so will that of uminusS, even if we don’t want it to. In
contrast, defining a functional abstraction that consumes two terms and generates
one representing the addition of the first to -1 times the second, and using this
to define the desugaring of both uminusS and bminusS, is a little more fault-
tolerant.

You might say that the meaning of subtraction is never going to change, so why
bother? Yes and no. Yes, it’s meaning is unlikely to change; but no, its imple-
mentation might. For instance, the developer may decide to log all uses of binary
subtraction. In the macro expansion, all uses of unary negation would also get
logged, but they would not in the second expansion.

Fortunately, in this particular case we have a much simpler option, which is to
define −b = −1 × b. This expansion works with the primitives we have, and follows
structural recursion. The reason we took the above detour, however, is to alert you to
these problems, and warn that you might not always be so fortunate.

5 Adding Functions to the Language
Let’s start turning this into a real programming language. We could add intermediate
features such as conditionals, but to do almost anything interesting we’re going to need
functions or their moral equivalent, so let’s get to it.

Exercise

Add conditionals to your language. You can either add boolean datatypes
or, if you want to do something quicker, add a conditional that treats 0 as
false and everything else as true.

What are the important test cases you should write?

Imagine, therefore, that we’re modeling a system like DrRacket. The developer
defines functions in the definitions window, and uses them in the interactions window.
For now, let’s assume all definitions go in the definitions window only (we’ll relax this
soon [REF]), and all expressions in the interactions window only. Thus, running a pro-
gram simply loads definitions. Because our interpreter corresponds to the interactions
window prompt, we’ll therefore assume it is supplied with a set of definitions. A set of definitions

suggests no
ordering, which
means, presumably,
any definition can
refer to any other.
That’s what I intend
here, but when you
are designing your
own language, be
sure to think about
this.

5.1 Defining Data Representations
To keep things simple, let’s just consider functions of one argument. Here are some
Racket examples:

(define (double x) (+ x x))

19

(define (quadruple x) (double (double x)))

(define (const5 _) 5)

Exercise

When a function has multiple arguments, what simple but important crite-
rion governs the names of those arguments?

What are the parts of a function definition? It has a name (above, double, quadru-
ple, and const5), which we’ll represent as a symbol ('double, etc.); its formal pa-
rameter or argument has a name (e.g., x), which too we can model as a symbol ('x);
and it has a body. We’ll determine the body’s representation in stages, but let’s start to
lay out a datatype for function definitions:

<fundef> ::=

(define-type FunDefC

[fdC (name : symbol) (arg : symbol) (body : ExprC)])

What is the body? Clearly, it has the form of an arithmetic expression, and some-
times it can even be represented using the existing ArithC language: for instance, the
body of const5 can be represented as (numC 5). But representing the body of dou-
ble requires something more: not just addition (which we have), but also “x”. You are
probably used to calling this a variable, but we will not use that term for now. Instead,
we will call it an identifier. I promise we’ll

return to this issue
of nomenclature
later [REF].

Do Now!

Anything else?

Finally, let’s look at the body of quadruple. It has yet another new construct:
a function application. Be very careful to distinguish between a function definition,
which describes what the function is, and an application, which uses it. These are
uses. The argument (or actual parameter) in the inner application of double is x;
the argument in the outer application is (double x). Thus, the argument can be any
complex expression.

Let’s commit all this to a crisp datatype. Clearly we’re extending what we had
before (because we still want all of arithmetic). We’ll give a new name to our datatype
to signify that it’s growing up:

<exprC> ::=

(define-type ExprC

[numC (n : number)]

<idC-def>
<app-def>
[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)])

20

Identifiers are closely related to formal parameters. When we apply a function by
giving it a value for its parameter, we are in effect asking it to replace all instances
of that formal parameter in the body—i.e., the identifiers with the same name as the
formal parameter—with that value. To simplify this process of search-and-replace, we Observe that we are

being coy about a
few issues: what
kind of “value”
[REF] and when to
replace [REF].

might as well use the same datatype to represent both. We’ve already chosen symbols
to represent formal parameters, so:

<idC-def> ::=

[idC (s : symbol)]

Finally, applications. They have two parts: the function’s name, and its argument.
We’ve already agreed that the argument can be any full-fledged expression (including
identifiers and other applications). As for the function name, it again makes sense
to use the same datatype as we did when giving the function its name in a function
definition. Thus:

<app-def> ::=

[appC (fun : symbol) (arg : ExprC)]

identifying which function to apply, and providing its argument.
Using these definitions, it’s instructive to write out the representations of the exam-

ples we defined above:

• (fdC 'double 'x (plusC (idC 'x) (idC 'x)))

• (fdC 'quadruple 'x (appC 'double (appC 'double (idC 'x))))

• (fdC 'const5 '_ (numC 5))

We also need to choose a representation for a set of function definitions. It’s convenient
to represent these by a list. Look out! Did you

notice that we
spoke of a set of
function definitions,
but chose a list
representation?
That means we’re
using an ordered
collection of data to
represent an
unordered entity. At
the very least, then,
when testing, we
should use any and
all permutations of
definitions to ensure
we haven’t subtly
built in a
dependence on the
order.

5.2 Growing the Interpreter
Now we’re ready to tackle the interpreter proper. First, let’s remind ourselves of what
it needs to consume. Previously, it consumed only an expression to evaluate. Now it
also needs to take a list of function definitions:

<interp> ::=

(define (interp [e : ExprC] [fds : (listof FunDefC)]) : number

<interp-body>)

Let’s revisit our old interpreter (section 3). In the case of numbers, clearly we still
return the number as the answer. In the addition and multiplication case, we still need
to recur (because the sub-expressions might be complex), but which set of function
definitions do we use? Because the act of evaluating an expression neither adds nor
removes function definitions, the set of definitions remains the same, and should just
be passed along unchanged in the recursive calls.

<interp-body> ::=

21

(type-case ExprC e

[numC (n) n]

<idC-interp-case>
<appC-interp-case>
[plusC (l r) (+ (interp l fds) (interp r fds))]

[multC (l r) (* (interp l fds) (interp r fds))])

Now let’s tackle application. First we have to look up the function definition, for
which we’ll assume we have a helper function of this type available:

; get-fundef : symbol * (listof FunDefC) -> FunDefC

Assuming we find a function of the given name, we need to evaluate its body. How-
ever, remember what we said about identifiers and parameters? We must “search-and-
replace”, a process you have seen before in school algebra called substitution. This is
sufficiently important that we should talk first about substitution before returning to the
interpreter (section 5.4).

5.3 Substitution
Substitution is the act of replacing a name (in this case, that of the formal parameter)
in an expression (in this case, the body of the function) with another expression (in this
case, the actual parameter). Let’s define its type:

; subst : ExprC * symbol * ExprC -> ExprC

It helps to also give its parameters informative names:
<subst> ::=

(define (subst [what : ExprC] [for : symbol] [in : ExprC]) : ExprC

<subst-body>)

The first argument is what we want to replace the name with; the second is for what
name we want to perform substitution; and the third is in which expression we want to
do it.

Do Now!

Suppose we want to substitute 3 for the identifier x in the bodies of the
three example functions above. What should it produce?

In double, this should produce (+ 3 3); in quadruple, it should produce (dou-
ble (double 3)); and in const5, it should produce 5 (i.e., no substitution happens
because there are no instances of x in the body). A common mistake

is to assume that the
result of
substituting, e.g., 3
for x in double is
(define (double

x) (+ 3 3)).
This is incorrect.
We only substitute
at the point when
we apply the
function, at which
point the function’s
invocation is
replaced by its
body. The header
enables us to find
the function and
ascertain the name
of its parameter; but
only its body
remains for
evaluation.
Examine how
substitution is used
to notice the type
error that would
result from
returning a function
definition.

These examples already tell us what to do in almost all the cases. Given a number,
there’s nothing to substitute. If it’s an identifier, we haven’t seen an example with a
different identifier but you’ve guessed what should happen: it stays unchanged. In the
other cases, descend into the sub-expressions, performing substitution.

22

Before we turn this into code, there’s an important case to consider. Suppose the
name we are substituting happens to be the name of a function. Then what should
happen?

Do Now!

What, indeed, should happen?

There are many ways to approach this question. One is from a design perspective:
function names live in their own “world”, distinct from ordinary program identifiers.
Some languages (such as C and Common Lisp, in slightly different ways) take this
perspective, and partition identifiers into different namespaces depending on how they
are used. In other languages, there is no such distinction; indeed, we will examine such
languages soon [REF].

For now, we will take a pragmatic viewpoint. Because expressions evaluate to
numbers, that means a function name could turn into a number. However, numbers
cannot name functions, only symbols can. Therefore, it makes no sense to substitute
in that position, and we should leave the function name unmolested irrespective of its
relationship to the variable being substituted. (Thus, a function could have a parameter
named x as well as refer to another function called x, and these would be kept distinct.)

Now we’ve made all our decisions, and we can provide the body code:
<subst-body> ::=

(type-case ExprC in

[numC (n) in]

[idC (s) (cond

[(symbol=? s for) what]

[else in])]

[appC (f a) (appC f (subst what for a))]

[plusC (l r) (plusC (subst what for l)

(subst what for r))]

[multC (l r) (multC (subst what for l)

(subst what for r))])

Exercise

Observe that, whereas in the numC case the interpreter returned n, substi-
tution returns in (i.e., the original expression, equivalent at that point to
writing (numC n). Why?

5.4 The Interpreter, Resumed
Phew! Now that we’ve completed the definition of substitution (or so we think), let’s
complete the interpreter. Substitution was a heavyweight step, but it also does much of
the work involved in applying a function. It is tempting to write

<appC-interp-case-take-1> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

(subst a

23

(fdC-arg fd)

(fdC-body fd)))]

Tempting, but wrong.
Do Now!

Do you see why?

Reason from the types. What does the interpreter return? Numbers. What does
substitution return? Oh, that’s right, expressions! For instance, when we substituted in
the body of double, we got back the representation of (+ 5 5). This is not a valid
answer for the interpreter. Instead, it must be reduced to an answer. That, of course, is
precisely what the interpreter does:

<appC-interp-case> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

(interp (subst a

(fdC-arg fd)

(fdC-body fd))

fds))]

Okay, that leaves only one case: identifiers. What could possibly be complicated
about them? They should be just about as simple as numbers! And yet we’ve put them
off to the very end, suggesting something subtle or complex is afoot.

Do Now!

Work through some examples to understand what the interpreter should do
in the identifier case.

Let’s suppose we had defined double as follows:

(define (double x) (+ x y))

When we substitute 5 for x, this produces the expression (+ 5 y). So far so good,
but what is left to substitute y? As a matter of fact, it should be clear from the very
outset that this definition of double is erroneous. The identifier y is said to be free, an
adjective that in this setting has negative connotations.

In other words, the interpreter should never confront an identifier. All identifiers
ought to be parameters that have already been substituted (known as bound identifiers—
here, a positive connotation) before the interpreter ever sees them. As a result, there is
only one possible response given an identifier:

<idC-interp-case> ::=

[idC (_) (error 'interp "shouldn't get here")]

And that’s it!
Finally, to complete our interpreter, we should define get-fundef:

24

(define (get-fundef [n : symbol] [fds : (listof FunDefC)]) : FunDefC

(cond

[(empty? fds) (error 'get-fundef "reference to undefined function")]

[(cons? fds) (cond

[(equal? n (fdC-name (first fds))) (first fds)]

[else (get-fundef n (rest fds))])]))

5.5 Oh Wait, There’s More!
Earlier, we gave the following type to subst:

; subst : ExprC * symbol * ExprC -> ExprC

Sticking to surface syntax for brevity, suppose we apply double to (+ 1 2). This
would substitute (+ 1 2) for each x, resulting in the following expression—(+ (+ 1

2) (+ 1 2))—for interpretation. Is this necessarily what we want?
When you learned algebra in school, you may have been taught to do this differ-

ently: first reduce the argument to an answer (in this case, 3), then substitute the answer
for the parameter. This notion of substitution might have the following type instead:

; subst : number * symbol * ExprC -> ExprC

Careful now: we can’t put raw numbers inside expressions, so we’d have to con-
stantly wrap the number in an invocation of numC. Thus, it would make sense for subst
to have a helper that it invokes after wrapping the first parameter. (In fact, our existing
subst would be a perfectly good candidate: because it accepts any ExprC in the first
parameter, it will certainly work just fine with a numC.) In fact, we don’t

even have
substitution quite
right! The version
of substitution we
have doesn’t scale
past this language
due to a subtle
problem known as
“name capture”.
Fixing substitution
is complex, subtle,
and an exciting
intellectual
endeavor, but it’s
not the direction I
want to go in here.
We’ll instead
sidestep this
problem in this
book. If you’re
interested, however,
read about the
lambda calculus,
which provides the
tools for defining
substitution
correctly.

Exercise

Modify your interpreter to substitute names with answers, not expressions.

We’ve actually stumbled on a profound distinction in programming languages. The
act of evaluating arguments before substituting them in functions is called eager appli-
cation, while that of deferring evaluation is called lazy—and has some variations. For
now, we will actually prefer the eager semantics, because this is what most mainstream
languages adopt. Later [REF], we will return to talking about the lazy application
semantics and its implications.

6 From Substitution to Environments
Though we have a working definition of functions, you may feel a slight unease about
it. When the interpreter sees an identifier, you might have had a sense that it needs to
“look it up”. Not only did it not look up anything, we defined its behavior to be an
error! While absolutely correct, this is also a little surprising. More importantly, we
write interpreters to understand and explain languages, and this implementation might
strike you as not doing that, because it doesn’t match our intuition.

25

There’s another difficulty with using substitution, which is the number of times we
traverse the source program. It would be nice to have to traverse only those parts of the
program that are actually evaluated, and then, only when necessary. But substitution
traverses everything—unvisited branches of conditionals, for instance—and forces the
program to be traversed once for substitution and once again for interpretation.

Exercise

Does substitution have implications for the time complexity of evaluation?

There’s yet another problem with substitution, which is that it is defined in terms of
representations of the program source. Obviously, our interpreter has and needs access
to the source, to interpret it. However, other implementations—such as compilers—
have no need to store it for that purpose. It would be nice to employ a mechanism that Compilers might

store versions of or
information about
the source for other
reasons, such as
reporting runtime
errors, and JITs may
need it to
re-compile on
demand.

is more portable across implementation strategies.

6.1 Introducing the Environment
The intuition that addresses the first concern is to have the interpreter “look up” an
identifier in some sort of directory. The intuition that addresses the second concern is
to defer the substitution. Fortunately, these converge nicely in a way that also addresses
the third. The directory records the intent to substitute, without actually rewriting the
program source; by recording the intent, rather than substituting immediately, we can
defer substitution; and the resulting data structure, which is called an environment,
avoids the need for source-to-source rewriting and maps nicely to low-level machine
representations. Each name association in the environment is called a binding.

Observe carefully that what we are changing is the implementation strategy for the
programming language, not the language itself. Therefore, none of our datatypes for
representing programs should change, nor even should the answers that the interpreter
provides. As a result, we should think of the previous interpreter as a “reference imple-
mentation” that the one we’re about to write should match. Indeed, we should create a
generator that creates lots of tests, runs them through both interpreters, and makes sure
their answers are the same. Ideally, we should prove that the two interpreters behave
the same, which is a good topic for advanced study. One subtlety is in

defining precisely
what “the same”
means, especially
with regards to
failure.

Let’s first define our environment data structure. An environment is a list of pairs
of names associated with...what?

Do Now!

A natural question to ask here might be what the environment maps names
to. But a better, more fundamental, question is: How to determine the
answer to the “natural” question?

Remember that our environment was created to defer substitutions. Therefore, the
answer lies in substitution. We discussed earlier (section 5.5) that we want substitu-
tion to map names to answers, corresponding to an eager function application strategy.
Therefore, the environment should map names to answers.

(define-type Binding

[bind (name : symbol) (val : number)])

26

(define-type-alias Env (listof Binding))

(define mt-env empty)

(define extend-env cons)

6.2 Interpreting with Environments
Now we can tackle the interpreter. One case is easy, but we should revisit all the others:

<*> ::=

(define (interp [expr : ExprC] [env : Env] [fds : (listof FunDefC)]) : number

(type-case ExprC expr

[numC (n) n]

<idC-case>
<appC-case>
<plusC/multC-case>))

The arithmetic operations are easiest. Recall that before, the interpreter recurred
without performing any new substitutions. As a result, there are no new deferred sub-
stitutions to perform either, which means the environment does not change:

<plusC/multC-case> ::=

[plusC (l r) (+ (interp l env fds) (interp r env fds))]

[multC (l r) (* (interp l env fds) (interp r env fds))]

Now let’s handle identifiers. Clearly, encountering an identifier is no longer an
error: this was the very motivation for this change. Instead, we must look up its value
in the directory:

<idC-case> ::=

[idC (n) (lookup n env)]

Do Now!

Implement lookup.

Finally, application. Observe that in the substitution interpreter, the only case that
caused new substitutions to occur was application. Therefore, this should be the case
that constructs bindings. Let’s first extract the function definition, just as before:

<appC-case> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

<appC-interp>)]

Previously, we substituted, then interpreted. Because we have no substitution step,
we can proceed with interpretation, so long as we record the deferral of substitution.

<appC-interp> ::=

27

(interp (fdC-body fd)

<appC-interp-bind-in-env>
fds)

That is, the set of function definitions remains unchanged; we’re interpreting the
body of the function, as before; but we have to do it in an environment that binds the
formal parameter. Let’s now define that binding process:

<appC-interp-bind-in-env-take-1> ::=

(extend-env (bind (fdC-arg fd)

(interp a env fds))

env)

the name being bound is the formal parameter (the same name that was substituted
for, before). It is bound to the result of interpreting the argument (because we’ve
decided on an eager application semantics). And finally, this extends the environment
we already have. Type-checking this helps to make sure we got all the little pieces
right.

Once we have a definition for lookup, we’d have a full interpreter. So here’s one:

(define (lookup [for : symbol] [env : Env]) : number

(cond

[(empty? env) (error 'lookup "name not found")]

[else (cond

[(symbol=? for (bind-name (first env)))

(bind-val (first env))]

[else (lookup for (rest env))])]))

Observe that looking up a free identifier still produces an error, but it has moved
from the interpreter—which is by itself unable to determine whether or not an identifier
is free—to lookup, which determines this based on the content of the environment.

Now we have a full interpreter. You should of course test it make sure it works as
you’d expect. For instance, these tests pass:

(test (interp (plusC (numC 10) (appC 'const5 (numC 10)))

mt-env

(list (fdC 'const5 '_ (numC 5))))

15)

(test (interp (plusC (numC 10) (appC 'double (plusC (numC 1) (numC 2))))

mt-env

(list (fdC 'double 'x (plusC (idC 'x) (idC 'x)))))

16)

(test (interp (plusC (numC 10) (appC 'quadruple (plusC (numC 1) (numC 2))))

mt-env

(list (fdC 'quadruple 'x (appC 'double (appC 'double (idC 'x))))

(fdC 'double 'x (plusC (idC 'x) (idC 'x)))))

22)

28

So we’re done, right?
Do Now!

Spot the bug.

6.3 Deferring Correctly
Here’s another test:

(interp (appC 'f1 (numC 3))

mt-env

(list (fdC 'f1 'x (appC 'f2 (numC 4)))

(fdC 'f2 'y (plusC (idC 'x) (idC 'y)))))

In our interpreter, this evaluates to 7. Should it?
Translated into Racket, this test corresponds to the following two definitions and

expression:

(define (f1 x) (f2 4))

(define (f2 y) (+ x y))

(f1 3)

What should this produce? (f1 3) substitutes x with 3 in the body of f1, which
then invokes (f2 4). But notably, in f2, the identifier x is not bound! Sure enough,
Racket will produce an error.

In fact, so will our substitution-based interpreter!
Why does the substitution process result in an error? It’s because, when we replace

the representation of x with the representation of 3 in the representation of f1, we do so
in f1 only. (Obviously: x is f1’s parameter; even if another function had a parameter This “the

representation of” is
getting a little
annoying, isn’t it?
Therefore, I’ll stop
saying that, but do
make sure you
understand why I
had to say it. It’s an
important bit of
pedantry.

named x, that’s a different x.) Thus, when we get to evaluating the body of f2, its x
hasn’t been substituted, resulting in the error.

What went wrong when we switched to environments? Watch carefully: this is
subtle. We can focus on applications, because only they affect the environment. When
we substituted the formal for the value of the actual, we did so by extending the current
environment. In terms of our example, we asked the interpreter to substitute not only
f2’s substitution in f2’s body, but also the current ones (those for the caller, f1), and
indeed all past ones as well. That is, the environment only grows; it never shrinks.

Because we agreed that environments are only an alternate implementation strategy
for substitution—and in particular, that the language’s meaning should not change—
we have to alter the interpreter. Concretely, we should not ask it to carry around all past
deferred substitution requests, but instead make it start afresh for every new function,
just as the substitution-based interpreter does. This is an easy change:

<appC-interp-bind-in-env> ::=

(extend-env (bind (fdC-arg fd)

(interp a env fds))

mt-env)

Now we have truly reproduced the behavior of the substitution interpreter. In case you’re
wondering how to
write a test case that
catches errors, look
up test/exn.

29

6.4 Scope
The broken environment interpreter above implements what is known as dynamic scope.
This means the environment accumulates bindings as the program executes. As a re-
sult, whether an identifier is even bound depends on the history of program execution.
We should regard this unambiguously as a flaw of programming language design. It
adversely affects all tools that read and process programs: compilers, IDEs, and hu-
mans.

In contrast, substitution—and environments, done correctly—give us lexical scope
or static scope. “Lexical” in this context means “as determined from the source pro-
gram”, while “static” in computer science means “without running the program”, so
these are appealing to the same intuition. When we examine an identifier, we want to
know two things: (1) Is it bound? (2) If so, where? By “where” we mean: if there are
multiple bindings for the same name, which one governs this identifier? Put differently,
which one’s substitution will give a value to this identifier? In general, these questions
cannot be answered statically in a dynamically-scoped language: so your IDE, for in-
stance, cannot overlay arrows to show you this information (as DrRacket does). Thus, A different way to

think about it is that
in a
dynamically-scoped
language, the
answer to these
questions is the
same for all
identifiers, and it
simply refers to the
dynamic
environment. In
other words, it
provides no useful
information.

even though the rules of scope become more complex as the space of names becomes
richer (e.g., objects, threads, etc.), we should always strive to preserve the spirit of
static scoping.

6.4.1 How Bad Is It?

You might look at our running example and wonder whether we’re creating a tempest
in a teapot. In return, you should consider two situations:

1. To understand the binding structure of your program, you may need to look at
the whole program. No matter how much you’ve decomposed your program into
small, understandable fragments, it doesn’t matter if you have a free identifier
anywhere.

2. Understanding the binding structure is not only a function of the size of the pro-
gram but also of the complexity of its control flow. Imagine an interactive pro-
gram with numerous callbacks; you’d have to track through every one of them,
too, to know which binding governs an identifier.

Need a little more of a nudge? Let’s replace the expression of our example program
with this one:

(if (moon-visible?)

(f1 10)

(f2 10))

Suppose moon-visible? is a function that presumably evaluates to false on new-moon
nights, and true at other times. Then, this program will evaluate to an answer except
on new-moon nights, when it will fail with an unbound identifier error.

Exercise

What happens on cloudy nights?

30

6.4.2 The Top-Level Scope

Matters become more complex when we contemplate top-level definitions in many lan-
guages. For instance, some versions of Scheme (which is a paragon of lexical scoping)
allow you to write this:

(define y 1)

(define (f x) (+ x y))

which seems to pretty clearly suggest where the y in the body of f will come from,
except:

(define y 1)

(define (f x) (+ x y))

(define y 2)

is legal and (f 10) produces 12. Wait, you might think, always take the last one! But:

(define y 1)

(define f (let ((z y)) (lambda (x) (+ x y z))))

(define y 2)

Here, z is bound to the first value of y whereas the inner y is bound to the second
value. There is actually a valid explanation of this behavior in terms of lexical scope, Most “scripting”

languages exhibit
similar problems.
As a result, on the
Web you will find
enormous confusion
about whether a
certain language is
statically- or
dynamically-
scoped, when in
fact readers are
comparing behavior
inside functions
(often static)
against the top-level
(usually dynamic).
Beware!

but it can become convoluted, and perhaps a more sensible option is to prevent such
redefinition. Racket does precisely this, thereby offering the convenience of a top-level
without its pain.

6.5 Exposing the Environment
If we were building the implementation for others to use, it would be wise and a cour-
tesy for the exported interpreter to take only an expression and list of function defini-
tions, and invoke our defined interp with the empty environment. This both spares
users an implementation detail, and avoids the use of an interpreter with an incorrect
environment. In some contexts, however, it can be useful to expose the environment
parameter. For instance, the environment can represent a set of pre-defined bindings:
e.g., if the language wishes to provide pi automatically bound to 3.2 (in Indiana).

7 Functions Anywhere
The introduction to the Scheme programming language definition establishes this de-
sign principle:

Programming languages should be designed not by piling feature on top
of feature, but by removing the weaknesses and restrictions that make ad-
ditional features appear necessary. [REF]

31

As design principles go, this one is hard to argue with. (Some restrictions, of course,
have good reason to exist, but this principle forces us to argue for them, not admit them
by default.) Let’s now apply this to functions.

One of the things we stayed coy about when introducing functions (section 5) is
exactly where functions go. We may have suggested we’re following the model of an
idealized DrRacket, with definitions and their uses kept separate. But, inspired by the
Scheme design principle, let’s examine how necessary that is.

Why can’t functions definitions be expressions? In our current arithmetic-centric
language we face the uncomfortable question “What value does a function definition
represent?”, to which we don’t really have a good answer. But a real programming
language obviously computes more than numbers, so we no longer need to confront
the question in this form; indeed, the answer to the above can just as well be, “A
function value”. Let’s see how that might work out.

What can we do with functions as values? Clearly, functions are a distinct kind of
value than a number, so we cannot, for instance, add them. But there is one evident
thing we can do: apply them to arguments! Thus, we can allow function values to
appear in the function position of an application. The behavior would, naturally, be to
apply the function. Thus, we’re proposing a language where the following would be a
valid program (where I’ve used brackets so we can easily identify the function)

(+ 2 ([define (f x) (* x 3)] 4))

and would evaluate to (+ 2 (* 4 3)), or 14. (Did you see that I just used substitu-
tion?)

7.1 Functions as Expressions and Values
Let’s first define the core language to include function definitions:

<expr-type> ::=

(define-type ExprC

[numC (n : number)]

[idC (s : symbol)]

<app-type>
[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

<fun-type>)

For now, we’ll simply copy function definitions into the expression language. We’re
free to change this if necessary as we go along, but for now it at least allows us to reuse
our existing test cases.

<fun-type-take-1> ::=

[fdC (name : symbol) (arg : symbol) (body : ExprC)]

We also need to determine what an application looks like. What goes in the function
position of an application? We want to allow an entire function definition, not just

32

its name. Because we’ve lumped function definitions in with all other expressions,
let’s allow an arbitrary expression here, but with the understanding that we want only
function definition expressions: We might consider

more refined
datatypes that split
function definitions
apart from other
kinds of
expressions. This
amounts to trying to
classify different
kinds of
expressions, which
we will return to
when we study
types. [REF]

<app-type> ::=

[appC (fun : ExprC) (arg : ExprC)]

With this definition of application, we no longer have to look up functions by name,
so the interpreter can get rid of the list of function definitions. If we need it we can
restore it later, but for now let’s just explore what happens with function definitions are
written at the point of application: so-called immediate functions.

Now let’s tackle interp. We need to add a case to the interpreter for function
definitions, and this is a good candidate:

[fdC (n a b) expr]

Do Now!

What happens when you add this?

Immediately, we see that we have a problem: the interpreter no longer always returns
numbers, so we have a type error.

We’ve alluded periodically to the answers computed by the interpreter, but never
bothered gracing these with their own type. It’s time to do so now.

<answer-type-take-1> ::=

(define-type Value

[numV (n : number)]

[funV (name : symbol) (arg : symbol) (body : ExprC)])

We’re using the suffix of V to stand for values, i.e., the result of evaluation. The
pieces of a funV will be precisely those of a fdC: the latter is input, the former is output.
By keeping them distinct we allow each one to evolve independently as needed.

Now we must rewrite the interpreter. Let’s start with its type:
<interp-hof> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

<interp-body-hof>))

This change naturally forces corresponding type changes to the Binding datatype
and to lookup.

Exercise

Modify Binding and lookup, appropriately.

<interp-body-hof> ::=

33

[numC (n) (numV n)]

[idC (n) (lookup n env)]

<app-case>
<plus/mult-case>
<fun-case>

Clearly, numeric answers need to be wrapped in the appropriate numeric answer
constructor. Identifier lookup is unchanged. We have to slightly modify addition and
multiplication to deal with the fact that the interpreter returns Values, not numbers:

<plus/mult-case> ::=

[plusC (l r) (num+ (interp l env) (interp r env))]

[multC (l r) (num* (interp l env) (interp r env))]

It’s worth examining the definition of one of these helper functions:

(define (num+ [l : Value] [r : Value]) : Value

(cond

[(and (numV? l) (numV? r))

(numV (+ (numV-n l) (numV-n r)))]

[else

(error 'num+ "one argument was not a number")]))

Observe that it checks that both arguments are numbers before performing the addition.
This is an instance of a safe run-time system. We’ll discuss this topic more when we
get to types. [REF]

There are two more cases to cover. One is function definitions. We’ve already
agreed these will be their own kind of value:

<fun-case-take-1> ::=

[fdC (n a b) (funV n a b)]

That leaves one case, application. Though we no longer need to look up the func-
tion definition, we’ll leave the code structured as similarly as possible:

<app-case-take-1> ::=

[appC (f a) (local ([define fd f])

(interp (fdC-body fd)

(extend-env (bind (fdC-arg fd)

(interp a env))

mt-env)))]

In place of the lookup, we reference f which is the function definition, sitting right
there. Note that, because any expression can be in the function definition position, we
really ought to harden the code to check that it is indeed a function.

Do Now!

34

What does is mean? That is, do we want to check that the function def-
inition position is syntactically a function definition (fdC), or only that it
evaluates to one (funV)? Is there a difference, i.e., can you write a program
that satisfies one condition but not the other?

We have two choices:

1. We can check that it syntactically is an fdC and, if it isn’t reject it as an error.

2. We can evaluate it, and check that the resulting value is a function (and signal an
error otherwise).

We will take the latter approach, because this gives us a much more flexible language.
In particular, even if we can’t immediately imagine cases where we, as humans, might
need this, it might come in handy when a program needs to generate code. And we’re
writing precisely such a program, namely the desugarer! (See section 7.5.) As a result,
we’ll modify the application case to evaluate the function position:

<app-case-take-2> ::=

[appC (f a) (local ([define fd (interp f env)])

(interp (funV-body fd)

(extend-env (bind (funV-arg fd)

(interp a env))

mt-env)))]

Exercise

Modify the code to perform both versions of this check.

And with that, we’re done. We have a complete interpreter! Here, for instance, are
some of our old tests again:

(test (interp (plusC (numC 10) (appC (fdC 'const5 '_ (numC 5)) (numC 10)))

mt-env)

(numV 15))

(test/exn (interp (appC (fdC 'f1 'x (appC (fdC 'f2 'y (plusC (idC 'x) (idC 'y)))

(numC 4)))

(numC 3))

mt-env)

"name not found")

7.2 Nested What?
The body of a function definition is an arbitrary expression. A function definition is it-
self an expression. That means a function definition can contain a...function definition.
For instance:

<nested-fdC> ::=

35

(fdC 'f1 'x

(fdC 'f2 'x

(plusC (idC 'x) (idC 'x))))

Evaluating this isn’t very interesting:

(funV 'f1 'x (fdC 'f2 'x (plusC (idC 'x) (idC 'x))))

But suppose we apply the above function to something:
<applied-nested-fdC> ::=

(appC <nested-fdC>
(numC 4))

Now the answer becomes more interesting:

(funV 'f2 'x (plusC (idC 'x) (idC 'x)))

It’s almost as if applying the outer function had no impact on the inner function at all.
Well, why should it? The outer function introduces an identifier which is promptly
masked by the inner function introducing one of the same name, thereby masking the
outer definition if we obey static scope (as we should!). But that suggests a different
program:

(appC (fdC 'f1 'x

(fdC 'f2 'y

(plusC (idC 'x) (idC 'y))))

(numC 4))

This evaluates to:

(funV 'f2 'y (plusC (idC 'x) (idC 'y)))

Hmm, that’s interesting.
Do Now!

What’s interesting?

To see what’s interesting, let’s apply this once more:

(appC (appC (fdC 'f1 'x

(fdC 'f2 'y

(plusC (idC 'x) (idC 'y))))

(numC 4))

(numC 5))

This produces an error indicating that the identifier representing x isn’t bound!
But it’s bound by the function named f1, isn’t it? For clarity, let’s switch to repre-

senting it in our hypothetical Racket syntax:

36

((define (f1 x)

((define (f2 y)

(+ x y))

4))

5)

On applying the outer function, we would expect x to be substituted with 5, resulting
in

((define (f2 y)

(+ 5 y))

4)

which on further application and substitution yields (+ 5 4) or 9, not an error.
In other words, we’re again failing to faithfully capture what substitution would

have done. A function value needs to remember the substitutions that have already On the other hand,
observe that with
substitution, as
we’ve defined it, we
would be replacing
x with (numV 4),
resulting in a
function body of
(plusC (numV 5)

(idC 'y)), which
does not type. That
is, substitution is
predicated on the
assumption that the
type of answers is a
form of syntax. It is
actually possible to
carry through a
study of even very
advanced
programming
constructs under
this assumption, but
we won’t take that
path here.

been applied to it. Because we’re representing substitutions using an environment, a
function value therefore needs to be bundled with an environment. This resulting data
structure is called a closure.

While we’re at it, observe that the appC case above uses funV-arg and funV-

body, but not funV-name. Come to think of it, why did a function need a name? so
that we could find it. But if we’re using the interpreter to find the function for us, then
there’s nothing to find and fetch. Thus the name is merely descriptive, and might as
well be a comment. In other words, a function no more needs a name than any other
immediate constant: we don’t name every use of 3, for instance, so why should we
name every use of a function? A function is inherently anonymous, and we should
separate its definition from its naming.

(But, you might say, this argument only makes sense if functions are always written
in-place. What if we want to put them somewhere else? Won’t they need names then?
They will, and we’ll return to this (section 7.5).)

7.3 Implementing Closures
We need to change our representation of values to record closures rather than raw
function text:

<answer-type> ::=

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)])

While we’re at it, we might as well alter our syntax for defining functions to drop
the useless name. This construct is historically called a lambda:

<fun-type> ::=

[lamC (arg : symbol) (body : ExprC)]

37

When encountering a function definition, the interpreter must now remember to
save the substitutions that have been applied so far: “Save the

environment!
Create a closure
today!” —Cormac
Flanagan

<fun-case> ::=

[lamC (a b) (closV a b env)]

This saved set, not the empty environment, must be used when applying a function:
<app-case> ::=

[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

(closV-env f-value))))]

There’s actually another possibility: we could use the environment present at the
point of application:

[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

env)))]

Exercise

What happens if we extend the dynamic environment instead?

In retrospect, it becomes even more clear why we interpreted the body of a function
in the empty environment. When a function is defined at the top-level, it is not “closed
over” any identifiers. Therefore, our previous function applications have been special
cases of this form of application.

7.4 Substitution, Again
We have seen that substitution is instructive in thinking through how to implement
lambda functions. However, we have to be careful with substitution itself! Suppose we
have the following expression (to give lambda functions their proper Racket syntax):

(lambda (f)

(lambda (x)

(f 10)))

Now suppose we substitute for f the following expression: (lambda (y) (+ x y)).
Observe that it has a free identifier (x), so if it is ever evaluated, we would expect to
get an unbound identifier error. Substitution would appear to give:

(lambda (x)

((lambda (y) (+ x y)) 10))

38

But observe that this latter program has no free identifiers!
That’s because we have too naive a version of substitution. To prevent unexpected

behavior like this (which is a form of dynamic binding), we need to define capture-
free substitution. It works roughly as follows: we first consistently rename all bound
identifiers to entirely previously unused (known as fresh) names. Imagine that we
give each identifier a numeric suffix to attain freshness. Then the original expression
becomes

(lambda (f1)

(lambda (x1)

(f1 10)))

(Observe that we renamed f to f1 in both the binding and bound locations.) Now let’s
do the same with the expression we’re substituting:

(lambda (y1) (+ x y1))

Now let’s substitute for f1: Why didn’t we
rename x? Because
x may be a
reference to a
top-level binding,
which should then
also be renamed.
This is simply
another application
of the consistent
renaming principle.
In the current
setting, the
distinction is
irrelevant.

(lambda (x1)

((lambda (y1) (+ x y1)) 10))

...and x is still free! This is a good form of substitution.
But one moment. What happens if we try the same example in our environment-

based interpreter?
Do Now!

Try it out.

Observe that it works correctly: it reports an unbound identifier error. Environ-
ments automatically implement capture-free substitution!

Exercise

In what way does using an environment avoid the capture problem of sub-
stitution?

7.5 Sugaring Over Anonymity
Now let’s get back to the idea of naming functions, which has evident value for program
understanding. Observe that we do have a way of naming things: by passing them to
functions, where they acquire a local name (that of the formal parameter). Anywhere
within that function’s body, we can refer to that entity using the formal parameter name.

Therefore, we can take a collection of function definitions and name them using
other...functions. For instance, the Racket code

(define (double x) (+ x x))

(double 10)

could first be rewritten as the equivalent

39

(define double (lambda (x) (+ x x)))

(double 10)

We can of course just inline the definition of double, but to preserve the name, we
could write this as:

((lambda (double)

(double 10))

(lambda (x) (+ x x)))

Indeed, this pattern—which we will pronounce as “left-left-lambda”—is a local nam-
ing mechanism. It is so useful that in Racket, it has its own special syntax:

(let ([double (lambda (x) (+ x x))])

(double 10))

where let can be defined by desugaring as shown above.
Here’s a more complex example:

(define (double x) (+ x x))

(define (quadruple x) (double (double x)))

(quadruple 10)

This could be rewritten as

(let ([double (lambda (x) (+ x x))])

(let ([quadruple (lambda (x) (double (double x)))])

(quadruple 10)))

which works just as we’d expect; but if we change the order, it no longer works—

(let ([quadruple (lambda (x) (double (double x)))])

(let ([double (lambda (x) (+ x x))])

(quadruple 10)))

—because quadruple can’t “see” double. so we see that top-level binding is different
from local binding: essentially, the top-level has an “infinite scope”. This is the source
of both its power and problems.

There is another, subtler, problem: it has to do with recursion. Consider the sim-
plest infinite loop:

(define (loop-forever x) (loop-forever x))

(loop-forever 10)

Let’s convert it to let:

(let ([loop-forever (lambda (x) (loop-forever x))])

(loop-forever 10))

40

Seems fine, right? Rewrite in terms of lambda:

((lambda (loop-forever)

(loop-forever 10))

(lambda (x) (loop-forever x)))

Clearly, the loop-forever on the last line isn’t bound!
This is another feature we get “for free” from the top-level. To eliminate this mag-

ical force, we need to understand recursion explicitly, which we will do soon [REF].

8 Mutation: Structures and Variables
It’s time for another

Which of these is the same?

• f = 3

• o.f = 3

• f = 3

Assuming all three are in Java, the first and third could behave exactly like each
other or exactly like the second: it all depends on whether f is a local identifier (such
as a parameter) or a field of the object (i.e., the code is really this.f = 3).

In either case, we are asking the evaluator to permanently change the value bound
to f. This has important implications for other observers. Until now, for a given set
of inputs, a computation always returned the same value. Now, the answer depends on
when it was invoked: above, it depends on whether it was invoked before or after the
value of f was changed. The introduction of time has profound effects on reasoning
about programs.

However, there are really two quite different notions of change buried in the uni-
form syntax above. Changing the value of a field (o.f = 3 or this.f = 3) is ex-
tremely different from changing that of an identifier (f = 3 where f is bound inside
the method, not by the object). We will explore these in turn. We’ll tackle fields below,
and return to identifiers in section 8.2.

8.1 Mutable Structures
8.1.1 A Simple Model of Mutable Structures

Objects are a generalization of structures, as we will soon see [REF]. Therefore, fields
in objects are a generalization of fields in structures and to understand mutation, it is
mostly (but not entirely! [REF]) sufficient to understand mutable objects. To be even
more reductionist, we don’t need a structure to have many fields: a single one will
suffice. We call this a box. In Racket, boxes support just three operations:

box : ('a -> (boxof 'a))

unbox : ((boxof 'a) -> 'a)

set-box! : ((boxof 'a) 'a -> void)

41

Thus, box takes a value and wraps it in a mutable container. unbox extracts the current
value inside the container. Finally, set-box! changes the value in the container, and
in a typed language, the new value is expected to be type-consistent with what was
there before. You can thus think of a box as equivalent to a Java container class with
parameterized type, which has a single member field with a getter and setter: box is
the constructor, unbox is the getter, and set-box! is the setter. (Because there is only
one field, its name is irrelevant.)

class Box<T> {

private T the_value;

Box(T v) {

this.the_value = v;

}

T get() {

return the_value;

}

void set(T v) {

the_value = v;

}

}

Because we must sometimes mutate in groups (e.g., removing money from one
bank account and depositing it in another), it is useful to be able to sequence a group
of mutable operations. In Racket, begin lets you write a sequence of operations; it
evaluates them in order and returns the value of the last one.

Exercise

Define begin by desugaring into let (and hence into lambda).
This is an excellent
illustration of the
non-canonical
nature of
desguaring. We’ve
chosen to add to the
core a construct that
is certainly not
necessary. If our
goal was to shrink
the size of the
interpreter—
perhaps at some
cost to the size of
the input
program—we
would not make this
choice. But our
goal in this book is
to study pedagogic
interpreters, so we
choose a larger
language because it
is more instructive.

Even though it is possible to eliminate begin as syntactic sugar, it will prove ex-
tremely useful for understanding how mutation works. Therefore, we will add a simple,
two-term version of sequencing to the core.

8.1.2 Scaffolding

First, let’s extend our core language datatype:

(define-type ExprC

[numC (n : number)]

[idC (s : symbol)]

[appC (fun : ExprC) (arg : ExprC)]

[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

[lamC (arg : symbol) (body : ExprC)]

[boxC (arg : ExprC)]

[unboxC (arg : ExprC)]

[setboxC (b : ExprC) (v : ExprC)]

[seqC (b1 : ExprC) (b2 : ExprC)])

42

Observe that in a setboxC expression, both the box position and its new value are
expressions. The latter is unsurprising, but the former might be. It means we can write
programs such as this in corresponding Racket:

(let ([b0 (box 0)]

[b1 (box 1)])

(let ([l (list b0 b1)])

(begin

(set-box! (first l) 1)

(set-box! (second l) 2)

l)))

This evaluates to a list of boxes, the first containing 1 and the second 2. Observe that Your output may
look like '(#&1
#&2). The #&
notation is Racket’s
abbreviated
syntactic prefix for
“box”.

the first argument to the first set-box! instruction was (first l), i.e., an expression
that evaluated to a box, rather than just a literal box or an identifier. This is precisely
analogous to languages like Java, where one can (taking some type liberties) write

public static void main (String[] args) {

Box<Integer> b0 = new Box<Integer>(0);

Box<Integer> b1 = new Box<Integer>(1);

ArrayList<Box<Integer>> l = new ArrayList<Box<Integer>>();

l.add(b0);

l.add(b1);

l.get(0).set(1);

l.get(1).set(2);

}

Observe that l.get(0) is a compound expression being used to find the appropriate
box, and evaluates to the box object on which set is invoked.

For convenience, we will assume that we have implemented desguaring to provide
us with (a) let and (b) if necessary, more than two terms in a sequence (which can
be desugared into nested sequences). We will also sometimes write expressions in the
original Racket syntax, both for brevity (because the core language terms can grow
quite large and unwieldy) and so that you can run these same terms in Racket and
observe what answers they produce. As this implies, we are taking the behavior in
Racket—which is similar to the behavior in just about every mainstream language with
mutable objects and structures—as the reference behavior.

8.1.3 Interaction with Closures

Consider a simple counter:

(define new-loc

(let ([n (box 0)])

(lambda ()

43

(begin

(set-box! n (add1 (unbox n)))

(unbox n)))))

Every time it is invoked, it produces the next integer:
> (new-loc)

- number

1

> (new-loc)

- number

2

Why does this work? It’s because the box is created only once, and bound to n, and
then closed over. All subsequent mutations affect the same box. In contrast, swapping
two lines makes a big difference:

(define new-loc-broken

(lambda ()

(let ([n (box 0)])

(begin

(set-box! n (add1 (unbox n)))

(unbox n)))))

Observe:
> (new-loc-broken)

- number

1

> (new-loc-broken)

- number

1

In this case, a new box is allocated on every invocation of the function, so the answer
each time is the same (despite the mutation inside the procedure). Our implementation
of boxes should be certain to preserve this distinction.

The examples above hint at an implementation necessity. Clearly, whatever the en-
vironment closes over in new-loc must refer to the same box each time. Yet something
also needs to make sure that the value in that box is different each time! Look at it more
carefully: it must be lexically the same, but dynamically different. This distinction will
be at the heart of our implementation.

8.1.4 Understanding the Interpretation of Boxes

Let’s begin by reproducing our current interpreter:
<interp-take-1> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

[numC (n) (numV n)]

[idC (n) (lookup n env)]

44

[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

(closV-env f-value))))]

[plusC (l r) (num+ (interp l env) (interp r env))]

[multC (l r) (num* (interp l env) (interp r env))]

[lamC (a b) (closV a b env)]

<boxC-case>

<unboxC-case>

<setboxC-case>

<seqC-case>))

Because we’ve introduced a new kind of value, the box, we have to update the set
of values:

<value-take-1> ::=

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[boxV (v : Value)])

Two of these cases should be easy. When we’re given a box expression, we simply
evaluate it and return it wrapped in a boxV:

<boxC-case-take-1> ::=

[boxC (a) (boxV (interp a env))]

Similarly, extracting a value from a box is easy:
<unboxC-case-take-1> ::=

[unboxC (a) (boxV-v (interp a env))]

By now, you should be constructing a healthy set of test cases to make sure these
behave as you’d expect.

Of course, we haven’t done any hard work yet. All the interesting behavior is,
presumably, hidden in the treatment of setboxC. It may therefore surprise you that
we’re going to look at seqC first instead (and you’ll see why we included it in the
core).

Let’s take the most natural implementation of a sequence of two instructions:
<seqC-case-take-1> ::=

[seqC (b1 b2) (let ([v (interp b1 env)])

(interp b2 env))]

That is, we evaluate the first term, then the second, and return the result of the
second.

45

You should immediately spot something troubling. We bound the result of evaluat-
ing the first term, but didn’t subsequently do anything with it. That’s okay: presumably
the first term contained a mutation expression of some sort, and its value is uninterest-
ing (indeed, note that set-box! returns a void value). Thus, another implementation
might be this:

<seqC-case-take-2> ::=

[seqC (b1 b2) (begin

(interp b1 env)

(interp b2 env))]

Not only is this slightly dissatisfying in that it just uses the analogous Racket se-
quencing construct, it still can’t possibly be right! This can only work only if the result
of the mutation is being stored somewhere. But because our interpreter only computes
values, and does not perform any mutation itself, any mutations in (interp b1 env)

are completely lost. This is obviously not what we want.

8.1.5 Can the Environment Help?

Here is another example that can help:

(let ([b (box 0)])

(begin (begin (set-box! b (+ 1 (unbox b)))

(set-box! b (+ 1 (unbox b))))

(unbox b)))

In Racket, this evaluates to 2.
Exercise

Represent this expression in ExprC.

Let’s consider the evaluation of the inner sequence. In both cases, the expression
(the representation of (set-box! ...)) is exactly identical. Yet something is chang-
ing underneath, because these cause the value of the box to go from 0 to 2! We can
“see” this even more clearly if instead we evaluate

(let ([b (box 0)])

(+ (begin (set-box! b (+ 1 (unbox b)))

(unbox b))

(begin (set-box! b (+ 1 (unbox b)))

(unbox b))))

which evaluates to 3. Here, the two calls to interp in the rule for addition are sending
exactly the same textual expression in both cases. Yet somehow the effects from the left
branch of the addition are being felt in the right branch, and we must rule out spukhafte
Fernwirkung.

If the interpreter is being given precisely the same expression, how can it possibly
avoid producing precisely the same answer? The most obvious way is if the inter-
preter’s other parameter, the environment were somehow different. As of now the

46

exact same environment is sent to both both branches of the sequence and both arms of
the addition, so our interpreter—which produces the same output every time on a given
input—cannot possibly produce the answers we want.

Here is what we know so far:

1. We must somehow make sure the interpreter is fed different arguments on calls
that are expected to potentially produce different results.

2. We must return from the interpreter some record of the mutations made when
evaluating its argument expression.

Because the expression is what it is, the first point suggests that we might try to use the
environment to reflect the differences between invocations. In turn, the second point
suggests that each invocation of the interpreter should also return the environment, so
it can be passed to the next invocation. Roughly, then, the type of the interpreter might
become:

; interp : ExprC * Env -> Value * Env

That is, the interpreter consumes an expression and environment; it evaluates in that
environment, updating it as it proceeds; when the expression is done evaluating, the
interpreter returns the answer (as it did before), along with an updated environment,
which in turn is sent to the next invocation of the interpreter. And the treatment of
setboxC would somehow impact the environment to reflect the mutation.

Before we dive into the implementation, however, we should consider the conse-
quences of such a change. The environment already serves an important purpose: it
holds deferred substitutions. In that respect, it already has a precise semantics—given
by substitution—and we must be careful to not alter that. One consequence of its tie to
substitution is that it is also the repository of lexical scope information. If we were to
allow the extended environment escape from one branch of addition and be used in the
other, for instance, consider the impact on the equivalent of the following program:

(+ (let ([b (box 0)])

1)

b)

It should be evident that this program has an error: b in the right branch of the addition
is unbound (the scope of the b in the left branch ends with the closing of the let—if
this is not evident, desugar the above expression to use functions). But the extended
environment at the end of interpreting the let clearly has b bound in it.

Exercise

Work out the above problem in detail and make sure you understand it.

You could try various other related proposals, but they are likely to all have similar
failings. For instance, you may decide that, because the problem has to do with addi-
tional bindings in the environment, you will instead remove all added bindings in the
returned environment. Sounds attractive? Did you remember we have closures?

Exercise

47

Consider the representation of the following program:

(let ([a (box 1)])

(let ([f (lambda (x) (+ x (unbox a)))])

(begin

(set-box! a 2)

(f 10))))

What problems does this example cause?

Rather, we should note that while the constraints described above are all valid, the
solution we proposed is not the only one. What we require are the two conditions
enumerated above; observe that neither one actually requires the environment to be
the responsible agent. Indeed, it is quite evident that the environment cannot be the
principal agent.

8.1.6 Introducing the Store

The preceding discussion tells us that we need two repositories to accompany the ex-
pression, not one. One of them, the environment, continues to be responsible for main-
taining lexical scope. But the environment cannot directly map identifiers to their value,
because the value might change. Instead, something else needs to be responsible for
maintaining the dynamic state of mutated boxes. This latter data structure is called the
store.

Like the environment, the store is a partial map. Its domain could be any abstract
set of names, but it is natural to think of these as numbers, meant to stand for memory
locations. This is because the store in the semantics maps directly onto (abstracted)
physical memory in the machine, which is traditionally addressed by numbers. Thus
the environment maps names to locations, and the store maps locations to values:

(define-type-alias Location number)

(define-type Binding

[bind (name : symbol) (val : Location)])

(define-type-alias Env (listof Binding))

(define mt-env empty)

(define extend-env cons)

(define-type Storage

[cell (location : Location) (val : Value)])

(define-type-alias Store (listof Storage))

(define mt-store empty)

(define override-store cons)

We’ll also equip ourselves with a function to look up values in the store, just as we
already have one for the environment (which now returns locations instead):

48

(define (lookup [for : symbol] [env : Env]) : Location

...)

(define (fetch [loc : Location] [sto : Store]) : Value

...)

With this, we can refine our notion of values to the correct one:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[boxV (l : Location)])

Exercise

Fill in the bodies of lookup and fetch.

8.1.7 Interpreting Boxes

Now we have something that the environment can return, updated, reflecting mutations
during the evaluation of the expression, without having to change the environment in
any way. Because a function can return only one value, let’s define a data structure to
hold the new result from the interpreter:

(define-type Result

[v*s (v : Value) (s : Store)])

Thus the interpreter’s type becomes:
<interp-mut-struct> ::=

(define (interp [expr : ExprC] [env : Env] [sto : Store]) : Result

<ms-numC-case>
<ms-idC-case>
<ms-appC-case>
<ms-plusC/multC-case>
<ms-lamC-case>
<ms-boxC-case>
<ms-unboxC-case>
<ms-setboxC-case>
<ms-seqC-case>)

The easiest one to dispatch is numbers. Remember that we have to return the store
reflecting all mutations that happened while evaluating the given expression. Because
a number is a constant, no mutations could have happened, so the returned store is the
same as the one passed in:

<ms-numC-case> ::=

[numC (n) (v*s (numV n) sto)]

49

A similar argument applies to closure creation; observe that we are speaking of the
creation, not use, of closures:

<ms-lamC-case> ::=

[lamC (a b) (v*s (closV a b env) sto)]

Identifiers are almost as straightforward, though if you are simplistic, you’ll get a
type error that will alert you that to obtain a value, you must now look up both in the
environment and in the store:

<ms-idC-case> ::=

[idC (n) (v*s (fetch (lookup n env) sto) sto)]

Notice how lookup and fetch compose to produce the same result that lookup
alone produced before.

Now things get interesting.
Let’s take sequencing. Clearly, we need to interpret the two terms:

(interp b1 env sto)

(interp b2 env sto)

Oh, but wait. The whole point was to evaluate the second term in the store returned by
the first one—otherwise there would have been no point to all these changes. Therefore,
instead we must evaluate the first term, capture the resulting store, and use it to evaluate
the second. (Evaluating the first term also yields its value, but sequencing ignores this
value and assumes the first time was run purely for its potential mutations.) We will
write this in a stylized manner:

<ms-seqC-case> ::=

[seqC (b1 b2) (type-case Result (interp b1 env sto)

[v*s (v-b1 s-b1)

(interp b2 env s-b1)])]

This says to (interp b1 env sto); name the resulting value and store v-b1 and
s-b1, respectively; and evaluate the second term in the store from the first: (interp
b2 env s-b1). The result will be the value and store returned by the second term,
which is what we expect. The fact that the first term’s effect is only on the store can be
read from the code because, though we bind v-b1, we never subsequently use it.

Do Now!

Spend a moment contemplating the code above. You’ll soon need to adjust
your eyes to read this pattern fluently.

Now let’s move on to the binary arithmetic primitives. These are similar to se-
quencing in that they have two sub-terms, but in this case we really do care about the
value from each branch. As usual, we’ll look at only plusC since multC is virtually
identical.

<ms-plusC/multC-case> ::=

50

[plusC (l r) (type-case Result (interp l env sto)

[v*s (v-l s-l)

(type-case Result (interp r env s-l)

[v*s (v-r s-r)

(v*s (num+ v-l v-r) s-r)])])]

Observe that we’ve unfolded the sequencing pattern out another level, so we can
hold on to both results and supply them to num+.

Here’s an important distinction. When we evaluate a term, we usually use the same
environment for all its sub-terms in accordance with the scoping rules of the language.
The environment thus flows in a recursive-descent pattern. In contrast, the store is
threaded: rather than using the same store in all branches, we take the store from one
branch and pass it on to the next, and take the result and send it back out. This pattern
is called store-passing style.

Now the penny drops. We see that store-passing style is our secret ingredient: it
enables the environment to preserve lexical scope while still giving a binding structure
that can reflect changes. Our intution told us that the environment had to somehow
participate in obtaining different results for the same expression, and we can now see
how it does: not directly, by itself changing, but indirectly, by referring to the store,
which updates. Now we only need to see how the store itself “changes”.

Let’s begin with boxing. To store a value in a box, we have to first allocate a new
place in the store where its value will reside. The value corresponding to a box will
then remember this location, for use in box mutation.

<ms-boxC-case> ::=

[boxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(let ([where (new-loc)])

(v*s (boxV where)

(override-store (cell where v-a)

s-a)))])]

Do Now!

Observe that we have relied above on new-loc, which is itself imple-
mented in terms of boxes! This is outright cheating. How would you mod-
ify the interpreter so that we no longer need an mutating implementation
of new-loc?

To eliminate this style of new-loc, the simplest option would be to add yet another
parameter to and return value from the interpreter, which represents the largest address
used so far. Every operation that allocates in the store would return an incremented
address, while all others would return it unchanged. In other words, this is precisely
another application of the store-passing pattern. Writing the interpreter this way would
make it extremely unwieldy and might obscure the more important use of store-passing
for the store itself, which is why we have not done so. However, it is important to make
sure that we can: that’s what tells us that we are not reliant on boxes to add boxes to
the language.

51

Now that boxes are recording the location in memory, getting the value correspond-
ing to them is easy.

<ms-unboxC-case> ::=

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) s-a) s-a)])]

It’s the same pattern we saw before, where we have to use fetch to obtain the
actual value residing at that location. Note that we are relying on Racket to halt with
an error if the underlying value isn’t actually a boxV; otherwise it would be dangerous
to not check, since this would be tantamount to dereferencing arbitrary memory (as C
programs can, sometimes with disastrous consequences).

Let’s now see how to update the value held in a box. First we have to evaluate the
box expression to obtain a box, and the value expression to obtain the new value to
store in it. The box’s value is going to be a boxV holding a location.

In principle, we want to “change”, or override, the value at that location in the store.
We can do this in two ways.

1. One is to traverse the store, find the old binding for that location, and replace it
with the new one, copying all the other store bindings unchanged.

2. The other, lazier, option is to simply extend the store with a new binding for that
location, which works provided we always obtain the most recent binding for a
location (which is how lookup works in the environment, so fetch presumably
also does in the store).

The code below is written to be independent of these options:
<ms-setboxC-case> ::=

[setboxC (b v) (type-case Result (interp b env sto)

[v*s (v-b s-b)

(type-case Result (interp v env s-b)

[v*s (v-v s-v)

(v*s v-v

(override-store (cell (boxV-l v-

b)

v-v)

s-v))])])]

However, because we’ve implemented override-store as cons above, we’ve
actually taken the lazier (and slightly riskier, because of its dependence on the imple-
mentation of fetch) option.

Exercise

Implement the other version of store alteration, whereby we update an
existing binding and thereby avoid multiple bindings for a location in the
store.

52

Exercise

When we look for a location to override the value stored at it, can the
location fail to be present? If so, write a program that demonstrates this. If
not, explain what invariant of the interpreter prevents this from happening.

Alright, we’re now done with everything other than application! Most of applica-
tion should already be familiar: evaluate the function position, evaluate the argument
position, interpret the closure body in an extension of the closure’s environment...but
how do stores interact with this?

<ms-appC-case> ::=

[appC (f a)

(type-case Result (interp f env sto)

[v*s (v-f s-f)

(type-case Result (interp a env s-f)

[v*s (v-a s-a)

<ms-appC-case-main>])])]

Let’s start by thinking about extending the closure environment. The name we’re
extending it with is obviously the name of the function’s formal parameter. But what
location do we bind it to? To avoid any confusion with already-used locations (a con-
fusion we will explicitly introduce later! [REF]), let’s just allocate a new location.
This location is used in the environment, and the value of the argument resides at this
location in the store:

<ms-appC-case-main> ::=

(let ([where (new-loc)])

(interp (closV-body v-f)

(extend-env (bind (closV-arg v-f)

where)

(closV-env v-f))

(override-store (cell where v-a) s-a)))

Because we have not said the function parameter is mutable, there is no real need
to have implemented procedure calls this way. We could instead have followed the
same strategy as before. Indeed, observe that the mutability of this location will never
be used: only setboxC changes what’s in an existing store location (the override-

store above is technically a store initialization), and then only when they are referred
to by boxVs, but no box is being allocated above. However, we have chosen to imple- You could call this

the useless app
store.

ment application this way for uniformity, and to reduce the number of cases we’d have
to handle.

Exercise

It’s a useful exercise to try to limit the use of store locations only to boxes.
How many changes would you need to make?

53

8.1.8 The Bigger Picture

Even though we’ve finished the implementation, there are still many subtleties and
insights to discuss.

1. Implicit in our implementation is a subtle and important decision: the order of
evaluation. For instance, why did we not implement addition thus?

[plusC (l r) (type-case Result (interp r env sto)

[v*s (v-r s-r)

(type-case Result (interp l env s-r)

[v*s (v-l s-l)

(v*s (num+ v-l v-r) s-l)])])]

It would have been perfectly consistent to do so. Similarly, embodied in the
pattern of store-passing is the decision to evaluate the function position before
the argument. Observe that:

(a) Previously, we delegated such decisions to the underlying language imple-
mentation. Now, store-passing has forced us to sequentialize the compu-
tation, and hence make this decision ourselves (whether we realized it or
not).

(b) Even more importantly, this decision is now a semantic one. Before there
were mutations, one branch of an addition, for instance, could not affect
the value produced by the other branch. Because each branch can have The only effect they

could have was
halting with an
error or failing to
terminate—which,
to be sure, are
certainly observable
effects, but at a
much more gross
level. A program
would not terminate
with two different
answers depending
on the order of
evaluation.

mutations that impact the value of the other, we must choose some order
so that programmers can predict what their program is going to do! Being
forced to write a store-passing interpreter has made this clear.

2. Observe that in the application rule, we are passing along the dynamic store, i.e.,
the one resulting from evaluating both function and argument. This is precisely
the opposite of what we said to do with the environment. This distinction is
critical. The store is, in effect, “dynamically scoped”, in that it reflects the history
of the computation, not its lexical shape. Because we are already using the term
“scope” to refer to the bindings of identifiers, however, it would be confusing to
say “dynamically scoped” to refer to the store. Instead, we simply say that it is
persistent.

Languages sometimes dangerously conflate these two. In C, for instance, values
bound to local identifiers are allocated (by default) on the stack. However, the
stack matches the environment, and hence disappears upon completion of the
call. If the call, however, returned references to any of these values, these refer-
ences are now pointing to unused or even overridden memory: a genuine source
of serious errors in C programs. The problem is that the values themselves per-
sist; it is only the identifiers that refer to them that have lexical scope.

54

3. We have already discussed how there are two strategies for overriding the store:
to simply extend it (and rely on fetch to extract the newest one) or to “search-
and-replace”. The latter strategy has the virtue of not holding on to useless store
bindings that will can never be obtained again.

However, this does not cover all the wasted memory. Over time, we cease to be
able to access some boxes entirely: e.g., if they are bound to only one identi-
fier, and that identifier is no longer in scope. These locations are called garbage.
Thinking more conceptually, garbage locations are those whose elimination does
not have any impact on the value produced by a program. There are many strate-
gies for identifying and reclaiming garbage locations, usually called garbage
collection [REF].

4. It’s very important to evaluate every expression position and thread the store that
results from it. Consider, for instance, this implementation of unboxC:

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) sto) s-a)])]

Did you notice? We fetched the location from sto, not s-a. But sto reflects
mutations up to but before the evaluation of the unboxC expression, not any
within it. Could there possibly be any? Mais oui!

(let ([b (box 0)])

(unbox (begin (set-box! b 1)

b)))

With the incorrect code above, this would evaluate to 0 rather than 1.

5. Here’s another, similar, error:

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) s-a) sto)])]

How do we break this? Well, we’re returning the old store, the one before any
mutations in the unboxC happened. Thus, we just need the outside context to
depend on one of them.

(let ([b (box 0)])

(+ (unbox (begin (set-box! b 1)

b))

(unbox b)))

This should evaluate to 2, but because the store being returned is one where b’s
location is bound to the representation of 0, the result is 1.

If we combined both bugs above—i.e., using sto twice in the last line instead of
s-a twice—this expression would evaluate to 0 rather than 2.

Exercise

55

Go through the interpreter; replace every reference to an updated store
with a reference to one before update; make sure your test cases catch
all the introduced errors!

6. Observe that these uses of “old” stores enable us to perform a kind of time travel:
because mutation introduces a notion of time, these enable us to go back in time
to when the mutation had not yet occurred. This sounds both interesting and
perverse; does it have any use?

It does! Imagine that instead of directly mutating the store, we introduce the
idea of a journal of intended updates to the store. The journal flows in a threaded
manner just like the real store itself. Some instruction creates a new journal;
after that, all lookups first check the journal, and only if the journal cannot find a
binding for a location is it looked for in the actual store. There are two other new
instructions: one to discard the journal (i.e., perform time travel), and the other
to commit it (i.e., all of its edits get applied to the real store).

This is the essence of software transactional memory. Each thread maintains its
own journal. Thus, one thread does not see the edits made by the other before
committing (because each thread sees only its own journal and the global store,
but not the journals of other threads). At the same time, each thread gets its own
consistent view of the world (it sees edits it made, because these are recorded in
the journal). If the transaction ends successfully, all threads atomically see the
updated global store. If the transaction aborts, the discarded journal takes with it
all changes and the state of the thread reverts (modulo global changes committed
by other threads).

Software transactional memory offers one of the most sensible approaches to
tackling the difficulties of multi-threaded programming, if we insist on program-
ming with shared mutable state. Because most computers have only one global
store, however, maintaining the journals can be expensive, and much effort goes
into optimizing them. As an alternative, some hardware architectures have be-
gun to provide direct support for transactional memory by making the creation,
maintenance, and commitment of journals as efficient as using the global store,
removing one important barrier to the adoption of this idea.

Exercise

Augment the language with the journal features of software transac-
tional memory journal.

Exercise

An alternate implementation strategy is to have the environment map names
to boxed Values. We don’t do it here because it: (a) would be cheating,
(b) wouldn’t tell us how to implement the same feature in a language with-
out boxes, (c) doesn’t necessarily carry over to other mutation operations,
and (d) most of all, doesn’t really give us insight into what is happening
here.

56

It is nevertheless useful to understand, not least because you may find it
a useful strategy to adopt when implementing your own language. There-
fore, alter the implementation to obey this strategy. Do you still need
store-passing style? Why or why not?

8.2 Variables
Now that we’ve got structure mutation worked out, let’s consider the other case: vari-
able mutation.

8.2.1 Terminology

First, our choice of terms. We’ve insisted on using the word “identifier” before because
we wanted to reserve “variable” for what we’re about to study. In Java, when we say
(assuming x is locally bound, e.g., as a method parameter)

x = 1;

x = 3;

we’re asking to change the value of x. After the first assignment, the value of x is 1;
after the second one, it’s 3. Thus, the value of x varies over the course of the execution
of the method.

Now, we also use the term “variable” in mathematics to refer to function param-
eters. For instance, in f(y) = y + 3 we say that y is a “variable”. That is called a
variable because it varies across invocations; however, within each invocation, it has
the same value in its scope. Our identifiers until now have corresponded to this notion
of a variable. In contrast, programming variables can vary even within each invocation, If the identifier was

bound to a box,
then it remained
bound to the same
box value. It’s the
content of the box
that changed, not
which box the
identifier was
bound to.

like the Java x above.
Henceforth, we will use variable when we mean an identifier whose value can

change within its scope, and identifier when this cannot happen. If in doubt, we might
play it safe and use “variable”; if the difference doesn’t really matter, we might use
either one. It is less important to get caught up in these specific terms than to understand
that they represent a distinction that matters [REF].

8.2.2 Syntax

Whereas other languages overload the mutation syntax (= or :=), in Racket they are
kept distinct: set! is used to mutate variables. This forces Racket programmers to
confront the distinction we introduced at the beginning of section 8. We will, of course,
sidestep these syntactic issues in our core language by using different constructs for
boxes and for variables.

The first thing to note about variable mutation is that, although it too has two sub-
terms like box mutation (setboxC), its syntax is fundamentally different. To under-
stand why, let’s return to our Java fragment:

x = 3;

57

In this setting, we cannot write an arbitrary expression in place of x: we must literally
write the name of the identifier itself. That is because, if it were an expression position,
then we could evaluate it, yielding a value: for instance, if x were previously bound to
1, this would be tantamout to writing the following statement:

1 = 3;

But this is, of course, nonsensical! We can’t assign a new value to 1, and indeed 1 is
pretty much the definition of immutable. Thus, what we instead want is to find where
x is in the store, and change the value held over there.

Here’s another way to see this. Suppose the local variable o were bound to some
String object; let’s call this object s. Say we write

o = new String("a new string");

Are we trying to change s in any way? Certainly not: this statement intends to leave
s alone. It only wants to change the value that o is referring to, so that subsequent
references evaluate to this new string object instead.

8.2.3 Interpreting Variables

We’ll start by reflecting this in our syntax:

(define-type ExprC

[numC (n : number)]

[varC (s : symbol)]

[appC (fun : ExprC) (arg : ExprC)]

[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

[lamC (arg : symbol) (body : ExprC)]

[setC (var : symbol) (arg : ExprC)]

[seqC (b1 : ExprC) (b2 : ExprC)])

Observe that we’ve jettisoned the box operations, but kept sequencing because it’s
handy around mutation. Importantly, we’ve now added the setC case, and its first sub-
term is not an expression but the literal name of a variable. We’ve also renamed idC to
varC.

Because we’ve gotten rid of boxes, we can also get rid of the special box values.
When the only kind of mutation you have is variables, you don’t need new kinds of
values.

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)])

As you might imagine, to support variables we need the same store-passing style
that we’ve seen before (section 8.1.7), and for the same reasons. What differs is in pre-
cisely how we use it. Because sequencing is interpreted in just the same way (observe

58

that the code for it does not depend on boxes versus variables), that leaves us just the
variable mutation case to handle.

First, we might as well evaluate the value expression and obtain the updated store:
<setC-case> ::=

[setC (var val) (type-case Result (interp val env sto)

[v*s (v-val s-val)

<rest-of-setC-case>])]

What now? Remember we just said that we don’t want to fully evaluate the vari-
able, because that would just give the value it is bound to. Instead, we want to know
which memory location it corresponds to, and update what is stored at that memory
location; this latter part is just the same thing we did when mutating boxes:

<rest-of-setC-case> ::=

(let ([where (lookup var env)])

(v*s v-val

(override-store (cell where v-val)

s-val)))

The very interesting new pattern we have here is this. When we added boxes, in
the idC case, we looked up an identifier in the environment, and immediately fetched
the value at that location from the store; the composition yielded a value, just as it
used to before we added stores. Now, however, we have a new pattern: looking up
an identifier in the environment without subsequently fetching its value from the store.
The result of invoking just lookup is traditionally called an l-value, for “left-hand-
side (of an assignment) value”. This is a fancy way of saying “memory address”, and
stands in contast to the actual values that the store yields: observe that it does not
directly correspond to anything in the type Value.

And we’re done! We did all the hard work when we implemented store-passing
style (and also in that application allocated new locations for variables).

8.3 The Design of Stateful Language Operations
Though most programming languages include one or both kinds of state we have stud-
ied, their admission should not be regarded as a trivial or foregone matter. On the one
hand, state brings some vital benefits:

• State provides a form of modularity. As our very interpreter demonstrates, with-
out explicit stateful operations, to achieve the same effect:

– We would need to add explicit parameters and return values that pass the
equivalent of the store around.

– These changes would have to be made to all procedures that may be in-
volved in a communication path between producers and consumers of state.

59

Thus, a different way to think of state in a programming language is that it is an
implicit parameter already passed to and returned from all procedures, without
imposing that burden on the programmer. This enables procedures to commu-
nicate “at a distance” without all the intermediaries having to be aware of the
communication.

• State makes it possible to construct dynamic, cyclic data structures, or at least to
do so in a relatively straightforward manner (section 9).

• State gives procedures memory, such as new-loc above. If a procedure could not
remember things for itself, the callers would need to perform the remembering
on its behalf, employing the moral equivalent of store-passing. This is not only
unwieldy, it creates the potential for a caller to interfere with the memory for
its own nefarious purposes (e.g., a caller might purposely send back an old store,
thereby obtaining a reference already granted to some other party, through which
it might launch a correctness or security attack).

On the other hand, state imposes real costs on programmers as well as on programs
that process programs (such as compilers). One is “aliasing”, which we discuss later
[REF]. Another is “referential transparency”, which too I hope to return to [REF].
Finally, we have described above how state provides a form of modularity. However,
this same description could be viewed as that of a back-channel of communication that
the intermediaries did not know and could not monitor. In some (especially security
and distributed system) settings, such back-channels can lead to collusion, and can
hence be extremely dangerous and undesirable.

Because there is no optimal answer, it is probably wise to include mutation opera-
tors but to carefully delinate them. In Standard ML, for instance, there is no variable
mutation, because it is considered unnecessary. Instead, the language has the equiva-
lent of boxes (called refs). One can easily simulate variables using boxes (e.g., see
new-loc and consider how it would be written with variables instead), so no expres-
sive power is lost, though it does create more potential for aliasing than variables alone
would have ([REF aliasing]) if the boxes are not used carefully.

In return, however, developers obtain expressive types: every data structure is con-
sidered immutable unless it contains a ref, and the presence of a ref is a warning to
both developers and programs (such as compilers) that the underlying value may keep
changing. Thus, for instance, if b is a box, a developer should be aware that replacing
all instances of (unbox b) with v, where v is bound to (unbox b), is unwise: the
former always fetches the current value in the box, while the latter may be referring
to an older content. (Conversely, if the developer wants the value at a certain point in
time, oblivious to future mutations to the box, they should be sure to retrieve and bind
it rather than always use unbox.)

8.4 Parameter Passing
In our current implementation, on every function call, we allocate a fresh location in
the store for the parameter. This means the following program

60

(let ([f (lambda (x) (set! x 3))])

(let ([y 5])

(begin

(f y)

y)))

evaluates to 5, not 3. That is because the value of the formal parameter x is held
at a different location than that of the actual parameter y, so the mutation affects the
location of x, leaving y unscathed.

Now suppose, instead, that application behaved as follows. When the actual pa-
rameter is a variable, and hence has a location in memory, instead of allocating a new
location for the value, it simply passes along the existing one for the variable. Now
the formal parameter is referring to the same store location as the actual: i.e., they
are variable aliases. Thus any mutation on the formal will leak back out into the call-
ing context; the above program would evaluate to 3 rather than 5. These is called a
call-by-reference parameter-passing strategy. Instead, our

interpreter
implements
call-by-value, and
this is the same
strategy followed
by languages like
Java. This causes
confusion because
when the value is
itself mutable,
changes made to the
value in the callee
are observed by the
caller. However,
that is simply an
artifact of mutable
values, not of the
calling strategy.
Please avoid this
confusion!

For some years, this power was considered a good idea. It was useful because
programmers could write abstractions such as swap, which swaps the value of two
variables in the caller. However, the disadvantages greatly outweigh the advantages:

• A careless programmer can alias a variable in the caller and modify it without
realizing they have done so, and the caller may not even realize this has happened
until some obscure condition triggers it.

• Some people thought this was necessary for efficiency: they assumed the alter-
native was to copy large data structures. However, call-by-value is compatible
with passing just the address of the data structure. You only need make a copy
if (a) the data structure is mutable, (b) you do not want the caller to be able to
mutate it, and (c) the language does not itself provide immutability annotations
or other mechanisms.

• It can force non-uniform and hence non-modular reasoning. For instance, sup-
pose we have the procedure:

(define (f g)

(let ([x 10])

(begin

(g x)

...)))

If the language were to permit by-reference parameter passing, then the program-
mer cannot locally—i.e., just from the above code—determine what the value of
x will be in the ellipses.

At the very least, then, if the language is going to permit by-reference parameters, it
should let the caller determine whether to pass the reference—i.e., let the callee share
the memory address of the caller’s variable—or not. However, even this option is not

61

quite as attractive as it may sound, because now the callee faces a symmetric prob-
lem, not knowing whether its parameters are aliased or not. In traditional, sequential
programs this is less of a concern, but if the procedure is reentrant, the callee faces
precisely the same predicaments.

At some point, therefore, we should consider whether any of this fuss is worthwhile.
Instead, callers who want the callee to perform a mutation could simply send a boxed
value to the callee. The box signals that the caller accepts—indeed, invites—the callee
to perform a mutation, and the caller can extract the value when it’s done. This does
obviate the ability to write a simple swapper, but that’s a small price to pay for genuine
software engineering concerns.

9 Recursion and Cycles: Procedures and Data
Recursion is the act of self-reference. When we speak of recursion in programming
languages, we may have one of (at least) two meanings in mind: recursion in data, and
recursion in control (i.e., of program behavior—that is to say, of functions).

9.1 Recursive and Cyclic Data
Recursion in data can refer to one of two things. It can mean referring to something of
the same kind, or referring to the same thing itself.

Recursion of the same kind leads to what we traditionally call recursive data. For
instance, a tree is a recursive data structure: each vertex can have multiple children,
each of which is itself a tree. But if we write a procedure to traverse the nodes of a tree,
we expect it to terminate without having to keep track of which nodes it has already
visited. They are finite data structures.

In contrast, a graph is often a cyclic datum: a node refers to another node, which
may refer back to the original one. (Or, for that matter, a node may refer directly to
itself.) When we traverse a graph, absent any explicit checks for what we have already
visited, we should expect a computation to diverge, i.e., not terminate. Instead, graph
algorithms need a memory of what they have visited to avoid repeating traversals.

Adding recursive data, such as lists and trees, to our language is quite straightfor-
ward. We mainly require two things:

1. The ability to create compound structures (such as nodes that have references to
children).

2. The ability to bottom-out the recursion (such as leaves).

Exercise

Add lists and binary trees as built-in datatypes to the programming lan-
guage.

Adding cyclic data is more subtle. Consider the simplest form of cyclic datum, a
cell referring back to itself:

62

Let’s try to define this in Racket. Here’s one attempt:

(let ([b b])

b)

But this doesn’t work: b on the right-hand side of the let isn’t bound. It’s easy to see
if we desugar it:

((lambda (b)

b)

b)

and, for clarity, we can rename the b in the function:

((lambda (x)

x)

b)

Now it’s patently clear that b is unbound.
Absent some magical Racket construct we haven’t yet seen, it becomes clear that That construct

would be shared,
but virtually no
other language has
this notational
mechanism, so we
won’t dwell on it
here. In fact, what
we are studying is
the main idea
behind how shared

actually works.

we can’t create a cyclic datum in one shot. Instead, we need to first create a “place” for
the datum, then refer to that place within itself. The use of “then”—i.e., the introduction
of time—should suggest a mutation operation. Indeed, let’s try it with boxes.

Our plan is as follows. First, we want to create a box and bind it to some identifier,
say b. Now, we want to mutate the content of the box. What do we want it to contain?
A reference to itself. How does it obtain that reference? By using the name, b, that is
already bound to it. In this way, the mutation creates the cycle:

(let ([b (box 'dummy)])

(begin

(set-box! b b)

b))

Note that this program will not run in Typed PLAI as written. We’ll return to typing
such programs later [REF]. For now, run it in the untyped (#lang plai) language.

When the above program is Run, Racket prints this as: #0='#�#. This notation
is in fact precisely what we want. Recall that #& is how Racket prints boxes. The #0=
(and similarly for other numbers) is how Racket names pieces of cyclic data. Thus,
Racket is saying, “#0 is bound to a box whose content is #0#, i.e., whatever is bound
to #0, i.e., itself”.

Exercise

63

Run the equivalent program through your interpreter for boxes and make
sure it produces a cyclic value. How do you check this?

The idea above generalizes to other datatypes. In this same way we can also pro-
duce cyclic lists, graphs, and so on. The central idea is this two-step process: first
name an vacant placeholder; then mutate the placeholder so its content is itself; to ob-
tain “itself”, use the name previously bound. Of course, we need not be limited to
“self-cycles”: we can also have mutually-cyclic data (where no one element is cyclic
but their combination is).

9.2 Recursive Functions
In a shift in terminology, a recursive function is not a reference to a same kind of
function but rather to the same function itself. It’s useful to first ensure we’ve first
extended our language with conditionals (even of the kind that only check for 0, as
described earlier: section 5), so we can write non-trivial programs that terminate.

Let’s now try to write a recursive factorial:

(let ([fact (lambda (n)

(if0 n

1

(* n (fact (- n 1)))))])

(fact 10))

But this doesn’t work at all! The inner fact gives an unbound identifier error, just as
in our cyclic datum example.

It is no surprise that we should encounter the same error, because it has the same
cause. Our traditional binding mechanism does not automatically make function defi-
nitions cyclic (indeed, in some early programming languages, they were not: misguid-
edly, recursion was considered a special feature). Instead, if we want recursion—i.e., Because you

typically write
top-level
definitions, you
don’t encounter this
issue. At the
top-level, every
binding is implicitly
a variable or a box.
As a result, the
pattern below is
more-or-less
automatically put in
place for you. This
is why, when you
want a recursive
local binding, you
must use letrec or
local, not let.

for a function definition to cyclically refer to itself—we must implement it by hand.
The means to do so is now clear: the problem is the same one we diagnosed before,

so we can reuse the same solution. We again have to follow a three-step process: first
create a placeholder, then refer to the placeholder where we want the cyclic reference,
and finally mutate the placeholder before use. Thus:

(let ([fact (box 'dummy)])

(let ([fact-fun

(lambda (n)

(if (zero? n)

1

(* n ((unbox fact) (- n 1)))))])

(begin

(set-box! fact fact-fun)

((unbox fact) 10))))

64

In fact, we don’t even need fact-fun: I’ve used that binding just for clarity. Observe
that because it isn’t recursive, and we have identifiers rather than variables, its use can
simply be substituted with its value:

(let ([fact (box 'dummy)])

(begin

(set-box! fact

(lambda (n)

(if (zero? n)

1

(* n ((unbox fact) (- n 1))))))

((unbox fact) 10)))

There is the small nuisance of having to repeatedly unbox fact. In a language with
variables, this would be even more seamless: Indeed, one use for

variables is that
they simplify the
desguaring of the
above pattern,
instead of requiring
every use of a
cyclically-bound
identifier to be
unboxed. On the
other hand, with a
little extra effort the
desugaring process
could take care of
doing the unboxing,
too.

(let ([fact 'dummy])

(begin

(set! fact

(lambda (n)

(if (zero? n)

1

(* n (fact (- n 1))))))

(fact 10)))

9.3 Premature Observation
Our preceding discussion of this pattern shows a clear temporal sequencing: create,
update, use. We can capture it in a desugaring rule. Suppose we add the following new
syntax:

(rec name value body)

As an example of its use,

(rec fact

(lambda (n) (if (= n 0) 1 (* n (fact (- n 1)))))

(fact 10))

would evaluate to the factorial of 10. This new syntax would desugar to:

(let ([name (box 'dummy)])

(begin

(set-box! name value)

body))

Where we assume that all references to name in value and body have been rewritten
to (unbox name), or alternatively that we instead use variables:

65

(let ([name 'dummy])

(begin

(set! name value)

body))

This naturally inspires a question: what if we get these out of order? Most in-
terestingly, what if we try to use name before we’re done updating its true value into
place? Then we observe the state of the system right after creation, i.e., we can see the
placeholder in its raw form.

The simplest example that demonstrates this is as follows:

(letrec ([x x])

x)

or equivalently,

(local ([define x x])

x)

In most Racket variants, this leaks the initial value given to the placeholder—a value
that was never meant for public consumption. This is troubling because it is, after all, a
legitimate value, which means it can probably be used in at least some computations. If
a developer accesses and uses it inadvertently, however, they are effectively computing
with nonsense.

There are generally three solutions to this problem:

1. Make sure the value is sufficiently obscure so that it can never be used in a
meaningful context. This means values like 0 are especially bad, and indeed
most common datatypes should be shunned. Instead, the language might create
a new type of value just for use here. Passed to any other operation, this will
result in an error.

2. Explicitly check every use of an identifier for belonging to this special “pre-
mature” value. While this is technically feasible, it imposes an enormous per-
formance penalty on a program. Thus, it is usually only employed in teaching
languages.

3. Allow the recursion constructor to be used only in the case of binding functions,
and then make sure that the right-hand side of the binding is syntactically a func-
tion. Unfortunately, this solution can be a bit drastic because it precludes writing,
for instance, structures to create graphs.

9.4 Without Explicit State
As you may be aware, there is another way to define recursive functions (and hence
recursive data) that does not leverage explicit mutation operations.

Do Now!

66

You’ve already seen what goes wrong when we try to use just let to define
a recursive function. Try harder. Hint: Substitute more. And then some
more. And more!

Obtaining recursion from just functions is an amazing idea, and I use the term
literally. It’s written up well by Daniel P. Friedman and Matthias Felleisen in their
book, The Little Schemer. Read about it in their sample chapter online.

Exercise

Does the above solution use state anywhere? Implicitly?

10 Objects
When a language admits functions as values, it provides developers the most natural
way to represent a unit of computation. Suppose a developer wants to parameterize
some function f. Any language lets f be parameterized by passive data, such as num-
bers and strings. But it is often attractive to parameterize it over active data: a datum
that can compute an answer, perhaps in response to some information. Furthermore,
the function passed to f can—assuming lexically-scoped functions—refer to data from
the caller without those data having to be revealed to f, thus providing a foundation
for security and privacy. Thus, lexically-scoped functions are central to the design of
many secure programming techniques.

While a function is a splendid thing, it suffers from excessive terseness. Sometimes
we might want multiple functions to all close over to the same shared data; the sharing
especially matters if some of the functions mutate it and expect the others to see the
result of those mutations. In such cases, it becomes unwieldly to send just a single
function as a parameter; it is more useful to send a group of functions. The recipient
then needs a way to choose between the different functions in the group. This grouping
of functions, and the means to select one from the group, is the essence of an object.
We are therefore perfectly placed to study objects having covered functions (section 7)
and mutation (section 8)—and, it will emerge, recursion (section 9). I cannot hope to do

justice to the
enormous space of
object systems.
Please read
Object-Oriented
Programming
Languages:
Application and
Interpretation by
Éric Tanter, which
goes into more
detail and covers
topics ignored here.

Let’s add this notion of objects to our language. Then we’ll flesh it out and grow
it, and explore the many dimensions in the design space of objects. We’ll first show
how to add objects to the core language, but because we’ll want to prototype many
different ideas quickly, we’ll soon shift to a desguaring-based strategy. Which one you
use depends on whether you think understanding them is critical to understanding the
essence of your language. One way to measure this is how complex your desguaring
strategy becomes, and whether by adding some key core language enhancements, you
can greatly reduce the complexity of desugaring.

10.1 Objects Without Inheritance
The simplest notion of an object—pretty much the only thing everyone who talks about
objects agrees about—is that an object is

• a value, that

67

http://www.ccs.neu.edu/home/matthias/BTLS/sample.pdf
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/
http://users.dcc.uchile.cl/~etanter/ooplai/

• maps names to

• stuff: either other values or “methods”.

From a minimalist perspective, methods seem to be just functions, and since we already
have those in the language, we can put aside this distinction. We’re about to find

out that “methods”
are awfully close to
functions but differ
in important ways
in how they’re
called and/or what’s
bound in them.

10.1.1 Objects in the Core

Therefore, starting from the language with first-class functions, let’s define this very
simple notion of objects by adding it to the core language. We clearly have to extend
our notion of values:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[objV (ns : (listof symbol)) (vs : (listof Value))])

We’ll extend the expression grammar to support literal object construction expressions: Observe that this is
already a design
decision. In some
languages, like
JavaScript, a
developer can write
literal objects: a
notion so popular
that a subset of the
syntax for it in
JavaScript has
become a Web
standard, JSON. In
other languages,
like Java, objects
can only be created
by invoking a
constructor on a
class. We can
simulate both by
assuming that to
model the latter
kind of language,
we must write
object literals only
in special positions
following a stylized
convention, as we
do when desugaring
below.

[objC (ns : (listof symbol)) (es : (listof ExprC))]

Evaluating such an object expression is easy: we just evaluate each of its expression
positions:

[objC (ns es) (objV ns (map (lambda (e)

(interp e env))

es))]

Unfortunately, we can’t actually use an object, because we have no way of obtaining
its content. For that reason, we could add an operation to extract members:

[msgC (o : ExprC) (n : symbol)]

whose behavior is intuitive:

[msgC (o n) (lookup-msg n (interp o env))]

Exercise

Implement

; lookup-msg : symbol * Value -> Value

where the second argument is expected to be a objV.

In principle, msgC can be used to obtain any kind of member but for simplicity, we
need only assume that we have functions. To use them, we must apply them to values.
This is cumbersome to write in the concrete syntax, so let’s assume desugaring has
taken care of it for us: the concrete syntax for message invocation includes both the
name of the message to fetch and its argument expression,

68

[msgS (o : ExprS) (n : symbol) (a : ExprS)]

and this desguars into msgC composed with application:

[msgS (o n a) (appC (msgC (desugar o) n) (desugar a))]

With this we have a full first language with objects. For instance, here is an object
definition and invocation:

(letS 'o (objS (list 'add1 'sub1)

(list (lamS 'x (plusS (idS 'x) (numS 1)))

(lamS 'x (plusS (idS 'x) (numS -1)))))

(msgS (idS 'o) 'add1 (numS 3)))

and this evaluates to (numV 4).

10.1.2 Objects by Desugaring

While defining objects in the core language may be worthwhile, it’s an unwieldy way
to go about studying them. Instead, we’ll use Racket to represent objects, sticking to
the parts of the language we already know how to implement in our interpreter. That
is, we’ll assume that we are looking at the output of desugaring. (For this reason, we’ll
also stick to stylized code, potentially writing unnecessary expressions on the grounds
that this is what a simple program generator would produce.)

Alert: All the code that follows will be in #lang plai, not in the typed language.
Exercise

Why #lang plai? What problems do you encounter when you try to
type the following code? Are some of them amenable to easy fixes, such
as introducing a new datatype and applying it consistently? How about if
we make simplifications for the purposes of modeling, such as assuming
methods have only one argument? Or are some of them less tractable?

10.1.3 Objects as Named Collections

Let’s begin by reproducing the object language we had above. An object is just a value
that dispatches on a given name. For simplicity, we’ll use lambda to represent the
object and case to implement the dispatching. Observe that basic

objects are a
generalization of
lambda to have
multiple
“entry-points”.
Conversely, a
lambda is an object
with just one
entry-point, so it
doesn’t need a
“method name” to
disambiguate.

(define o-1

(lambda (m)

(case m

[(add1) (lambda (x) (+ x 1))]

[(sub1) (lambda (x) (- x 1))])))

This is the same object we defined earlier, and we use its method in the same way:

(test ((o-1 'add1) 5) 6) ;; the test succeeds

69

Of course, writing method invocations with these nested function calls is unwieldy
(and is about to become even more so), so we’d be best off equipping ourselves with
a convenient syntax for invoking methods—the same one we saw earlier (msgS), but
here we can simply define it as a function: We’ve taken

advantage of
Racket’s
variable-arity
syntax: . a says
“bind all the
remaining—zero or
more—arguments
to a list named a”.
apply “splices” in
such lists of
arguments to call
functions.

(define (msg o m . a)

(apply (o m) a))

This enables us to rewrite our test:

(test (msg o-1 'add1 5) 6)

Do Now!

Something very important changed when we switched to the desguaring
strategy. Do you see what it is?

Recall the syntax definition we had earlier:

[msgC (o : ExprC) (n : symbol)]

The “name” position of a message was very explicitly a symbol. That is, the developer
had to write the literal name of the symbol there. In our desugared version, the name
position is just an expression that must evaluate to a symbol; for instance, one could
have written

(test ((o-1 (string->symbol "add1")) 5) 6) ;; this also succeeds

This is a general problem with desugaring: the target language may allow expressions
that have no counterpart in the source, and hence cannot be mapped back to it. For-
tunately we don’t often need to perform this inverse mapping, though it does arise in
some debugging and program comprehension tools. More subtly, however, we must
ensure that the target language does not produce values that have no corresponding
equivalent in the source.

Now that we have basic objects, let’s start adding the kinds of features we’ve come
to expect from most object systems.

10.1.4 Constructors

A constructor is simply a function that is invoked at object construction time. We
currently lack such a function. by turning an object from a literal into a function that
takes constructor parameters, we achieve this effect:

(define (o-constr-1 x)

(lambda (m)

(case m

[(addX) (lambda (y) (+ x y))])))

(test (msg (o-constr-1 5) 'addX 3) 8)

(test (msg (o-constr-1 2) 'addX 3) 5)

70

In the first example, we pass 5 as the constructor’s argument, so adding 3 yields 8. The
second is similar, and shows that the two invocations of the constructors don’t interfere
with one another.

10.1.5 State

Many people believe that objects primarily exist to encapsulate state. We certainly Alan Kay, who won
a Turing Award for
inventing Smalltalk
and modern object
technology,
disagrees. In The
Early History of
Smalltalk, he says,
“[t]he small scale
[motivation for
OOP] was to find a
more flexible
version of
assignment, and
then to try to
eliminate it
altogether”. He
adds, “It is
unfortunate that
much of what is
called
‘object-oriented
programming’
today is simply old
style programming
with fancier
constructs. Many
programs are
loaded with
‘assignment-style’
operations now
done by more
expensive attached
procedures.”

haven’t lost that ability. If we desugar to a language with variables (we could equiva-
lently use boxes, in return for a slight desugaring overhead), we can easily have multi-
ple methods mutate common state, such as a constructor argument:

(define (o-state-1 count)

(lambda (m)

(case m

[(inc) (lambda () (set! count (+ count 1)))]

[(dec) (lambda () (set! count (- count 1)))]

[(get) (lambda () count)])))

For instance, we can test a sequence of operations:

(test (let ([o (o-state-1 5)])

(begin (msg o 'inc)

(msg o 'dec)

(msg o 'get)))

5)

and also notice that mutating one object doesn’t affect another:

(test (let ([o1 (o-state-1 3)]

[o2 (o-state-1 3)])

(begin (msg o1 'inc)

(msg o1 'inc)

(+ (msg o1 'get)

(msg o2 'get))))

(+ 5 3))

10.1.6 Private Members

Another common object language feature is private members: ones that are visible only
inside the object, not outside it. These may seem like an additional feature we need Except that, in Java,

instances of other
classes of the same
type are privy to
“private” members.
Otherwise, you
would simply never
be able to
implement an
Abstract Data Type.

to implement, but we already have the necessary mechanism in the form of locally-
scoped, lexically-bound variables:

(define (o-state-2 init)

(let ([count init])

(lambda (m)

(case m

71

http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html

[(inc) (lambda () (set! count (+ count 1)))]

[(dec) (lambda () (set! count (- count 1)))]

[(get) (lambda () count)]))))

The desugaring above provides no means for accessing count, and lexical scoping
ensures that it remains hidden to the world.

10.1.7 Static Members

Another feature often valuable to users of objects is static members: those that are
common to all instances of the “same” type of object. This, however, is merely a We use quotes

because there are
many notions of
sameness for
objects. And then
some.

lexically-scoped identifier (making it private) that lives outside the constructor (making
it common to all uses of the constructor):

(define o-static-1

(let ([counter 0])

(lambda (amount)

(begin

(set! counter (+ 1 counter))

(lambda (m)

(case m

[(inc) (lambda (n) (set! amount (+ amount n)))]

[(dec) (lambda (n) (set! amount (- amount n)))]

[(get) (lambda () amount)]

[(count) (lambda () counter)]))))))

We’ve written the counter increment where the “constructor” for this object would go,
though it could just as well be manipulated inside the methods.

To test it, we should make multiple objects and ensure they each affect the global
count:

(test (let ([o (o-static-1 1000)])

(msg o 'count))

1)

(test (let ([o (o-static-1 0)])

(msg o 'count))

2)

10.1.8 Objects with Self-Reference

Until now, our objects have simply been packages of named functions: functions with
multiple named entry-points, if you will. We’ve seen that many of the features con-
sidered important in object systems are actually simple patterns over functions and
scope, and have indeed been used—without names assigned to them—for decades by
programmers armed with lambda.

72

One characteristic that actually distinguishes object systems is that each object is
automatically equipped with a reference to the same object, often called self or this. I prefer this slightly

dry way of putting
it to the
anthropomorphic
“knows about
itself” terminology
often adopted by
object advocates.
Indeed, note that we
have gotten this far
into object system
properties without
ever needing to
resort to
anthropomorphism.

Can we implement this easily?

Self-Reference Using Mutation

Yes, we can, because we have seen just this very pattern when we implemented recur-
sion; we’ll just generalize it now to refer not just to the same box or function but to the
same object.

(define o-self!

(let ([self 'dummy])

(begin

(set! self

(lambda (m)

(case m

[(first) (lambda (x) (msg self 'second (+ x 1)))]

[(second) (lambda (x) (+ x 1))])))

self)))

Observe that this is precisely the recursion pattern (section 9.2), adapted slightly. We’ve
tested it having first send a method to its own second. Sure enough, this produces
the expected answer:

(test (msg o-self! 'first 5) 7)

Self-Reference Without Mutation

If you studied how to implement recursion without mutation, you’ll notice that the
same solution applies here, too. Observe:

(define o-self-no!

(lambda (m)

(case m

[(first) (lambda (self x) (msg/self self 'second (+ x 1)))]

[(second) (lambda (self x) (+ x 1))])))

Each method now takes self as an argument. That means method invocation must be
modified to follow this new pattern:

(define (msg/self o m . a)

(apply (o m) o a))

That is, when invoking a method on o, we must pass o as a parameter to the method.
Obviously, this approach is dangerous because we can potentially pass a different object
as the “self”. Exposing this to the developer is therefore probably a bad idea; if this
implementation technique is used, it should only be done in desugaring. Nevertheless,

Python exposes just
this in its surface
syntax. While this
tribute to the
Y-combinator is
touching, perhaps
the resultant
brittleness was
unnecessary.

73

10.1.9 Dynamic Dispatch

Finally, we should make sure our objects can handle a characteristic attribute of ob-
ject systems, which is the ability to invoke a method without the caller having to
know or decide which object will handle the invocation. Suppose we have a binary
tree data structure, where a tree consists of either empty nodes or leaves that hold
a value. In traditional functions, we are forced to implement the equivalent some
form of conditional—either a cond or a type-case or pattern-match or other moral
equivalent—that exhaustively lists and selects between the different kinds of trees. If
the definition of a tree grows to include new kinds of trees, each of these code fragments
must be modified. Dynamic dispatch solves this problem by making that conditional
branch disappear from the user’s program and instead be handled by the method se-
lection code built into the language. The key feature that this provides is an extensible
conditional. This is one dimension of the extensibility that objects provide. This

property—which
appears to make
systems more
black-box
extensible because
one part of the
system can grow
without the other
part needing to be
modified to
accommodate those
changes—is often
hailed as a key
benefit of
object-orientation.
While this is indeed
an advantage
objects have over
functions, there is a
dual advantage that
functions have over
objects, and indeed
many object
programmers end
up contorting their
code—using the
Visitor pattern—to
make it look more
like a
function-based
organization. Read
Synthesizing
Object-Oriented
and Functional
Design to Promote
Re-Use for a
running example
that will lay out the
problem in its full
glory. Try to solve
it in your favorite
language, and see
the Racket solution.

Let’s now defined our two kinds of tree objects:

(define (mt)

(let ([self 'dummy])

(begin

(set! self

(lambda (m)

(case m

[(add) (lambda () 0)])))

self)))

(define (node v l r)

(let ([self 'dummy])

(begin

(set! self

(lambda (m)

(case m

[(add) (lambda () (+ v

(msg l 'add)

(msg r 'add)))])))

self)))

With these, we can make a concrete tree:

(define a-tree

(node 10

(node 5 (mt) (mt))

(node 15 (node 6 (mt) (mt)) (mt))))

And finally, test it:

(test (msg a-tree 'add) (+ 10 5 15 6))

74

http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.utah.edu/plt/publications/icfp98-ff/paper.shtml

Observe that both in the test case and in the add method of node, there is a reference
to 'add without checking whether the recipient is a mt or node. Instead, the run-time
system extracts the recipient’s add method and invokes it. This missing conditional in
the user’s program is the essence of dynamic dispatch.

10.2 Member Access Design Space
We already have two orthogonal dimensions when it comes to the treatment of member
names. One dimension is whether the name is provided statically or computed, and the
other is whether the set of names is fixed or variable:

Name is Static Name is Computed
Fixed Set of Members As in base Java. As in Java with reflection to compute the name.
Variable Set of MembersDifficult to envision (what use would it be?).Most scripting languages.
Only one case does not quite make sense: if we force the developer to specify the
member name in the source file explicitly, then no new members would be accessible
(and some accesses to previously-existing, but deleted, members would fail). All other
points in this design space have, however, been explored by languages.

The lower-right quadrant corresponds closely with languages that use hash-tables
to represent objects. Then the name is simply the index into the hash-table. Some lan-
guages carry this to an extreme and use the same representation even for numeric in-
dices, thereby (for instance) conflating objects with dictionaries and even arrays. Even
when the object only handles “member names”, this style of object creates significant
difficulty for type-checking [REF] and is hence not automatically desirable.

Therefore, in the rest of this section, we will stick with “traditional” objects that
have a fixed set of names and even static member name references (the top-left quad-
rant). Even then, we will find there is much, much more to study.

10.3 What (Goes In) Else?
Until now, our case statements have not had an else clause. One reason to do so
would be if we had a variable set of members in an object, though that is probably
better handled through a different representation than a conditional: a hash-table, for
instance, as we’ve discussed above. In contrast, if an object’s set of members is fixed,
desugaring to a conditional works well for the purpose of illustration (because it em-
phasizes the fixed nature of the set of member names, which a hash table leaves open to
interpretation—and also error). There is, however, another reason for an else clause,
which is to “chain” control to another, parent, object. This is called inheritance.

Let’s return to our model of desugared objects above. To implement inheritance,
the object must be given “something” to which it can delegate method invocations that
it does not recognize. A great deal will depend on what that “something” is.

One answer could be that it is simply another object.

(case m

...

[else (parent-object m)])

75

Due to our representation of objects, this application effectively searches for the method
in the parent object (and, presumably, recursively in its parents). If a method matching
the name is found, it returns through this chain to the original call in msg that sought the
method. If none is found, the final object presumably signals a “message not found”
error.

Exercise

Observe that the application (parent-object m) is like “half a msg”,
just like an l-value was “half a value lookup” [REF]. Is there any connec-
tion?

Let’s try this by extending our trees to implement another method, size. We’ll
write an “extension” (you may be tempted to say “sub-class”, but hold off for now!)
for each node and mt to implement the size method. We intend these to extend the
existing definitions of node and mt, so we’ll use the extension pattern described above. We’re not editing

the existing
definitions because
that is supposed to
be the whole point
of object
inheritance: to
reuse code in a
black-box fashion.
This also means
different parties,
who do not know
one another, can
each extend the
same base code. If
they had to edit the
base, first they have
to find out about
each other, and in
addition, one might
dislike the edits of
the other.
Inheritance is meant
to sidestep these
issues entirely.

10.3.1 Classes

Immediately we see a difficulty. Is this the constructor pattern?

(define (node/size parent-object v l r)

...)

That suggests that the parent is at the “same level” as the object’s constructor fields.
That seems reasonable, in that once all these parameters are given, the object is “fully
defined”. However, we also still have

(define (node v l r)

...)

Are we going to write all the parameters twice? (Whenever we write something twice,
we should worry that we may not do so consistently, thereby inducing subtle errors.)
Here’s an alternative: node/size can construct the instance of node that is its parent.
That is, node/size’s parent parameter is not the parent object but rather the parent’s
object maker.

(define (node/size parent-maker v l r)

(let ([parent-object (parent-maker v l r)]

[self 'dummy])

(begin

(set! self

(lambda (m)

(case m

[(size) (lambda () (+ 1

(msg l 'size)

(msg r 'size)))]

[else (parent-object m)])))

self)))

76

(define (mt/size parent-maker)

(let ([parent-object (parent-maker)]

[self 'dummy])

(begin

(set! self

(lambda (m)

(case m

[(size) (lambda () 0)]

[else (parent-object m)])))

self)))

Then the object constructor must remember to pass the parent-object maker on every
invocation:

(define a-tree/size

(node/size node

10

(node/size node 5 (mt/size mt) (mt/size mt))

(node/size node 15

(node/size node 6 (mt/size mt) (mt/size mt))

(mt/size mt))))

Obviously, this is something we might simplify with appropriate syntactic sugar. We
can confirm that both the old and new tests still work:

(test (msg a-tree/size 'add) (+ 10 5 15 6))

(test (msg a-tree/size 'size) 4)

Exercise

Rewrite this block of code using self-application instead of mutation.

What we have done is capture the essence of a class. Each function parameterized
over a parent is...well, it’s a bit tricky, really. Let’s call it a blob for now. A blob
corresponds to what a Java programmer defines when they write a class:

class NodeSize extends Node { ... }

Do Now!

So why are we going out of the way to not call it a “class”?

When a developer invokes a Java class’s constructor, it in effect constructs objects
all the way up the inheritance chain (in practice, a compiler might optimize this to
require only one constructor invocation and one object allocation). These are private
copies of the objects corresponding to the parent classes (private, that is, up to the
presence of static members). There is, however, a question of how much of these
objects is visible. Java chooses that—unlike in our implementation above—only one

77

method of a given name (and signature) remains, no matter how many there might
have been on the inheritance chain, whereas every field remains in the result, and can
be accessed by casting. The latter makes some sense because each field presumably
has invariants governing it, so keeping them separate (and hence all present) is wise.
In contrast, it is easy to imagine an implementation that also makes all the methods
available, not only the ones lowest (i.e., most refined) in the inheritance hierarchy.
Many scripting languages take the latter approach.

Exercise

The code above is fundamentally broken. The self reference is to the
same syntactic object, whereas it needs to refer to the most-refined object:
this is known as open recursion. Modify the object representations so that This demonstrates

the other form of
extensibility we get
from traditional
objects: extensible
recursion.

self always refers to the most refined version of the object. Hint: You
will find the self-application method (section 10.1.8.2) of recursion handy.

10.3.2 Prototypes

In our description above, we’ve supplied each class with a description of its parent
class. Object construction then makes instances of each as it goes up the inheritance
chain. There is another way to think of the parent: not as a class to be instantiated
but, instead, directly as an object itself. Then all children with the same parent would
observe the very same object, which means changes to it from one child object would
be visible to another child. The shared parent object is known as a prototype. The archetypal

prototype-based
language is Self.
Though you may
have read that
languages like
JavaScript are
“based on” Self,
there is value to
studying the idea
from its source,
especially because
Self presents these
ideas in their purest
form.

Some language designers have argued that prototypes are more primitive than classes
in that, with other basic mechanisms such as functions, one can recover classes from
prototypes—but not the other way around. That is essentially what we have done
above: each “class” function contains inside it an object description, so a class is an
object-returning-function. Had we exposed these are two different operations and cho-
sen to inherit directly an object, we would have something akin to prototypes.

Exercise

Modify the inheritance pattern above to implement a Self-like, prototype-
based language, instead of a class-based language. Because classes pro-
vide each object with distinct copies of their parent objects, a prototype-
language might provide a clone operation to simplify creation of the oper-
ation that simulates classes atop prototypes.

10.3.3 Multiple Inheritance

Now you might ask, why is there only one fall-through option? It’s easy to generalize
this to there being many, which leads naturally to multiple inheritance. In effect, we
have multiple objects to which we can chain the lookup, which of course raises the
question of what order in which we should do so. It would be bad enough if the
ascendants were arranged in a tree, because even a tree does not have a canonical order
of traversal: take just breadth-first and depth-first traversal, for instance (each of which
has compelling uses). Worse, suppose a blob A extends B and C; but now suppose B

and C each extend D. Now we have to confront this question: will there be one or two This infamous
situation is called
diamond
inheritance. If you
choose to include
multiple inheritance
in your language
you can lose
yourself for days in
design decisions on
this. Because it is
highly unlikely you
will find a canonical
answer, your pain
will have only
begun.

78

http://selflanguage.org/

D objects in the instance of A? Having only one saves space and might interact better
with our expectations, but then, will we visit this object once or twice? Visiting it twice
should not make any difference, so it seems unnecessary. But visiting it once means
the behavior of one of B or C might change. And so on. As a result, virtually every
multiple-inheritance language is accompanied by a subtle algorithm merely to define
the lookup order.

Multiple inheritance is only attractive until you’ve thought it through.

10.3.4 Super-Duper!

Many languages have a notion of super-invocations, i.e., the ability to invoke a method
or access a field higher up in the inheritance chain. This includes doing so at the Note that I say

“the” and “chain”.
When we switch to
multiple
inheritance, these
concepts are
replaced with
something much
more complex.

point of object construction, where there is often a requirement that all constructors be
invoked, to make sure the object is properly defined.

We have become so accustomed to thinking of these calls as going “up” the chain
that we may have forgotten to ask whether this is the most natural direction. Keep in
mind that constructors and methods are expected to enforce invariants. Whom should
we trust more: the super-class or the sub-class? One argument would say that the
sub-class is most refined, so it has the most global view of the object. Conversely,
each super-class has a vested interest in protecting its invariants against violation by
ignorant sub-classes.

These are two fundamentally opposed views of what inheritance means. Going up
the chain means we view the extension as replacing the parent. Going down the chain
means we view the extension as refining the parent. Because we normally associate
sub-classing with refinement, why do our languages choose the “wrong” order of call-
ing? Some languages have, therefore, explored invocation in the downward direction
by default. gbeta is a modern

programming
language that
supports inner, as
well as many other
interesting features.
It is also interesting
to consider
combining both
directions.

10.3.5 Mixins and Traits

Let’s return to our “blobs”.
When we write a class in Java, what are we really defining between the opening

and closing braces? It is not the entire class: that depends on the parent that it extends,
and so on recursively. Rather, what we define inside the braces is a class extension. It
only becomes a full-blown class because we also identify the parent class in the same
place.

Naturally, we should ask: Why? Why not separate the act of defining an extension
from applying the extension to a base class? That is, suppose instead of

class C extends B { ... }

we instead write:

classext E { ... }

and separately

class C = E(B)

79

http://www.daimi.au.dk/~eernst/gbeta/
http://www.cs.utah.edu/plt/publications/oopsla04-gff.pdf
http://www.cs.utah.edu/plt/publications/oopsla04-gff.pdf

where B is some already-defined class.
Thusfar, it looks like we’ve just gone to great lengths to obtain what we had be-

fore. However, the function-application-like syntax is meant to be suggestive: we can
“apply” this extension to several different base classes. Thus:

class C1 = E(B1);

class C2 = E(B2);

and so on. What we have done by separating the definition of E from that of the class it
extends is to liberate class extensions from the tyranny of the fixed base class. We have
a name for these extensions: they’re called mixins. The term “mixin”

originated in
Common Lisp,
where it was a
particular pattern of
using multiple
inheritance.
Lipstick on a pig.

Mixins make class definition more compositional. They provide many of the bene-
fits of multiple-inheritance (reusing multiple fragments of functionality) but within the
aegis of a single-inheritance language (i.e., no complicated rules about lookup order).
Observe that when desugaring, it’s actually quite easy to add mixins to the language.
A mixin is primarily a “function over classes’;. Because we have already determined
how to desugar classes, and our target language for desugaring also has functions, and
classes desugar to expressions that can be nested inside functions, it becomes almost
trivial to implement a simple model of mixins. This is a case where

the greater
generality of the
target language of
desugaring can lead
us to a better
construct, if we
reflect it back into
the source
language.

In a typed language, a good design for mixins can actually improve object-oriented
programming practice. Suppose we’re defining a mixin-based version of Java. If a
mixin is effectively a class-to-class function, what is the “type” of this “function”?
Clearly, mixin ought to use interfaces to describe what it expects and provides. Java
already enables (but does not require) the latter, but it does not enable the former: a
class (extension) extends another class—with all its members visible to the extension—
not its interface. That means it obtains all of the parent’s behavior, not a specification
thereof. In turn, if the parent changes, the class might break.

In a mixin language, we can instead write

mixin M extends I { ... }

where I is an interface. Then M can only be applied to a class that satisfies the interface
I, and in turn the language can ensure that only members specified in I are visible in
M. This follows one of the important principles of good software design. “Program to an

interface, not an
implementation.”
—Design Patterns

A good design for mixins can go even further. A class can only be used once in an
inheritance chain, by definition (if a class eventually referred back to itself, there would
be a cycle in the inheritance chain, causing potential infinite loops). In contrast, when
we compose functions, we have no qualms about using the same function twice (e.g.:
(map ... (filter ... (map ...)))). Is there value to using a mixin twice? There certainly is!

See sections 3 and 4
of Classes and
Mixins.

Mixins solve an important problem that arises in the design of libraries. Suppose
we have a dozen different features which can be combined in different ways. How
many classes should we provide? Furthermore, not all of these can be combined with
each other. It is obviously impractical to generate the entire combinatorial explosion of
classes. It would be better if the devleoper could pick and choose the features they care
about, with some mechanism to prevent unreasonable combinations. This is precisely
the problem that mixins solve: they provide the class extensions, which the developers
can combine, in an interface-preserving way, to create just the classes they need. Mixins are used

extensively in the
Racket GUI library.
For instance,
color:text-mixin

consumes basic text
editor interfaces
and implements the
colored text editor
interface. The latter
is iself a basic text
editor interface, so
additional basic text
mixins can be
applied to the result.

Exercise

80

http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/

How does your favorite object-oriented library solve this problem?

Mixins do have one limitation: they enforce a linearity of composition. This strict-
ness is sometimes misplaced, because it puts a burden on programmers that may not
be necessary. A generalization of mixins called traits says that instead of extending
a single mixin, we can extend a set of them. Of course, the moment we extend more
than one, we must again contend with potential name-clashes. Thus traits must be
equipped with mechanisms for resolving name clashes, often in the form of some
name-combination algebra. Traits thus offer a nice complement to mixins, enabling
programmers to choose the mechanism that best fits their needs. As a result, Racket
provides both mixins and traits.

11 Memory Management

11.1 Garbage
We use the term garbage to refer to allocated memory that is no longer necessary.
There are two distinct kinds of allocations that a typical programming language run-
time system performs. One kind is for the environment; this follows a push-and-pop
discipline consistent with the nature of static scope. Returning from a procedure returns
that procedure’s allocated environment space for subsequent use, seemingly free of
cost. In contrast, allocation on the store has to follow an value’s lifetime, which could It’s not free! The

machine has to
execute an explicit
“pop” instruction to
recover that space.
As a result, it is not
necessarily cheaper
than other memory
management
strategies.

outlive that of the scope in which it was created—indeed, it may live forever. Therefore,
we need a different strategy for recovering space consumed by store-allocated garbage.

There are many methods for recovering this space, but they largely fall into two
camps: manual and automatic. Manual collection depends on the developer being able
to know and correctly discard unwated memory. Traditionally, humans have not proven
especially good at this (though in some cases they have knowledge a machine might
not [REF]). Over several decades, therefore, automated methods have become nearly
ubiquitous.

11.2 What is “Correct” Garbage Recovery?
Garbage recovery should neither recover space too early (soundness) nor too late (com-
pleteness). While both can be regarded as flaws, they are not symmetric in their impact:
arguably, recovering too early is much worse. That is because if we recover a store lo-
cation prematurely, the computation will continue to use it and potentially write other
data into it, thereby working with nonsensical data. This leads at the very least to pro-
gram incorrectness, but in more extreme situations leads to much worse phenomena
such as security violations. In contrast, holding on to memory for too long decreases
performance and eventually causes the program to terminate even though, in a pla-
tonic sense, it had memory available. This performance degradation and premature
termination is always annoying, and in certain mission-critical systems can be deeply
problematic, but at least the program does not compute nonsense.

Ideally we would love to have all three: automation, soundness, and completeness.
However, we face a classic “pick two” tradeoff. Ideal humans are capable of attaining

81

both soundness and completeness, but in practice rarely achieve either. A computer can You, surely, are
perfect, but what of
your fellow
developers? And by
the way, the
economics
discipline has been
looking for you.

offer automation and either soundness or completeness, but computability arguments
demonstrate that automation can’t be accompanied by both of the others. In practice,
therefore, automated techniques offer soundness, on the grounds that: (a) it does the
least harm, (b) it is relatively easy to implement, and (c) with some human intervention
it can more closely approximate completeness.

11.3 Manual Reclamation
The most manual approach would be to entrust all de-allocation to the human. In
C, for instance, there are two basic primitives: malloc for allocation and free to
reclaim. malloc consumes a size and returns a reference to a store-allocated value;
free consumes the references and reclaims its assocated memory. “Moloch has been

used figuratively in
English literature
from John Milton’s
Paradise Lost
(1667) to Allen
Ginsberg’s ‘Howl’
(1955), to refer to a
person or thing
demanding or
requiring a very
costly sacrifice.”
—Wikipedia on
Moloch

“I do not consider it
coincidental that
this name sounds
like malloc.”
—Ian Barland

11.3.1 The Cost of Fully-Manual Reclamation

Let’s start by asking what the cost of these operations is. We might begin by as-
suming that malloc has an associated register pointing into the store (like new-loc

[REF]), and on every allocation it simply obtains the next free locations. This model
is extremely simple—in fact, deceptively so. The problem arises when we free these
values. Provided the first free is the last malloc, we would encounter no problem; but
store data often do not follow a stack discipline. When we free anything but the most
recently allocated value, we leave holes in the store. These holes lead to fragmentation,
and in the worst case we become unable to allocate any objects even though there is
ample space in the store—just split up across many fragments, no one of which is large
enough.

Exercise

In principle, we could eliminate fragmentation by making all the free space
be contiguous. What does it take to do so? Think through all the conse-
quences and sketch whether you can in fact do this manually.

While fragmentation remains an insuperable problem in most manual memory
management schemes, there is more to consider even in this seemingly simple dis-
cipline. What happens when we free a value? The run-time system has to somehow
record that it is now available for future allocation. It does by maintaining a free list: a
linked-list of the free spaces. A little reflection immediately suggests a question: where
is the free list itself stored, and who manages its memory? The answer is that the free
list references are stored in the freed cells, which immediately implies a minimum size
for each allocation.

In principle, then, each malloc must now traverse the free list to find a suitable
freed spot. I say “suitable” because the allocator must make a complex decision.
Should it take the first slot that matches or a later one? And either way, what does
“matches” mean? Should it take only slots the exact right size, or take larger slots and
break them up into smaller ones (thereby increasing the likelihood of creating unusably
small holes)? And so on.

Developers like allocation to be cheap. Therefore, in practice, allocation systems Failing to make
allocation cheap
makes developers
try to encode tricks
based on reusing
values, thereby
reducing clarity and
quite possibly also
correctness.

82

http://en.wikipedia.org/wiki/Moloch
http://en.wikipedia.org/wiki/Moloch

tend to use just a fixed set of sizes, often in powers of two. This makes it possible to
maintain not one but many free lists, each of holes of the same size (which is a power
of two). A table refers to each of these lists, and indexing in the table is cheap by using
bit-shifting. In return, developers sacrifice space, because objects not a power-of-two
size will end up being needlessly padded. (This is a classic computer science trade-off:
trading space for time.) Also, free must put the freed memory in the right slot, and
perhaps even break up larger blocks into multiple smaller blocks to prepare for future
allocations. Nothing about this model is inherently as cheap as it seems. In particular, free

is not free.Of course, all this assumes that developers can function in even a sound, much less
complete, fashion. But they don’t.

11.3.2 Reference Counting

Because entirely manual reclamation puts an undue burden on developers, some semi-
automated techniques have seen long-standing use, most notably reference counting.

In reference counting, every value has associated with it a count of how many
references it has. The developer is responsible for incrementing and decrementing
these counts. When the count reaches zero, the value’s space can safely be restored for
future reuse.

Observe, immediately, that there are two significant assumptions lurking under this
simple definition.

1. That the developer can track every reference. Recall that every alias is also a
reference. Thus, a developer who writes

(let ([x <some value>])

(let ([y x])

...))

has to remember that y is a second reference to the same value being referred to
by x, and increment the count accordingly.

2. That every value has only a finite number of references. This assumption fails
when a value has cycles.

Because of the need to manually increment and decrement references, this technique
suffers from a lack of both soundness and completeness. Indeed, the second assumption
above naturally leads to lack of completeness, while the first assumption points to the
simplest way to break soundness.

The perils of manual memory management are subtle and run deeper. Because
developers are charged with freeing memory (or, equivalently, managing reference
counts), the policy of memory management has to become part of every library’s inter-
face: effectively, “Who’s going to de-allocate values allocated by this library, and will
the library de-allocate values passed to it?” It is unfortunately difficult to document and
follow these policies precisely, but even worse, it pollutes the description of the library
with low-level details that usually have nothing to do with its intended behavior.

83

One intriguing idea is to automate the insertion of reference increments and decre-
ments. Another is to add cycle-detection to the implementation. Doing both solves
many of the above problems, but reference counting suffers from others, too:

• The reference count increases the size of each object. It has to be large enough to
not overflow, yet small enough to not appreciably increase the program’s mem-
ory footprint.

• The time spent to increase and decrease these counts can become significant.

• If an object’s reference count becomes zero, everything it refers to must also
have their reference counts decreased—possibly recursively. This means a single
deallocation action can have a large time impact, barring clever “lazy” techniques
(which then increase the program’s memory footprint).

• To decrement the reference count, we have to walk objects that are garbage. This
seems highly counterproductive: to traverse objects we are no longer interested
in. This has practical consequences: objects we are not interested in may not
have been accessed in a while, which means they might have been paged out.
The reference counter has to page them back in, just to inform them that they are
no longer needed.

For all these reasons, reference counting should be used with utmost care. You
should not accept it as a default, but rather ask yourself why it is you reject what are
generally better automated techniques.

Exercise

If the reference count overflows, which correctness properties are hurt and
how? Examine tradeoffs.

11.4 Automated Reclamation, or Garbage Collection
Some people call
reference counting
a “garbage
collection”
technique. I prefer
to use the latter
term to refer only to
fully-automated
techniques. But do
beware this
potential for
confusion when
browsing the Web.

Now let’s briefly examine the idea of having the language’s run-time system automate
the process of reclaiming garbage. We’ll use the abbrevation GC (for garbage collec-
tion) to refer to both the algorithm and the process, letting context disambiguate.

11.4.1 Overview

The key idea behind all GC algorithms is to traverse memory by following references
between values. Traversal begins at a root set, which is all the places from which a
program can possibly refer to a value in the store. Typically the root set consists of
every bound variable in the environment, and any global variables. In an actual work-
ing implementation, the implementor must be careful to also note ephemeral values
such as references in registers. From this root set, the algorithm walks all accessible
values using a variety of algorithms that are usually variations on depth-first search to Depth-first search is

generally preferred
because it works
well with
stack-based
implementations.
Of course, you
might (and should)
wonder where the
GC’s own stack is
stored!

identify everything that is live (i.e., usable through some sequence of program opera-
tions). Everything else, by definition, is garbage. Again, different algorithms address
the recovery of this space in different ways.

84

11.4.2 Truth and Provability

If you read carefully, you’ll notice that I slipped an algorithm into the above descrip-
tion. This is an implementation detail, not part of the specification! Indeed, the spec-
ification of garbage collection is in terms of truth: we want to collect precisely all
the values that are garbage, no more and no less. But we cannot obtain truth for any
Turing-complete programming language, so we must settle for provability. And the
style of algorithm described above gives us an efficient “proof” of liveness, rendering
the complement garbage. There are of course variations on this scheme that enable
us to collect more or less garbage, which correspond to different strengths of proof a
value’s “garbageness”.

This last remark highlights a weakness of the strict specification, which says noth-
ing about how much garbage should be collected. It is actually useful to think about
the extreme cases.

Do Now!

It is trivial to define a sound garbage collection strategy. Similarly, it is
also trivial to define a complete garbage collection strategy. Do you see
how?

To be sound, we simply have to make sure we don’t accidentally remove anything
that is live. The one way to be absolutely certain of this is to collect no garbage at all.
Dually, the trivial complete GC collects everything. Obviously neither of these is useful
(and the latter is certain to be highly dangerous). But this highlights that in practice, we
want a GC that is not only sound but as complete as possible, while also being efficient.

11.4.3 Central Assumptions

Being able to soundly perform GC depends on two critical assumptions. The first is one
about the language’s implementation and the other about the language’s semantics.

1. When confronted with a value, the GC needs to know what kind of value it is,
and how its memory representation is laid out. For instance, when the traversal
reaches a cons cell, it must know:

(a) that this is a cons cell; and hence,

(b) that the first is at, say, a four byte offset, and

(c) that the rest is at, say, an eight byte offset.

Obviously, this property must hold recursively, thus enabling a traversal algo-
rithm to correctly map the values in memory.

2. That programs cannot manufacture references in two ways:

(a) Object references cannot reside outside the implementation’s pre-defined
root set.

(b) Object references can only refer to well-defined points in objects.

85

When the second property is violated, the GC can effectively go haywire, misin-
terpreting data. The first property sounds obvious: when it is violated, it seems
the run-time system has clearly failed to obey the language’s semantics. How-
ever, the consequences of this property are subtle, as we discuss below [REF].

11.5 Convervative Garbage Collection
We’ve explained that the typical root set consists of the environment, global variables,
and some choice ephemerals. Where else might references reside?

In most languages, nowhere else. But some languages (I’m looking at you, C and
C++) allow references to be turned into arbitrary numbers, and arbitrary numbers to be
turned back into references. As a result, in principle, any numeric value in the program
(which, because of the nature of C and C++’s types, virtually any value in the program)
could potentially be treated as a reference.

This is problematic for two reasons. First, it means the GC can no longer limit its
attention to the small root set; instead, the entire store is now potentially the root set.
Second, if the GC tries to modify the object in any way—e.g., to record a “visited” bit
during traversal—then it is potentially changing non-reference values: e.g., it might
actually be changing an innocent numeric constant in the program. As a result, the
particular confluence of features in languages like C and C++ conspire to make sound,
efficient GC extremely difficult.

But not impossible. A stimulating line of research called conservative GC has man-
aged to create reasonably effective GC systems for such languages. The principle be-
hind conservative GC notes that, while in principle every store location might be a
root, in practice many of them are not. It then proceeds through a series of increasingly
clever observations to deduce what must not be a reference (the opposite of a traditional
GC) and can hence be safely ignored: for instance, on a word-aligned architecture, no
odd number can never be a reference. By skipping most of the store, by making some
basic assumptions about program behavior (e.g., that it will not manufacture certain
kinds of references), and by being careful to not modify the store—e.g., changing bits
in values, or moving data around—it can actually yield a reasonably effective GC strat-
egy. Nevertheless, it is a

bit of a dog walking
on its hind legs.

Conservative GC is often popular with programming language implementations that
are written in, or rely on a base of code in, C or C++. For instance, early versions of
Racket relied exclusively on it. There are many good reasons for this:

1. It offers a quick bootstrapping technique, so the language implementor can focus
on other, more innovative, features.

2. A language that controls all references (as Racket does) can easily create memory
representations that are especially conducive to increasing the effectiveness of
the GC (e.g., padding all true numbers with a one in the least-significant-bit).

3. It enables easy interoperation with useful libraries written in C and C++ (pro-
vided, of course, that they too meet the expectations of the technique).

A word on vocabulary is in order. As we have argued [REF], all practical GC
techniques are “conservative” in that they approximate truth with reachability. The

86

word “conservative” has, however, become a term-of-art to refer to a GC technique that
operates in an uncooperative (and hopefully not hostile) run-time system.

11.6 Precise Garbage Collection
In conventional GC terminology, the opposite of “conservative” is precise. This, too,
is a misnomer, because a GC cannot be precise, i.e., both sound and complete. Rather,
precision here is a statement about the ability to identify references: when confronted
with a value, a precise GC knows exactly what is and isn’t a reference, and where the
references are. This removes the monumental effort that a conservative GC has to put
into guessing non-references (and hoping to eliminate as many potential references as
possible through this process).

Within the space of precise GC, which is what most contemporary language run-
time systems use, there is a wide range of implementation techniques. I refer you to
Paul Wilson’s survey (which, despite its relative age in this fast-moving field, remains
an excellent resource), as well as the book and other materials from Richard Jones. In
particular, for a quick and readable overview of a generational garbage collector, read
Simple Generational Garbage Collection and Fast Allocation.

12 Representation Decisions
Go back and look again at our interpreter for function as values [REF]. Do you see
something curiously non-uniform about it?

Do Now!

No, really, do. Do you?

Consider how we chose to represent our two different kinds of values: numbers and
functions. Ignoring the superficial numV and closV wrappers, focus on the underlying
data representations. We represented the interpreted language’s numbers as Racket
numbers, but we did not represent the interpreted language’s functions (closures) as
Racket functions (closures).

That’s our non-uniformity. It would have been more uniform to use Racket’s rep-
resentations for both, or also to not use Racket’s representation for either. So why did
we make this particular choice?

We were trying to illustrate and point, and that point is what we will explore right
now.

12.1 Changing Representations
For a moment, let’s explore numbers. Racket’s numbers make a good target for reuse
because they are so powerful: we get arbitrary-sized integers (bignums), rationals
(which benefit from the bignum representation of integers), complex numbers, and
so on. Therefore, they can represent most ordinary programming language number
systems. However, that doesn’t mean they are what we want: they could be too little
or too much.

87

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps
http://www.cs.kent.ac.uk/people/staff/rej/gc.html
http://www.cs.princeton.edu/~appel/papers/143.ps

• They are too much if what we want is a more restricted number system. For
instance, Java prescribes a very specific set of fixed-size representations (e.g.,
int is specified to be 32-bit). Numbers that fall outside these sets cannot be
directly represented as numbers, and arithmetic must respect these sets (e.g.,
overflowing so that adding 1 to 2147483647 does not produce 2147483648).

• They are too little if we want even richer numbers, whether quaternions or num-
bers with associated probabilities.

Worse, we didn’t even stop and ask what we wanted, but blithely proceeded with
Racket numbers.

The reason we did so is because we weren’t really interested in the study of num-
bers; rather, we were interested in programming language features such as functions-as-
values. As language designers, however, you should be sure to ask these hard questions
up front.

Now let’s talk about our representation of closures. We could have instead rep-
resented closures by exploiting Racket’s corresponding concept, and correspondingly,
function application with unvarnished Racket application.

Do Now!

Replace the closure data structure with Racket functions representing functions-
as-values.

Here we go:

(define-type Value

[numV (n : number)]

[closV (f : (Value -> Value))])

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

[numC (n) (numV n)]

[idC (n) (lookup n env)]

[appC (f a) (local ([define f-value (interp f env)]

[define a-value (interp a env)])

((closV-f f-value) a-value))]

[plusC (l r) (num+ (interp l env) (interp r env))]

[multC (l r) (num* (interp l env) (interp r env))]

[lamC (a b) (closV (lambda (arg-val)

(interp b

(extend-env (bind a arg-val)

env))))]))

Exercise

Observe a curious shift. In our previous implementation, the environment
was extended in the appC case. Here, it’s extended in the lamC case. Is
one of these incorrect? If not, why did this change occur?

88

This is certainly concise, but we’ve lost something very important: understanding.
Saying that a source language function corresponds to lambda tells us virtually noth-
ing: if we already knew precisely what lambda does we might not be studying it, and
if we didn’t, this mapping would teach us absolutely nothing (and might, in fact, pile
confusion on top of our ignorance). For the same reason, we did not use Racket’s state
to understand the varieties of stateful operators [REF].

Once we’ve understood the feature, however, we should feel to use it as a represen-
tation. Indeed, doing so might yield much more concise interpreters because we aren’t
doing everything manually. In fact, some later interpreters [REF] will become virtually
unreadable if we did not exploit these richer representations. Nevertheless, exploiting It’s a little like

saying, “Now that
we understand
addition in terms of
increment-by-one,
we can use addition
to define
multiplication: we
don’t have to use
only
increment-by-one
to define it.”

host language features has perils that we should safeguard against.

12.2 Errors
When programs go wrong, programmers need a careful presentation of errors. Using
host language features runs the risk that users will see host language errors, which they
will not understand. Therefore, we have to carefully translate error conditions into
terms that the user of our language will understand, without letting the host language
“leak through”.

Worse, programs that should error might not! For instance, suppose we decide
that functions should only appear in top-level positions. If we fail to expressly check
for this, desugaring into the more permissive lambda may result in an interpreter that
produces answers where it should have halted with an error. Therefore, we have to
take great care to permit only the intended surface language to be mapped to the host
language.

As another example, consider the different mutation operations. In our language,
attempting to mutate an unbound variable produces an error. In some languages, doing
so results in the variable being defined. Failing to pin down our intended semantics
is a common language designer error, saying instead, “It is whatever the implementa-
tion does”. This attitude (a) is lazy and sloppy, (b) may yield unexpected and negative
consequences, and (c) makes it hard for you to move your language from one imple-
mentation platform to another. Don’t ever make this mistake!

12.3 Changing Meaning
Mapping functions-as-values to lambda works especially because we intend for the
two to have the same meaning. However, this makes it difficult to change the meaning
of what a function does. Lemme give ya’ a hypothetic: suppose we wanted our lan-
guage to implement dynamic scope. In our original interpreter, this was easy (almost Don’t let this go

past the
hypothetical stage,
please.

too easy, as history shows). But try to make the interpreter that uses lambda implement
dynamic scope. It can similarly be difficult or at least subtle to map eager evaluation
onto a language with lazy application [REF].

Exercise

Convert the above interpreter to use dynamic scope.

89

The point is that the raw data structure representation does not make anything es-
pecially easy, but it usually doesn’t get in the way, either. In contrast, mapping to host
language features can make some intents—mainly, those match what the host language
already does!—especially easy, and others subtle or difficult. There is the added dan-
ger that we may not be certain of what the host language’s feature does (e.g., does its
“lambda” actually implement static scope?).

The moral is that this is a good property to exploit only we want to “pass through”
the base language’s meaning—-and then it is especially wise because it ensures that
we don’t accidentally change its meaning. If, however, we want to exploit a significant
part of the base language and only augment its meaning, perhaps other implementation
strategies [REF] will work just as well instead of writing an interpreter.

12.4 One More Example
Let’s consider one more representation change. What is an environment?

An environment is a map from names to values (or locations, once we have muta-
tion). We’ve chosen to implement the mapping through a data structure, but...do we
have another way to represent maps? As functions, of course! An environment, then,
is a function that takes a name as an argument and return its bound value (or an error):

(define-type-alias Env (symbol -> Value))

What is the empty environment? It’s the one that returns an error no matter what name
you try to look up:

(define (mt-env [name : symbol])

(error 'lookup "name not found"))

(In principle we should put a type annotation on the return, and it should be Value,
except of course thiis is vacuous.) Extending an environment with a binding creates
a function that takes a name and checks whether it is the name just extended; if so it
returns the corresponding value, otherwise it punts to the environment being extended:

(define (extend-env [b : Binding] [e : Env])

(lambda ([name : symbol]) : Value

(if (symbol=? name (bind-name b))

(bind-val b)

(lookup name e))))

Finally, how do we look up a name in an environment? We simply apply the environ-
ment!

(define (lookup [n : symbol] [e : Env]) : Value

(e n))

And with that, we’re done!

90

13 Desugaring as a Language Feature
We have thus far extensively discussed and relied upon desugaring, but our current
desguaring mechanism have been weak. We have actually used desugaring in two
different ways. One, we have used it to shrink the language: to take a large language
and distill it down to its core [REF]. But we have also used it to grow the language:
to take an existing language and add new features to it [REF]. This just shows that
desugaring is a tremendously useful feature to have. Indeed, it is so useful that we
might ask two questions:

• Because we create languages to simplify the creation of common tasks, what
would a language designed to support desugaring look like? Note that by “look”
we don’t mean only syntax but also its key behavioral properties.

• Given that general-purpose languages are often used as a target for desugaring,
why don’t they offer desugaring capabilities in the language itself ? For instance,
this might mean extending a base language with the additional language that is
the response to the previous question.

We are going to explore the answer to both questions simultaneously, by studying the
facilities provided for this by Racket.

13.1 A First Example
DrRacket has a very
useful tool called
the Macro Stepper,
which shows the
step-by-step
expansion of
programs. You
should try all the
examples in this
chapter using the
Macro Stepper. For
now, however, you
should run them in
#lang plai rather
than #lang

plai-typed.

Remember that in [REF] we added let as syntactic sugar over lambda. The pattern
we followed was this:

(let (var val) body)

is transformed into

((lambda (var) body) val)

Do Now!

If this doesn’t sound familiar, now would be a good time to refresh your
memory of why this works.

The simplest way of describing this transformation would be to state it directly: to
write, somehow,

(let (var val) body)

->

((lambda (var) body) val)

In fact, this is almost precisely what Racket enables you to do. We’ll use the name
my-let instead of
let Because the
latter is already
defined in Racket.

(define-syntax my-let-1

(syntax-rules ()

[(my-let-1 (var val) body)

((lambda (var) body) val)]))

91

syntax-rules tells Racket that whenever it sees an expression with my-let-1 imme-
diately after the opening parenthesis, it should check that it follows the pattern (my-

let-1 (var val) body). The var, val and body are syntactic variables: they are
variables that stand for bodies of code. In particular, they match whatever s-expression
is in that position. If the expression matches the pattern, then the syntactic variables
are bound to the corresponding parts of the expression, and become available for use
in the right-hand side. You may have

noticed some
additional syntax,
such as (). We’ll
explain this later.

The right-hand side—in this case, ((lambda (var) body) val)—is the output
generated. Each of the syntactic variables are replaced with the corresponding parts
of the input using our old friend, substitution. This substitution is utterly simplistic: it
makes no attempt to. Thus, if we were to try using it with

(my-let-1 (3 4) 5)

Racket would not initially complain that 3 is provided in an identifier position; rather,
it would let the identifier percolate through, desugaring this into

((lambda (3) 5) 4)

which in turn produces an error:
lambda: expected either <id> or `[<id> : <type>]'

for function argument in: 3

This immediately tells us that the desugaring process is straightforward in its func-
tion: it doesn’t attempt to guess or be clever, but instead simply rewrites while substi-
tuting. The output is an expression that is again subject to desugaring.

As a matter of terminology, this simple form of expression-rewriting is often called
a macro, as we mentioned earlier in [REF]. Traditionally this form of desugaring is
called macro expansion, though this term is misleading because the output of desugar-
ing can be smaller than the input (though it is usually larger).

Of course, in Racket, a let can bind multiple identifiers, not just one. If we were
to write this informally, say on a board, we might write something like (let ([var

val] ...) body) -> ((lambda (var ...) body) val ...)with the ...mean-
ing “zero or more”, and the intent being that the var ... in the output should corre-
spond to the sequence of vars in the input. Again, this is almost precisely Racket
syntax:

(define-syntax my-let-2

(syntax-rules ()

[(my-let-2 ([var val] ...) body)

((lambda (var ...) body) val ...)]))

Observe the power of the ... notation: the sequence of “pairs” in the input is turned
into a pair of sequences in the output; put differently, Racket “unzips” the input se-
quence. Conversely, this same notation can be used to zip together sequences.

92

13.2 Syntax Transformers as Functions
Earlier we saw that my-let-1 does not even attempt to ensure that the syntax in the
identifier position is truly (i.e., syntactically) an identifier. We cannot remedy that with
the syntax-rules mechanism, but we can with a much more powerful mechanism
called syntax-case. Because syntax-case exhibits many other useful features as
well, we’ll introduce it and then grow it gradually.

The first thing to understand is that a macro is actually a function. It is not, however,
a function from regular run-time values to other run-time values, but rather a function
from syntax to syntax. These functions execute in a world whose purpose is to create
the program to execute. Observe that we’re talking about the program to execute: the
actual execution of the program may only occur much later (or never at all). This point
is actually extremely clear when we examine desugaring, which is very explicitly a
function from (one kind of) syntax to (another kind of) syntax. This is perhaps obscured
above in two ways:

• The notation of syntax-rules, with no explicit parameter name or other “func-
tion header”, may not make clear that it is a functional transformation (though
the rewriting rule format does allude to this fact).

• In desugaring, we specify one atomic function for the entire process. Here, we
are actually writing several little functions, one for each kind of new syntactic
construct (such as my-let-1), and these pieces are woven together by an invisi-
ble function that controls the overall rewriting process. (As a concrete example,
it is not inherently clear that the output of a macro is expanded further—though
a simple example immediately demonstrates that this is indeed the case.)

Exercise

Write one or more macros to confirm that the output of a macro is ex-
panded further.

There is one more subtlety. Because the form of a macro looks rather like Racket
code, it is not immediately clear that it “lives in another world”. In the abstract, it
may be helpful to imagine that the macro definitions are actually written in an entirely
different language that processes only syntax. This simplicity is, however, misleading.
In practice, program transformers—also called compilers—are full-blown programs,
too, and need all the power of ordinary programs. This would have necessitated the
creation of a parallel language purely for processing programs. This would be wasteful
and pointless; therefore, Racket instead endows syntax-transforming programs with the
full power of Racket itself.

With that prelude, let’s now introduce syntax-case. We’ll begin by simply rewrit-
ing my-let-1 (under the name my-let-3) using this new notation. First, we have to
write a header for the definition; notice already the explicit parameter:

<sc-macro-eg> ::=

(define-syntax (my-let-3 x)

<sc-macro-eg-body>)

93

This binds x to the entire (my-let-3 ...) expression.
As you might imagine, define-syntax simply tells Racket you’re about to define

a new macro. It does not pick precisely how you want to implement it, leaving you free
to use any mechanism that’s convenient. Earlier we used syntax-rules; now we’re
going to use syntax-case. In particular, syntax-case needs to explicitly be given
access to the expression to pattern-match:

<sc-macro-eg-body> ::=

(syntax-case x ()

<sc-macro-eg-rule>)

Now we’re ready to express the rewrite we wanted. Previously a rewriting rule had
two parts: the structure of the input and the corresponding output. The same holds
here. The first (matching the input) is the same as before, but the second (the output) is
a little different:

<sc-macro-eg-rule> ::=

[(my-let-3 (var val) body)

#'((lambda (var) body) val)]

Observe the crucial extra characters: #'. Let’s examine what that means.
In syntax-rules, the entire output part simply specifies the structure of the out-

put. In contrast, because syntax-case is laying bare the functional nature of transfor-
mation, the output part is in fact an arbitrary expression that may perform any compu-
tations it wishes. It must simply evaluate to a piece of syntax.

Syntax is actually a distinct datatype. As with any distinct dataype, it has its own
rules for construction. Concretely, we construct syntax values by writing #'; the fol-
lowing s-expression is treated as a syntax value. (In case you were wondering, the x

bound in the macro definition above is also of this datatype.)
The syntax constructor, #', enjoys a special property. Inside the output part of the

macro, all syntax variables in the input are automatically bound, and replaced on oc-
currence. As a result, when the expander encounters var in the output, say, it replaces
var with the corresponding part of the input expression.

Do Now!

Remove the #' and try using the above macro definition. What happens?

So far, syntax-case merely appears to be a more complicated form of syntax-
rules: perhaps slightly better in that it more cleanly delineates the functional nature
of expansion, and the type of output, but otherwise simply more unwieldy. As we will
see, however, it also offers significant power.

Exercise

syntax-rules can actually be expressed as a macro over syntax-case.
Define it.

94

13.3 Guards
Now we can return to the problem that originally motivated the introduction of syntax-
case: ensuring that the binding position of a my-let-3 is syntactically an identifier.
For this, you need to know one new feature of syntax-case: each rewriting rule can
have two parts (as above), or three. If there are three present, the middle one is treated
as a guard: a predicate that must evaluate to true for expansion to proceed rather than
signal a syntax error. Especially useful in this context is the predicate identifier?,
which determines whether a syntax object is syntactically an identifier (or variable).

Do Now!

Write the guard and rewrite the rule to incorporate it.

Hopefully you stumbled on a subtlety: the argument to identifier? is of type
syntax. It needs to refer to the actual fragment of syntax bound to var. Recall that var
is bound in the syntax space, and #' substitutes identifiers bound there. Therefore, the
correct way to write the guard is:

(identifier? #'var)

With this information, we can now write the entire rule:
<sc-macro-eg-guarded-rule> ::=

[(my-let-3 (var val) body)

(identifier? #'var)

#'((lambda (var) body) val)]

Do Now!

Now that you have a guarded rule definition, try to use the macro with a
non-identifier in the binding position and see what happens.

13.4 Or: A Simple Macro with Many Features
Consider or, which implements disjunction. It is natural, with prefix syntax, to allow
or to have an arbitrary number of sub-terms. We expand or into nested conditionals
that determine the truth of the expression.

13.4.1 A First Attempt

Let’s try a first version of or:

(define-syntax (my-or-1 x)

(syntax-case x ()

[(my-or-1 e0 e1 ...)

#'(if e0

e0

(my-or-1 e1 ...))]))

95

It says that we can provide any number of sub-terms (more on this in a moment).
Expansion rewrites this into a conditional that tests the first sub-term; if this is a true
value it returns that value (more on this in a moment!), otherwise it is the disjunction
of the remaining terms.

Let’s try this on a simple example. We would expect this to evaluate to true, but
instead:
> (my-or-1 #f #t)

my-or-1: bad syntax in: (my-or-1)

What happened? This expression turned into

(if #f

#f

(my-or-1 #t))

which in turn expanded into

(if #f

#f

(if #t

#t

(my-or-1)))

for which there is no definition. That’s because the pattern e0 e1 ... means one or
more sub-terms, but we ignored the case when there are zero. What happens when
there are no sub-terms? The identity for disjunction is falsehood.

Exercise

Why is #f the right default?

By filling it in below, we illustrate a macro that has more than one rule. Macro rules
are matched sequentially, so we should be sure to put the most specific rules first, lest
they get overridden by more general ones (though in this particular case, the two rules
are non-overlapping). This yields our improved macro:

(define-syntax (my-or-2 x)

(syntax-case x ()

[(my-or-2)

#'#f]

[(my-or-2 e0 e1 ...)

#'(if e0

e0

(my-or-2 e1 ...))]))

which now expands as we expect. In what follows, we will find it useful to have a
special case when there is only a single sub-term:

(define-syntax (my-or-3 x)

(syntax-case x ()

96

[(my-or-3)

#'#f]

[(my-or-3 e)

#'e]

[(my-or-3 e0 e1 ...)

#'(if e0

e0

(my-or-3 e1 ...))]))

This keeps the output of expansion more concise, which we will find useful below. Observe that in this
version of the
macro, the patterns
are not disjoint: the
third (one-or-more
sub-terms)
subsumes the
second (one
sub-term).
Therefore, it is
essential that the
second rule not
swap with the third.

13.4.2 Guarding Evaluation

We said above that this expands as we expect. Or does it? Let’s try the following
example:

(let ([init #f])

(my-or-3 (begin (set! init (not init))

init)

#f))

Observe that or returns the actual value of the first “truthy” value, so the developer can
use it in further computations. Therefore, this returns the value of init. What do we
expect it to be? Naturally, because we’ve negated the value of init once, we expect it
to be #t. But evaluating it produces #f! This problem is not

an artifact of set!.
If instead of internal
mutation we had,
say, printed output,
the printing would
have occurred
twice.

To understand why, we have to examine the expanded code. It is this:

(let ([init #f])

(if (begin (set! init (not init))

init)

(begin (set! init (not init))

init)

#f))

Aha! Because we’ve written the output pattern as

#'(if e0

e0

...)

This looked entirely benign when we first wrote it, but it illustrates a very important
principle when writing macros (or indeed any other program transformation systems):
do not copy code! In our setting, a syntactic variable should never be repeated; if you
need to repeat it in a way that might cause multiple execution of that code, make sure
you have considered the consequences of this. Alternatively, if you meant to work
with the value of the expression, bind it once and use the bound identifier’s name
subsequently. This is easy to demonstrate:

97

(define-syntax (my-or-4 x)

(syntax-case x ()

[(my-or-4)

#'#f]

[(my-or-4 e)

#'e]

[(my-or-4 e0 e1 ...)

#'(let ([v e0])

(if v

v

(my-or-4 e1 ...)))]))

This pattern of introducing a binding creates a new potential problem: you may end up
evaluating expressions that weren’t necessary. In fact, it creates a second, even more
subtle one: even if it going to be evaluated, you may evaluate it in the wrong context!
Therefore, you have to reason carefully about whether an expression will be evaluated,
and if so, evaluate it once in just the right place, then store that value for subsequent
use.

When we repeat our previous example, that contained the set!, with my-or-4, we
see that the result is #t, as we would have hoped.

13.4.3 Hygiene

Hopefully now you’re nervous about something else.
Do Now!

What?

Consider the macro (let ([v #t]) (my-or-4 #f v)). What would we expect
this to compute? Naturally, #t: the first branch is #f but the second is v, which is
bound to #t. But let’s look at the expansion:

(let ([v #t])

(let ([v #f])

(if v

v

v)))

This expression, when run directly, evaluates to #f. However, (let ([v #t]) (my-

or-4 #f v)) evaluates to #t. In other words, the macro seems to magically produce
the right value: the names of identifiers chosen in the macro seem to be independent of
those introduced by the macro! This is unsurprising when it happens in a function; the
macro expander enjoys a property called hygiene that gives it the same property.

One way to think about hygiene is that it effectively automatically renames all
bound identifiers. That is, it’s as if the program expands as follows:

(let ([v #t])

(or #f v))

98

turns into

(let ([v1 #t])

(or #f v1))

(notice the consistent renaming of v to v1), which turns into

(let ([v1 #t])

(let ([v #f])

v

v1))

which, after renaming, becomes

(let ([v1 #t])

(let ([v2 #f])

v2

v1))

when expansion terminates. Observe that each of the programs above, if run directly,
will produce the correct answer.

13.5 Identifier Capture
Hygienic macros address a routine and important pain that creators of syntactic sugar
confront. On rare instances, however, a developer wants to intentionally break hygiene.
Returning to objects, consider this input program:

(define os-1

(object/self-1

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

What does the macro look like? Here’s an obvious candidate:

(define-syntax object/self-1

(syntax-rules ()

[(object [mtd-name (var) val] ...)

(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg)

(case msg

[(mtd-name) (lambda (var) val)]

...)))

self))]))

99

Unfortunately, this macro produces the following error:
self: unbound identifier in module in: self

which is referring to the self in the body of the method bound to first.
Exercise

Work through the hygienic expansion process to understand why error is
the expected outcome.

Before we jump to the richer macro, let’s consider a variant of the input term that
makes the binding explicit:

(define os-2

(object/self-2 self

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

The corresponding macro is a small variation on what we had before:

(define-syntax object/self-2

(syntax-rules ()

[(object self [mtd-name (var) val] ...)

(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg)

(case msg

[(mtd-name) (lambda (var) val)]

...)))

self))]))

This macro expands without difficulty.
Exercise

Work through the expansion of this version and see what’s different.

This offers a critical insight: had the identifier that goes in the binding position been
written by the macro user, there would have been no problem. Therefore, we want to
be able to pretend that the introduced identifier was written by the user. The function
datum->syntax converts the s-expression in its second argument; its first argument is
which syntax to pretend it was a part of (in our case, the original macro use, which is
bound to x). To introduce the result into the environment used for expansion, we use
with-syntax to bind it in that environment:

(define-syntax (object/self-3 x)

(syntax-case x ()

[(object [mtd-name (var) val] ...)

(with-syntax ([self (datum->syntax x 'self)])

100

#'(let ([self (lambda (msg-name)

(lambda (v) (error 'object "nothing here")))])

(begin

(set! self

(lambda (msg-name)

(case msg-name

[(mtd-name) (lambda (var) val)]

...)))

self)))]))

With this, we can go back to having self be implicit:

(define os-3

(object/self-3

[first (x) (msg self 'second (+ x 1))]

[second (x) (+ x 1)]))

13.6 Influence on Compiler Design
The use of macros in a language’s definition has an impact on all tools, especially com-
pilers. As a working example, consider let. let has the virtue that it can be compiled
efficiently, by just extending the current environment. In contrast, the expansion of let
into function application results in a much more expensive operation: the creation of a
closure and its application to the argument, achieving effectively the same result but at
the cost of more time (and often space).

This would seem to be an argument against using the macro. However, a smart
compiler recognizes that this pattern occurs often, and instead internally effectively
converts left-left-lambda [REF] back into the equivalent of let. This has two advan-
tages. First, it means the language designer can freely use macros to obtain a smaller
core language, rather than having to trade that off against the execution cost.

It has a second, much subtler, advantage. Because the compiler recognizes this
pattern, other macros can also exploit it and obtain the same optimization; they don’t
need to contort their output to insert let terms if the left-left-lambda pattern occurs
naturally, as they would have to do otherwise. For instance, the left-left-lambda pattern
occurs naturally when writing certain kinds of pattern-matchers, but it would take an
extra step to convert this into a let in the expansion—which is no longer necessary.

13.7 Desugaring in Other Languages
Many modern languages define operations via desguaring, not only Racket. In Python,
for instance, iterating using for is simply a syntactic pattern. A developer who writes
for x in o is

• introducing a new identifier (call it i—but be sure to not capture any other i the
programmer has already defined, i.e., bind i hygienically!),

• binding it to an iterator obtained from o, and

101

• creating a (potentially) infinite while loop that repeatedly invokes the .next

method of i until the iterator raises the StopIteration exception.

There are many such patterns in modern programming languages.

14 Control Operations
The term control refers to any programming language instruction that causes evalu-
ation to proceed, because it “controls” the program counter of the machine. In that
sense, even a simple arithmetic expression should qualify as “control”, and operations
such as sequential program execution, or function calls and returns, most certainly do.
However, in practice we use the term to refer primarily to those operations that cause
non-local transfer of control, especially beyond that of mere functions and procedures,
and the next step up, namely exceptions. We will study such operations in this chapter.

As we study the following control operators, it’s worth remembering that even
without them, we still have languages that are Turing-complete, and therefore have no
more “power”. Therefore, what control operators do is change and potentially improve
the way we express our intent, and therefore enhance the structure of programs. Thus,
it pays to being our study by focusing on program structure.

14.1 Control on the Web
Let us begin our study by examining the structure of Web programs. Consider the
following program: Henceforth, we’ll

call this our
“addition server”.
You should, of
course, understand
this as a stand-in for
more sophisticated
applications. For
instance, the two
prompts might ask
for starting and
ending points for a
trip, and in place of
addition we might
compute a route or
compute airfares.
There might even
be computation
between the two
steps: e.g., after
entering the first
city, the airline
might prompt us
with choices of
where it flies from
there.

(display

(+ (read-number "First number")

(read-number "Second number")))

To test these ideas, here’s an implementation of read-number:

(define (read-number [prompt : string]) : number

(begin

(display prompt)

(let ([v (read)])

(if (s-exp-number? v)

(s-exp->number v)

(read-number prompt)))))

When run at the console or in DrRacket, this program prompts us for one number, then
another, and then displays their sum.

Now suppose we want to run this on a Web server. We immediately encounter a
difficulty: the structure of server-side Web programs is such that they generate a single
Web page—such as the one asking for the first number—and then halt. As a result,
the rest of the program—which in this case prompts for the second number, then adds
them, and then prints that result, is lost.

Do Now!

102

Why do Web servers behave in such a strange way?

There are at least two reasons for this behavior: one perhaps historical, and the
other technical. The historical reason is that Web servers were initially designed to
serve pages, i.e., static content. Any program that ran had to generate its output to a
file, from which a server could offer it. Naturally, developers wondered why that same
program couldn’t run on demand. This made Web content dynamic. Terminating the
program after generating a single piece of output was the simplest incremental step
towards programs, not pages, on the Web.

The more important reason—and the one that has stayed with us—is technical.
Imagine our addition server has generated its first prompt. Recall that there is con-
siderable pending computation: the second prompt, the addition, and the display of
the result. This computation must suspend waiting for the user’s input. If there are
millions of users, then millions of computations must be suspended, creating an enor-
mous performance problem. Furthermore, suppose a user does not actually complete
the computation—analogous to searching at an on-line bookstore or airline site, but not
completing the purchase. How does the server know when or even whether to termi-
nate the computation? And until it does, the resources associated with that computation
remain in use.

Conceptually, therefore, the Web protocol was designed to be stateless: it would
not store state on the server associated with intermediate computations. Instead, Web
program developers would be forced to maintain all necessary state elsewhere, and
each request would need to be able to resume the computation in full. In practice, the
Web has not proven to be stateless at all, but it still hews largely in this direction, and
studying the structure of such programs is very instructive.

Now consider client-side Web programs: those that run inside the browser, written
in or compiled to JavaScript. Suppose such a computation needs to communicate with
a server. The primitive for this is called XMLHttpRequest. The user makes an instance
of this primitive and invokes its send method to send a message to the server. Commu-
nicating with a server is not, however, instantaneous (and indeed may never complete,
depending on the state of the network). This leaves the sending process suspended.

The designers of JavaScript decided to make the language single-threaded: i.e.,
there would be only one thread of execution at a time. This avoids the various perils Due to the

structuring
problems this
causes, there are
now various
proposals to, in
effect, add “safe”
threads to
JavaScript. The
ideas described in
this chapter can be
viewed as an
alternative that offer
similar structuring
benefits.

that arise from combining mutation with threads. As a result, however, the JavaScript
process locks up awaiting the response, and nothing else can happen: e.g., other han-
dlers on the page no longer respond.

To avoid this problem, the design of XMLHttpRequest demands that the developer
provide a procedure that responds to the request if and when it arrives. This callback
procedure is registered with the system. It needs to embody the rest of the processing
of that request. Thus, for entirely different reasons—not performance, but avoiding the
problems of synchronization, non-atomicity, and deadlocks—the client-side Web has
evolved to demand the same pattern of developers. Let us now better understand that
pattern.

103

14.1.1 Program Decomposition into Now and Later

Let us consider what it takes to make our above program work in a stateless setting,
such as on a Web server. First we have to determine the first interaction. This is the
prompt for the first number, because Racket evaluates arguments from left to right. It
is instructive to divide the program into two parts: what happens to generate the first
interaction (which can all run now), and what needs to happen after it (which must be
“remembered” somehow). The former is easy:

(read-number "First number")

We’ve already explained in prose what’s left, but now it’s time to write it as a program.
It seems to be something like We’re intentionally

ignoring
read-number for
now, but we’ll
return to it. For
now, let’s pretend
it’s built-in.

(display

(+ <the result from the first interaction>

(read-number "Second number")))

A Web server can’t execute the above, however, because it evidently isn’t a program.
We instead need some way of writing this as one.

Let’s observe a few characteristics of this computation:

• It needs to be a legitimate program.

• It needs to stay suspended until the request comes in.

• It needs a way—such as a parameter—to refer to the value from the first interac-
tion.

Put together these characteristics and we have a clear representation—a function:

(lambda (v1)

(display

(+ v1

(read-number "Second number"))))

14.1.2 A Partial Solution

On the Web, there is an additional wrinkle: each Web page with input elements needs
to refer to a program stored on the Web, which will receive the data from the form and
process it. This program is named in the action field of a form. Thus, imagine that
the server generates a fresh label, stores the above function in a table associated with
that label, and refers to the table in the action field. If and when the client actually
submits the form, the server extracts the associated function, supplies it with the form’s
values, and thus resumes execution.

Do Now!

Is the solution above stateless?

104

Let’s imagine that we have a custom Web server that maintains the above table.
In such a server, we might have a special version of read-number—call it read-
number/suspend—that records the rest of the program:

(read-number/suspend "First number"

(lambda (v1)

(display

(+ v1

(read-number "Second number")))))

To test this, let’s implement such a procedure. First, we need a representation for
labels; numbers are an easy substitute:

(define-type-alias label number)

Let’s say new-label generates a fresh label on each invocation.
Exercise

Define new-label. You might use new-loc for inspiration.

We need a table to store the procedures representing the rest of the program.

(define table (make-hash empty))

Now we can store these procedures:

(define (read-number/suspend [prompt : string] rest)

(let ([g (new-label)])

(begin

(hash-set! table g rest)

(display prompt)

(display " To enter it, use the action field label ")

(display g))))

If we now run the above invocation of read-number/suspend, the system prints
First number To enter it, use the action field label 1

This is tantamount to printing the prompt in a Web page, and putting the label 1 in
the action field. Because we’re simulating it, we need something to represent the
browser’s submission process. This needs both the label (from the action field) and
the value entered in the form. Given these two values, this procedure needs to extract
the relevant procedure from the table, and apply it to the form value.

(define (resume [g : label] [n : number])

((some-v (hash-ref table g)) n))

With this, we can now simulate the act of entering 3 and clicking on a “Submit”
button by running:
> (resume 1 3)

105

where 1 is the label and 3 is the user’s input. Unfortunately, this simply produces
another prompt, because we haven’t fully converted the program. If we delete read-

number, we’re forced to convert the entire program:

(read-number/suspend "First number"

(lambda (v1)

(read-number/suspend "Second number"

(lambda (v2)

(display

(+ v1 v2))))))

Just to be safe, we can also make sure the computation terminates after each output by
adding an error invocation at the end of read-number/suspend (to truly ensure the
most extreme form of “suspension”).

When we execute this program, we have to use resume twice:
First number To enter it, use the action field label 1

halting: Program shut down

> (resume 1 3)

Second number To enter it, use the action field label 2

halting: Program shut down

> (resume 2 10)

13

where the two user inputs are 3 and 10, giving a total of 13, and the
halting

messages are generated by the error command we inserted.
We’ve purposely played a little coy with the types of the interesting parts of our

program. Let’s examine what these types should be. The second argument to read-

number/suspend needs to be a procedure that consumes numbers and returns what-
ever the computation eventually produces: (number -> 'a). Similarly, the return
type of resume is the same 'a. How do these 'as communicate with one another?
This is done by table, which maps labels to (number -> 'a). That is, at every step
the computation makes progress towards the same outcome. read-number/suspend
writes into this table, and resume reads from it.

14.1.3 Achieving Statelessness

We haven’t actually achieved statelessness yet, because we have this large table resid-
ing on the server, with no clear means to remove entries from it. It would be better if
we could avoid the server state entirely. This means we have to move the relevant state
to the client.

There are actually two ways in which the server holds state. One is that we have
reserved the right to create as many entries in the hash table as we wish, rather than
a constant number (i.e., linear in the size of the program itself). The other is what
we’re storing in the table: honest-to-goodness closures, which might be holding on to
an arbitrary amount of state. We’ll see this more clearly soon.

106

Let’s start by eliminating the closure. Instead, let’s have each of the funtion argu-
ments to be named, top-level functions (which immediately forces us to have only a
fixed number of them, because the program’s size cannot be unbounded):

(read-number/stateless "First number" prog1)

(define (prog1 v1)

(read-number/stateless "Second number" prog2))

(define (prog2 v2)

(display (+ v1 v2)))

Observe how each code block refers only to the name of the next, rather than to a real
closure. The value of the argument comes from the form. There’s just one problem:
v1 in prog2 is a free identifier!

The way to fix this problem is, instead of creating a closure after one step, to send
v1 to the client to be stored there. Where do we store this? The browser offers two
mechanisms for doing this: cookies and hidden fields. Which one do we use?

14.1.4 Interaction with State

The fundamental difference between cookies and hidden fields is that all pages share
the same cookie, but each page has its own hidden fields.

First, let’s consider a sequence of interactions with the existing program that uses
read-number/suspend (at both interaction points). It looks like this:
First number To enter it, use the action field label 1

> (resume 1 3)

Second number To enter it, use the action field label 2

> (resume 2 10)

13

Thus, resuming with label 2 appears to represent adding 3 to the given argument (i.e.,
form field value). To be sure,
> (resume 2 15)

18

So far, so good. Now suppose we use label 1 again:
> (resume 1 5)

Second number To enter it, use the action field label 3

Observe that this new program execution needs to be resumed by using label 3, not 1.
Indeed,
> (resume 3 10)

15

But we ought to ask, what happens if we reuse label 2?
Do Now!

Try (resume 2 10).

Doing this is tantamount to resuming the old computation. We therefore expect it
produce the same answer as before:

107

> (resume 2 10)

13

Now let’s create a stateful implementation. We can simulate this by observing that
each closure has its own environment, but all closures share the same mutable state.
We can simulate this using our existing read-number/suspend by making sure we
don’t rely on the closure behavior of lambda, i.e., by not having any free identifiers in
the body.

(define cookie '-100)

(read-number/suspend "First number"

(lambda (v1)

(begin

(set! cookie v1)

(read-number/suspend "Second number"

(lambda (v2)

(display

(+ cookie v2)))))))

Exercise

What do we expect for the same sequence as before?

Do Now!

What happens?

Initially, nothing seems different:
First number To enter it, use the action field label 1

> (resume 1 3)

Second number To enter it, use the action field label 2

> (resume 2 10)

13

When we reuse the initial computation, we indeed get a new resumption label:
> (resume 1 5)

Second number To enter it, use the action field label 3

which, when used, computes what we’d expect:
> (resume 3 10)

15

Now we come to the critical step:
> (resume 2 10)

15

It is unsurprising that the two resumptions of label 2 would produce different answers,
given that they rely on mutable state. The reason it’s problematic is because of what
happens when we translate the same behavior to the Web.

Imagine visiting a hotel reservation Web site and searching for hotels in a city. In
return, you are shown a list of hotels and the label 1. You explore one of them in a
new tab or window; this produces information on that hotel, and label 2 to make the

108

reservation. You decide, however, to return to the hotel listing and explore another
hotel in a fresh tab or window. This produces the second hotel’s information, with
label 3 to reserve at that hotel. You decide, however, to choose the first hotel, return
to the first hotel’s page, and choose its reservation button—i.e., submit label 2. Which
hotel did you expect to be booked into? Though you expected a reservation at the first
hotel, on most travel sites, this will either reserve at the second hotel—i.e., the one
you last viewed, but not the one on the page whose reservation button you clicked—
or produce an error. This is because of the pervasive use of cookies on Web sites, a
practice encouraged by most Web APIs.

14.2 Continuation-Passing Style
The functions we’ve been writing have a name. Though we’ve presented ideas in terms
of the Web, we’re relying on a much older idea: the functions are called continuations,
and this style of programs is called continuation-passing style (CPS). This is worth We will take the

liberty of using CPS
as both a noun and
verb: a particular
structure of code
and the process that
converts code into
it.

studying in its own right, because it is the basis for studying a variety of other non-
trivial control operations—such as generators.

Earlier, we converted programs so that no Web input operation was nested inside
another. The motivation was simple: when the program terminates, all nested com-
putations are lost. A similar argument applies, in a more local sense, in the case of
XMLHttpRequest: any computation depending on the result of a response from a Web
server needs to reside in the callback associated with the request to the server.

In fact, we don’t need to transform every expression. We only care about expres-
sions that involve actual Web interaction. For example, if we computed a more com-
plex mathematical expression than just addition, we wouldn’t need to transform it. If,
however, we had a function call, we’d either have to be absolutely certain the function
didn’t have any Web invocations either inside it, or in the functions in invokes, or the
ones they invoke...or else, to be defensive, we should transform them all. Therefore, we
have to transform every expression that we can’t be sure performs no Web interactions.

The heart of our transformation is therefore to turn every one-argument function,
f, into one with an extra argument. This extra argument is the continuation, which
represents the rest of the computation. The continuation is itself a function of one
argument. This argument takes the value that would have been returned by f and
passes it to the rest of the computation. f, instead of returning a value, instead passes
the value it would have returned to its continuation.

CPS is a general transformation, which we can apply to any program. Because it’s a
program transformation, we can think of it as a special kind of desugaring: in particular,
instead of transforming programs from a larger language to a smaller one (as macros
do), or from one language to entirely another (as compilers do), it transforms programs
within the same language: from the full language to a more restricted version that obeys
the pattern we’ve been discussing. As a result, we can reuse an evaluator for the full
language to also evaluate programs in the CPS subset.

109

14.2.1 Implementation by Desugaring

Because we already have good support for desguaring, let’s use to define the CPS trans-
form. Concretely, we’ll implement a CPS macro [REF]. To more cleanly separate the
source language from the target, we’ll use slightly different names for most of the lan-
guage constructs: a one-armed with and rec instead of let and letrec; lam instead
of lambda; cnd instead of if; seq for begin; and set for set!. We’ll also give
ourselves a sufficiently rich language to write some interesting programs! The presentation

that follows orders
the cases of the
macro from what I
believe are easiest
to hardest.
However, the code
in the macro must
avoid
non-overlapping
patterns, and hence
follows a diffent
order.

<cps-macro> ::=

(define-syntax (cps e)

(syntax-case e (with rec lam cnd seq set quote display read-number)

<cps-macro-with-case>
<cps-macro-rec-case>
<cps-macro-lam-case>
<cps-macro-cnd-case>
<cps-macro-display-case>
<cps-macro-read-number-case>
<cps-macro-seq-case>
<cps-macro-set-case>
<cps-macro-quote-case>
<cps-macro-app-1-case>
<cps-macro-app-2-case>
<cps-macro-atomic-case>))

Our representation in CPS will be to turn every expression into a procedure of one
argument, the continuation. The converted expression will eventually either supply a
value to the continuation or will pass the continuation on to some other expression that
will—by preserving this invariant inductively—supply it with a value. Thus, all output
from CPS will look like (lambda (k) ...) (and we will rely on hygiene [REF] to
keep all these introduced k’s from clashing with one another).

First let’s dispatch with the easy case, which is atomic values. Though conceptually
easiest, we have written this last because otherwise this pattern would shadow all the
other cases. (Ideally, we should have written it first and provided a guard expression
that precisely defines the syntactic cases we want to treat as atomic. We’re playing
loose here becuase our focus is on more interesting cases.) In the atomic case, we
already have a value, so we simply need to supply it to the continuation:

<cps-macro-atomic-case> ::=

[(_ atomic)

#'(lambda (k)

(k atomic))]

Similarly for quoted constants:
<cps-macro-quote-case> ::=

[(_ 'e)

#'(lambda (k) (k 'e))]

110

Also, we already know, from [REF] and [REF], that we can treat with and rec as
macros, respectively:

<cps-macro-with-case> ::=

[(_ (with (v e) b))

#'(cps ((lam (v) b) e))]

<cps-macro-rec-case> ::=

[(_ (rec (v f) b))

#'(cps (with (v (lam (arg) (error 'dummy "nothing")))

(seq

(set v f)

b)))]

Mutation is easy: we have to evaluate the new value, and then perform the actual
update:

<cps-macro-set-case> ::=

[(_ (set v e))

#'(lambda (k)

((cps e) (lambda (ev)

(k (set! v ev)))))]

Sequencing is also straightforward: we perform each operation in turn. Observe
how this preserves the semantics of sequencing: not only does it obey the order of
operations, the value of the first sub-term (e1) is not mentioned anywhere in the body
of the second (e2), so the name given to the identifier holding its value is irrelevant.

<cps-macro-seq-case> ::=

[(_ (seq e1 e2))

#'(lambda (k)

((cps e1) (lambda (_)

((cps e2) k))))]

When handling conditionals, we need to create a new continuation to remember that
we are waiting for the test expression to evaluate. Once we have its value, however, we
can dispatch on the result and return to the existing continuations:

<cps-macro-cnd-case> ::=

[(_ (cnd tst thn els))

#'(lambda (k)

((cps tst) (lambda (tstv)

(if tstv

((cps thn) k)

((cps els) k)))))]

111

When we get to applications, we have two cases to consider. We absolutely need
to handle the treatment of procedures created in the language: those with one argu-
ment. For the purposes of writing example programs, however, it is useful to be able
to employ primitives such as + and *. Thus, we will assume for simplicity that one-
argument procedures are written by the user, and hence need conversion to CPS, while
two-argument ones are primitives that will not perform any Web or other control oper-
ations and hence can be invoked directly; we will also assume that the primitive will
be written in-line (i.e., the application position will not be a complex expression that
can itself, say, perform a Web interaction).

For an application we have to evaluate both the function and argument expressions.
Once we’ve obtained these, we are ready to apply the function. Therefore, it is tempting
to write

<cps-macro-app-1-case-take-1> ::=

[(_ (f a))

#'(lambda (k)

((cps f) (lambda (fv)

((cps a) (lambda (av)

(k (fv av)))))))]

Do Now!

Do you see why this is wrong?

The problem is that, though the function is now a value, that value is a closure with
a potentially complicated body: evaluating the body can, for example, result in further
Web interactions, at which point the rest of the function’s body, as well as the pending
(k ...) (i.e., the rest of the program), will all be lost. To avoid this, we have to supply
k to the function’s value, and let the inductive invariant ensure that k will eventually be
invoked with the value of applying fv to av:

<cps-macro-app-1-case> ::=

[(_ (f a))

#'(lambda (k)

((cps f) (lambda (fv)

((cps a) (lambda (av)

(fv av k))))))]

Treating the special case of built-in binary operations is easier:
<cps-macro-app-2-case> ::=

[(_ (f a b))

#'(lambda (k)

((cps a) (lambda (av)

((cps b) (lambda (bv)

(k (f av bv)))))))]

112

The very pattern we could not use for user-defined procedures we employ here,
because we assume that the application of f will always return without any unusual
transfers of control.

A function is itself a value, so it should be returned to the pending computation.
The application case above, however, shows that we have to transform functions to
take an extra argument, namely the continuation at the point of invocation. This leaves
us with a quandary: which continuation do we supply to the body?

<cps-macro-lam-case-take-1> ::=

[(_ (lam (a) b))

(identifier? #'a)

#'(lambda (k)

(k (lambda (a dyn-k)

((cps b) ...))))]

That is, in place of ..., which continuation do we supply: k or dyn-k?
Do Now!

Which continuation should we supply?

The former is the continuation at the point of closure creation. The latter is the
continuation at the point of closure invocation. In other words, the former is “static”
and the latter is “dynamic”. In this case, we need to use the dynamic continuation,
otherwise something very strange would happen: the program would return to the point
where the closure was created, rather than where it is being used! This would result in
seemingly very strange program behavior, so we wish to avoid it. Observe that we are
consciously choosing the dynamic continuation just as, where scope was concerned,
we chose the static environment.

<cps-macro-lam-case> ::=

[(_ (lam (a) b))

(identifier? #'a)

#'(lambda (k)

(k (lambda (a dyn-k)

((cps b) dyn-k))))]

Finally, for the purpose of modeling Web programming, we can add our input and
output procedures. Output follows the application pattern we’ve already seen:

<cps-macro-display-case> ::=

[(_ (display output))

#'(lambda (k)

((cps output) (lambda (ov)

(k (display ov)))))]

Finally, for input, we can use the pre-existing read-number/suspend, but this
time generate its uses rather than force the programmer to construct them:

<cps-macro-read-number-case> ::=

113

[(_ (read-number prompt))

#'(lambda (k)

((cps prompt) (lambda (pv)

(read-number/suspend pv k))))]

Notice that the continuation bound to k is precisely the continuation that we need
to stash at the point of a Web interaction.

Testing any code converted to CPS is slightly annoying because all CPS terms expect
a continuation. The initial continuation is one that simply either (a) consumes a value
and returns it, or (b) consumes a value and prints it, or (c) consumes a value, prints
it, and gets ready for another computation (as the prompt in the DrRacket Interactions
window does). All three of these are effectively just the identity function in various
guises. Thus, the following definition is helpful for testing:

(define (run c) (c identity))

For instance,

(test (run (cps 3)) 3)

(test (run (cps ((lam () 5)))) 5)

(test (run (cps ((lam (x) (* x x)) 5))) 25)

(test (run (cps (+ 5 ((lam (x) (* x x)) 5)))) 30)

We can also test our old Web program:

(run (cps (display (+ (read-number "First")

(read-number "Second")))))

Lest you get lost in the myriad of code, let me highlight the important lesson here:
We’ve recovered our code structure. That is, we can write the program in direct style,
with properly nested expressions, and a compiler—in this case, the CPS converter—
takes care of making it work with a suitable underlying API. This is what good pro-
gramming languages ought to do!

14.2.2 Converting the Example

Let’s consider the example above and see what it converts to. You can either do this by
hand, or take the easy way out and employ the Macro Stepper of DrRacket. Assuming For now, you need

to put the code in
#lang racket to
get the full force of
the Macro Stepper.

we include the application to identity contained in run, we get:

(lambda (k)

((lambda (k)

((lambda (k)

((lambda (k)

(k "First")) (lambda (pv)

(read-number/suspend pv k))))

(lambda (lv)

((lambda (k)

114

((lambda (k)

(k "Second")) (lambda (pv)

(read-number/suspend pv k))))

(lambda (rv)

(k (+ lv rv)))))))

(lambda (ov)

(k (display ov)))))

What! This isn’t at all the version we wrote by hand!
In fact, this program is full of so-called administrative lambdas that were intro-

duced by the particular CPS algorithm we used. Fear not! If we stepwise apply each of Designing better
CPS algorithms, that
eliminate needless
administrative
lambdas, is
therefore an
ongoing and open
research question.

these lambdas and substitute, however—
Do Now!

Do it!

—the program reduces to

(read-number/suspend "First"

(lambda (lv)

(read-number/suspend "Second"

(lambda (rv)

(identity

(display (+ lv rv)))))))

which is precisely what we wanted.

14.2.3 Implementation in the Core

Now that we’ve seen how CPS can be implemented through desguaring, we should ask
whether it can be put in the core instead.

Recall that we’ve said that CPS applies to all programs. We have one program
we are especially interested in: the interpreter. Sure enough, we can apply the CPS
transformation to it, making available what are effectively the same continuations.

First, we’ll find it convenient to use a procedural representation of closures [REF].
We’ll have the interpreter take an extra argument, which consumes values (those given
to the continuation) and eventually returns them:

<cps-interp> ::=

(define (interp/k [expr : ExprC] [env : Env] [k : (Value -> Value)]) : Value

<cps-interp-body>)

In the easy cases, instead of returning a value we need to simply pass it to the
continuation argument:

<cps-interp-body> ::=

(type-case ExprC expr

[numC (n) (k (numV n))]

115

[idC (n) (k (lookup n env))]

<cps-interp-plusC-case>
<cps-interp-appC-case>
<cps-interp-lamC-case>)

(Note that multC is handled entirely analogous to plusC.)
Let’s start with the easy case, plusC. First we interpret the left sub-expression. The

continuation for this evaluation interprets the right sub-expression. The continuation
for that adds the result. What should happen to the result of addition? In interp,
it was returned to whichever computation caused the plusC to be interpreted. Now,
remember, we no longer return values; instead we pass them to the continuation:

<cps-interp-plusC-case> ::=

[plusC (l r) (interp/k l env

(lambda (lv)

(interp/k r env

(lambda (rv)

(k (num+ lv rv))))))]

Exercise

Implement the code for multC.

This leaves the two difficult, and related, pieces.
In an application, we again have to interpret the two sub-expressions, and then

apply the resulting closure to the argument. But we’ve already agreed that every appli-
cation needs a continuation argument. Therefore, we have to update our definition of a
value:

(define-type Value

[numV (n : number)]

[closV (f : (Value (Value -> Value) -> Value))])

Now we have to decide what continuation to pass. In an application, it’s the con-
tinuation given to the interpreter:

<cps-interp-appC-case> ::=

[appC (f a) (interp/k f env

(lambda (fv)

(interp/k a env

(lambda (av)

((closV-f fv) av k)))))]

Finally, the lamC case. We have to create a closV using a lambda, as before.
However, this procedure needs to take two arguments: the actual value of the argument,
and the continuation of the application. The critical question is, what is this latter
value?

116

We have essentially two choices. k represents the static continuation: the one active
at the point of closure construction. However, what we want is the continuation at the
point of closure invocation: the dynamic continuation.

<cps-interp-lamC-case> ::=

[lamC (a b) (k (closV (lambda (arg-val dyn-k)

(interp/k b

(extend-env (bind a arg-val)

env)

dyn-k))))]

To test this revised interpreter, we need to invoke interp/k with some kind of ini-
tial continuation value. This needs to be a procedure that represents nothing remaining
in the computation. A natural representation for this is the identity function:

(define (interp [expr : ExprC]) : Value

(interp/k expr mt-env

(lambda (ans)

ans)))

To signify that this is strictly a top-level interface to interp/k, we’ve dropped the
environment parameter and pass the empty environment automatically. If we want to
be especially sure we haven’t accidentally used this procedure recursively, we could
insert a call to error at its end to prevent it from returning and its return value being
used.

14.3 Generators
Many programming languages now have a notion of generators. A generator is like
a procedure, in that one can invoke it in an application. Whereas a regular procedure
always begins execution at the beginning, a generator resumes from where it last left
off. Of course, that means a generator needs a notion of “exiting before it’s done”. This
is known as yielding, namely returning control to whatever called it.

14.3.1 Design Variations

There are many variations between generators. The points of variation, predictably,
have to do with how to enter and exit a generator:

• In some languages a generator is an object that is instantiated like any other ob-
ject, and its execution is resumed by invoking a method (such as next in Python).
In others it is just like a procedure, and indeed it is re-entered by applying it like
a function. In languages where

values in addition to
regular procedures
can be used in an
application, all such
values are
collectively called
applicables.

• In some languages the yielding operation—such as Python’s yield—is avail-
able only inside the syntactic body of the generator. In others, such as Racket,
yield is an applicable value bound in the body, but by virtue of being a value, it
can be passed to abstractions, stored in data structures, and so on.

117

Python’s design represents an extreme point in that a generator is simply any function
that contains the keyword yield in its body. In addition, Python’s yield cannot be
passed as a parameter to another function that performs the yielding on behalf of the
generator.

There is also a small issue of naming. In many languages with generators, the
yielder is automatically called word yield: either as a keyword (as in Python) or as
an identifier bound to an applicable value (as in Racket). Another possibility is that the
user of the generator must indicate in the generator expression what name to give the
yielder. That is, a use might look like Curiously, Python

expects users to
determine what to
call self or this
in objects, but it
does not provide the
same flexibility for
yield, because it
has no other way to
determine which
functions are
generators!

(generator (yield) (from)

(rec (f (lam (n)

(seq

(yield n)

(f (+ n 1)))))

(f from)))

but it might equivalently be

(generator (y) (from)

(rec (f (lam (n)

(seq

(y n)

(f (+ n 1)))))

(f from)))

and if the yielder is an actual value, a user can also abstract over yielding:

(generator (y) (from)

(rec (f (lam (n)

(seq

((yield-helper y) n)

(f (+ n 1)))))

(f from)))

where yield-helper will presumably perform the actual yielding.
There are actually two more design decisions:

1. Is yield a statement or expression? In many languages it is actually an expres-
sion, meaning it has a value: the one supplied when resuming the generator. This
makes the generator more flexible because the user of a generator can use the pa-
rameter(s) to alter the generator’s behavior, rather than being forced to use state
to communicate desired changes.

2. What happens at the end of the generator’s execution? In many languages, a
generator raises an exception to signal its completion.

118

14.3.2 Implementing Generators

To implement generators, it will be especially useful to employ our CPS macro lan-
guage. Let’s first decide where we stand regarding the above design decisions. We
will use the applicative representation of generators: that is, asking for the next value
from the generator is done by applying it to any necessary arguments. Similarly, the
yielder will also be an applicable value and will in turn be an expression. Though we
have already seen how macros can automatically capture a name [REF], let’s make the
yielder’s name explicit to keep the macro simpler. Finally, we’ll raise an error when
the generator is done executing.

How do generators work? To yield, a generator must

• remember where in its execution it currently is, and

• know where in its caller it should return to.

while, when invoked, it should

• remember where in its execution its caller currently is, and

• know where in its body it should return to.

Observe the duality between invocation and yielding.
As you might guess, these “where”s correspond to continuations.
Let’s build up the generator rule of the cps macro incrementally. First a header

pattern:
<cps-macro-generator-case> ::=

[(_ (generator (yield) (v) b))

(and (identifier? #'v) (identifier? #'yield))

<generator-body>]

The beginning of the body is easy: all code in CPS needs to consume a continuation,
and because a generator is a value, this value should be supplied to the continuation:

<generator-body> ::=

#'(lambda (k)

(k <generator-value>))

Now we’re ready to tackle the heart of the generator.
Recall that a generator is an applicable value. That means it can occur in an applica-

tion position, and must therefore have the same “interface” as a procedure: a procedure
of two arguments, the first a value and the second the continuation at the point of ap-
plication. What should this procedure do? We’ve described just this above. First the
generator must remember where the caller is in its execution, which is precisely the
continuation at the point of application; “remember” here most simply means “must
be stored in state”. Then, the generator should return to where it previously was, i.e.,
its own continuation, which must clearly have been stored. Therefore the core of the
applicable value is:

<generator-core> ::=

119

(lambda (v dyn-k)

(begin

(set! where-to-go dyn-k)

(resumer v)))

Here, where-to-go records the continuation of the caller, to resume it upon yield-
ing; resumer is the local continuation of the generator. Let’s think about what their
initial values must be:

• where-to-go has no initial value (because the generator has yet to be invoked),
so it needs to throw an error if ever used. Fortunately this error will never occur,
because where-to-go is mutated on the first entry into the generator, so the
error is just a safeguard against bugs in the implementation.

• Initially, the rest of the generator is the whole generator, so resumer should be
bound to the (CPS of) b. What is its continuation? This is the continuation of the
entire generator, i.e., what to do when the generator finishes. We’ve agreed that
this should also signal an error (except in this case the error truly can occur, in
case the generator is asked to produce more values than it’s equipped to).

We still need to bind yield. It is, as we’ve pointed out, symmetric to generator
resumption: save the local continuation in resumer and return by applying where-

to-go.
Putting together these pieces, we get:
<generator-value> ::=

(let ([where-to-go (lambda (v) (error 'where-to-go "nothing"))])

(letrec([resumer (lambda (v)

((cps b) (lambda (k)

(error 'generator "fell through"))))]

[yield (lambda (v gen-k)

(begin

(set! resumer gen-k)

(where-to-go v)))])

<generator-core>))

Do Now!

Why this pattern of let and letrec instead of let?

Observe the dependencies between these code fragments. where-to-go doesn’t
depend on either of resumer or yield. yield clearly depends on both where-to-go

and resumer. But why are resumer and yield mutually referential?
Do Now!

Try the alternative!

The subtle dependency you may be missing is that resumer contains b, the body of
the generator, which may contain references to yield. Therefore, it needs to be closed
over the binding of the yielder.

Exercise

120

How do generators differ from coroutines and threads? Implement corou-
tines and threads using a similar strategy.

14.4 Continuations and Stacks
Surprising as it may seem, CPS conversion actually provides tremendous insight into
the nature of the program execution stack. The first thing to understand is that every
continuation is actually the stack itself. This might seem odd, given that stacks are
low-level machine primitives while continuations are seemingly complex procedures.
But what is the stack, really?

• It’s a record of what remains to be done in the computation. So is the continua-
tion.

• It’s traditionally thought of as a list of stack frames. That is, each frame has a
reference to the frames remaining after it finishes. Similarly, each continuation
is a small procedure that refers to—and hence closes over—its own continuation.
If we had chosen a different representation for program instructions, combining
this with the data structure representation of closures, we would obtain a contin-
uation representation that is essentially the same as the machine stack.

• Each stack frame also stores procedure parameters. This is implicitly managed
by the procedural representation of continuations, whereas this was done explic-
itly in the data stucture representation (using bind).

• Each frame also has space for “local variables”. In principle so does the con-
tinuation, though by using the macro implementation of local binding, we’ve
effectively reduced everything to procedure parameters. Conceptually, however,
some of these are “true” procedure parameters while others are local bindings
turned into procedure parameters by a macro.

• The stack has references to, but does not close over, the heap. Thus changes
to the heap are visible across stack frames. In precisely the same way, closures
refer to, but do not close over, the store, so changes to the store are visible across
closures.

Therefore, traditionally the stack is responsible for maintaining lexical scope, which
we get automatically because we are using closures in a statically-scoped language.

Now we can study the conversion of various terms to understand the mapping to
stacks. For instance, consider the conversion of a function application [REF]:

[(_ (f a))

#'(lambda (k)

((cps f) (lambda (fv)

((cps a) (lambda (av)

(fv av k))))))]

How do we “read” this? As follows:

121

• Let’s use k to refer to the stack present before the function application begins to
evaluate.

• When we begin to evaluate the function position (f), create a new stack frame
((lambda (fv) ...)). This frame has one free identifier: k. Thus its closure
needs to record one element of the environment, namely the rest of the stack.

• The code portion of the stack frame represents what is left to be done once we
obtain a value for the function: evaluate the argument, and perform the appli-
cation, and return the result to the stack expecting the result of the application:
k.

• When evaluation of f completes, we begin to evaluate a, which also creates a
stack frame: (lambda (av) ...). This frame has two free identifiers: k and
fv. This tells us:

– We no longer need the stack frame for evaluating the function position, but

– we now need a temporary that records the value—hopefully a function
value—of evaluating the function position.

• The code portion of this second frame also represents what is left to be done:
invoke the function value with the argument, in the stack expecting the value of
the application.

Let us apply similar reasoning to conditionals:

[(_ (cnd tst thn els))

#'(lambda (k)

((cps tst) (lambda (tstv)

(if tstv

((cps thn) k)

((cps els) k)))))]

It says that to evaluate the conditional expression we have to create a new stack frame.
This frame closes over the stack expecting the value of the entire conditional. This
frame makes a decision based on the value of the conditional expression, and invokes
one of the other expressions. Once we have examined this value the frame created to
evaluate the conditional expression is no longer necessary, so evaluation can proceed
in k.

Viewed through this lens, we can more easily provide an operational explanation for
generators. Each generator has its own private stack, and when execution attempts to
return past its end, our implementation raises an error. On invocation, a generator stores
a reference to the stack of the “rest of the program” in where-to-go, and resumes its
own stack, which is referred to by resumer. On yielding, the system swaps references
to stacks. Coroutines, threads, and generators are all conceptually similar: they are all
mechanisms to create “many little stacks” instead of having a single, global stack.

122

14.5 Tail Calls
Observe that the stack patterns above add a frame to the current stack, perform some
evaluation, and eventually always return to the current stack. In particular, observe that
in an application, we need stack space to evaluate the function position and then the
arguments, but once all these are evaluated, we resume computation using the stack we
started out with before the application. In other words, function calls do not themselves
need to consume stack space: we only need space to compute the arguments.

However, not all languages observe or respect this property. In languages that do,
programmers can use recursion to obtain iterative behavior: i.e., a sequence of function
calls can consume no more stack space than no function calls at all. This removes the
need to create special looping constructs; indeed, loops can simply be expressed as a
syntactic sugar.

Of course, this property does not apply in general. If a call to f is performed to
compute an argument to a call to g, the call to f is still consuming space relative to the
context surrounding g. Thus, we should really speak of a relationship between expres-
sions: one expression is in tail position relative to another if its evaluation requires no
additional stack space beyond the other. In our CPS macro, every expression that uses
k as its continuation—such as a function application after all the sub-expressions have
been evaluated, or the then- and else-branches of a conditional—are all in tail position
relative to the enclosing application (and perhaps recursively further up). In contrast,
every expression that has to create a new stack frame is not in tail position.

Some languages have special support for tail recursion: when a procedure calls
itself in tail position relative to its body. This is obviously useful, because it enables
recursion to efficiently implement loops. However, it hurts “loops” that cannot be
squeezed into a single recursive function. For instance, when implementing a scanner
or other state machine, it is most convenient to have a set of functions each representing
one state, and transitioning to other states by making (tail) function calls. It is onerous
(and misses the point) to turn these into a single recursive function. If, however, a
language recognizes tail calls as such, it can optimize these cross-function calls just as
much as it does intra-function ones.

Racket, in particular, promises to implement tail calls without allocating additional
stack space. Though some people refer to this as “tail call optimization”, this term is
misleading: an optimization is optional, whereas whether or not a language promises
to properly implement tail calls is a semantic feature. Developers need to know how
the language will behave because it affects how they program.

Because of this feature, observe something interesting about the program after CPS
transformation: all of its function applications are themselves tail calls! You can see
this starting with the read-number/suspend example that began this chapter: any
pending computation was put into the continuation argument. Assuming the program
might terminate at any call is tantamount to not using any stack space at all (because
the stack would get wiped out).

Exercise

How is the program able to function in the absence of a stack?

123

14.6 Continuations as a Language Feature
With this insight into the connection between continuations and stacks, we can now
return to the treatment of procedures: we ignored the continuation at the point of clo-
sure creation and instead only used the one at the point of closure invocation. This
of course corresponds to normal procedure behavior. But now we can ask, what if we
use the creation-time continuation instead? This would correspond to maintaining a
reference to (a copy of) the stack at the point of “procedure” creation, and when the
procedure is applied, ignoring the dynamic evaluation and going back to the point of
procedure creation.

In principle, we are trying to leave lambda intact and instead give ourselves a
language construct that corresponds to this behavior: cc = “current

continuation”<cps-macro-let/cc-case> ::=

[(_ (let/cc kont b))

(identifier? #'kont)

#'(lambda (k)

(let ([kont (lambda (v dyn-k)

(k v))])

((cps b) k)))]

What this says is that either way, control will return to the expression that immedi-
ately surrounds the let/cc: either by falling through (because the continuation of the
body, b, is k) or—more interestingly—by invoking the continuation, which discards
the dynamic continuation dyn/k by simply ignoring it and returning to k instead.

Here’s the simplest test:

(test (run (cps (let/cc esc 3)))

3)

This confirms that if we never use the continuation, evaluation of the body proceeds
as if the let/cc weren’t there at all (because of the ((cps b) k)). If we use it, the
value given to the continuation returns to the point of creation:

(test (run (cps (let/cc esc (esc 3))))

3)

This example, of course, isn’t revealing, but consider this one:

(test (run (cps (+ 1 (let/cc esc (esc 3)))))

4)

This confirms that the addition actually happens. But what about the dynamic contin-
uation?

(test (run (cps (let/cc esc (+ 2 (esc 3)))))

3)

124

This shows that the addition by 2 never happens, i.e., the dynamic continuation is
indeed ignored. And just to be sure that the continuation at the point of creation is
respected, observe:

(test (run (cps (+ 1 (let/cc esc (+ 2 (esc 3))))))

4)

From these examples, you have probably noticed a familiar pattern: esc here is be-
having like an exception. That is, if you do not throw an exception (in this case, invoke
a continuation) it’s as if it’s not there, but if you do throw it, all pending intermediate
computation is ignored and computation returns to the point of exception creation.

Exercise

Using let/cc and macros, create a throw/catch mechanism.

However, these examples only scratch the surface of available power, because the
continuation at the point of invocation is always an extension of one at the point of
creation: i.e., the latter is just earlier in the stack than the former. However, nothing
actually demands that k and dyn-k be at all related. That means they are in fact free
to be unrelated, which means each can be a distinct stack, so we can in fact easily
implement stack-switching procedures with them.

Exercise

To be properly analogous to lambda, we should have introduced a con-
struct called, say, cont-lambda with the following expansion:

[(_ (cont-lambda (a) b))

(identifier? #'a)

#'(lambda (k)

(k (lambda (a dyn-k)

((cps b) k))))]

Why didn’t we? Consider both the static typing implications, and also how
we might construct the above exception-like behaviors using this construct
instead.

14.6.1 Presentation in the Language

Writing programs in our little toy languages can soon become frustrating. Fortu-
nately, Racket already provides a construct called call/cc that reifies continuations.
call/cc is a procedure of one argument, which is itself a procedure of one argument,
which Racket applies to the current continuation—which is a procedure of one argu-
ment. Got that?

Fortunately, we can easily write let/cc as a macro over call/cc and program
with that instead. Here it is:

125

(define-syntax let/cc

(syntax-rules ()

[(let/cc k b)

(call/cc (lambda (k) b))]))

To be sure, all our old tests still pass:

(test (let/cc esc 3) 3)

(test (let/cc esc (esc 3)) 3)

(test (+ 1 (let/cc esc (esc 3))) 4)

(test (let/cc esc (+ 2 (esc 3))) 3)

(test (+ 1 (let/cc esc (+ 2 (esc 3)))) 4)

14.6.2 Defining Generators

Now we can start to create interesting abstractions. For instance, let’s build generators.
Whereas previously we needed to both CPS expressions and pass around continuations,
now this is done for us automatically by call/cc. Therefore, whenever we need the
current continuation, we simply conjure it up without having to transform the program.
Thus the extra ...-k parameters can disappear with a let/cc in the same place to
capture the same continuation:

(define-syntax (generator e)

(syntax-case e ()

[(generator (yield) (v) b)

#'(let ([where-to-go (lambda (v) (error 'where-to-go "nothing"))])

(letrec ([resumer (lambda (v)

(begin b

(error 'generator "fell through")))]

[yield (lambda (v)

(let/cc gen-k

(begin

(set! resumer gen-k)

(where-to-go v))))])

(lambda (v)

(let/cc dyn-k

(begin

(set! where-to-go dyn-k)

(resumer v))))))]))

Observe the close similarity between this code and the implementation of gener-
ators by desugaring into CPS code. Specifically, we can drop the extra continuation
arguments, and replace them with invocations of let/cc that will capture precisely
the same continuations. The rest of the code is fundamentally unchanged.

Exercise

What happens if we move the let/ccs and mutation to be the first state-
ment inside the begins instead?

126

We can, for instance, write a generator that iterates from the initial value upward:

(define g1 (generator (yield) (v)

(letrec ([loop (lambda (n)

(begin

(yield n)

(loop (+ n 1))))])

(loop v))))

whose behavior is:
> (g1 10)

10

> (g1 10)

11

> (g1 0)

12

>

Because the body refers only to the initial value, ignoring that returned by invoking
yield, the values we pass on subsequent invocations are irrelevant. In contrast, con-
sider this generator:

(define g2 (generator (yield) (v)

(letrec ([loop (lambda (n)

(loop (+ (yield n) n)))])

(loop v))))

On its first invocation, it returns whatever value it was supplied. On subsequent invoca-
tions, this value is added to that provided on re-entry into the generator. In other words,
this generator additively accumulates all values given to it:
> (g2 10)

10

> (g2 15)

25

> (g2 5)

30

Exercise

Now that you’ve seen how to implement generators using call/cc and
let/cc, implement coroutines and threads as well.

14.6.3 Defining Threads

Having done generators, let’s do another, similar primitive: threads. That is, let’s
assume we want to be able to write a program such as this:

(define d display) ;; a useful shorthand in what follows

127

(scheduler-loop-0

(list

(thread-0 (y) (d "t1-1 ") (y) (d "t1-2 ") (y) (d "t1-3 "))

(thread-0 (y) (d "t2-1 ") (y) (d "t2-2 ") (y) (d "t2-3 "))

(thread-0 (y) (d "t3-1 ") (y) (d "t3-2 ") (y) (d "t3-3 "))))

and expect the output
t1-1 t2-1 t3-1 t1-2 t2-2 t3-2 t1-3 t2-3 t3-3

We’ll build all the pieces necessary to achieve this.
Let’s start by defining the thread scheduler. It consumes a list of “threads”, whose

interface we assume will be a procedure that consumes a continuation to which it even-
tually yields control. Each time the scheduler reactivates the thread, it supplies it with a
continuation. The scheduler might be choose between threads in a simple round-robin
manner, or it might use some more complex algorithm; the details of how it chooses
don’t concern us here.

As with generators, we’ll assume that yielding is done by invoking a procedure
named by the user: y, above. We could use name capture [REF] to automatically bind
a name like yield.

More importantly, notice that the user of the thread system manually yields control.
This is called cooperative multitasking. Instead, we could have chosen to have a timer
or other intrinsic mechanism automtically yield without the user’s permission; this is
called preemptive multitasking (because the system “pre-empts”—i.e., wrests control
from—the thread). While the distinction is important for buildling systems, it is not
interesting from the perspective of setting up the continuations.

Exercise

After we are done building cooperative multitasking, implement preemp-
tive multitasking. What changes?

With our stated constraints, we can write a first scheduler. It consumes a lists of
threads and continues executing so long as there are threads remaining. Each time, it
applies the thread procedure to a continuation that represents returning to the scheduler
and proceeding to the next thread:

(define (scheduler-loop-0 threads)

(cond

[(empty? threads) 'done]

[(cons? threads)

(begin

(let/cc after-thread ((first threads) after-thread))

(scheduler-loop-0 (append (rest threads)

(list (first threads)))))]))

When the recipient thread invokes the continuation bound to after-thread, control
returns to the end of the first statement in the begin sequence. As a result, the value
supplied to the continuation is ignored (and can hence be any dummy value; we’ll
chose 'dummy, so that we can easily spot it if it shows up in undesired places). Control

128

then proceeds with the rest of the scheduler loop after appending the most recently
invoked thread to the end of the list of threads (i.e., treating the list as a circular queue).

Now let’s define a thread. As we’ve said, it will be a procedure of one argument,
the scheduler’s continuation. Because the thread needs to resume, i.e., continue where
it left off, presumably it must store where it last was: we’ll call this thread-resumer.
Initially this is the entire thread body, but on subsequent instances it will be a continu-
ation: specifically, the continuation of invoking yield. Thus, we obtain the following
skeleton:

(define-syntax thread-0

(syntax-rules ()

[(thread (yielder) b ...)

(letrec ([thread-resumer (lambda (_)

(begin b ...))])

(lambda (sched-k)

(thread-resumer 'dummy)))]))

That still leaves the yielder. It needs to be a procedure of no arguments that stores the
thread’s continuation in thread-resumer, and then invoke the scheduler continuation
with 'dummy. However, which scheduler continuation does it need to invoke? Not the
one provided on thread initiation, but rather the most recent one. Thus, we must some-
how “thread” the value in sched-k to the yielder. There are many ways to accomplish
it, but the simplest, perhaps most brutal, way is to simply reconstruct the yielder on
each thread resumption, always closed over the most recent value of sched-k:

(define-syntax thread-0

(syntax-rules ()

[(thread (yielder) b ...)

(letrec ([thread-resumer (lambda (_)

(begin b ...))]

[yielder (lambda () (error 'yielder "nothing here"))])

(lambda (sched-k)

(begin

(set! yielder

(lambda ()

(let/cc thread-k

(begin

(set! thread-resumer thread-k)

(sched-k 'dummy)))))

(thread-resumer 'tres))))]))

When we run this ensemble, we get:
t1-1 t2-1 t3-1 t1-2 t2-2 t3-2 t1-3 t2-3 t3-3

Hey, that’s what we wanted! But it continues:
t1-3 t2-3 t3-3 t1-3 t2-3 t3-3 t1-3 t2-3 t3-3

Hmmm.

129

What’s happening? Well, we’ve been quiet all along about what needs to happen
when a thread reaches its end. In fact, control just returns to the thread scheduler, which
appends the thread to the end of the queue, and when the thread comes to the head of
the queue again, control resumes from the same previously stored continuation: the
one corresponding to printing the third value. This prints, control returns, the thread is
appended...ad infinitum.

Clearly, we need the thread scheduler to be notified when a thread has terminated,
so that the scheduler can remove it from the thread queue. We’ll create a simple
datatype to represent this signal:

(define-type ThreadStatus

[Tsuspended]

[Tdone])

(In a real system, of course, these status messages might also carry informative values
from the computation.) We must now modify our scheduler to actually check for and
use these values:

(define (scheduler-loop-1 threads)

(cond

[(empty? threads) 'done]

[(cons? threads)

(type-case ThreadStatus (let/cc after-thread ((first threads) after-

thread))

[Tsuspended () (scheduler-loop-1 (append (rest threads)

(list (first threads))))]

[Tdone () (scheduler-loop-1 (rest threads))])]))

We have to now modify our thread representation in two ways: it must provide Tsus-
pended to the scheduler’s continuation on intermediate returns, and provide Tdone

when it terminates. Where does it terminate? After executing the code in the body,
b Observe, finally, that the termination process must be sure to use the latest
scheduler continuation, just as yielding does. Thus:

(define-syntax thread-1

(syntax-rules ()

[(thread (yielder) b ...)

(letrec ([thread-resumer (lambda (_)

(begin b ...

(finisher)))]

[finisher (lambda () (error 'finisher "nothing here"))]

[yielder (lambda () (error 'yielder "nothing here"))])

(lambda (sched-k)

(begin

(set! finisher

(lambda ()

(let/cc thread-k

130

(sched-k (Tdone)))))

(set! yielder

(lambda ()

(let/cc thread-k

(begin

(set! thread-resumer thread-k)

(sched-k (Tsuspended))))))

(thread-resumer 'tres))))]))

If we now replace scheduler-loop-0 with scheduler-loop-1 and thread-0 with
thread-1 and re-run our example program above, we get just the output we desire.

14.6.4 Better Primitives for Web Programming

Finally, to tie the knot back to where we began, let’s return to read-number: observe
that, if the language running the server program has call/cc, instead of having to CPS
the entire program, we can simply capture the current continuation and save it in the
hash table, leaving the program structure again intact.

15 Checking Program Invariants Statically: Types

131

Contents

132

As programs grow larger or more subtle, developers need tools to help them de-
scribe and validate statements about program invariants. Invariants, as the name sug-
gests, are statements about program elements that are expected to always hold of those
elements. For example, when we write x : number in our typed language, we mean
that x will always hold a number, and that all parts of the program that depend on x

can rely on this statement being enforced. As we will see, types are just one point in a
spectrum of invariants we might wish to state, and static type checking—itself a diverse
family of techniques—is also a point in a spectrum of methods we can use to enforce
the invariants.

15.1 Types as Static Disciplines
In this chapter, we will focus especially on static type checking: that is, checking (de-
clared) types before the program even executes. We have already experienced a form
of this in our programs by virtue of using a typed programming language. We will
explore some of the design space of types and their trade-offs. Finally, though static
typing is an especially powerful and important form of invariant enforcement, we will
also examine some other techniques that we have available.

Consider this program in our typed language:

(define (f [n : number]) : number

(+ n 3))

(f "x")

We get a static type error before the program begins execution. The same program
(without the type annotations) in ordinary Racket fails only at runtime:

(define (f n)

(+ n 3))

(f "x")

Exercise

How would you test the assertions that one fails before the program exe-
cutes while the other fails during execution?

Now consider the following Racket program:

(define f n

(+ n 3))

This too fails before program execution begins, with a parse error. Though we
think of parsing as being somehow distinct from type-checking—usually because the
type-checker assumes it has a parsed program to begin with—it can be useful to think
of parsing as being simply the very simplest kind of type-checking: determining (typ-
ically) whether the program obeys a context-free syntax. Type-checking then asks

133

whether it obeys a context-sensitive (or richer) syntax. In short, type-checking is a
generalization of parsing, in that both are concerned with syntactic methods for enforc-
ing disciplines on programs.

15.2 A Classical View of Types
We will begin by introducing a traditional core language of types. Later, we will ex-
plore both extensions [REF] and variations [REF].

15.2.1 A Simple Type Checker

Before we can define a type checker, we have to fix two things: the syntax of our typed
core language and, hand-in-hand with that, the syntax of types themselves.

To begin with, we’ll return to our language with functions-as-values [REF] but be-
fore we added mutation and other complications (some of which we’ll return to later).
To this language we have to add type annotations. Conventionally, we don’t impose
type annotations on constants or on primitive operations such as addition; instead, we
impose them on the boundaries of functions or methods. Over the course of this study
we will explore why this is a good locus for annotations.

Given this decision, our typed core language becomes:

(define-type TyExprC

[numC (n : number)]

[idC (s : symbol)]

[appC (fun : TyExprC) (arg : TyExprC)]

[plusC (l : TyExprC) (r : TyExprC)]

[multC (l : TyExprC) (r : TyExprC)]

[lamC (arg : symbol) (argT : Type) (retT : Type) (body : TyExprC)])

That is, every procedure is annotated with the type of argument it expects and type of
argument it purports to produce.

Now we have to decide on a language of types. To do so, we follow the tradition
that the types abstract over the set of values. In our language, we have two kinds of
values:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : TyExprC) (env : Env)])

It follows that we should have two kinds of types: one for numbers and the other for
functions.

Even numeric types may not be straightforward: What information does a number
type need to record? In most languages, there are actually many numeric types, and
indeed there may not even be a single one that represents “numbers”. However, we have
ignored these gradations between numbers [REF], so it’s sufficient for us to have just
one. Having decided that, do we record additional information about which number?
We could in principle, but we would soon run into decidability problems.

134

As for functions, we have more information: the type of expected argument, and
the type of claimed result. We might as well record this information we have been
given until and unless it has proven to not be useful. Combining these, we obtain the
following abstract language of types:

(define-type Type

[numT]

[funT (arg : Type) (ret : Type)])

Now that we’ve fixed both the term and type structure of the language, let’s make sure
we agree on what constitute type errors in our language (and, by fiat, everything not a
type error must pass the type checker). There are three obvious forms of type errors:

• One or both arguments of + is not a number, i.e., is not a numT.

• One or both arguments of * is not a number.

• The expression in the function position of an application is not a function, i.e., is
not a funT.

Do Now!

Any more?

We’re actually missing one:

• The expression in the function position of an application is a function but the type
of the actual argument does not match the type of the formal argument expected
by the function.

It seems clear all other programs in our language ought to type-check.
A natural starting signature for the type-checker would be that it is a procedure

that consumes an expression and returns a boolean value indicating whether or not the
expression type-checked. Because we know expressions contain identifiers, it soon
becomes clear that we will want a type environment, which maps names to types, anal-
ogous to the value environment we have seen so far.

Exercise

Define the types and functions associated with type environments.

Thus, we might begin our program as follows:
<tc-take-1> ::=

(define (tc [expr : TyExprC] [tenv : TyEnv]) : boolean

(type-case TyExprC expr

<tc-take-1-numC-case>
<tc-take-1-idC-case>
<tc-take-1-appC-case>))

135

As the abbreviated set of cases above suggests, this approach will not work out.
We’ll soon see why.

Let’s begin with the easy case: numbers. Does a number type-check? Well, on
its own, of course it does; it may be that the surrounding context is not expecting a
number, but that error would be signaled elsewhere. Thus:

<tc-take-1-numC-case> ::=

[numC (n) true]

Now let’s handle identifiers. Is an identifier well-typed? Again, on its own it would
appear to be, provided it is actually a bound identifier; it may not be what the context
desires, but hopefully that too would be handled elsewhere. Thus we might write

<tc-take-1-idC-case> ::=

[idC (n) (if (lookup n tenv)

true

(error 'tc "not a bound identifier"))]

This should make you a little uncomfortable: lookup already signals an error if an
identifier isn’t bound, so there’s no need to repeat it (indeed, we will never get to this
error invocation). But let’s push on.

Now we tackle applications. We should type-check both the function part, to make
sure it’s a function, then ensure that the actual argument’s type is consistent with what
the function declares to be the type of its formal argument. For instance, the function
could be a number and the application could itself be a function, or vice versa, and in
either case we want to prevent such mis-applications.

How does the code look?
<tc-take-1-appC-case> ::=

[appC (f a) (let ([ft (tc f tenv)])

...)]

The recursive call to tc can only tell us whether the function expression type-
checks or not. If it does, how do we know what type it has? If we have an immediate
function, we could reach into its syntax and pull out the argument (and return) types.
But if we have a complex expression, we need some procedure that will calculate the
resulting type of that expression. Of course, such a procedure could only provide a type
if the expression is well-typed; otherwise it would not be able to provide a coherent
answer. In other words, our type “calculator” has type “checking” as a special case!
We should therefore strengthen the inductive invariant on tc: that it not only tells us
whether an expression is typed but also what its type is. Indeed, by giving any type at
all it confirms that the expression types, and otherwise it signals an error.

Let’s now define this richer notion of a type “checker”.
<tc> ::=

(define (tc [expr : TyExprC] [tenv : TyEnv]) : Type

(type-case TyExprC expr

136

<tc-numC-case>
<tc-idC-case>
<tc-plusC-case>
<tc-multC-case>
<tc-appC-case>
<tc-lamC-case>))

Now let’s fill in the pieces. Numbers are easy: they have the numeric type.
<tc-numC-case> ::=

[numC (n) (numT)]

Similarly, identifiers have whatever type the environment says they do (and if they
aren’t bound, this signals an error).

<tc-idC-case> ::=

[idC (n) (lookup n tenv)]

Observe, so far, the similarity to and difference from interpreting: in the identifier
case we did essentially the same thing (except we returned a type rather than an actual
value), whereas in the numeric case we returned the abstract “number” rather than
indicate which specific number it was.

Let’s now examine addition. We must make sure both sub-expressions have nu-
meric type; only if they do will the overall expression evaluate to a number itself.

<tc-plusC-case> ::=

[plusC (l r) (let ([lt (tc l tenv)]

[rt (tc r tenv)])

(if (and (equal? lt (numT))

(equal? rt (numT)))

(numT)

(error 'tc "+ not both numbers")))]

We’ve usually glossed over multiplication after considering addition, but now it
will be instructive to handle it explicitly:

<tc-multC-case> ::=

[multC (l r) (let ([lt (tc l tenv)]

[rt (tc r tenv)])

(if (and (equal? lt (numT))

(equal? rt (numT)))

(numT)

(error 'tc "* not both numbers")))]

Do Now!

Did you see what’s different?

137

That’s right: practically nothing! (The multC instead of plusC in the type-case,
and the slightly different error message, notwithstanding.) That’s because, from the
perspective of type-checking (in this type language), there is no difference between
addition and multiplication, or indeed between any two functions that consume two
numbers and return one.

Observe another difference between interpreting and type-checking. Both care that
the arguments be numbers. The interpreter then returns a precise sum or product, but
the type-checker is indifferent to the differences between them: therefore the expres-
sion that computes what it returns ((numT)) is a constant, and the same constant in
both cases.

Finally, the two hard cases: application and funcions. We’ve already discussed
what application must do: compute the value of the function and argument expres-
sions; ensure the function expression has function type; and check that the argument
expression is of compatible type. If all this holds up, then the type of the overall
application is whatever type the function body would return (because the value that
eventually returns at run-time is the result of evaluating the function’s body).

<tc-appC-case> ::=

[appC (f a) (let ([ft (tc f tenv)]

[at (tc a tenv)])

(cond

[(not (funT? ft))

(error 'tc "not a function")]

[(not (equal? (funT-arg ft) at))

(error 'tc "app arg mismatch")]

[else (funT-ret ft)]))]

That leaves function definitions. The function has a formal parameter, which is
presumably used in the body; unless this is bound in the environment, the body most
probably will not type-check properly. Thus we have to extend the type environment
with the formal name bound to its type, and in that extended environment type-check
the body. Whatever value this computes must be the same as the declared type of the
body. If that is so, then the function itself has a function type from the type of the
argument to the type of the body.

Exercise

Why do I say “most probably” above?

<tc-lamC-case> ::=

[lamC (a argT retT b)

(if (equal? (tc b (extend-ty-env (bind a argT) tenv)) retT)

(funT argT retT)

(error 'tc "lam type mismatch"))]

Observe another curious difference between the interpreter and type-checker. In the
interpreter, application was responsible for evaluating the argument expression, extend-
ing the environment, and evaluating the body. Here, the application case does check

138

the argument expression, but leaves the environment alone, and simply returns the type
of the body without traversing it. Instead, the body is actually traversed by the checker
when checking a function definition, so this is the point at which the environment ac-
tually extends.

15.2.2 Type-Checking Conditionals

Suppose we extend the above language with conditionals. Even the humble if intro-
duces several design decisions. We’ll discuss two here, and return to one of them later
[REF].

1. What should be the type of the test expression? In some languages it must eval-
uate to a boolean value, in which case we have to enrich the type language to
include booleans (which would probably be a good idea anyway). In other lan-
guages it can be any value, and some values are considered “truthy” while others
“falsy”.

2. What should be the relationship between the then- and else-branches? In some
languages they must be of the same type, so that there is a single, unambiguous
type for the overall expression (which is that one type). In other languages the
two branches can have distinct types, which greatly changes the design of the
type-language and -checker, but also of the nature of the programming language
itself.

Exercise

Add booleans to the type language. What does this entail at a minimum,
and what else might be expected in a typical language?

Exercise

Add a type rule for conditionals, where the test expression is expected to
evaluate to a boolean and both then- and else-branches must have the same
type, which is the type of the overall expression.

15.2.3 Recursion in Code

Now that we’ve obtained a basic programming language, let’s add recursion to it. We
saw earlier [REF] that this could be done easily through desugaring. It’ll prove to be a
more complex story here.

A First Attempt at Typing Recursion

Let’s now try to express a simple recursive function. The simplest is, of course, one
that loops forever. Can we write an infinite loop with just functions? We already could
simply with this program—

((lambda (x) (x x))

(lambda (x) (x x)))

139

—which we know we can represent in our language with functions as values.
Exercise

Why does this construct an infinite loop? What subtle dependency is it
making about the nature of function calls?

Now that we have a typed language, and one that forces us to annotate all functions,
let’s annotate it. For simplicity, from now on we’ll assume we’re writing programs in
a typed surface syntax, and that desugaring takes care of constructing core language
terms.

Observe, first, that we have two identical terms being applied to each other. Histor-
ically, the overall term is called Ω (capital omega in Greek) and each of the identical
sub-terms is called ω (lower-case omega in Greek). It is not a given that identical terms
must have precisely the same type, because it depends on what invariants we want to
assert of the context of use. In this case, however, observe that x binds to ω, so the sec-
ond ω goes into both the first and second positions. As a result, typing one effectively
types both.

Therefore, let’s try to type ω; let’s call this type γ. It’s clearly a function type, and
the function takes one argument, so it must be of the form φ -> ψ. Now what is that
argument? It’s ω itself. That is, the type of the value going into φ is itself γ. Thus, the
type of ω is γ, which is φ -> ψ, which expands into (φ -> ψ) -> ψ, which further
expands to ((φ -> ψ) -> ψ) -> ψ, and so on. In other words, this type cannot be
written as any finite string!

Do Now!

Did you notice the subtle but important leap we just made?

Program Termination

We observed that the obvious typing of Ω, which entails typing γ, seems to run into
serious problems. From that, however, we jumped to the conclusion that this type
cannot be written as any finite string, for which we’ve given only an intuition, not a
proof. In fact, something even stranger is true: in the type system we’ve defined so far,
we cannot type Ω at all!

This is a strong statement, but we can actually say something much stronger. The
typed language we have so far has a property called strong normalization: every ex-
pression that has a type will terminate computation after a finite number of steps. In
other words, this special (and peculiar) infinite loop program isn’t the only one we
can’t type; we can’t type any infinite loop (or even potential infinite loop). A rough
intuition that might help is that any type—which must be a finite string—can have only
a finite number of ->’s in it, and each application discharges one, so we can perform
only a finite number of applications.

If our language permitted only straight-line programs, this would be unsurprising.
However, we have conditionals and even functions being passed around as values, and
with those we can encode any datatype we want. Yet, we still get this guarantee! That
makes this a somewhat astonishing result.

Exercise

140

Try to encode lists using functions in the untyped and then in the typed
language. What do you see? And what does that tell you about the impact
of this type system on the encoding?

This result also says something deeper. It shows that, contrary to what you may
believe—that a type system only prevents a few buggy programs from running—a type
system can change the semantics of a language. Whereas previously we could write an
infinite loop in just one to two lines, now we cannot write one at all. It also shows that
the type system can establish invariants not just about a particular program, but about
the language itself. If we want to absolutely ensure that a program will terminate, we
simply need to write it in this language and pass the type checker, and the guarantee is
ours!

What possible use is a language in which all programs terminate? For general-
purpose programming, none, of course. But in many specialized domains, it’s a tremen-
dously useful guarantee to have. For instance, suppose you are implementing a com-
plex scheduling algorithm; you would like to know that your scheduler is guaranteed to
terminate so that the tasks being scheduled will actually run. There are many other do-
mains, too, where we would benefit from such a guarantee: a packet-filter in a router;
a real-time event processor; a device initializer; a configuration file; the callbacks in
single-threaded JavaScript; and even a compiler or linker. In each case, we have an
almost unstated expectation that these programs will always terminate. And now we
have a language that can offer this guarantee—something it is impossible to test for, no
less! These are not

hypothetical
examples. In the
Standard ML
language, the
language for linking
modules uses
essentially this
typed language for
writing module
linking
specifications. This
means developers
can write quite
sophisticated
abstractions—they
have
functions-as-values,
after all!—while
still being
guaranteed that
linking will always
terminate,
producing a
program.

Typing Recursion

What this says is, whereas before we were able to handle rec entirely through desug-
aring, now we must make it an explicit part of the typed language. For simplicity, we
will consider a special case of rec—which nevertheless covers the common uses—
whereby the recursive identifier is bound to a function. Thus, in the surface syntax, one
might write

(rec (Σ num (n num)

(if0 n

0

(n + (Σ (n + -1)))))

(Σ 10))

for a summation function, where Σ is the name of the function, n its argument, and
num the type consumed by and returned from the function. The expression (Σ 10)

represents the use of this function to sum the number from 10 until 0.
How do we type such an expression? Clearly, we must have n bound in the body

of the function as we type it (but not of course, in the use of the function); this much
we know from typing functions. But what about Σ? Obviously it must be bound in the
type environment when checking the use ((Σ 10)), and its type must be num -> num.
But it must also be bound, to the same type, when checking the body of the function.
(Observe, too, that the type returned by the body must match its declared return type.)

141

Now we can see how to break the shackles of the finiteness of the type. It is cer-
tainly true that we can write only a finite number of ->’s in types in the program source.
However, this rule for typing recursion duplicates the -> in the body that refers to itself,
thereby ensuring that there is an inexhaustible supply of applications. It’s our infinite
quiver of arrows.

The code to implement this rule would be as follows. Assuming f is bound to the
function’s name, aT is the function’s argument type and rT is its return type, b is the
function’s body, and u is the function’s use:

<tc-lamC-case> ::=

[recC (f a aT rT b u)

(let ([extended-env

(extend-ty-env (bind f (funT aT rT)) tenv)])

(cond

[(not (equal? rT (tc b

(extend-ty-env

(bind a aT)

extended-env))))

(error 'tc "body return type not correct")]

[else (tc u extended-env)]))]

15.2.4 Recursion in Data

We have seen how to type recursive programs, but this doesn’t yet enable us to create
recursive data. We already have one kind of recursive datum—the function type—but
this is built-in. We haven’t yet seen how developers can create their own recursive
datatypes.

Recursive Datatype Definitions

When we speak of allowing programmers to create recursive data, we are actually
talking about three different facilities at once:

• Creating a new type.

• Letting instances of the new type have one or more fields.

• Letting some of these fields refer to instances of the same type.

In fact, once we allow the third, we must allow one more:

• Allowing non-recursive base-cases for the type.

This confluence of design criteria leads to what is commonly called an algebraic
datatype, such as the types supported by our typed language. For instance, consider
the following definition of a binary tree of numbers: Later [REF], we

will discuss how
types can be
parameterized.

(define-type BTnum

[BTmt]

[BTnd (n : number) (l : BTnum) (r : BTnum)])

142

Observe that without a name for the new datatype, BTnum, we would not have been
able to refer back ot it in BTnd. Similarly, without the ability to have more than one
kind of BTnum, we would not have been able to define BTmt, and thus wouldn’t have
been able to terminate the recursion. Finally, of course, we need multiple fields (as in
BTnd) to construct useful and interesting data. In other words, all three mechanisms
are packaged together because they are most useful in conjunction. (However, some
langauges do permit the definition of stand-alone structures. We will return to the
impact of this design decision on the type system later [REF].)

This concludes our initial presentation of recursive types, but it has a fatal problem.
We have not actually explained where this new type, BTnum, comes from. That is
because we have had to pretend it is baked into our type-checker. However, it is simply
impractical to keep changing our type-checker for each new recursive type definition—
it would be like modifying our interpreter each time the program contains a recursive
function! Instead, we need to find a way to make such definitions intrinsic to the type
language. We will return to this problem later [REF].

This style of data definition is sometimes also known as a sum of products. “Prod-
uct” refers to the way fields combine in one variant: for instance, the legal values of a
BTnd are the cross-product of legal values in each of the fields, supplied to the BTnd

constructor. The “sum” is the aggregate of all these variants: any given BTnum value is
just one of these. (Think of “product” as being “and”, and “sum” as being “or”.)

Introduced Types

Now, what impact does a datatype definition have? First, it introduces a new type; then
it uses this to define several constructors, predicates, and selectors. For instance, in the
above example, it first introduces BTnum, then uses it to ascribe the following types:

BTmt : -> BTnum

BTnd : number * BTnum * BTnum -> BTnum

BTmt? : BTnum -> boolean

BTnd? : BTnum -> boolean

BTnd-n : BTnum -> number

BTnd-l : BTnum -> BTnum

BTnd-r : BTnum -> BTnum

Observe a few salient facts:

• Both the constructors create instances of BTnum, not something more refined.
We will discuss this design tradeoff later [REF].

• Both predicates consume values of type BTnum, not “any”. This is because the
type system can already tell us what type a value is. Thus, we only need to
distinguish between the variants of that one type.

• The selectors really only work on instances of the relevant variant—e.g., BTnd-
n can work only on instances of BTnd, not on instances of BTmt—but we don’t
have a way to express this in the static type system for lack of a suitable static

143

type. Thus, applying these can only result in a dynamic error, not a static one
caught by the type system.

There is more to say about recursive types, which we will return to shortly [REF].

Pattern-Matching and Desugaring

Once we observe that these are the types, the only thing left is to provide an account of
pattern-matching. For instance, we can write the expression

(type-case BTnum t

[BTmt () e1]

[BTnd (nv lt rt) e2])

We have already seen [REF] that this can be written in terms of the functions defined
above. We can simulate the binding done by this pattern-matcher using let:

(cond

[(BTmt? t) e1]

[(BTnd? t) (let ([nv (BTnd-n t)]

[lt (BTnd-l t)]

[rt (BTnd-r t)])

e2)])

In short, this can be done by a macro, so pattern-matching does not need to be in the
core language and can instead be delegated to desugaring. This, in turn, means that one
language can have many different pattern-matching mechanisms.

Except, that’s not quite true. Somehow, the macro that generates the code above in
terms of cond needs to know that the three positional selectors for a BTnd are BTnd-n,
BTnd-l, and BTnd-r, respectively. This information is explicit in the type definition
but only implicitly present in the use of the pattern-matcher (that, indeed, being the
point). Thus, somehow this information must be communicated from definition to use.
Thus the macro expander needs something akin to the type environment to accomplish
its task.

Observe, furthermore, that expressions such as e1 and e2 cannot be type-checked—
indeed, cannot even be reliable identified as expressions—until macro expansion ex-
pands the use of type-case. Thus, expansion depends on the type environment, while
type-checking depends on the result of expansion. In other words, the two are symbi-
otic and need to happen, not quite in “parallel”, but rather in lock-step. Thus, building
desugaring for a typed language, where the syntactic sugar makes assumptions about
types, is a little more intricate than doing so for an untyped language.

15.2.5 Types, Time, and Space

It is evident that types already bestow a performance benefit in safe languages. That
is because the checks that would have been performed at run-time—e.g., + checking
that both its arguments are indeed numbers—are now performed statically. In a typed

144

language, an annotation like : number already answers the question of whether or not
something is of a particular a type; there is nothing to ask at run-time. As a result, these
type-level predicates can (and need to) disappear entirely, and with them any need to
use them in programs.

This is at some cost to the developer, who must convince the static type system that
their program does not induce type errors; due to the limitations of decidability, even
programs that might have run without error might run afoul of the type system. Nev-
ertheless, for programs that meet this requirement, types provide a notable execution
time saving.

Now let’s discuss space. Until now, the language run-time system has needed to
store information attached to every value indicating what its type is. This is how it
can implement type-level predicates such as number?, which may be used both by
developers and by primitives. If those predicates disappear, so does the space needed
to hold information to implement them. Thus, type-tags are no longer necessary. They would,

however, still be
needed by the
garbage collector,
though other
representations
such as BIBOP can
greatly reduce their
space impact.

The type-like predicates still left are those for variants: BTmt? and BTnd?, in the
example above. These must indeed be applied at run-time. For instance, as we have
noted, selectors like BTnd-n must perform this check. Of course, some more optimiza-
tions are possible. Consider the code generated by desugaring the pattern-matcher:
there is no need for the three selectors to implement this check, because control could
only have gotten to them after BTnd? returned a true vlaue. Thus, the run-time system
could provide just the desugaring level access to special unsafe primitives that do not
perform the check, resulting in generated code such as this:

(cond

[(BTmt? t) e1]

[(BTnd? t) (let ([nv (BTnd-n/no-check t)]

[lt (BTnd-l/no-check t)]

[rt (BTnd-r/no-check t)])

e2)])

The net result, however, is that the run-time representation must still store enough
information to accurately answer these questions. However, previously it needed to use
enough bits to record every possible type (and variant). Now, because the types have
been statically segregated, for a type with no variants (e.g., there is only one kind of
string), there is no need to store any variant information at all; that means the run-time
system can use all available bits to store actual dynamic values.

In contrast, when variants are present, the run-time system must sacrifice bits to
distinguish between the variants, but the number of variants within a type is obviously
far smaller than the number of variants and types across all types. In the BTnum exam-
ple above, there are only two variants, so the run-time system needs to use only one bit
to record which variant of BTnum a value represents.

Observe, in particular, that the type system’s segregation prevents confusion. If
there are two different datatypes that each have two variants, in the untyped world all
these four variants require distinct representations. In contrast, in the typed world these
representations can overlap across types, because the static type system will ensure one
type’s variants are never confused for that the another. Thus, types have a genuine space

145

(saving representation) and time (eliminating run-time checks) performance benefit for
programs.

15.2.6 Types and Mutation

We have now covered most of the basic features of our core language other than muta-
tion. In some ways, types have a simple interaction with mutation, and this is because
in a classical setting, they don’t interact at all. Consider, for instance, the following
untyped program:

(let ([x 10])

(begin

(set! x 5)

(set! x "something")))

What is “the type” of x? It doesn’t really have one: for some time it’s a number, and
later (note the temporal word) it’s a string. We simply can’t give it a type. In general,
type checking is an atemporal activity: it is done once, before the program runs, and
must hence be independent of the specific order in which programs execute. Keeping
track of the precise values in the store is hence beyond the reach of a type-checker.

The example above is, of course, easy to statically understand, but we should never
be mislead by simple examples. Suppose instead we had a program like

(let ([x 10])

(if (even? (read-number "Enter a number"))

(set! x 5)

(set! x "something")))

Now it is literally impossible to reach any static conclusion about the type of x after the
conditional finishes, because only at run-time can we know what the user might have
entered.

To avoid this morass, traditional type checkers adopt a simple policy: types must be
invariant across mutation. That is, a mutation operation—whether variable mutation
or structure mutation—cannot change the type of the mutant. Thus, the above exam-
ples would not type in our type language so far. How much flexibility this gives the
programmer is, however, a function of the type language. For instance, if we were to
admit a more flexible type that stands for “number or string”, then the examples above
would type, but x would always have this, less precise, type, and all uses of x would
have to contend with its reduced specificity, an issue we will return to later [REF].

In short, mutation is easy to account for in a traditional type system because its
rule is simply that, while the value can change in ways below the level of specificity
of the type system, the type cannot change. In the case of an operation like set! (or
our core language’s setC), this means the type of the assigned value must match that
of the variable. In the case of structure mutation, such as boxes, it means the assigned
value must match that the box’s contained type.

146

15.2.7 The Central Theorem: Type Soundness

We have seen earlier [REF] that certain type languages can offer very strong theo-
rems about their programs: for instance, that all programs in the language terminate.
In general, of course, we cannot obtain such a guarantee (indeed, we added general
recursion precisely to let ourselves write unbounded loops). However, a meaningful
type system—indeed, anything to which we wish to bestow the noble title of a type
system—ought to provide some kind of meaningful guarantee that all typed programs We have repeatedly

used the term “type
system”. A type
system is usually a
combination of
three components: a
language of types, a
set of type rules,
and an algorithm
that applies these
rules to programs.
By largely
presenting our type
rules embedded in a
function, we have
blurred the
distinction between
the second and third
of these, but can
still be thought of
as intellectually
distinct.

enjoy. This is the payoff for the programmer: by typing this program, she can be cer-
tain that certain bad things will certainly not happen. Short of this, we have just a
bug-finder; while it may be useful, it is not a sufficient basis for building any higher-
level tools (e.g., for obtaining security or privacy or robustness guarantees).

What theorem might we want of a type system? Remember that the type checker
runs over the static program, before execution. In doing so, it is essentially making a
prediction about the program’s behavior: for instance, when it states that a particular
complex term has type num, it is effectively predicting that when run, that term will
produce a numeric value. How do we know this prediction is sound, i.e., that the type
checker never lies? Every type system should be accompanied by a theorem that proves
this.

There is a good reason to be suspicious of a type system, beyond general skep-
ticism. There are many differences between the way a type checker and a program
evaluator work:

• The type checker only sees program text, whereas the evaluator runs over actual
stores.

• The type environment binds identifiers to types, whereas the evaluator’s environ-
ment binds identifiers to values or locations.

• The type checker compresses (even infinite) sets of values into types, whereas
the evaluator treats these distinctly.

• The type checker always terminates, whereas the evaluator might not.

• The type checker passes over the body of each expression only once, whereas
the evaluator might pass over each body anywhere from zero to infinite times.

Thus, we should not assume that these will always correspond!
The central result we wish to have for a given type-system is called soundness. It

says this. Suppose we are given an expression (or program) e. We type-check it and
conclude that its type is t. When we run e, let us say we obtain the value v. Then v

will also have type t.
The standard way of proving this theorem is to prove it in two parts, known as

progress and preservation. Progress says that if a term passes the type-checker, it will
be able to make a step of evaluation (unless it is already a value); preservation says that
the result of this step will have the same type as the original. If we interleave these
steps (first progress, then preservation; repeat), we can conclude that the final answer
will indeed have the same type as the original, so the type system is indeed sound.

147

For instance, consider this expression: (+ 5 (* 2 3)). It has the type num. In
a sound type system, progress offers a proof that, because this term types, and is not
already a value, it can take a step of execution—which it clearly can. After one step
the program reduces to (+ 5 6). Sure enough, as preservation proves, this has the
same type as the original: num. Progress again says this can take a step, producing
11. Preservation again shows that this has the same type as the previous (intermediate)
expressions: num. Now progress finds that we are at an answer, so there are no steps left
to be taken, and our answer is of the same type as that given for the original expression.

However, this isn’t the entire story. There are two caveats:

1. The program may not produce an answer at all; it might loop forever. In this case,
the theorem strictly speaking does not apply. However, we can still observe that
every intermediate term still has the same type, so the program is computing
meaningfully even if it isn’t producing a value.

2. Any rich enough language has properties that cannot be decided statically (and
others that perhaps could be, but the language designer chose to put off until
run-time). When one of these properties fails—e.g., the array index being within
bounds—there is no meaningful type for the program. Thus, implicit in every
type soundness theorem is some set of published, permitted exceptions or error
conditions that may occur. The developer who uses a type system implicitly
signs on to accepting this set.

As an example of the latter set, the user of a typical typed language acknowledges that
vector dereference, list indexing, and so on may all yield exceptions.

The latter caveat looks like a cop-out. In fact, it is easy to forget that it is really
a statement about what cannot happen at run-time: any exception not in this set will
provably not be raised. Of course, in languages designed with static types in the first
place, it is not clear (except by loose analogy) what these exceptions might be, be-
cause there would be no need to define them. But when we retrofit a type system onto
an existing programming language—especially languages with only dynamic enforce-
ment, such as Racket or Python—then there is already a well-defined set of exceptions,
and the type-checker is explicitly stating that some set of those exceptions (such as
“non-function found in application position” or “method not found”) will simply never
occur. This is therefore the payoff that the programmer receives in return for accepting
the type system’s syntactic restrictions.

15.3 Extensions to the Core
Now that we have a basic typed language, let’s explore how we can extend it to obtain
a more useful programming language.

15.3.1 Explicit Parametric Polymorphism

Which of these is the same?

• List<String>

148

• List<String>

• (listof string)

Actually, none of these is quite the same. But the first and third are very alike,
because the first is in Java and the third in our typed language, whereas the second, in
C++, is different. All clear? No? Good, read on!

Parameterized Types

The language we have been programming in already demonstrates the value of para-
metric polymorphism. For instance, the type of map is given as

(('a -> 'b) (listof 'a) -> (listof 'b))

which says that for all types 'a and 'b, map consumes a function that generates 'b

values from 'a values, and a list of 'a values, and generates the corresponding list of
'b values. Here, 'a and 'b are not concrete types; rather, they are type variables (in
our terminology, these should properly be called “type identifiers” because they don’t
change within the course of an instantiation; however, we will stick to the traditional
terminology).

A different way to understand this is that there is actually an infinite family of map
functions. For instance, there is a map that has this type:

((number -> string) (listof number) -> (listof string))

and another one of this type (nothing says the types have to be base types):

((number -> (number -> number)) (listof number) -> (listof (number -

> number)))

and yet another one of this type (nothing says 'a and 'b can’t be the same):

((string -> string) (listof string) -> (listof string))

and so on. Because they have different types, they would need different names: map_num_str,
map_num_num->num, map_str_str, and so on. But that would make them different
functions, so we’d have to always refer to a specific map rather than each of the generic
ones.

Obviously, it is impossible to load all these functions into our standard library:
there’s an infinite number of these! We’d rather have a way to obtain each of these
functions on demand. Our naming convention offers a hint: it is as if map takes two
parameters, which are types. Given the pair of types as arguments, we can then obtain
a map that is customized to that particular type. This kind of parameterization over
types is called parametric polymorphism. Not to be confused

with the
“polymorphism” of
objects, which we
will discuss below
[REF].

149

Making Parameters Explicit

In other words, we’re effectively saying that map is actually a function of perhaps four
arguments, two of them types and two of them actual values (a function and a list). In
a language with explicit types, we might try to write

(define (map [a : ???] [b : ???] [f : (a -> b)] [l : (listof a)]) : (listof b)

...)

but this raises some questions. First, what goes in place of the ???? These are the types
of a and b. But if a and b are themselves going to be replaced with types, then what is
the type of a type? Second, do we really want to be calling map with four arguments on
every instantiation? Third, do we really mean to take the type parameters first before
any actual values? The answers to these questions actually lead to a very rich space of
polymorphic type systems, most of which we will not explore here. I recommend

reading Pierce’s
Types and
Programming
Languages for a
modern, accessible
introduction.

Observe that once we start parameterizing, more code than we expect ends up being
parameterized. For instance, consider the type of the humble cons. Its type really is
parametric over the type of values in the list (even though it doesn’t actually depend on
those values!—more on that in a bit [REF]) so every use of cons must be instantiated
at the appropriate type. For that matter, even empty must be instantiated to create an
empty list of the correct type! Of course, Java and C++ programmers are familiar with
this pain.

Rank-1 Polymorphism

Instead, we will limit ourselves to one particularly useful and tractable point in this
space, which is the type system of Standard ML, of the typed language of this book,
of earlier versions of Haskell, roughly that of Java and C# with generics, and roughly
that obtained using templates in C++. This language defines what is called predicative,
rank-1, or prenex polymorphism. It answers the above questions thus: nothing, no, and
yes. Let’s explore this below.

We first divide the world of types into two groups. The first group consists of the
type language we’ve used until, but extended to include type variables; these are called
monotypes. The second group, known as polytypes, consists of parameterized types;
these are conventionally written with a ∀ prefix, a list of type variables, and then a type
expression that might use these variables. Thus, the type of map would be:

∀ a, b : (('a -> 'b) (listof 'a) -> (listof 'b))

Since “∀” is the logic symbol for “for all”, you would read this as: “for all types 'a
and 'b, the type of map is...”.

In rank-1 polymorphism, the type variables can only be substituted with mono-
types. (Furthermore, these can only be concrete types, because there would be nothing
left to substitute any remaining type variables.) As a result, we obtain a clear sepa-
ration between the type variable-parameters and regular parameters. We don’t need
to provide a “type annotation” for the type variables because we know precisely what
kind of thing they can be. This produces a relatively clean language that still offers
considerable expressive power. Impredicative

languages erase the
distinction between
monotypes and
polytypes, so a type
variable can be
instantiated with
another
polymorphic type.

150

Observe that because type variables can only be replaced with monotypes, they are
all independent of each other. As a result, all type parameters can be brought to the
front of the parameter list. This is what enables us to write types in the form ∀ tv,

... : t where the tv are type variables and t is a monotype (that might refer to those
variables). This justifies not only the syntax but also the name “prenex”. It will prove
to also be useful in the implementation.

Interpreting Rank-1 Polymorphism as Desugaring

The simplest implementation of this feature is to view it as a form of desugaring: this
is essentially the interpretation taken by C++. (Put differently, because C++ has a
macro system in the form of templates, by a happy accident it obtains a form of rank-
1 polymorphism through the use of templates.) For instance, imagine we had a new
syntactic form, define-poly, which takes a name, a type variable, and a body. On
every provision of a type to the name, it replaces the type variable with the given type
in the body. Thus:

(define-poly (id t) (lambda ([x : t]) : t x))

defines an identity function by first defining id to be polymorphic: given a concrete
type for t, it yields a procedure of one argument of type (t -> t) (where t is appro-
priately substituted). Thus we can instantiate id at many different types—

(define id_num (id number))

(define id_str (id string))

—thereby obtaining identity functions at each of those types: (test (id_num 5) 5)

(test (id_str "x") "x") In contrast, expressions like (id_num "x") (id_str

5) will, as we would expect, fail to type-check (rather than fail at run-time).
In case you’re curious, here’s the implementation. For simplicity, we assume there

is only one type parameter; this is easy to generalize using We will not only define
a macro for define-poly, it will in turn define a macro:

(define-syntax define-poly

(syntax-rules ()

[(_ (name tyvar) body)

(define-syntax (name stx)

(syntax-case stx ()

[(_ type)

(with-syntax ([tyvar #'type])

#'body)]))]))

Thus, given a definition such as

(define-poly (id t) (lambda ([x : t]) : t x))

the language creates a macro named id: the part that begins with (define-syntax

(name ...) ...) (where, in this example, name is id). An instantiation of id, such

151

as (id number), replaces t the type variable, tyvar, with the given type. To circum-
vent hygiene, we use with-syntax to force all uses of the type variable (tyvar) to
actually be replaced with the given type. Thus, in effect,

(define id_num (id number))

turns into

(define id_num (lambda ([x : number]) : number x))

However, this approach has two important limitations.

1. Let’s try to define a recursive polymorphic function, such as filter. Earlier we
have said that we ought to instantiate every single polymorphic value (such as
even cons and empty) with types, but to keep our code concise we’ll rely on the
fact that the underlying typed language already does this, and focus just on type
parameters for filter. Here’s the code:

(define-poly (filter t)

(lambda ([f : (t -> boolean)] [l : (listof t)]) : (listof t)

(cond

[(empty? l) empty]

[(cons? l) (if (f (first l))

(cons (first l)

((filter t) f (rest l)))

((filter t) f (rest l)))])))

Observe that at the recursive uses of filter, we must instantiate it with the
appropriate type.

This is a perfectly good definition. There’s just one problem. When we try to
use it—e.g.,

(define filter_num (filter number))

DrRacket does not terminate. Specifically, macro expansion does not terminate,
because it is repeatedly trying to make new copies of the code of filter. If, in
contrast, we write the function as follows, expansion terminates—

(define-poly (filter2 t)

(letrec ([fltr

(lambda ([f : (t -> boolean)] [l : (listof t)]) : (listof t)

(cond

[(empty? l) empty]

[(cons? l) (if (f (first l))

(cons (first l) (fltr f (rest l)))

(fltr f (rest l)))]))])

fltr))

152

but this needlessly pushes pain onto the user. Indeed, some template expanders
will cache previous values of expansion and avoid re-generating code when given
the same parameters. (Racket cannot do this because, in general, the body of
a macro can depend on mutable variables and values and even perform input-
output, so Racket cannot guarantee that a given input will always generate the
same output.)

2. Consider two instantiations of the identity function. We cannot compare id_num
and id_str because they are of different types, but even if they are of the same
type, they are not eq?:

(test (eq? (id number) (id number)) #f)

This is because each use of id creates a new copy of the body. Now even if
the optimization we mentioned above were applied, so for the same type there
is only one code body, there would still be different code bodies for different
types—but even this is unnecessary! There’s absolutely nothing in the body of Indeed, C++

templates are
notorious for
creating code bloat;
this is one of the
reasons.

id, for instance, that actually depends on the type of the argument. Indeed, the
entire infinite family of id functions can share just one implementation. The
simple desugaring strategy fails to provide this.

In other words, the desugaring based strategy, which is essentially an implemen-
tation by substitution, has largely the same problems we saw earlier with regards to
substitution as an implementation of parameter instantiation. However, in other cases
substitution also gives us a ground truth for what we expect as the program’s behavior.
The same will be true with polymorphism, as we will soon see [REF].

Observe that one virtue to the desugaring strategy is that it does not require our type
checker to “know” about polymorphism. Rather, the core type language can continue to
be monomorphic, and all the (rank-1) polymorphism is handled entirely through expan-
sion. This offers a cheap strategy for adding polymorphism to a language, though—as
C++ shows—it also introduces significant overheads.

Finally, though we have only focused on functions, the preceding discussions ap-
plies equally well to data structures.

Alternate Implementations

There are other implementation strategies that don’t suffer from these problems. We
won’t go into them here, but the essence of at least some of them is the “caching”
approach we sketched above. Because we can be certain that, for a given set of type
parameters, we will always get the same typed body, we never need to instantiate a
polymorphic function at the same type twice. This avoids the infinite loop. If we type-
check the instantiated body once, we can avoid checking at other instantiations of the
same type (because the body will not have changed). Furthermore, we do not need to
retain the instantiated sources: once we have checked the expanded program, we can
dispose of the expanded terms and retain just one copy at run-time. This avoids all the
problems discussed in the pure desugaring strategy shown above, while retaining the
benefits.

153

Actually, we are being a little too glib. One of the benefits of static types is that
they enable us to pick more precise run-time representations. For instance, a static type
can tell us whether we have a 32-bit or 64-bit number, or for that matter a 32-bit value
or a 1-bit value (effectively, a boolean). A compiler can then generate specialized code
for each representation, taking advantage of how the bits are laid out (for example, 32
booleans can be packed into a single 32-bit word). Thus, after type-checking at each
used type, the polymorphic instantiator may keep track of all the special types at which
a function or data structure was used, and provide this information to the compiler for
code-generation. This will then result in several copies of the function, none of which
are eq? with each other—but for good reason and, because their operations are truly
different, rightly so.

Relational Parametricity

There’s one last detail we must address regarding polymorphism.
We earlier said that a function like cons doesn’t depend on the specific values of its

arguments. This is also true of map, filter, and so on. When map and filter want to
operate on individual elements, they take as a parameter another function which in turn
is responsible for making decisions about how to treat the elements; map and filter

themselves simply obey their parameter functions.
One way to “test” whether this is true is to substitute some different values in the

argument list, and a correspondingly different parameter function. That is, imagine we
have a relation between two sets of values; we convert the list elements according to
the relation, and the parameter function as well. The question is, will the output from
map and filter also be predictable by the relation? If, for some input, this was not
true of the output of map, then it must be that map inspected the actual values and did
something with that information. But in fact this won’t happen for map, or indeed most
of the standard polymorphic functions.

Functions that obey this relational rule are called relationally parametric. This is Read Wadler’s
Theorems for Free!
and Reynolds’s
Types, Abstraction
and Parametric
Polymorphism.

another very powerful property that types give us, because they tell us there is a strong
limit on the kinds of operations such polymorphic functions can perform: essentially,
that they can drop, duplicate, and rearrange elements, but not directly inspect and make
decisions on them.

At first this sounds very impressive (and it is!), but on inspection you might re-
alize this doesn’t square with your experience. In Java, for instance, a polymorphic
method can still use instanceof to check which particular kind of value it obtained
at run-time, and change its behavior accordingly. Such a method would indeed not be
relationally parametric! Indeed, relational parametricity can equally be viewed as a On the Web, you

will often find this
property described
as the inability of a
function to inspect
the
argument—which is
not quite right.

statement of the weakness of the language: that it permits only a very limited set of op-
erations. (You could still inspect the type—but not act upon what you learned, which
makes the inspection pointless. Therefore, a run-time system that wants to simulate
relational parametricity would have to remove operations like instanceof as well as
various proxies to it: for instance, adding 1 to a value and catching exceptions would
reveal whether the value is a number.) Nevertheless, it is a very elegant and surprising
result, and shows the power of program reasoning possible with rich type systems.

154

15.3.2 Type Inference

Writing polymorphic type instantiations everywhere can be an awfully frustrating pro-
cess, as users of many versions of Java and C++ can attest. Imagine if in our programs,
every single time we wrote first or rest, we had to also instantiate it at a type! The
reason we have been able to avoid this fate is because our language implements type
inference. This is what enables us to write the definition

(define (mapper f l)

(cond

[(empty? l) empty]

[(cons? l) (cons (f (first l)) (mapper f (rest l)))]))

and have the programming environment automatically declare that
> mapper

- (('a -> 'b) (listof 'a) -> (listof 'b))

Not only is this the correct type, this is a very general type! The process of being able
to derive such general types just from the program structure feels almost magical. Now
let’s look behind the curtain.

First, let’s understand what type inference is doing. Some people mistakenly think
of languages with inference as having no type declarations, with inference taking their
place. This is confused at multiple levels. For one thing, even in languages with
inference, programmers are free (and for documentation purposes, often encouraged—
as you have been) to declare types. Furthemore, in the absence of such declarations, it Sometimes,

inference is also
undecidable and
programmers have
no choice but to
declare some of the
types. Finally,
writing explicit
annotations can
greatly reduce
indecipherable error
messages.

is not quite clear what inference actually means.
Instead, it is better to think of the underlying language as being fully, explicitly

typed—just like the polymorphic language we have just studied [REF]. We will simply
say that we are free to leave the type annotations after the :’s blank, and assume some
programming environment feature will fill them in for us. (And if we can go that far,
we can drop the :’s and extra embellishments as well, and let them all be inserted
automatically. Thus, inference becomes simply a user convenience for alleviating the
burden of writing type annotations, but the language underneath is explicitly typed.

How do we even think about what inference does? Suppose we have an expression
(or program) e, written in an explicitly typed language: i.e., e has type annotations
everywhere they are required. Now suppose we erase all annotations in e, and use a
procedure infer to deduce them back.

Do Now!

What property do we expect of infer?

We could demand many things of it. One might be that it produces precisely those
annotations that e originally had. This is problematic for many reasons, not least that e
might not even type-check, in which case how could infer possibly know what they
were (and hence should be)? This might strike you as a pedantic trifle: after all, if e
didn’t type-check, how can erasing its annotations and filling them back in make it do
so? Since neither program type-checks, who cares?

Do Now!

155

Is this reasoning correct?

Suppose e is

(lambda ([x : number]) : string x)

This procedure obviously fails to type-check. But if we erase the type annotations—
obtaining

(lambda (x) x)

—we equally obviously obtain a typeable function! Therefore, a more reasonable de-
mand might be that if the original e type-checks, then so must the version with an-
notations replaced by inferred types. This one-directional implication is useful in two
ways:

1. It does not say what must happen if e fails to type-check, i.e., it does not preclude
the type inference algorithm we have, which makes the faultily-typed identity
function above typeable.

2. More importantly, it assures us that we lose nothing by employing type inference:
no program that was previously typeable will now cease to be so. That means we
can focus on using explicit annotations where we want to, but will not be forced
to do so. Of course, this only

holds if inference is
decidable.We might also expect that both versions type to the same type, but that is not a given:

the function

(lambda ([x : number]) : number x)

types to (number -> number), whereas applying inference to it after erasing types
yields a much more general type. Therefore, relating these types and giving a precise
definition of type equality is not trivial, though we will briefly return to this issue later
[REF].

With these preliminaries out of the way, we are now ready to delve into the mechan-
ics of type inference. The most important thing to note is that our simple, recursive-
descent type-checking algorithm [REF] will no longer work. That was possible because
we already had annotations on all function boundaries, so we could descend into func-
tion bodies carrying information about those annotations in the type environment. Sans
these annotations, it is not clear how to descend.

In fact, it is not clear that there is any particular direction that makes more sense
than another. In a definition like mapper above, each fragment of code influences the
other. For instance, applying empty?, cons?, first, and rest to l all point to its
being a list. But a list of what? We can’t tell from any of those operations. However,
the fact that we apply f to each (or indeed, any) first element means the list members
must be of a type that can be passed to f. Similarly, we know the output must be a list
because of cons and empty. But what are its elements? They must be the return type
of f. Finally, note something very subtle: when the argument list is empty, we return

156

empty, not l (which we know is bound to empty at that point). Using the former
leaves the type of the return free to be any kind of list at all (constrained only by what
f returns); using the latter would force it to be the same type as the argument list.

All this information is in the function. But how do we extract it systematically and
in an algorithm that terminates and enjoys the property we have stated above? We do
this in two steps. First we generate constraints, based on program terms, on what the
types must be. Then we solve constraints to identify inconsistencies and join together
constraints spread across the function body. Each step is relatively simple, but the
combination creates magic.

Constraint Generation

Our goal, ultimately, is to find a type to fill into every type annotation position. It
will prove to be just as well to find a type for every expression. A moment’s thought
will show that this is likely necessary anyway: for instance, how can we determine the
type to put on a function without knowing the type of its body? It is also sufficient, in
that if every expression has had its type calculated, this will include the ones that need
annotations.

First, we must generate constraints to (later) solve. Constraint generation walks
the program source, emitting appropriate constraints on each expression, and returns
this set of constraints. It works by recursive descent mainly for simplicity; it really
computes a set of constraints, so the order of traversal and generation really does not
matter in principle—so we may as well pick recursive descent, which is easy—though
for simplicity we will use a list to represent this set.

What are constraints? They are simply statements about the types of expressions.
In addition, though the binding instances of variables are not expressions, we must
calculate their types too (because a function requires both argument and return types).
In general, what can we say about the type of an expression?

1. That it is related to the type of some identifier.

2. That it is related to the type of some other expression.

3. That it is a number.

4. That it is a function, whose domain and range types are presumably further con-
strained.

Thus, we define the following two datatypes:

(define-type Constraints

[eqCon (lhs : Term) (rhs : Term)])

(define-type Term

[tExp (e : ExprC)]

[tVar (s : symbol)]

[tNum]

[tArrow (dom : Term) (rng : Term)])

157

Now we can define the process of generating constraints:
<constr-gen> ::=

(define (cg [e : ExprC]) : (listof Constraints)

(type-case ExprC e

<constr-gen-numC-case>
<constr-gen-idC-case>
<constr-gen-plusC/multC-case>
<constr-gen-appC-case>
<constr-gen-lamC-case>))

When the expression is a number, all we can say is that we expect the type of the
expression to be numeric:

<constr-gen-numC-case> ::=

[numC (_) (list (eqCon (tExp e) (tNum)))]

This might sound trivial, but what we don’t know is what other expectations are
being made of this expression by those containing it. Thus, there is the possibility that
some outer expression will contradict the assertion that this expression’s type must be
numeric, leading to a type error.

For an identifier, we simply say that the type of the expression is whatever we
expect to be the type of that identifier:

<constr-gen-idC-case> ::=

[idC (s) (list (eqCon (tExp e) (tVar s)))]

If the context limits its type, then this expression’s type will automatically be lim-
ited, and must then be consistent with what its context expects of it.

Addition gives us our first look at a contextual constraint. For an addition expres-
sion, we must first make sure we generate (and return) constraints in the two sub-
expressions, which might be complex. That done, what do we expect? That each of
the sub-expressions be of numeric type. (If the form of one of the sub-expressions de-
mands a type that is not numeric, this will lead to a type error.) Finally, we assert that
the entire expression’s type is itself numeric. append3 is just a

three-argument
version of append.

<constr-gen-plusC/multC-case> ::=

[plusC (l r) (append3 (cg l)

(cg r)

(list (eqCon (tExp l) (tNum))

(eqCon (tExp r) (tNum))

(eqCon (tExp e) (tNum))))]

The case for multC is identical other than the variant name.
Now we get to the other two interesting cases, function declaration and applica-

tion. In both cases, we must remember to generate and return constraints of the sub-
expressions.

158

In a function definition, the type of the function is a function (“arrow”) type, whose
argument type is that of the formal parameter, and whose return type is that of the body:

<constr-gen-lamC-case> ::=

[lamC (a b) (append (cg b)

(list (eqCon (tExp e) (tArrow (tVar a) (tExp b)))))]

Finally, we have applications. We cannot directly state a constraint on the type of
the application. Rather, we can say that the function in the application position must
consume arguments of the actual parameter expression’s type, and return types of the
application expression’s type:

<constr-gen-appC-case> ::=

[appC (f a) (append3 (cg f)

(cg a)

(list (eqCon (tExp f) (tArrow (tExp a) (tExp e)))))]

And that’s it! We have finished generating constraints; now we just have to solve
them.

Constraint Solving Using Unification

The process used to solve constraints is known as unification. A unifier is given a
set of equations. Each equation maps a variable to a term, whose datatype is above.
Note one subtle point: we actually have two kinds of variables. Both tvar and tExp

are “variables”, the former evidently so but the latter equally so because we need to
solve for the types of these expressions. (An alternate formulation would introduce
fresh type variables for each expression, but we would still need a way to identify
which ones correspond to which expression, which eq? on the expressions already
does automatically. Also, this would generate far larger constraint sets, making visual
inspection daunting.)

For our purposes, the goal of unification is generate a substitution, or mapping
from variables to terms that do not contain any variables. This should sound familiar:
we have a set of simultaneous equations in which each variable is used linearly; such
equations are solved using Gaussian elimination. In that context, we know that we can
end up with systems that are both under- and over-constrained. The same thing can
happen here, as we will soon see.

The unification algorithm works iteratively over the set of constraints. Because
each constraint equation has two terms and each term can be one of four kinds, there
are essentially sixteen cases to consider. Fortunately, we can cover all sixteen with
fewer actual code cases.

The algorithm begins with the set of all constraints, and the empty substitution.
Each constraint is considered once and removed from the set, so in principle the ter-
mination argument should be utterly simple, but it will prove to be only slightly more
tricky in reality. As constraints are disposed, the substitution set tends to grow. When
all constraints have been disposed, unification returns the final substitution set.

159

For a given constraint, the unifier examines the left-hand-side of the equation. If it is
a variable, it is now ripe for elimination. The unifier adds the variable’s right-hand-side
to the substitution and, to truly eliminate it, replaces all occurrences of the variable in
the substitution with the this right-hand-side. In practice this needs to be implemented
efficiently; for instance, using a mutational representation of these variables can avoid
having to search-and-replace all occurrences. However, in a setting where we might
need to backtrack (as we will, in the presence of unification [REF]), the mutational
implementation has its own disadvantages.

Do Now!

Did you notice the subtle error above?

The subtle error is this. We said that the unifier eliminates the variable by replacing
all instances of it in the substitution. However, that assumes that the right-hand-side
does not contain any instances of the same variable. Otherwise we have a circular
definition, and it becomes impossible to perform this particular substitution. For this
reason, unifiers include a occurs check: a check for whether the same variable occurs
on both sides and, if it does, decline to unify.

Do Now!

Construct a term whose constraints would trigger the occurs check.

Do you remember ω?
Let us now consider the implementation of unification. It is traditional to denote

the substitution by the Greek letter Θ.

(define-type-alias Subst (listof Substitution))

(define-type Substitution

[sub [var : Term] [is : Term]])

(define (unify [cs : (listof Constraints)]) : Subst

(unify/Θ cs empty))

Let’s get the easy parts out of the way:
<unify/Θ> ::=

(define (unify/Θ [cs : (listof Constraints)] [Θ : Subst]) : Subst

(cond

[(empty? cs) Θ]

[(cons? cs)

(let ([l (eqCon-lhs (first cs))]

[r (eqCon-rhs (first cs))])

(type-case Term l

<unify/Θ-tVar-case>
<unify/Θ-tExp-case>
<unify/Θ-tNum-case>
<unify/Θ-tArrow-case>))]))

160

Now we’re ready for the heart of unification. We will depend on a function, ex-
tend+replace, with this signature: (Term Term Subst -> Subst). We expect
this to perform the occurs test and, if it fails (i.e., there is no circularity), extends the
substituion and replaces all existing instances of the first term with the second in the
substitution. Similarly, we will assume the existence of lookup: (Term subst ->

(optionof Term))

Exercise

Define extend+replace and lookup.

If the left-hand of a constraint equation is a variable, we first look it up in the sub-
stitution. If it is present, we replace the current constraint with a new one; otherwise,
we extend the substitution:

<unify/Θ-tVar-case> ::=

[tVar (s) (type-case (optionof Term) (lookup l Θ)

[some (bound)

(unify/Θ (cons (eqCon bound r)

(rest cs))

Θ)]

[none ()

(unify/Θ (rest cs)

(extend+replace l r Θ))])]

The same logic applies when it is an expression designator:
<unify/Θ-tExp-case> ::=

[tExp (e) (type-case (optionof Term) (lookup l Θ)

[some (bound)

(unify/Θ (cons (eqCon bound r)

(rest cs))

Θ)]

[none ()

(unify/Θ (rest cs)

(extend+replace l r Θ))])]

If it is a base type, such as a number, then we examine the right-hand side. There
are four possibilities, for the four different kinds of terms:

• If it is a number, then we have an equation that claims that the type num is
the same as the type num, which is patently true. We can therefore ignore this
constraint—because it tells us nothing new—and move on to the remainder.

You should, of course, question why such a constraint would have come about in
the first place. Clearly, our constraint generator did not generate such constraints.
However, a prior extension to the current substitution might have resulted in this
situation. Indeed, in practice we will encounter several of these.

161

• If it is a function type, then we clearly have a type error, because numeric and
function types are disjoint. Again, we would never have generated such a con-
straint directly, but it must have resulted from a prior substitution.

• It could have been one of the two variable kinds. However, we have carefully
arranged our constraint generator to never put these on the right-hand-side. Fur-
thermore, substitution will not introduce them on the right-hand-side, either.
Therefore, these two cases cannot occur.

This results in the following code:
<unify/Θ-tNum-case> ::=

[tNum () (type-case Term r

[tNum () (unify/Θ (rest cs) Θ)]

[else (error 'unify "number and something else")])]

Finally, we left with function types. Here the argument is almost exactly the same
as for numeric types.

<unify/Θ-tArrow-case> ::=

[tArrow (d r) (type-case Term r

[tArrow (d2 r2)

(unify/Θ (cons (eqCon d d2)

(cons (eqCon r r2)

cs))

Θ)]

[else (error 'unify "arrow and something else")])]

Note that we do not always shrink the size of the constraint set, so a simple ar-
gument does not suffice for proving termination. Instead, we must make an argument
based on the size of the constraint set, and on the size of the substitution (including the
number of variables in it).

The algorithm above is very general in that it works for all sorts of type terms,
not only numbers and functions. We have used numbers as a stand-in for all form of
base types; functions, similarly, stand for all constructed types, such as listof and
vectorof.

With this, we are done. Unification produces a substitution. We can now traverse
the substitution and find the types of all the expressions in the program, then insert the
type annotations accordingly. A theorem, which we will not prove here, dictates that
the success of the above process implies that the program would have typed-checked,
so we need not explicitly run the type-checker over this program.

Observe, however, that the nature of a type error has now changed dramatically.
Previously, we had a recursive-descent algorithm that walked a expressions using a
type environment. The bindings in the type environment were programmer-declared
types, and could hence be taken as (intended) authoritative specifications of types.
As a result, any mismatch was blamed on the expressions, and reporting type errors
was simple (and easy to understand). Here, however, a type error is a failure to no-
tify. The unification failure is based on events that occur at the confluence of two

162

smart algorithms—constraint generation and unification—and hence are not necessar-
ily comprehensible to the programmer. In particular, the equational nature of these
constraints means that the location reported for the error, and the location of the “true”
error, could be quite far apart. As a result, producing better error messages remains an
active research area. In practice the

algorithm will
maintain metadata
on which program
source terms were
involved and
probably on the
history of
unification, to be
able to trace errors
back to the source
program.

Finally, remember that the constraints may not precisely dictate the type of all
variables. If the system of equations is over-constrained, then we get clashes, resulting
in type errors. If instead the system is under-constrained, that means we don’t have
enough information to make definitive statements about all expressions. For instance,
in the expression (lambda (x) x) we do not have enough constraints to indicate what
the type of x, and hence of the entire expression, must be. This is not an error; it simply
means that x is free to be any type at all. In other words, its type is “the type of x -> the
type of x” with no other constraints. The types of these underconstrained identifiers are
presented as type variables, so the above expression’s type might be reported as ('a
-> 'a).

The unification algorithm actually has a wonderful property: it automatically com-
putes the most general types for an expression, also known as principal types. That is,
any actual type the expression can have can be obtained by instantiating the inferred
type variables with actual types. This is a remarkable result: in another example of
computers beating humans, it says that no human can generate a more general type
than the above algorithm can!

Let-Polymorphism

Unfortunately, though these type variables are superficially similar to the polymor-
phism we had earlier [REF], they are not. Consider the following program:

(let ([id (lambda (x) x)])

(if (id true)

(id 5)

(id 6)))

If we write it with explicit type annotations, it type-checks:

(if ((id boolean) true)

((id number) 5)

((id number) 6))

However, if we use type inference, it does not! That is because the 'a’s in the type
of id unify either with boolean or with number, depending on the order in which the
constraints are processed. At that point id effectively becomes either a (boolean ->

boolean) or (number -> number) function. At the use of id of the other type, then,
we get a type error!

The reason for this is because the types we have inferred through unification are not
actually polymorphic. This is important to remember: just because you type variables,
you haven’t seen polymorphism! The type variables could be unified at the next use,

163

at which point you end up with a mere monomorphic function. Rather, true polymor-
phism only obtains when you have true instantiation of type variables.

In languages with true polymorphism, then, constraint generation and unification
are not enough. Instead, languages like ML, Haskell, and even our typed programming
language, implement something colloquially called let-polymorphism. In this strategy,
when a term with type variables is bound in a lexical context, the type is automatically
promoted to be a quantified one. At each use, the term is effectively automatically
instantiated.

There are many implementation strategies that will accomplish this. The most naive
(and unsatisfying) is to merely copy the code of the bound identifier; thus, each use of
id above gets its own copy of (lambda (x) x), so each gets its own type variables.
The first might get the type ('a -> 'a), the second ('b -> 'b), the third ('c ->

'c), and so on. None of these type variables clash, so we get the effect of polymor-
phism. Obviously, this not only increases program size, it also does not work in the
presence of recursion. However, it gives us insight into a better solution: instead of
copying the code, why not just copy the type? Thus at each use, we create a renamed
copy of the inferred type: id’s ('a -> 'a) becomes ('b -> 'b) at the first use, and
so on, thus achieving the same effect as copying code but without its burdens. Because
all these strategies effectively mimic copying code, however, they only work within a
lexical context.

15.3.3 Union Types

Suppose we want to construct a list of zoo animals, of which there are many kinds: ar-
madillos, boa constrictors, and so on. Currently, we are forced to create a new datatype:

“In Texas, there
ain’t nothing in the
middle of the road
but a yellow line
and dead
armadillos.”—Jim
Hightower

(define-type Animal

[armadillo (alive? : boolean)]

[boa (length : number)])

and make a list of these: (listof Animal). The type Animal therefore represents
a “union” of armadillo and boa, except the only way to construct such unions is to
make a new type every time: if we want to represent the union of animals and plants,
we need

(define-type LivingThings

[animal (a : Animal)]

[plant (p : Plant)])

so an actual animal is now one extra “level” deep. These datatypes are called tagged
unions or discriminated unions, because we must introduce explicit tags (or discrim-
inators), such as animal and plant, to tell them apart. In turn, a structure can only
reside inside a datatype declaration; we have had to create datatypes with just one
variant, such as

(define-type Constraints

[eqCon (lhs : Term) (rhs : Term)])

164

to hold the datatype, and everywhere we’ve had to use the type Constraints because
eqCon is not itself a type, only a variant that can be distinguished at run-time.

Either way, the point of a union type is to represent a disjunction, or “or”. A value’s
type is one of the types in the union. A value usually belongs to only one of the types
in the union, though this is a function of precisely how the union types are defined,
whether there are rules for normalizing them, and so on.

Structures as Types

A natural reaction to this might be, why not lift this restriction? Why not allow each
structure to exist on its own, and define a type to be a union of some collection of
structures? After all, in languages ranging from C to Racket, programmers can de-
fine stand-alone structures without having to wrap them in some other type with a tag
constructor! For instance, in raw Racket, we can write

(struct armadillo (alive?))

(struct boa (length))

and a comment that says

;; An Animal is either

;; - (armadillo <boolean>)

;; - (boa <number>)

but without enforced static types, the comparison is messy. However, we can more
directly compare with Typed Racket, a typed form of Racket that is built into DrRacket.
Here is the same typed code:

#lang typed/racket

(struct: armadillo ([alive? : Boolean]))

(struct: boa ([length : Real])) ;; feet

We can now define functions that consume values of type boa without any reference to
armadillos:

;; http://en.wikipedia.org/wiki/Boa_constrictor#Size_and_weight

(define: (big-one? [b : boa]) : Boolean

(> (boa-length b) 8))

In fact, if we apply this function to any other type, including an armadillo—(big-one?

(armadillo true))—we get a static error. This is because armadillos are no more
related to boas than numbers or strings are.

Of course, we can still define a union of these types:

(define-type Animal (U armadillo boa))

and functions over it:

165

(define: (safe-to-transport? [a : Animal]) : Boolean

(cond

[(boa? a) (not (big-one? a))]

[(armadillo? a) (armadillo-alive? a)]))

Whereas before we had one type with two variants, now we have three types. It just so
happens that two of the types form a union of convenience to define a third.

Untagged Unions

It might appear that we still need to have discriminative tags, but we don’t. In languages
with union types, the effect of the optionof type constructor is often obtained by
combining the intended return type with a disjoint one representing failure or noneness.
For instance, here is the moral equivalent of (optionof number):

(define-type MaybeNumber (U Number Boolean))

For that matter, Boolean may itself be a union of True and False, as it is in Typed
Racket, so a more accurate simulation of the option type would be:

(define-type MaybeNumber (U Number False))

More generally, we could define

(struct: none ())

(define-type (Maybeof T) (U T none))

which would work for all types, because none is a new, distinct type that cannot be
confused for any other. This gives us the same benefit as the optionof type, except
the value we want is not buried one level deep inside a some structure, but is rather
available immediately. For instance, consider member, which has this Typed Racket
type:

(All (a) (a (Listof a) -> (U False (Listof a))))

If the element is not found, member returns false. Otherwise, it returns the list starting
from the element onward (i.e., the first element of the list will be the desired element):
> (member 2 (list 1 2 3))

'(2 3)

To convert this to use Maybeof, we can write

(define: (t) (in-list? [e : t] [l : (Listof t)]) : (Maybeof (Listof t))

(let ([v (member e l)])

(if v

v

(none))))

which, if the element is not found, returns the value (none), but if it is found, still
returns a list
> (in-list? 2 (list 1 2 3))

'(2 3)

so that there is no need to remove the list from a some wrapper.

166

Discriminating Untagged Unions

It’s one thing to put values into unions; we have to also consider how to take them
out, in a well-typed manner. In our ML-like type system, we use a stylized notation—
type-case in our language, pattern-matching in ML—to identify and pull apart the
pieces. In particular, when we write

(define (safe-to-transport? [a : Animal]) : boolean

(type-case Animal a

[armadillo (a?) a?]

[boa (l) (not (big-one? l))]))

the type of a remains the same in the entire expression. The identifiers a? and l are
bound to a boolean and numeric value, respectively, and big-one? must now be writ-
ten to consume those types, not armadillo and boa. Put in different terms, we cannot
have a function big-one? that consumes boas, because there is no such type.

In contrast, with union types, we do have the boa type. Therefore, we follow the
principle that the act of asking predicates of a value narrows the type. For instance, in
the cond case

[(boa? a) (not (big-one? a))]

though a begins as type Animal, after it passes the boa? test, the type checker is
expected to narrow its type to just the boa branch, so that the application of big-one?
is well-typed. In turn, in the rest of the conditional its type is not boa—in this case,
that leaves only one possibility, armadillo. This puts greater pressure on the type-
checker’s ability to test and recognize certain patterns—known as if-splitting—without
which it would be impossible to program with union types; but it can always default to
recognizing just those patterns that the ML-like system would have recognized, such
as pattern-matching or type-case.

Retrofitting Types

It is unsurprising that Typed Racket uses union types. They are especially useful when
retrofitting types onto existing programming languages whose programs were not de-
fined with an ML-like type discipline in mind, such as in scripting languages. A com-
mon principle of such retrofitted types is to statically catch as many dynamic exceptions
as possible. Of course, the checker must ultimately reject some programs, and if it re- Unless it

implements an
interesting idea
called soft typing,
which rejects no
programs but
provides
information about
points where the
program would not
have been typeable.

jects too many programs that would have run without an error, developers are unlikely
to adopt it. Because these programs were written without type-checking in mind, the
type checker may therefore need to go to heroic lengths to accept what are considered
reasonable idioms in the language.

Consider the following JavaScript function:
var slice = function (arr, start, stop) {

var result = [];

for (var i = 0; i <= stop - start; i++) {

result[i] = arr[start + i];

167

}

return result;

}

It consumes an array and two indices, and produces the sub-array between those in-
dices. For instance, slice([5, 7, 11, 13], 0, 2) produces [5, 7, 11].

In JavaScript, however, developers are free to leave out any or all trailing arguments
to a function. Every elided argument is given a special value, undefined, and it is up
to the function to cope with this. For instance, a typical implementation of splice
would let the user drop the third argument; the following definition
var slice = function (arr, start, stop) {

if (typeof stop == "undefined")

stop = arr.length - 1;

var result = [];

for (var i = 0; i <= stop - start; i++) {

result[i] = arr[start + i];

}

return result;

}

automatically returns the subarray until the end of the array: thus, slice([5, 7, 11,

13], 2) returns [11, 13].
In Typed JavaScript, a programmer can explicitly indicate a function’s willingness Built at Brown by

Arjun Guha and
others. See our Web
site.

to accept fewer arguments by giving a parameter the type U Undefined, giving it the
type

∀ t : (Array[t] * Int * (Int U Undefined) -> Array[t])

In principle, this means there is a potential type error at the expression stop - start,
because stop may not be a number. However, the assignment to stop sets it to a
numeric type precisely when it was elided by the user. In other words, in all control
paths, stop will eventually have a numeric type before the subtraction occurs, so this
function is well-typed. Of course, this requires the type-checker to be able to reason
about both control-flow (through the conditional) and state (through the assignment)
to ensure that this function is well-typed; but Typed JavaScript can, and can thus bless
functions such as this.

Design Choices

In languages with union types, it is common to have

• Stand-alone structure types (often represented using classes), rather than datatypes
with variants.

• Ad hoc collections of structures to represent particular types.

• The use of sentinel values to represent failure.

To convert programs written in this style to an ML-like type discipline would be ex-
tremely onerous. Therefore, many retrofitted type systems adopt union types to ease
the process of typing.

168

http://www.jswebtools.org/
http://www.jswebtools.org/

Of the three properties above, the first seems morally neutral, but the other two
warrant more discussion. We will address them in reverse order.

• Let’s tackle sentinels first. In many cases, sentinels ought to be replaced with
exceptions, but in many languages, exceptions can be very costly. Thus, de-
velopers prefer to make a distinction between truly exceptional situations—that
ought not occur—and situations that are expected in the normal course of oper-
ation. Checking whether an element is in a list and failing to find it is clearly in
the latter category (if we already knew the element was or wasn’t present, there
would be no need to run this predicate). In the latter case, using sentinels is
reasonable.

However, we must square this with the observation that failure to check for ex-
ceptional sentinel values is a common source of error—and indeed, security
flaws—in C programs. This is easy to reconcile. In C, the sentinel is of the
same type (or at least, effectively the same type) as the regular return value, and
furthermore, there are no run-time checks. Therefore, the sentinel can be used as
a legitimate value without a type error. As a result, a sentinel of 0 can be treated
as an address into which to allocate data, thus potentially crashing the system. In
contrast, our sentinel is of a truly new type that cannot be used in any computa-
tion. We can easily reason about this by observing that no existing functions in
our language consume values of type none.

• Setting aside the use of “ad hoc”, which is pejorative, are different groupings of
a set of structures a good idea? In fact, such groupings occur even in programs
using an ML-like discipline, when programmers want to carve different sub-
universes of a larger one. For instance, ML programmers use a type like

(define-type SExp

[numSexp (n : number)]

[strSexp (s : string)]

[listSexp (l : (listof SExp))])

to represent s-expressions. If a function now operates on just some subset of
these terms—say just numbers and lists of numbers—they must create a fresh
type, and convert values between the two types even though their underlying
representations are essentially identical. As another example, consider the set of
CPS expressions. This is clearly a subset of all possible expressions, but if we
were to create a fresh datatype for it, we would not be able to use any existing
programs that process expressions—such as the interpreter.

In other words, union types appear to be a reasonable variation on the ML-style
type system we have seen earlier. However, even within union types there are design
variations, and these have consequences. For instance, can the type system create new
unions, or are user-defined (and named) unions permitted? That is, can an expression
like this

169

(if (phase-of-the-moon)

10

true)

be allowed to type (to (U Number Boolean)), or is it a type error to introduce unions
that have not previously been named and explicitly identified? Typed Racket provides
the former: it will construct truly ad hoc unions. This is arguably better for importing
existing code into a typed setting, because it is more flexible. However, it is less clear
whether this is a good design for writing new code, because unions the programmer did
not intend can occur and there is no way to prevent them. This offers an unexplored
corner in the design space of programming languages.

15.3.4 Nominal Versus Structural Systems

In our initial type-checker, two types were considered equivalent if they had the same
structure. In fact, we offered no mechanism for naming types at all, so it is not clear
what alternative we had.

Now consider Typed Racket. A developer can write

(define-type NB1 (U Number Boolean))

(define-type NB2 (U Number Boolean))

followed by

(define: v : NB1 5)

Suppose the developer also defines the function

(define: (f [x : NB2]) : NB2 x)

and tries to apply f to v, i.e., (f v): should this application type or not?
There are two perfectly reasonable interpretations. One is to say that v was declared

to be of type NB1, which is a different name than NB2, and hence should be considered
a different type, so the above application should result in an error. Such a system is
called nominal, because the name of a type is paramount for determining type equality.

In contrast, another interpretation is that because the structure of NB1 and NB2 are
identical, there is no way for a developer to write a program that behaves differently
on values of these two types, so these two types should be considered identical. Such If you want to get

especially careful,
you would note that
there is a difference
between being
considered the same
and actually being
the same. We won’t
go into this issue
here, but consider
the implication for a
compiler writer
choosing
representations of
values, especially in
a language that
allows run-time
inspection of the
static types of
values.

a type system is called structural, and would successfully type the above expression.
(Typed Racket follows a structural discipline, again to reduce the burden of importing
existing untyped code, which—in Racket—is usually written with a structural inter-
pretation in mind. In fact, Typed Racket not only types (f v), it prints the result as
having type NB1, despite the return type annotation on f!)

The difference between nominal and structural typing is most commonly con-
tentious in object-oriented languages, and we will return to this issue briefly later
[REF]. However, the point of this section is to illustrate that these questions are not in-
trinsically about “objects”. Any language that permits types to be named—as all must,

170

for programmer sanity—must contend with this question: is naming merely a conve-
nience, or are the choices of names intended to be meaningful? Choosing the former
answer leads to structural typing, while choosing the latter leads down the nominal
path.

15.3.5 Intersection Types

Since we’ve just explored union types, you must naturally wonder whether there are
also intersection types. Indeed there are.

If a union type means that a value (of that type) belongs to one of the types in
the union, an intersection type clearly means the value belongs to all the types in the
intersection: a conjunction, or “and”. This might seem strange: how can a value belong
to more than one type?

As a concrete answer, consider overloaded functions. For instance, in some lan-
guages + operates on both numbers and strings; given two numbers it produces a num-
ber, and given two strings it produces a string. In such a language, what is the proper
type for +? It is not (number number -> number) alone, because that would reject
its use on strings. By the same reasoning, it is not (string string -> string)

alone either. It is not even

(U (number number -> number)

(string string -> string))

because + is not just one of these functions: it truly is both of them. We could ascribe
the type

((number U string) (number U string) -> (number U string))

reflecting the fact that each argument, and the result, can be only one of these types,
not both. Doing so, however, leads to a loss of precision.

Do Now!

In what way does this type lose precision?

Observe that with this type, the return type on all invocations is (number U string).
Thus, on every return we must distinguish beween numeric and string returns, or else
we will get a type error. Thus, even though we know that if given two numeric argu-
ments we will get a numeric result, this information is lost to the type system.

More subtly, this type permits each argument’s type to be chosen independently of
the other. Thus, according to this type, the invocation (+ 3 "x") is perfectly valid
(and produces a value of type (number U string)). But of course the addition oper-
ation we have specified is not defined for these inputs at all!

Thus the proper type to ascribe this form of addition is

(∧ (number number -> number)

(string string -> string))

171

where ∧ should be reminiscent of the conjunction operator in logic. This permits invo-
cation with two numbers or two strings, but nothing else. An invocation with two num-
bers has a numeric result type; one with two strings has a string result type; and nothing
else. This corresponds precisely to our intended behavior for overloading (sometimes
also called ad hoc polymorphism). Observe that this only handles a finite number of
overloaded cases.

15.3.6 Recursive Types

Now that we’ve seen union types, it pays to return to our original recursive datatype
formulation. If we accept the variants as type constructors, can we write the recursive
type as a union over these? For instance, returning to BTnum, shouldn’t we be able to
describe it as equivalent to

((BTmt) U (BTnd number BTnum BTnum))

thereby showing that BTmt is a zero-ary constructor, and BTnd takes three parameters?
Except, what are the types of those three parameters? In the type we’ve written above,
BTnum is either built into the type language (which is unsatisfactory) or unbound. Per-
haps we mean

BTnum = ((BTmt) U (BTnd number BTnum BTnum))

Except now we have an equation that has no obvious solution (remember ω?).
This situation should be familiar from recursion in values [REF]. Then, we invented

a recursive function constructor (and showed its implementation) to circumvent this
problem. We similarly need a recursive type constructor. This is conventionally called
µ (the Greek letter “mu”). With it, we would write the above type as

µ BTnum : ((BTmt) U (BTnd number BTnum BTnum))

µ is a binding construct; it binds BTnum to the entire type written after it, including the
recursive binding of BTnum itself. In practice, of course, this entire recursive type is the
one we wish to call BTnum:

BTnum = µ BTnum : ((BTmt) U (BTnd number BTnum BTnum))

Though this looks like a circular definition, notice that the name BTnum on the right
does not depend on the one to the left of the equation: i.e., we could rewrite this as

BTnum = µ T : ((BTmt) U (BTnd number T T))

In other words, this definition of BTnum truly can be thought of as syntactic sugar and
replaced everywhere in the program without fear of infinite regress.

At a semantic level, there are usually two very different ways of thinking about the
meaning of types bound by µ: they can be interpreted as isorecursive or equirecursive.
The distinction between these is, however, subtle and beyond the scope of this chapter. This material is

covered especially
well in Pierce’s
book.

It suffices to note that a recursive type can be treated as equivalent to its unfolding. For
instance, if we define a numeric list type as

172

NumL = µ T : ((MtL) U (ConsL number T))

then

µ T : ((MtL) U (ConsL number T))

= (MtL) U (ConsL number (µ T : ((MtL) U (ConsL number T))))

= (MtL) U (ConsL number (MtL))

U (ConsL number (ConsL number (µ T : ((MtL) U (ConsL number T)))))

and so on (iso- and equi-recursiveness differ in precisely what the notion of equality
is: definitional equality or isomorphism). At each step we simply replace the T pa-
rameter with the entire type. As with value recursion, this means we can “get another”
ConsL constructor upon demand. Put differently, the type of a list can be written as the
union of zero or arbitrarily many elements; this is the same as the type that consists of
zero, one, or arbitrarily many elements; and so on. Any lists of numbers fits all (and
precisely) these types.

Observe that even with this informal understanding of µ, we can now provide a
type to ω, and hence to Ω.

Exercise

Ascribe types to ω and Ω.

15.3.7 Subtyping

Imagine we have a typical binary tree definition; for simplicity, we’ll assume that all
the values are numbers. We will write this in Typed Racket to illustrate a point:

#lang typed/racket

(define-struct: mt ())

(define-struct: nd ([v : Number] [l : BT] [r : BT]))

(define-type BT (U mt nd))

Now consider some concrete tree values:
> (mt)

- : mt

#<mt>

> (nd 5 (mt) (mt))

- : nd

#<nd>

Observe that each structure constructor makes a value of its own type, not a value of
type BT. But consider the expression (nd 5 (mt) (mt)): the definition of nd declares
that the sub-trees must be of type BT, and yet we are able to successfully give it values
of type mt.

Obviously, it is not coincidental that we have defined BT in terms of mt and nd.
However, it does indicate that when type-checking, we cannot simply be checking for
function equality, at least not as we have so far. Instead, we must be checking that one

173

type “fits into” the other. This notion of fitting is called subtyping (and the act of being
fit, subsumption).

The essence of subtyping is to define a relation, usually denoted by <:, that relates
pairs of types. We say S <: T if a value of type S can be given where a value of type
T is expected: in other words, subtyping formalizes the notion of substitutability (i.e.,
anywhere a value of type T was expected, it can be replaced with—substituted by—a
value of type S). When this holds, S is called the subtype and T the supertype. It is
useful (and usually accurate) to take a subset interpretation: if the values of S are a
subset of T, then an expression expecting T values will not be unpleasantly surprised to
receive only S values.

Subtyping has a pervasive effect on the type system. We have to reexamine every
kind of type and understand its interaction with subtyping. For base types, this is usu-
ally quite obvious: disjoint types like number, string, etc., are all unrelated to each
other. (In languages where one base type is used to represent another—for instance,
in some scripting languages numbers are merely strings written with a special syntax,
and in other languages, booleans are merely numbers—there might be subtyping rela-
tionships even between base types, but these are not common.) However, we do have
to consider how subtyping interacts with every single compound type constructor.

In fact, even our very diction about types has to change. Suppose we have an
expression of type T. Normally, we would say that it produces values of type T. Now,
we should be careful to say that it produces values of up to or at most T, because it may
only produce values of a subtype of T. Thus every reference to a type should implicitly
be cloaked in a reference to the potential for subtyping. To avoid pestering you I will
refrain from doing this, but be wary that it is possible to make reasoning errors by not
keeping this implicit interpretation in mind.

Unions

Let us see how unions interact with subtyping. Clearly, every sub-union is a subtype of
the entire union. In our running example, clearly every mt value is also a BT; likewise
for nd. Thus,

mt <: BT

nd <: BT

As a result, (mt) also has type BT, thus enabling the expression (nd 5 (mt) (mt))

to itself type, and to have the type nd—and hence, also the type BT. In general,

S <: (S U T)

T <: (S U T)

(we write what seems to be the same rule twice just to make clear it doesn’t matter
which “side” of the union the subtype is on). This says that a value of S can be thought
of as a value of S U T, because any expression of type S U T can indeed contain a
value of type S.

174

Intersections

While we’re at it, we should also briefly visit intersections. As you might imagine,
intersections behave dually:

(S ∧ T) <: S

(S ∧ T) <: T

To convince yourself of this, take the subset interpretation: if a value is both S and T,
then clearly it is either one of them.

Do Now!

Why are the following two not valid subsumptions?

1. (S U T) <: S

2. T <: (S ∧ T)

The first is not valid because a value of type T is a perfectly valid element of type (S
U T). For instance, a number is a member of type (string U number). However, a
number cannot be supplied where a value of type string is expected.

As for the second, in general, a value of type T is not also a value of type S. Any
consumer of a (S ∧ T) value is expecting to be able to treat it as both a T and a S,
and the latter is not justified. For instance, given our overloaded + from before, if T
is (number number -> number), then a function of this type will not know how to
operate on strings.

Functions

We have seen one more constructor: functions. We must therefore determine the rules We have also seen
parametric
datatypes. In this
edition, exploring
subtyping for them
is left as an exercise
for the reader.

for subtyping when either type can be a function. Since we usually assume functions
are disjoint from all other types, we therefore only need to consider when one function
type is a subtype of another: i.e., when is

(S1 -> T1) <: (S2 -> T2)

? For convenience, let us call the type (S1 -> T1) as f1, and (S2 -> T2) as f2. The
question then is, if an expression is expecting functions of the f2 type, when can we
safely give it functions with the f1 type? It is easiest to think through this using the
subset interpretation.

Consider a use of the f2 type. It returns values of type T2. Thus, the context
surrounding the function application is satisfied with values of type T2. Clearly, if
T1 is the same as T2, the use of f2 would continue to type; similarly, if T1 consists
of a subset of T2 values, it would still be fine. The only problem is if T1 has more
values than T2, because the context would then encounter unexpected values that would
result in undefined behavior. In other words, we need that T1 <: T2. Observe that
the “direction” of containment is the same as that for the entire function type; this is
called covariance (both vary in the same direction). This is perhaps precisely what you
expected.

175

By the same token, you might expect covariance in the argument position as well:
namely, that S1 <: S2. This would be predictable, and wrong. Let’s see why.

An application of a function with f2 type is providing parameter values of type S2.
Suppose we instead substitute the function with one of type f1. If we had that S1 <:

S2, that would mean that the new function accepts only values of typeS1—a strictly
smaller set. That means there may be some inputs—specifically those in S2 that are
not in S1—that the application is free to provide on which the substituted function is
not defined, again resulting in undefined behavior. To avoid this, we have to make the
subsumption go in the other direction: the substituting function should accept at least
as many inputs as the one it replaces. Thus we need S2 <: S1, and say the function
position is contravariant: it goes against the direction of subtyping.

Putting together these two observations, we obtain a subtyping rule for functions
(and hence also methods):

(S2 <: S1) and (T1 <: T2) => (S1 -> T1) <: (S2 -> T2)

Implementing Subtyping

Of course, these rules assume that we have modified the type-checker to respect sub-
typing. The essence of subtyping is a rule that says, if an expression e is of type S,
and S <: T, then e also has type T. While this sounds intuitive, it is also immediately
problematic for two reasons:

• Until now all of our type rules have been syntax-driven, which is what enabled
us to write a recursive-descent type-checker. Now, however, we have a rule that
applies to all expressions, so we can no longer be sure when to apply it.

• There could be many levels of subtyping. As a result, it is no longer obvious
when to “stop” subtyping. In particular, whereas before type-checking was able
to calculate the type of an expression, now we have many possible types for each
expression; if we return the “wrong” one, we might get a type error (due to that
not being the type expected by the context) even though there exists some other
type that was the one expected by the context.

What these two issues point to is that the description of subtyping we are giving here
is fundamentally declarative: we are saying what must be true, but not showing how
to turn it into an algorithm. For each actual type language, there is a less or more
interesting problem in turning this into algorithmic subtyping: an actual algorithm that
realizes a type-checker (ideally one that types exactly those programs that would have
typed under the declarative regime, i.e., one that is both sound and complete).

15.3.8 Object Types

As we’ve mentioned earlier, types for objects are typically riven into two camps: nom-
inal and structural. Nominal types are familiar to most programmers through Java, so
I won’t say much about them here. Structural types for objects dictate that an object’s
type is itself a structured object, consisting of names of fields and their types. For
instance, an object with two methods, add1 and sub1 [REF], would have the type

176

{add1 : (number -> number), sub1 : (number -> number)}

(For future reference, let’s call this type addsub.) Type-checking would then follow
along predictable lines: for field access we would simply ensure the field exists and
would use its declared type for the dereference expression; for method invocation we
would have to ensure not only that the member exists but that it has a function type. So
far, so straightforward.

Object types become complicated for many reasons: Whole books are
therefore devoted to
this topic. Abadi
and Carelli’s A
Theory of Objects is
important but now
somewhat dated.
Bruce’s
Foundations of
Object-Oriented
Languages: Types
and Semantics is
more modern, and
also offers more
gentle exposition.
Pierce covers all the
necessary theory
beautifully.

• Self-reference. What is the type of self? It must the same type as the object
itself, since any operation that can be applied to the object from the “outside”
can also be applied to it from the “inside” using self. This means object types
are recursive types.

• Access controls: private, public, and other restrictions. These lead to a distinc-
tion in the type of an object from “outside” and “inside”.

• Inheritance. Not only do we have to give a type to the parent object(s), what is
visible along inheritance paths may, again, differ from what is visible from the
“outside”.

• The interplay between multiple-inheritance and subtyping.

• The relationship between classes and interfaces in languages like Java, which
has a run-time cost.

• Mutation.

• Casts.

• Snakes on a plane.

and so on. Some of these problems simplify in the presence of nominal types, because
given a type’s name we can determine everything about its behavior (the type decla-
rations effectively become a dictionary through which the object’s description can be
looked up on demand), which is one argument in favor of nominal typing. Note that Java’s

approach is not the
only way to build a
nominal type
system. We have
already argued that
Java’s class system
needlessly restricts
the expressive
power of
programmers
[REF]; in turn,
Java’s nominal type
system needlessly
conflates types
(which are interface
descriptions) and
implementations. It
is, therefore,
possible to have
much better
nominal type
systems than Java’s.
Scala, for instance,
takes significant
steps in this
direction.

A full exposition of these issues will take much more room than we have here.
For now, we will limit ourselves to one interesting question. Remember that we said
subtyping forces us to consider every type constructor? The structural typing of objects
introduces one more: the object type constructor. We therefore have to understand its
interaction with subtyping.

Before we do, let’s make sure we understand what an object type even means.
Consider the type addsub above, which lists two methods. What objects can be given
this type? Obviously, an object with just those two methods, with precisely those two
types, is eligible. Equally obviously, an object with only one and not the other of those
two methods, no matter what else it has, is not. But the phrase “no matter what else
it has” is meant to be leading. What if an object represents an arithmetic package that
also contains methods + and *, in addition to the above two (all of the appropriate
type)? In that case we certainly have an object that can supply those two methods,

177

so the arithmetic package certainly has type addsub. Its other methods are simply
inaccessible using type addsub.

Let us write out the type of this package, in full, and call this type as+*:

{add1 : (number -> number),

sub1 : (number -> number),

+ : (number number -> number),

* : (number number -> number)}

What we have just argued is that an object of type as+* should also be allowed to claim
the type addsub, which means it can be substituted in any context expecting a value of
type addsub. In other words, we have just said that we want as+* <: addsub:

{add1 : (number -> number), {add1 : (number -> number),

sub1 : (number -> number), <: sub1 : (number -> number)}

+ : (number number -> number),

* : (number number -> number)}

This may momentarily look confusing: we’ve said that subtyping follows set inclusion,
so we would expect the smaller set on the left and the larger set on the right. Yet, it
looks like we have a “larger type” (certainly in terms of character count) on the left and
a “smaller type” on the right.

To understand why this is sound, it helps to develop the intuition that the “larger”
the type, the fewer values it can have. Every object that has the four methods on the
left clearly also has the two methods on the right. However, there are many objects
that have the two methods on the right that fail to have all four on the left. If we think
of a type as a constraint on acceptable value shapes, the “bigger” type imposes more
constraints and hence admits fewer values. Thus, though the types may appear to be of
the wrong sizes, everything is well because the sets of values they subscribe are of the
expected sizes.

More generally, this says that by dropping fields from an object’s type, we obtain
a supertype. This is called width subtyping, because the subtype is “wider”, and we
move up the subtyping hierarchy by adjusting the object’s “width”. We see this even
in the nominal world of Java: as we go up the inheritance chain a class has fewer and
fewer methods and fields, until we reach Object, the supertype of all classes, which
has the fewest. Thus for all class types C in Java, C <: Object. Somewhat

confusingly, the
terms narrowing
and widening are
sometimes used, but
with what some
might consider the
opposite meaning.
To widen is to go
from subtype to
supertype, because
it goes from a
“narrower”
(smaller) to a
“wider” (bigger)
set. These terms
evolved
independently, but
unfortunately not
consistently.

As you might expect, there is another important form of subtyping, which is within
a given member. This simply says that any particular member can be subsumed to a
supertype in its corresponding position. For obvious reasons, this form is called depth
subtyping.

Exercise

Construct two examples of depth subtyping. In one, give the field itself
an object type, and use width subtyping to subtype that field. In the other,
give the field a function type.

Java has limited depth subtyping, preferring types to be invariant down the object
hierarchy because this is a safe option for conventional mutation.

178

The combination of width and depth subtyping cover the most interesting cases
of object subtyping. A type system that implemented only these two would, how-
ever, needlessly annoy programmers. Other convenient (and mathematically necessary)
rules include the ability to permute names, reflexivity (every type is a subtype of itself,
because it is more convenient to interpret the subtype relationship as ⊆), and transitiv-
ity. Languages like Typed JavaScript employ all these features to provide maximum
flexibility to programmers.

16 Checking Program Invariants Dynamically: Con-
tracts

179

Contents

180

Type systems offer rich and valuable ways to represent program invariants. How-
ever, they also represent an important trade-off, because not all non-trivial properties
of programs can be verified statically. Furthermore, even if we can devise a method to This is a formal

property, known as
Rice’s Theorem.

settle a certain property statically, the burdens of annotation and computational com-
plexity may be too great. Thus, it is inevitable that some of the properties we care
about must either be ignored or settled only at run-time. Here, we will discuss run-time
enforcement.

Virtually every programming language has some form of assertion mechanism that
enables programmers to write properties that are richer than the language’s static type
system permits. In languages without static types, these properties might start with
simple type-like assertions: whether a parameter is numeric, for instance. However,
the language of assertions is often the entire programming language, so any predicate
can be used as an assertion: for instance, an implementation of a cryptography package
might want to ensure certain parameters pass a primality test, or a balanced binary
search-tree might want to ensure that its subtrees are indeed balanced and preserve the
search-tree ordering.

16.1 Contracts as Predicates
It is therefore easy to see how to implement simple contracts. A contract embodies a In what follows we

will use the
language #lang
plai, for two
reasons. First, this
better simulates
programming in an
untyped language.
Second, for
simplicity we will
write type-like
assertions as
contracts, but in the
typed language
these will be
flagged by the
type-checker itself,
not letting us see
the run-time
behavior. In effect,
it is easier to “turn
off” the type
checker. However,
contracts make
perfect sense even
in a typed world,
because they
enhance the set of
invariants that a
programmer can
express.

predicate. It consumes a value and applies the predicate to the value. If the value passes
the predicate, the contract returns the value unmolested; if the value fails, the contract
reports an error. Its only behaviors are to return the supplied value or to error: it should
not change the value in any way. In short, on values that pass the predicate, the contact
itself acts as the identity function.

We can encode this essence in the following function:

(define (make-contract pred?)

(lambda (val)

(if (pred? val) val (blame "violation"))))

(define (blame s) (error 'contract "∼a" s))

Here’s an example contract:

(define non-neg?-contract

(make-contract

(lambda (n) (and (number? n)

(>= n 0)))))

(In a typed language, the number? check would of course be unnecessary because
it can be encoded—and statically checked!—in the type of the function using the con-
tract.) Suppose we want to make sure we don’t get imaginary numbers when computing
square roots; we might write

(define (real-sqrt-1 x)

(sqrt (non-neg?-contract x)))

181

http://en.wikipedia.org/wiki/Rice's_theorem

In many languages assertions are written as statements rather than as expressions, so
an alternate way to write this would be:

(define (real-sqrt-2 x)

(begin

(non-neg?-contract x)

(sqrt x)))

(In some cases this form is clearer because it states crisply at the beginning of the
function what is expected of the parameters. It also enables parameters to be checked
just once. Indeed, in some languages the contract can be written in the function header
itself, thereby improving the information given in the interface.) Now if real-sqrt-
1 or real-sqrt-2 are applied to 4 they produce 2, but if applied to -1 they raise a
contract violation error.

16.2 Tags, Types, and Observations on Values
At this point we’ve reproduced the essence of assertion systems in most languages.
What else is there to say? Let’s suppose for a moment that our language is not statically
typed. Then we will want to write assertions that reproduce at least traditional type-
like invariants, if not more. make-contract above can capture all standard type-like
properties such as checking for numbers, strings, and so on, assuming the appropriate
predicates are either provided by the language or can be fashioned from the ones given.
Or can it?

Recall that even our simplest type language had not just base types, like numbers,
but also constructed types. While some of these, like lists and vectors, appear to not
be very challenging, they are once we care about mutation, performance, and blame,
which we discuss below. However, functions are immediately problematic.

As a working example, we will take the following function:

(define d/dx

(lambda (f)

(lambda (x)

(/ (- (f (+ x 0.001))

(f x))

0.001))))

Statically, we would give this the type

((number -> number) -> (number -> number))

(it consumes a function, and produces its derivative—another function). Let us suppose
we want to guard this with contracts.

The fundamental problem is that in most languages, we cannot directly express
this as a predicate. Most language run-time systems store very limited information
about the types of values—so limited that, relative to the types we have seen so far, we
should use a different name to describe this information; traditionally they are called

182

tags. Sometimes tags coincide with what we might regard as types: for instance, a There have been a
few efforts to
preserve rich type
information from
the source program
through lower
levels of abstraction
all the way down to
assembly language,
but these are
research efforts.

number will have a tag identifying it as a number (perhaps even a specific kind of
number), a string will have a tag identifying it as a string, and so forth. Thus we can
write predicates based on the values of these tags.

When we get to structured values, however, the situation is more complex. A vector
would have a tag declaring it to be a vector, but not dictating what kinds of values its
elements are (and they may not even all be of the same kind); however, a program can
usually also obtain its size, and thus traverse it, to gather this information. (There is,
however, more to be said about structured values below [REF].)

Do Now!

Write a contract that checks that a list consists solely of even numbers.

Here it is:

(define list-of-even?-contract

(make-contract

(lambda (l)

(and (list? l) (andmap number? l) (andmap even? l)))))

(Again, note that the first two questions need not be asked if we know, statically, that we
have a list of numbers.) Similarly, an object might simply identify itself as an object,
not providing additional information. But in languages that permit reflection on the
object’s structure, a contract can still gather the information it needs.

In every language, however, this becomes problematic when we encounter func-
tions. We might think of a function as having a type for its domain and range, but to
a run-time system, a function is just an opaque object with a function tag, and perhaps
some very limited metadata (such as the function’s arity). The run-time system can
hardly even tell whether the function consumes and produces functions—as opposed
to other kinds of values—much less whether they it consumes and produces ones of
(number -> number) type.

This problem is nicely embodied in the (misnamed) typeof operator in JavaScript.
Given values of base types like numbers and strings, typeof returns a string to that
effect (e.g., "number"). For objects, it returns "object". Most importantly, for func-
tions it returns "function", with no additional information. For this reason,

perhaps typeof is
a bad name for this
operator. It should
have been called
tagof instead,
leaving open the
possibility that
future static type
systems for
JavaScript could
provide a true
typeof.

To summarize, this means that at the point of being confronted with a function, a
function contract can only check that it is, indeed, a function (and if it is not, that is
clearly an error). It cannot check anything about the domain and range of the function.
Should we give up?

16.3 Higher-Order Contracts
To determine what to do, it helps to recall what sort of guarantee contracts provide
in the first place. In real-sqrt-1 above, we demanded that the argument be non-
negative. However, this is only checked if—and when—real-sqrt-1 is actually used,
and then only on the actual values that are passed to it. For instance, if the program
contains this fragment

183

(lambda () (real-sqrt-1 -1))

but this thunk is never invoked, the programmer would never see this contract violation.
In fact, it may be that the thunk is not invoked on this run of the program, but in a later
run it will be; thus, the program has a lurking contract error. For this reason, it is usually
preferable to express invariants through static types; but where we do use contracts, we
understand that it is with the caveat that we will only be notified of errors when the
program is suitably exercised.

This is a useful insight, because it offers a solution to our problem with functions.
We check, immediately, that the purported function value truly is a function. However,
instead of ignoring the domain and range contracts, we defer them. We check the
domain contract when (and each time) the function is actually applied to a value, and
we check the range contract when the function actually returns a value.

This is clearly a different pattern than make-contract followed. Thus, we should
give make-contract a more descriptive name: it checks immediate contracts (i.e.,
those that can be checked in their entirety now). In the Racket

contract system,
immediate contracts
are called flat. This
term is slightly
misleading, since
they can also
protect data
structures.

(define (immediate pred?)

(lambda (val)

(if (pred? val) val (blame val))))

In contrast, a function contract takes two contracts as arguments—representing
checks to be made on the domain and range—and returns a predicate. This is the
predicate to apply on values purporting to satisfy that contract. First, this checks that
the given value actually is a function: this part is still immediate. Then, we create
a surrogate procedure that applies the “residual” contracts—to check the domain and
range—but otherwise behaves the same as the original function.

This creation of a surrogate represents a departure from the traditional assertion
mechanism, which simply checks values and then leaves them alone. Instead, for func-
tions we must use the created surrogate if we want contract checking. In general,
therefore, it is useful to have a wrapper that consumes a contract and value, and creates
a guarded version of that value:

(define (guard ctc val) (ctc val))

As a very simple example, let us suppose we want to wrap the add1 function in
numeric contracts (with function, the constructor of function contracts, to be defined
momentarily):

(define a1 (guard (function (immediate number?)

(immediate number?))

add1))

We want a1 to be bound to essentially the following code:

(define a1

(lambda (x)

(num?-con (add1 (num?-con x)))))

184

Here, the (lambda (x) ...) is the surrogate; it applies two numeric contracts around
the invocation of add1. Recall that contracts must behave like the identity function in
the absence of violations, so this procedure has precisely the same behavior as add1
on non-violating uses.

To achieve this, we use the following definition of function. Remember that we For simplicity we
assume
single-argument
functions here, but
the extension to
multiple arity is
straightforward.
Indeed, more
complex contracts
can even check for
relationships
between the
arguments.

have to also ensure that the given value is truly a function (as add1 above indeed is,
and can be checked immediately, which is why the check has disappeared by the time
we bind the surrogate to a1):

(define (function dom rng)

(lambda (val)

(if (procedure? val)

(lambda (x) (rng (val (dom x))))

(blame val))))

To understand how this works, let us substitute arguments. To keep the resulting
code readable, we will first construct the number? contract checker and give it a name:

(define num?-con (immediate number?))

= (define num?-con

(lambda (val)

(if (number? val) val (blame val))))

Now let’s return to the definition of a1. First we apply guard:

(define a1

((function num?-con num?-con)

add1))

Now we apply the function contract constructor:

(define a1

((lambda (val)

(if (procedure? val)

(lambda (x) (num?-con (val (num?-con x))))

(blame val)))

add1))

Applying the left-left-lambda gives:

(define a1

(if (procedure? add1)

(lambda (x) (num?-con (add1 (num?-con x))))

(blame val)))

Notice that this immediately checks that the guarded value is indeed a function. Thus
we get

185

(define a1

(lambda (x)

(num?-con (add1 (num?-con x)))))

which is precisely the surrogate we desired, with the behavior of add1 on non-violating
executions.

Do Now!

How many ways are there to violate the above contract for add1?

There are three ways, corresponding to the three contract constructors:

1. the value wrapped might not be a function;

2. the wrapped value might be a function that is applied to a non-numeric value; or,

3. the wrapped value might be a function that consumes numbers but produces
values of non-numeric type.

Exercise

Write examples that perform each of these three violations, and observe
the behavior of the contract system. Can you improve the error messages
to better distinguish these cases?

The same wrapping technique works for d/dx as well:

(define d/dx

(guard (function (function (immediate number?) (immediate number?))

(function (immediate number?) (immediate number?)))

(lambda (f)

(lambda (x)

(/ (- (f (+ x 0.001))

(f x))

0.001)))))

Exercise

There are seven ways to violate this contract, corresponding to each of the
seven contract constructors. Violate each of them by passing arguments or
modifying code, as needed. Can you improve error reporting to correctly
identify each kind of violation?

Notice that the nested function contract defers the checking of the immediate con-
tracts for two applications, rather than one. This is what we should expect, because
immediate contracts only report problems with actual values, so they cannot report
anything until applied to actual values. However, this does mean that the notion of “vi-
olation”’ is subtle: the function value passed to d/dx may in fact truly be in violation
of the contract, but this violation will not be observed until numeric values are passed
or returned.

186

16.4 Syntactic Convenience
Earlier we saw two styles of using flat contracts, as embodied in real-sqrt-1 and
real-sqrt-2. Both styles have disadvantages. The latter, which is reminiscent of
traditional assertion systems, simply does not work for higher-order values, because it
is the wrapped value that must be used in the computation. (Not surprisingly, traditional
assertion systems only handle immediate contracts, so they fail to notice this subtlety.)
The style in the former, where we wrap each use with a contract, works in theory but
suffers from three downsides:

1. The developer may forget to wrap some uses.

2. The contract is checked once per use, which is wasteful when there is more than
one use.

3. The program comingles contract checking with its functional behavior, reducing
readability.

Fortunately, a judicious use of syntactic sugar can solve this problem in common cases.
For instance, suppose we want to make it easy to attach contracts to function parame-
ters, so a developer could write

(define/contract (real-sqrt (x :: (immediate positive?)))

(sqrt x))

with the intent of guarding x with positive?, but performing the check only once, on
function invocation. This should translate to, say,

(define (real-sqrt new-x)

(let ([x (guard (immediate positive?) new-x)])

(sqrt x)))

That is, the macro generates a fresh name for each identifier, then associates the name
given by the user to the wrapped version of the value supplied to that fresh name. The
following macro implements exactly this:

(define-syntax (define/contract stx)

(syntax-case stx (::)

[(_ (f (id :: c) ...) b)

(with-syntax ([(new-id ...) (generate-temporaries #'(id ...))])

#'(define f

(lambda (new-id ...)

(let ([id (guard c new-id)]

...)

b))))]))

With conveniences like this, designers of contract languages can improve the readabil-
ity, efficiency, and robustness of contract use.

187

16.5 Extending to Compound Data Structures
As we have already discussed, it appears easy to extend contracts to structured datatypes
such as lists, vectors, and user-defined recursive datatypes. This only requires that the
appropriate set of run-time observations be available. This will usually be the case, up
to the resolution of types in the language. For instance, as we have discussed [REF], a
language with datatypes does not require type predicates but will still offer predicates to
distinguish the variants; this is case where type-level “contract” checking is best (and
perhaps must) be left to the static type system, while the contacts assert more refined
structural properties.

However, this strategy can run into significant performance problems. For instance,
suppose we built a balanced binary search-tree to perform asymptotic logarithmic time
(in the size of the tree) insertions and lookups. Now say we have wrapped this tree in
a suitable contract. Sadly, the mere act of checking the contract visits the entire tree,
thereby taking linear time! Ideally, therefore, we would prefer a strategy whereby the
contract was already checked—incrementally—at the time of construction, and does
not need to be checked again at the time of lookup.

Worse, both balancing and search-tree ordering are recursive properties. In princi-
ple, therefore, they attach to every sub-tree, and so should be applied on every recursive
call. During insertion, which is a recursive procedure, the contract would be checked
on every visited sub-tree. In a tree of size t, the contract predicate applies to a sub-tree
of t

2 elements, then to a sub-sub-tree of t
4 elements, and so on, resulting—in the worst

case—in visiting a total of t
2 + t

4 + · · · + t
t elements...making our intended logarithmic-

time insertion process take linear time.
In both cases, there is ready mitigation available in many cases. Each value needs to

be associated (either intrinsically, or by storage in a hash table) with the set of contracts
it has already passed. Then, when a contract is ready to apply, it first checks whether
the value has already been checked and, if it has, does not check again. This is essen-
tially a form of memoization of contract checking and can thus reduce the algorithmic
complexity of checking. Again, like memoization, this works best when the values are
immutable. If the values can mutate and the contracts perform arbitrary computations,
it may not be sound to perform this optimization.

There is a subtler way in which we might examine the issue of data structures. As
an example, consider the contract we wrote earlier to check that all values in a numeric
list are even. Suppose we have wrapped a list in this contract, but are interested only in
the first element of the list. Naturally, we are paying the cost of checking all the values
in the list, which may take a very long time. More importantly, however, a user might
argue that reporting a violation about the second element of the list is itself a violation
of our expectation about contract-checking, since we did not actually use that element.

This suggests deferring checking even for some values that could be checked im-
mediately. For instance, the entire list could be turned into a wrapped value containing
a deferred check, and each value is checked only when it is visited. This strategy might
be attractive, but it is not trivial to code, and especially runs into problems in the pres-
ence of aliasing: if two different identifiers are referring to the same list, one with
a contract guard and the other without, we have to ensure both of them function as
expected (which usually means we cannot store any mutable state in the list itself).

188

16.6 More on Contracts and Observations
A general problem for any contract implementation—which is exacerbated by complex
data—is a curious one. Earlier, we complained that it was difficult to check function
contracts because we have insufficient power to observe: all we can check is that a value
is a function, and no more. In real languages, the problem for data structures is actually
the opposite: we have too much ability to observe. For instance, if we implement a
strategy of deferring checking of a list, we quite possibly need to use a structure to hold
the actual list, and modify first and rest to get their values through this structure
(after checking contracts). However, a procedure like list? might now return false

rather than true because structures are not lists; therefore, list? needs to be re-bound
to a procedure that also returns true on structures that represent these special deferred-
contract lists. But the contract system author needs to also remember to tackle cons?,
pair?, and goodness knows how many other procedures that all perform observations.

In general, one observation is essentially impossible to “fix”: eq?. Normally, we
have the property that every value is eq? to itself, even for functions. However, the
wrapped value of a function is a new procedure that not only isn’t eq? to itself but
probably shouldn’t be, because its behavior truly is different (though only on contract
violations, and only after enough values have been supplied to observe the violation).
However, this means that a program cannot surreptitiously guard itself, because the
act of guarding can be observed. As a result, a malicious module can sometimes detect
whether it is being passed guarded values, behaving normally when it is and abnormally
only when it is not!

16.7 Contracts and Mutation
We should rightly be concerned about the interaction between contracts and mutation,
and even more so when we have contracts that are either inherently deferred or have
been implemented in a deferred fashion. There are two things to be concerned about.
One is storing a contracted value in mutable state. The other is writing a contract for
mutable state.

When we store a contracted value, the strategy of wrapping ensures that contract
checking works gracefully. At each stage, a contract checks as much as it can with
the value at hand, and creates a wrapped value embodying the residual check. Thus,
even if this wrapped value is stored in mutable state and retrieved for use later, it still
contains these checks, and they will be performed when the value is eventually used.

The other issue is writing contracts for mutable data, such as boxes and vectors.
In this case we probably have to create a wrapper for the entire datatype that records
the intended contract. Then, when a value inside the datatype is replaced with a new
one, the operation that performs the update—such as set-box!—needs to retrieve the
intended contract from the wrapper, apply it to the value, and store the wrapped value.
Therefore, this requires changing the behavior of the data structure mutation operators
to be sensitive to contracted values. However, mutation does not change the point at
which violations are caught: right away for immediate contracts, upon (in)appropriate
use for deferred ones.

189

16.8 Combining Contracts
Now that we’ve discussed combinators for all the basic datatypes, it’s natural to discuss
combining contracts. Just as we saw unions [REF] and intersections [REF] for types,
we should be considering unions and intersections (respectively, “or”s and “and”s), ;
for that matter, we might also consider negation. However, contracts are only superfi-
cially like types, so we have to consider these questions in their own light for contracts
rather than try to map the meanings we have learned from types to the sphere of con-
tracts.

As always, the immediate case is straightforward. Union contracts combine with
disjunction—indeed, being predicates, their results can literally be combined with or—
and intersection contracts with conjunction. We apply the predicates in turn, with short-
circuiting, and either generate an error or return the contracted value. Intersection con-
tracts combine with conjunction (and). And negation contracts are simply the original
immediate contract applied and the decision negated (with not).

Contract combination is much harder in the deferred, higher-order case. For in-
stance, consider the negation of a function contract from numbers to numbers. What
exactly does it mean to negate it? Does it mean the function should not accept num-
bers? Or that if it does, it should not produce them? Or both? And in particular, how
do we enforce such a contract? How, for instance, do we check that a function does
not accept numbers—are we expecting that when given a number, it produces an error?
But now consider the identity function wrapped with such a contract; since it clearly
does not result in an error when given a number (or indeed any other value), does that
mean we should wait until it produces a value, and if it does produce a number, reject
it? But worst of all, note that this means we will be running functions on domains on
which they are not defined: a sure recipe for destroying program invariants, polluting
the heap, or crashing the program.

Intersection contracts require values to pass all the sub-contracts. This means re-
wrapping the higher-order value in something that checks all the domain sub-contracts
as well as all the range sub-contracts. Failing to meet even one sub-contract means the
value has failed the entire intersction.

Union contracts are more subtle, because failing to meet any one sub-contract is not
grounds for rejection. Rather, it simply means that that one sub-contract is no longer a
candidate contract representing the wrapped value; the other sub-contracts might still
be candidates, and only when no others are left must be reject the value. This means the
implementation of union contracts must maintain memory of which sub-contracts have
and have not yet passed—memory, in this case, being a sophisticated term for the use
of mutation. As each sub-contract fails, it is removed from the list of candidates, while In a multi-threaded

language like
Racket, this also
requires locks to
avoid race
conditions.

all the remaining ones continue to applied. When no candidates remain, the contract
system must report a violation. The error report would presumably provide the actual
values that eliminated each part of each sub-contract (keeping in mind that these may
be nested multiple functions deep).

The implemented versions of contract constructors and combinators in Racket place
restrictions on the acceptable forms of sub-contracts. These enable implementations
that are both efficient and yield useful error messages. Furthermore, the more extreme
situations discussed above rarely occur in practice—though now you know how to

190

implement them if you need to.

16.9 Blame
Let’s now return to the issue of reporting contract violations. By this I don’t mean what
string to we print, but the much more important question of what to report, which as
we are about to see is really a semantic consideration.

To illustrate the problem recall our definition of d/dx above, and assume we were
running it without any contract checking. Suppose now that we apply this function
to the entirely inappropriate string-append (which neither consumes nor produces
numbers). This simply produces a value:
> (define d/dx-sa (d/dx string-append))

(Observe that this would succeed even if contract checking were on, because the im-
mediate portion of the function contract recognizes string-append to be a function.)
Now suppose we apply d/dx-sa to a number, as we ought to be able to do:
> (d/dx-sa 10)

string-append: contract violation

expected: string?

given: 10.001

Notice that the error report is deep inside the body of d/dx. On the one hand, this is en-
tirely legitimate: that is where the improper application of string-append occurred.
However, the fault is not that of d/dx at all—rather, it is the fault of whatever body
of code supplied string-append as a purportedly legitimate function from numbers
to numbers. Except, however, the code that did so has long since fled the scene; it
is no longer on the stack, and is hence outside the ambit of traditional error-reporting
mechanisms.

This problem is not a peculiarity of d/dx; in fact, it routinely occurs in large sys-
tems. This is because systems, especially with graphical, network, and other external
interfaces, make heavy use of callbacks: functions (or methods) that register interest in
some entity and are invoked to signal some status or value. (Here, d/dx is the moral
equivalent of the graphics layer, and string-append is the callback that has been sup-
plied to (and stored by) it.) Eventually, the system layer invokes the callback. If this
results in an error, it is the fault of neither the system layer—which was given a call-
back of purportedly the right contract—nor of the callback itself, which presumably
has legitimate uses but was improperly supplied to the function. Rather, the fault is of
the entity that introduced these two entities. However, at this point the call stack con-
tains only the callback (on top) and the system (below it)—and the only guilty party is
no longer present. These kinds of errors can therefore be extremely difficult to debug.

The solution is to extend the contract system to incorporate a notion of blame.
The idea is to effectively record the introduction that resulted in a pair of components
coming together, so that if a contract violation occurs between them, we can ascribe
the failure to the expression that did the introduction. Observe that this is only really
interesting in the context of functions, but for consistency we will extend blame to
immediate contracts as well in a natural way.

For a function, notice that there are two possible points of failure: either it was
given the wrong kind of value (the pre-condition), or it produced the wrong kind of

191

value (the post-condition). It is important to distinguish these two cases because in
the former case we should blame the environment—in particular, the actual parameter
expression—whereas in the latter case (assuming the parameter has passed muster) we
should blame the function itself. (The natural extension to immediate values is that
we can only blame the value itself for not satisfying the contract, which is akin to the
“post-condition”.)

For contracts, we will introduce the terms positive and negative position. For a
first-order function, the negative position is the pre-condition and the positive one the
post-condition. Therefore, this might appear to be needless extra terminology. As we
will soon see, however, these terms have a more general meaning.

We will now generalize the parameters consumed by contracts. Previously, im-
mediate contracts consumed a predicate and function contracts consumed domain and
range contracts. This will still be the case. However, what they each return will be
a function of two arguments: labels for the positive and negative positions. (These
labels can be drawn from any reasonable datatype: abstract syntax nodes, buffer off-
sets, or other descriptions. For simplicity, we will use strings.) Thus function contracts
will close over the labels of these program positions, to later blame the provider of an
invalid function.

The guard function is now responsible for passing through the labels of the con-
tract application locations:

(define (guard ctc val pos neg) ((ctc pos neg) val))

and let us also have blame display the appropriate label (which we will pass to it from
the contract implementations):

(define (blame s) (error 'contract s))

Suppose we are guarding the use of add1, as before. What are useful names for the
positive and negative positions? The positive position is post-condition: i.e., any failure
here must be blamed on the body of add1. The negative position is the pre-condition:
i.e., any failure here must be blamed on the parameter to add1. Thus:

(define a1 (guard (function (immediate number?)

(immediate number?))

add1

"add1 body"

"add1 input"))

Had we provided a non-function to guard, we would expect an error at the “post-
condition” location: this is not really a failure of the post-condition, but surely the
parameter cannot be blamed if the application failed to be a function. (However, this
shows that we are really stretching the term “post-condition”, and the terms “positive”
provides a useful alternative.) Because we trust the implementation of add1 to only
produce numbers, we would expect it is impossible to fail the post-condition. How-
ever, we would expect an expression like (a1 "x") to trigger a pre-condition error,
presumably signaling a contract error at the location "add1 input". In contrast, had
we guarded a function that violates the post-condition, such as this,

192

(define bad-a1 (guard (function (immediate number?)

(immediate number?))

number->string

"bad-add1 body"

"bad-add1 input"))

we would expect blame to be ascribed to "bad-add1 body".
Let us now see how to implement these contract constructors. For immediate con-

tracts, we have seen that blame should be ascribed to the positive position:

(define (immediate pred?)

(lambda (pos neg)

(lambda (val)

(if (pred? val) val (blame pos)))))

For functions, we might be tempted to write

(define (function dom rng)

(lambda (pos neg)

(lambda (val)

(if (procedure? val)

(lambda (x) (dom (val (rng x))))

(blame pos)))))

but this fails to work in a very fundamental way: it violates the expected signature on
contracts. That is because all contracts now expect to be given the labels of positive and
negative positions, which means dom and rng cannot be used as above. (As another
hint, we are using pos but not neg anywhere in the body, even though we have seen
examples where we expect the position bound to neg to be blamed.) Instead, clearly,
we somehow instantiate the domain and range contracts using pos and neg, so that
they “know” and “remember” where a potentially violating function was applied.

The most obvious reaction would be to instantiate these contract constructors with
the same values of dom and rng:

(define (function dom rng)

(lambda (pos neg)

(let ([dom-c (dom pos neg)]

[rng-c (rng pos neg)])

(lambda (val)

(if (procedure? val)

(lambda (x) (rng-c (val (dom-c x))))

(blame pos))))))

Now all the signatures match up, and we can run our contracts. But when we do so, the
answers are a little strange. For instance, on our simplest contract violation example,
we get
> (a1 "x")

contract: add1 body

193

Huh? Maybe we should expand out the code of a1 to see what happened.

(a1 "x")

= (guard (function (immediate number?)

(immediate number?))

add1

"add1 body"

"add1 input")

= (((function (immediate number?) (immediate number?))

"add1 body" "add1 input")

add1)

= (let ([dom-c ((immediate number?) "add1 body" "add1 input")]

[rng-c ((immediate number?) "add1 body" "add1 input")])

(lambda (x) (rng-c (add1 (dom-c x)))))

= (let ([dom-c (lambda (val)

(if (number? val) val (blame "add1 body")))]

[rng-c (lambda (val)

(if (number? val) val (blame "add1 body")))])

(lambda (x) (rng-c (add1 (dom-c x)))))

Poor add1: it never stood a chance! The only blame label left is "add1 body", so it
was the only thing that could ever be blamed.

We will return to this problem in a moment, but observe how in the above code,
there are no real traces of the function contract left. All we have are immediate con-
tracts, ready to blame actual values if and when they occur. This is perfectly consistent
with what we said earlier [REF] about being able to observe only immediate values. Of
course, this is only true for first-order functions; when we get to higher-order functions,
this will no longer be true.

What went wrong? Notice that only the contract bound to rng-c ought to be blam-
ing the body of add1. In contrast, the contract bound to dom-c ought to be blaming
the input to add1. It’s almost as if, in the domain position of a function contract, the
positive and negative labels should be...swapped.

If we consider the contract-guarded d/dx, we see that this is indeed the case. The
key insight is that, when applying a function taken as a parameter, the “outside” be-
comes the “inside” and vice versa. That is, the body of d/dx—which was in positive
position—is now the caller of the function to differentiate, putting that function’s body
in positive position and the caller—the body of d/dx—in negative position. Thus,
on the domain side of the contract, every nested function contract causes positive and
negative positions to swap.

On the range side, there is no need to swap. Consider again d/dx. The function
it returns represents the derivative, so it should be given a number (representing the
point at which to calculate the derivative) and it should return a number (the derivative
at that point). The negative position of this function is indeed the client who uses the
derivative function—the pre-condition—and the positive position is indeed the body of
d/dx itself—the post-condition—since it is responsible for generating the derivative.

As a result, we obtain an updated, and correct, definition for the function construc-
tor:

194

(define (function dom rng)

(lambda (pos neg)

(let ([dom-c (dom neg pos)]

[rng-c (rng pos neg)])

(lambda (val)

(if (procedure? val)

(lambda (x) (rng-c (val (dom-c x))))

(blame pos))))))

Exercise

Apply this to our earlier example and confirm that we get the expected
blame. Also expand the code manually to see why this happens.

Suppose, further, we define d/dx with the labels "d/dx body" for its positive
position and "d/dx input" for its negative. Say we supply the function number-

>string, which patently does not compute derivatives, and apply the result to 10:

((d/dx (guard (function (immediate number?)

(immediate string?))

number->string

"n->s body"

"n->s input"))

10)

This correctly indicates that the blame should be ascribed to the expression that fed
number->string as a supposed numeric function to d/dx—not to d/dx itself.

Exercise

Hand-evaluate d/dx, apply it to all the relevant violation examples, and
confirm that the resulting blame is accurate. What happens if you supply
d/dx with string->number with a function contract indicating it maps
strings to numbers? What if you supply the same function with no contract
at all?

17 Alternate Application Semantics
Long ago [REF], we considered the question of what to substitute when performing
application. Now we are ready to consider some alternatives. At the time, we suggested
just one alternative; in fact there are many more. To understand this, see whether you
can answer this question:

Which of these is the same?

• (f x (current-seconds))

• (f x (current-seconds))

• (f x (current-seconds))

195

• (f x (current-seconds))

What we’re about to find is that this fragment of syntax can have wildly different
run-time behaviors. For instance, there is the distinction we have already mentioned:
variation in when (current-seconds) is evaluated. There is variation in how many
times it is evaluated (and hence f is run). There is even variation even in whether
values for x flow strictly from the caller to the callee, or can even flow in the opposite
direction!

17.1 Lazy Application
Let’s start by considering when parameters are reduced to values. That is, do we sub-
stitute formal parameters with the value of the actual parameter, or with the actual
parameter expression itself? If we define

(define (sq x) (* x x))

and invoke it as

(sq (+ 2 3))

does that reduce to

(* 5 5)

or to

(* (+ 2 3) (+ 2 3))

? The former is called eager application, while the latter is lazy. Of course we don’t Some people also
use the term strict
for the former. A
more arcane
terminology is
applicative-order
evaluation for the
former and
normal-order
evaluation for the
latter. Or,
call-by-value for
the former and
call-by-name or
call-by-need for the
latter. The last two
terms—by-name
versus
by-need—actually
represent a
technical distinction
we will see below.
This concludes our
name-dump.

want to return to defining interpreters by substitution, but it is always useful to think of
substitution as a design principle.

17.1.1 A Lazy Application Example

The lazy alternative has a distinguished history (for instance, this is what the true ∼-
calculus uses), but returned to the fore from programming experiments considering
what might happen if certain operators did not evaluate the arguments at application
but only when the value was needed. For instance, consider the definition

(define ones (cons 1 ones))

In ordinary Racket, this is clearly ill-defined: ones has not yet been defined (on the
left) when we try to evaluate it (on the right), so this results in an error. If, however,
we do not try to evaluate it until we actually need it, by that time the definition is
well-formed. Because each rest obtains another ones, this produces an infinite list.

We’ve glossed over a lot that needs explaining. Does the ones in the rest position
of the cons evaluate to a copy of that expression, or to the result of the very same

196

expression itself? In other words, have we simply created an infinitely unfolding list,
or have we created an actually cyclic one?

This depends in good part on whether or not our language has mutation. If it does,
then perhaps we can modify each of the cells of the resulting list, which means we
can observe the difference between the two implementations above: in the unfolded
version mutating one first will not affect another, but in the cyclic one, changing one
will affect them all. Therefore, in a language with mutation, we might argue that this
should represent a lazy unfolding, but not an actual cyclic datum.

Keep this discussion in mind. We cannot resolve it right now; rather, let us examine
lazy evaluation a little more, then return to this question [REF].

17.1.2 What Are Values?

If we return to our core higher-order function interpreter [REF], we recall that we have
two kinds of values: numbers and closures. If we want to support lazy evaluation
instead, we need to ask what happens at function application. What exactly are we
passing?

This seems obvious enough: in a lazy application semantics, we need to pass ex-
pressions. But a moment’s thought shows that this can be problematic. Expressions
contain identifier names, and we don’t want them to be accidentally bound. And now these truly

will be identifiers,
not variables, as we
will see [REF].

For instance, suppose we have

(define (f x)

(lambda (y)

(+ x y)))

and apply it as follows:

((f 3) (+ x 4))

Do Now!

What should this produce?

Clearly, we should get an error reporting x as not being bound.
Now let’s trace it. The first application creates a closure where x is bound to 3.

If we now bind y to (+ x 4), this results in the expression (+ x (+ x 4)) in an
environment where x is bound. As a result we get the answer 10, not an error.

Do Now!

Have we made a subtle assumption above?

Yes we have: we’ve assumed that + evaluates arguments and returns numeric an-
swers. Perhaps + also behaves lazily; we will study this issue in a moment. Never-
theless, the central point remains: if we are not careful, this erroneous expression will
produce some kind of valid answer, not an error.

In case you think this is entirely a problem with erroneous programs, and can hence
be treated specially (e.g., first scan the program source for free identifiers), here is
another use of the same f:

197

(let ([x 5])

((f 3) x))

Do Now!

What should this produce?

We would expect this to produce the result of (+ 3 5) (probably 8). However, if we
substitute x inside the arithmetic expression, we would get (+ 3 3) instead.

This latter example holds the key to our solution. In the latter example, the problem
ostensibly arises only when we use environments; if instead we use substitution, x in
the application is substituted as soon as we encounter the let, and the result is what we
expect. In fact, note that the same argument holds earlier: if we had used substitution,
the very occurrence of x would have signaled an error. In short, we have to make sure
our environment-based implementation matches what substitution would have done.
Doesn’t that sound familiar!

In other words, the solution is to bundle the argument expression with its environ-
ment: i.e., create a closure. This closure has no parameters, so it is effectively a thunk. Indeed, this

demonstrates that
functions have two
uses: to substitute
names with values,
and also to defer
substitution. let is
the former without
the latter; thunks
are the latter
without the former.
We have already
established that the
former is valuable
in its own right; this
section shows that
the same is true of
the latter.

We could use existing functions to represent these thunks, but our instinct should tell
us that it is better to use different data representations for logically different purposes:
closV for user-created closures, and something else for internally-created ones. In-
deed, as we will see, it will have been wise to keep them separate because there is one
place where it is critical we can tell them apart.

To conclude this discussion, here is our new set of values:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[suspendV (body : ExprC) (env : Env)])

The first two variants are exactly the same; the third is new, and as we discussed, is
effectively a parameter-less procedure, as its type suggests.

17.1.3 What Causes Evaluation?

Let us now return to discussing arithmetic expressions. On evaluating (+ 1 2), a
lazy application interpreter could return any number of things, including (suspendV

(+ 1 2) mt-env). In this way suspended computation could cascade on suspended It is legitimate to
write mt-env here
because even if the
(+ 1 2)

expression was
written in a
non-empty
environment, it has
no free identifiers,
so it doesn’t need
any of the
environment’s
bindings.

computation, and in the limiting case every program would return immediately with an
“answer”: the thunk representing the suspension of its computation.

Clearly, something must force a suspension to be lifted. (Lifting a suspension
means, of course, evaluating its body in the stored environment.) Those expression
positions that undo suspensions are called strictness points. The most obvious strict-
ness point is the interactive environment’s printer, because a user clearly would not use
such an environment if they did not wish to see answers. We will embody the act of
lifting suspension in the procedure strict:

198

(define (strict [v : Value]) : Value

(type-case Value v

[numV (n) v]

[closV (a b e) v]

[suspendV (b e) (strict (interp b e))]))

where the returned Value is guaranteed to not be a suspendV. We can imagine the
printer as wrapping strict around the result of evaluating the program, to obtain a
value to print.

Do Now!

What impact would using closures to represent suspended computation
have had?

The definition of strict above depends crucially on being able to distinguish
deferred computations—which are internally-constructed closures—from user-defined
closures. Had we conflated the two, then we would have to guess what to do with
zero-argument closures. If we fail to further process them, we might incorrectly get an
error (e.g., + might get a thunk rather than the numeric value residing inside it). If we
do process it further, we might accidentally force a user-defined thunk prematurely. In
short, we need a flag on thunks telling us whether they are internal or user-defined. For
clarity, our interpreter uses a separate variant.

Let us now return to the interaction between strict and the interpreter. Unfor-
tunately, as we have defined things, this will cause an infinite loop. The act of trying
to interpret an addition creates a suspension, which strict tries to undo by forcing
the interpreter to interpret an addition, which.... Clearly, therefore, we cannot have
every expression simply suspend its computation; instead, we will limit suspension to
applications. This suffices to give us the rich power of laziness, without making the
language absurd.

17.1.4 An Interpreter

As usual, we will define the interpreter in cases.
<lazy-interp> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

<lazy-numC-case>
<lazy-idC-case>
<lazy-plusC/multC-case>
<lazy-appC-case>
<lazy-lamC-case>))

Numbers are easy: they are already values, so there is no point needlessly suspend-
ing them:

<lazy-numC-case> ::=

[numC (n) (numV n)]

199

Closures, similarly, remain the same:
<lazy-lamC-case> ::=

[lamC (a b) (closV a b env)]

Identifiers should just return whatever they are bound to:
<lazy-idC-case> ::=

[idC (n) (lookup n env)]

The arguments of arithmetic expressions are usually defined as strictness points,
because otherwise we would simply have to implement the actual arithmetic elsewhere:

<lazy-plusC/multC-case> ::=

[plusC (l r) (num+ (strict (interp l env))

(strict (interp r env)))]

[multC (l r) (num* (strict (interp l env))

(strict (interp r env)))]

Finally, we have application. Here, instead of evaluating the argument position, we
suspend it. The function position has to be a strictness point, however, otherwise we
wouldn’t know what function to apply and hence how to continue the computation:

<lazy-appC-case> ::=

[appC (f a) (local ([define f-value (strict (interp f env))])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(suspendV a env))

(closV-env f-value))))]

And that’s it! By adding a new kind of answer, inserting a few calls to strict,
and replacing interp with suspendV in the argument position of application, we have
turned our eager application interpreter into one with lazy application. Yet this small
change has such enormous impact on the programs we write! For a more thorough
examination of this impact, study Haskell or the #lang lazy language in Racket.

Exercise

If we instead replace the identifier case with (strict (lookup n env))

(i.e., wrapped strict around the result of looking up an identifier), what
impact would it have on the language? Consider richer languages with
data structures, etc.

Exercise

Construct programs that produce different results in a lazy evaluation than
an eager evaluation (i.e., the same program text with different answers
in the two cases). Try to make the differences interesting, i.e., beyond
whether one returns a suspendV while the other doesn’t. For instance,
does one terminate or produce an error while the other one doesn’t?

200

Exercise

Instrument both interpreters to count the number of steps they take to re-
turn answers. For programs that produce the same answer under both eval-
uation strategies, does one strategy always take more steps than the other?

17.1.5 Laziness and Mutation

One of the virtues of lazy evaluation is that it defers execution. Usually this is a good
thing: it enables us to build infinite data structures and avoids computation until nec-
essary. Unfortunately, it also changes when computations occur, and in particular,
changes the order of when computations evaluate relative to each other, depending on
what strictness points are encountered when. As a result, programmers greatly lose
predictability of ordering. This is of course a problem when expressions perform mu-
tation operations, because now it becomes extremely difficult to predict what value a
program will compute (relative to the eager version).

As a result, the core of every lazy language is free of mutation. In Haskell, muta-
tion and other state operations are introduced through a variety of mechanisms such as
monads and arrows that ultimately introduce the ability to (strictly) sequentialize code;
this sequentiality is essential to being able to predict the order of execution and thus
the result of operations. If programs are structured well the number of these depen-
dencies should be small; furthermore, the Haskell type system attempts to reflect these
operations in the types themselves, so programmers can more easily about their effects.

17.1.6 Caching Computation

Now that we’ve concluded that lazy computation has to have no mutations, we observe
a pleasant consequence (dare we say, side-effect?): given a fixed an environment, an
expression always produces the same answer. As a result, the run-time system can
cache the value of an expression when it is first forced to an answer by strictness,
and return this cached value on subsequent attempts to compute it. Of course, this
caching—which is a form of memoization—is only sound when the expression returns
the same value every time, which we have assumed. In fact, the compiler and run-
time system can aggressively hunt for uses of the same expression in different parts
of the program and, if the relevant parts of their environment are the same, conflate
their evaluation. The strategy of evaluating the suspended computation every time it is
needed is called call-by-name; that of caching its result, call-by-need.

17.2 Reactive Application
Now consider an expression like (current-seconds). When we evaluate it, it returns
a single number representing the current time. For instance,
> (current-seconds)

1353030630

However, even as we stare at this value, it is already out-of-date! It represents the time
when the function application occurred, but does not stay current.

201

17.2.1 Motivating Example: A Timer

Suppose we were trying to implement a timer that measures elapsed time. Ideally, we
would like to write a program such as this:

(let ([start (current-seconds)])

(- (current-seconds)

start))

In JavaScript, we might write:
d = new Date();

start = d.getTime();

current = d.getTime();

elapsed = current - start;

On most machines this Racket expression, or the value of elapsed in JavaScript, will
evaluate to 0 or some other very small number. This is because these programs repre-
sent one measure of the elapsed time: that at the second invocation of the procedure
that gets the current time. This gives us an instanteous time split, but not an actual
timer.

In most languages, to build an actual timer, we would have to create an instance
of some sort of timer object, and install a callback. Every time the clock ticks, the
timer object—representing the operating system—invokes the callback. The callback
is then responsible for updating values in the rest of the system, and hopefully doing
so globally and consistently. However, it cannot do so by returning values, because it
would return to the operating system, which is agnostic to and does not care about our
application; therefore, the callback is forced to perform its action through mutation. In
JavaScript, for instance:
var timerID = null;

var elapsedTime = 0;

function doEverySecond() {

elapsedTime += 1;

document.getElementById('curTime').innerHTML = elapsedTime; }

function startTimer() {

timerId = setInterval(doEverySecond, 1000); }

assuming we have an HTML page with an id named curTime, and that the onload or
other callback invokes startTimer.

One alternative to this spaghetti code is for the application program to repeatedly
poll the operating system for the current time. However:

• Calling too frequently wastes resources, while calling too infrequently results in
incorrect answers. However, to call at just the right resolution, we would need a
timer signal in the first place!

• While it may be possible to create such a polling loop for regular events such as
timers, it is impossible to do so accurately for unpredictable behaviors such as
user input (whose frequency cannot, in general, be predicted).

202

• On top of all this, writing this loop pollutes the program’s structure and forces
the developer to sustain this extra burden.

The callback-based solution, however, demonstrates an inversion of control. In-
stead of the application program calling the operating system, the operating system has
now been charged with calling (into) the application program. The reactive behavior
that should have been deeply nested, inside the display expression, has instead been
brought to the top-level, and its value drives the other computations. The fundamental
cause for this is that the world is in control, not the program, so external stimuli deter-
mine when and how the program should next run, not intrinsic program expressions.

17.2.2 Callback Types are Four-Letter Words

The characteristic signature (so to speak) of this pattern is manifest in the types. Be-
cause the operating system is agnostic to the program’s values, the callback usually has
no return type at all, or it is a generic status indicator, not an application-specific value.
Therefore, in typed languages, the type is usually some four-letter word. For instance,
here is a fragment of a GUI library in Java:
interface ChangeListener extends EventListener {

void stateChanged(ChangeEvent e) { ... } }

interface ActionListener extends EventListener {

void actionPerformed(ActionEvent e) { ... } }

interface MouseListener extends EventListener {

void mouseClicked(MouseEvent e) { ... }

void mouseEntered(MouseEvent e) { ... } }

And here’s one in OCaml:
mainLoop : unit -> unit

closeTk : unit -> unit

destroy : 'a Widget.widget -> unit

update : unit -> unit

pack : ... -> 'd Widget.widget list -> unit

grid : ... -> 'b Widget.widget list -> unit

In Haskell, the four letters have an extra space in them:
select :: Selecting w => Event w (IO ())

mouse :: Reactive w => Event w (EventMouse -> IO ())

keyboard :: Reactive w => Event w (EventKey -> IO ())

resize :: Reactive w => Event w (IO ())

focus :: Reactive w => Event w (Bool -> IO ())

activate :: Reactive w => Event w (Bool -> IO ())

and so on. In all these cases, the presence of a “void”-like type clearly indicates that
the functions do not return any interesting value, so their only purpose must be to
mutate the store or have some other side-effect. This also means that no rich means of

203

composition—such as the nesting of expressions—is possible: the only composition
operator for void-typed statements is sequencing. Thus the types reveal that we will be
forced away from being able to write nested expressions.

Readers will, of course, be familiar with this problem from our earlier discussion of
Web programming. This problem occurs on the server due to statelessness [REF], and
also on the client due to single-threading [REF]. On the server, at least, we were able
to use continuations to address this problem. However, continuations are not available
in all languages, and implementing them can be onerous. Furthermore, it can be tricky
to set up just the right continuation to pass as a callback. Instead, we will explore an
alternate solution.

17.2.3 The Alternative: Reactive Languages

Consider the FrTime (pronounced “Father Time”) language in DrRacket. If we run In DrRacket v5.3,
you must select the
language from the
Language menu;
writing #lang

frtime will not
provide the
interesting
interactions window
behavior.

this expression at the interactions window, we still get 0 or some other very small
non-negative number:

(let ([start (current-seconds)])

(- (current-seconds)

start))

In fact, we can try several other expressions and see that FrTime seems to have exactly
like traditional Racket.

However, it also binds a few additional identifiers. For instance, it provides a value
bound to seconds. If we type this into the interaction prompt, we get something
very interesting! First we see 1353030630, then a second later 1353030631, another
second later 1353030632, and so on. This kind of value is called a behavior: a value
that changes over time. Except we haven’t written any callbacks or other code to keep
it current.

A behavior can be used in computations. For instance, we can write (- seconds

seconds), and this always evaluates to 0. Here are some more expressions to try at
the interaction prompt:

(add1 seconds)

(modulo seconds 10)

(build-list (modulo seconds 10) identity)

(build-list (add1 (modulo seconds 10)) identity)

As you can see, being a behavior is “sticky”: if any sub-expression is a behavior, so is
its enclosing expression.

Thanks to this evaluation model, every time seconds updates the entire application
happens afresh: as a result, even though we have written seemingly simple expressions
without any explicit loop-like control, the program still “loops”. In other words, having
explored an application semantics where arguments are evaluated once, then another
where they may be evaluated zero times, now we have one where they are evaluated as
many times as necessary, and the entire corresponding function with them. As a con-
sequence, reactive values that are “inside” an expression no longer brought “outisde”;

204

rather, they can reside nested inside expressions, giving programmers a more natural
means of expression. This style of evaluation is called dataflow or functional reactive
programming. Historically,

dataflow has tended
to refer to
languages with
first-order
functions, whereas
functional reactive
languages support
higher-order
functions too.

FrTime implements what we call transparent reactivity, whereby the programmer
can inject a reactive behavior anywhere in a program’s evaluation without needing to
make any syntactic changes to its context. This has the virtue of making it easy to
inject reactivity into existing programs, but it can make the evaluation and cost model
more complex for programmers. In other languages, programmers can instead explic-
itly introduce behavior through appropriate primitives, trading convenience for greater
predictability. FrTime’s sister language, Flapjax, an extension of JavaScript, provides
both modes. See the Flapjax

Web site.

17.2.4 Implementing Transparent Reactivity

To make an existing language implement transparent reactivity, we have to (naturally)
alter the semantics of function application. We will do this in two steps. First we will
rewrite reactive function applications into a more complex form, then we will show
how this more complex form enables reactive updates.

Dataflow Graph Construction

The essence of making an application reactive is simple to explain through desguaring.
Assume we have defined a new constructor behavior. The constructor takes a thunk
that represents what computation to perform every time an argument updates, and all
the values that the expression depends on. The value it produces stores the current
value of the behavior. Then an expression like (f x y) turns into

(if (or (behavior? x) (behavior? y))

(behavior (λ () (f (current-value x) (current-value y))) x y)

(f x y))

where we assume, given a non-behavior constant, current-value behaves as the
identity function.

Let us look at two examples of using the above definition. Consider the trivial case
where neither parameter is a behavior, e.g., (+ 3 4). This desugars to

(if (or (behavior? 3) (behavior? 4))

(behavior (λ () (+ (current-value 3) (current-value 4))) 3 4)

(+ 3 4))

Since both 3 and 4 are numbers, not behaviors, this reduces to (+ 3 4), which is
precisely what we would like. This reflects an important principle: when no behaviors
are present, programs behave exactly as they did in the non-reactive version of the
language.

If we compute (+ 1 seconds), this expands to

205

http://www.flapjax-lang.org/
http://www.flapjax-lang.org/

(if (or (behavior? 1) (behavior? seconds))

(behavior (λ () (+ (current-value 1) (current-value seconds))) 1 seconds)

(+ 1 seconds))

Because seconds is a behavior, this reduces to

(behavior (λ () (+ (current-value 1) (current-value seconds))) 1 seconds)

Any expression that depends on this now sees its argument also become a behavior,
making the property “sticky” as we argued before.

Exercise

In what way, if any, did the above desugaring depend on eager evaluation?

Dataflow Graph Update

Of course, simply constructing behavior values is not enough. The key additional
information is in the extra arguments to behavior. The language filters out those
arguments that are themselves behaviors (e.g., seconds, above) and registers this new
behavior as one of that depends on those existing ones. This registration process creates
a graph of behavior expression dependencies, known as a dataflow graph (since it
reflects the paths along which data need to flow).

If the program did not evaluate to any behaviors, then evaluation simply produces
an answer, and there are no graphs created. If, however, there are behavior depen-
dencies, then evaluation produces not a traditional answer but a behavior value, with
dependencies already recorded. (In practice, it is useful to also track which primi-
tive behaviors are actually necessary, to avoid unnecessarily evaluating primitives that
no other behavior in the program refers to.) In short, program execution generates a
dataflow graph. Thus, we do not need a special, new evaluator for the language; we
instead embed the graph-construction semantics in traditional evaluation.

Now a dataflow propagation algorithm begins to execute. Every time a primitive
behavior changes, the algorithm applies its stored thunk, obtains its new value, stores it,
and then signals each behavior dependent on it. For instance, if seconds updates, it no-
tifies the (+ 1 seconds) expression’s behavior. The latter behavior now evaluates its
thunk, (λ () (+ (current-value 1) (current-value seconds))). This adds
1 to the newest value of seconds, making that the new value of this behavior—just as
we would expect.

Evaluation Order

The discussion above presents too simple a view of graph update. Consider the follow-
ing program:

(> (add1 seconds)

seconds)

This program has one primitive behavior, seconds, and constructs two more: one for
(add1 seconds) and one more for the entire expression.

206

We would expect this expression to always be true. However, when seconds up-
dates, depending on the order in which it handles updates, it might update the whole
expression before it does (add1 seconds). Suppose the old value of seconds was
100, so the new one is 101. However, the node for (add1 seconds) is still storing
its old value (because it has not yet been updated), so it holds (add1 100) or 101.
That means the > compares 101 with 1, which is false, making this expression return
a value that should simply never have ensued from its static description. This situation
is called a glitch.

There is an easy solution to avoiding glitches, which the above example illustrates
(and that a theorem can show is sufficient). This is to topologically sort the nodes.
Then, every node is only processed after it depends on have been, so there is no danger
of seeing outdated or inconsistent values.

The problem becomes more difficult in the presence of cycles in the graph. In those
cases, we need special recursion operators that can take an initial value for the cyclic
behavior. This makes it possible to break the cyclic dependency, reducing evaluation
to the process that has already been defined.

There is much more to say about the evaluation of dataflow languages, such as the
treatment of conditionals and a dual notion to behaviors that is discrete and stream-
like. I hope you will read the literature on reactive languages to learn more about these
topics.

Exercise

Earlier we picked on a Haskell library. To be fair, however, the reactive
solution we have shown was enunciated in Haskell, whose lazy evaluation
makes this form of evaluation relatively easy to support.

Implement reactive evaluation using laziness.

207

	1 Introduction
	1.1 Our Philosophy
	1.2 The Structure of This Book
	1.3 The Language of This Book

	2 Everything (We Will Say) About Parsing
	2.1 A Lightweight, Built-In First Half of a Parser
	2.2 A Convenient Shortcut
	2.3 Types for Parsing
	2.4 Completing the Parser
	2.5 Coda

	3 A First Look at Interpretation
	3.1 Representing Arithmetic
	3.2 Writing an Interpreter
	3.3 Did You Notice?
	3.4 Growing the Language

	4 A First Taste of Desugaring
	4.1 Extension: Binary Subtraction
	4.2 Extension: Unary Negation

	5 Adding Functions to the Language
	5.1 Defining Data Representations
	5.2 Growing the Interpreter
	5.3 Substitution
	5.4 The Interpreter, Resumed
	5.5 Oh Wait, There's More!

	6 From Substitution to Environments
	6.1 Introducing the Environment
	6.2 Interpreting with Environments
	6.3 Deferring Correctly
	6.4 Scope
	6.4.1 How Bad Is It?
	6.4.2 The Top-Level Scope

	6.5 Exposing the Environment

	7 Functions Anywhere
	7.1 Functions as Expressions and Values
	7.2 Nested What?
	7.3 Implementing Closures
	7.4 Substitution, Again
	7.5 Sugaring Over Anonymity

	8 Mutation: Structures and Variables
	8.1 Mutable Structures
	8.1.1 A Simple Model of Mutable Structures
	8.1.2 Scaffolding
	8.1.3 Interaction with Closures
	8.1.4 Understanding the Interpretation of Boxes
	8.1.5 Can the Environment Help?
	8.1.6 Introducing the Store
	8.1.7 Interpreting Boxes
	8.1.8 The Bigger Picture

	8.2 Variables
	8.2.1 Terminology
	8.2.2 Syntax
	8.2.3 Interpreting Variables

	8.3 The Design of Stateful Language Operations
	8.4 Parameter Passing

	9 Recursion and Cycles: Procedures and Data
	9.1 Recursive and Cyclic Data
	9.2 Recursive Functions
	9.3 Premature Observation
	9.4 Without Explicit State

	10 Objects
	10.1 Objects Without Inheritance
	10.1.1 Objects in the Core
	10.1.2 Objects by Desugaring
	10.1.3 Objects as Named Collections
	10.1.4 Constructors
	10.1.5 State
	10.1.6 Private Members
	10.1.7 Static Members
	10.1.8 Objects with Self-Reference
	10.1.9 Dynamic Dispatch

	10.2 Member Access Design Space
	10.3 What (Goes In) Else?
	10.3.1 Classes
	10.3.2 Prototypes
	10.3.3 Multiple Inheritance
	10.3.4 Super-Duper!
	10.3.5 Mixins and Traits

	11 Memory Management
	11.1 Garbage
	11.2 What is ``Correct'' Garbage Recovery?
	11.3 Manual Reclamation
	11.3.1 The Cost of Fully-Manual Reclamation
	11.3.2 Reference Counting

	11.4 Automated Reclamation, or Garbage Collection
	11.4.1 Overview
	11.4.2 Truth and Provability
	11.4.3 Central Assumptions

	11.5 Convervative Garbage Collection
	11.6 Precise Garbage Collection

	12 Representation Decisions
	12.1 Changing Representations
	12.2 Errors
	12.3 Changing Meaning
	12.4 One More Example

	13 Desugaring as a Language Feature
	13.1 A First Example
	13.2 Syntax Transformers as Functions
	13.3 Guards
	13.4 Or: A Simple Macro with Many Features
	13.4.1 A First Attempt
	13.4.2 Guarding Evaluation
	13.4.3 Hygiene

	13.5 Identifier Capture
	13.6 Influence on Compiler Design
	13.7 Desugaring in Other Languages

	14 Control Operations
	14.1 Control on the Web
	14.1.1 Program Decomposition into Now and Later
	14.1.2 A Partial Solution
	14.1.3 Achieving Statelessness
	14.1.4 Interaction with State

	14.2 Continuation-Passing Style
	14.2.1 Implementation by Desugaring
	14.2.2 Converting the Example
	14.2.3 Implementation in the Core

	14.3 Generators
	14.3.1 Design Variations
	14.3.2 Implementing Generators

	14.4 Continuations and Stacks
	14.5 Tail Calls
	14.6 Continuations as a Language Feature
	14.6.1 Presentation in the Language
	14.6.2 Defining Generators
	14.6.3 Defining Threads
	14.6.4 Better Primitives for Web Programming

	15 Checking Program Invariants Statically: Types
	15.1 Types as Static Disciplines
	15.2 A Classical View of Types
	15.2.1 A Simple Type Checker
	15.2.2 Type-Checking Conditionals
	15.2.3 Recursion in Code
	15.2.4 Recursion in Data
	15.2.5 Types, Time, and Space
	15.2.6 Types and Mutation
	15.2.7 The Central Theorem: Type Soundness

	15.3 Extensions to the Core
	15.3.1 Explicit Parametric Polymorphism
	15.3.2 Type Inference
	15.3.3 Union Types
	15.3.4 Nominal Versus Structural Systems
	15.3.5 Intersection Types
	15.3.6 Recursive Types
	15.3.7 Subtyping
	15.3.8 Object Types

	16 Checking Program Invariants Dynamically: Contracts
	16.1 Contracts as Predicates
	16.2 Tags, Types, and Observations on Values
	16.3 Higher-Order Contracts
	16.4 Syntactic Convenience
	16.5 Extending to Compound Data Structures
	16.6 More on Contracts and Observations
	16.7 Contracts and Mutation
	16.8 Combining Contracts
	16.9 Blame

	17 Alternate Application Semantics
	17.1 Lazy Application
	17.1.1 A Lazy Application Example
	17.1.2 What Are Values?
	17.1.3 What Causes Evaluation?
	17.1.4 An Interpreter
	17.1.5 Laziness and Mutation
	17.1.6 Caching Computation

	17.2 Reactive Application
	17.2.1 Motivating Example: A Timer
	17.2.2 Callback Types are Four-Letter Words
	17.2.3 The Alternative: Reactive Languages
	17.2.4 Implementing Transparent Reactivity

