
Sparse Partitions
(Extended Abstract’)

Baruch Awerbuch * David Peleg t

Abstract: This abstract presents a collection of cluster-
ing and decomposition techniques enabling the construc-
tion of sparse and locality preserving representations for
arbitrary networks. These new clustering techniques have
already found several powerful applications in the area of
distributed network algorithms. Two of these applications
are described in this abstract, namely, routing with poly-
nomial communication-space tradeoff and online tracking
of mobile users.

1 Introduction
1.1 Motivation
As networks grow larger, various control and manage-
ment functions become increasingly more complex and
expensive. Traditional protocols, based on a global
approach, require all sites to participate in their activ-
ities, and to maintain considerable amounts of global
information (e.g. topological data, status tables etc).
This becomes problematic due to space considerations,
the complexity of maintaining and updating this global
information and the increasing work loads on partici-
pating sites.

This realization has led to the development of sys-
tems based on clustered (and hierarchical) representa-
tions of networks. Such methods allow processors to
maintain only limited (local) knowledge regarding the
state of the network. In particular, the representation
method considered in this paper is based on breaking
the network G(V,E) into connected regions, or clus-
ters, and thus obtaining a couerfor the network, i.e., a

*Department of Mathematics and Lab. for Com-
puter Science, M.I.T., Cambridge, MA 02139; ARPANET:
baruch@theory.lesmit.edu. Supported by Air Force Con-
tract TNDGAFQSR-860078. ARO contract DAAM3-86K-

collection of clusters that covers the entire set of ver-
tices V. (A partition is a cover consisting of disjoint
clusters.) Informally speaking, a protocol based on
such a cover will require a vertex to participate only
in those activities that occur in the cluster(s) it be-
longs to. Consequently, the cost of a task tends to
depend on its locality properties in the clustered repre-
sentation: a task involving a single cluster is relatively
cheap, whereas a task requiring cooperation between
sites from different clusters would be more expensive.

A potential problem with a naive implementation of
the cluster cover approach is that the resulting rep-
resentation might not necessarily conform with the
topological structure of the network, and particularly,
that it might have different locality properties. For in-
stance, it is possible that two neighboring nodes will
find themselves in different clusters in the cover (which
would make tasks requiring information exchange be-
tween these nodes more complex). Clearly, it is de-
sirable that the performance of a task depend on its
locality properties in the real network. This translates
into the following requirements. First, when the given
task concerns only a subset of the sites, located in a
small region in the network, one would like the execu-
tion of the task to involve only sites in or around that
region. Further, it is desirable that the cost of the task
be proportional to its locality level.

The above discussion motivates the need for locality
preserving network covers, whose structure faithfully
captures the topology of the network itself. This ab-
stract supplies the graph-theoretic tools for achieving
this goal, by presenting a collection of clustering and
decomposition techniques enabling the construction of
efficient cover-based locality preserving representations
for arbitrary networks. Some applications for these
techniques are described as well.

0171, NSF contract CCR8611442, DARPA contract N00014-89
J-1988, and a special grant from IBM.

stitute, Rehovot 76100, Israel; BITNET: pelegOwisdom. Sup
ported in part by an Allon Fellowship, by a Walter and Elim
Haas Career Development Award and by a B a n t d Fellowship-
Part of the work was done while visiting IBM T-J. Watson Re
search Center.

of this abtract uuL be
found in [AP89b,AP89a,Pel89,PelW]

tDepartment of Applied Mathematics, The Weizmann h- 1.2 Basic parameters
Let us first attempt to identify the appropriate crite-
ria for evaluating the quality of a cluster cover. There
are two inherent criteria of interest for ,-luster design.
The first is the “size” of the clusters; intuitively, small
clusters require less internal communication and pro-

det& for most of the

CH2925-6/90/0000/05031 .OO CQ 1990 IEEE

mailto:baruch@theory.lesmit.edu

vide faster response. The second criterion is the level
of “interaction” between clusters. This notion is meant
to capture the extent to which individual vertices be-
longing to one cluster need to be involved in the affairs
of other (neighboring or overlapping) clusters.

Next, let us discuss the technical manifestations of
the two qualitative criteria defined above in our cover-
based representations. The “size” of the cluster is cap-
tured by its radius. As for the “interaction level” crite-
rion, we refer to the technical measures related to this
notion as the sparsify of the cover. There are several
plausible definitions for this sparsity measure, and the
ones considered in this abstract are those proved useful
in various applications. All of these definitions rely on
the degrees of vertices or clusters in either the cover,
the graph itself or the induced cluster graph. For one
concrete example, a possible sparsity measure for a
cover S (with cluster overlaps), denoted A(S), is the
maximum number of occurrences of a vertex in clus-
ters S E S, (i.e., the maximum degree of a vertex in
the hypergraph (V,S)) . In a sense, this measure cap-
tures the extent of the overlaps existing between the
clusters in the given cover.

The crucial point we would like to stress is that the
criteria of cluster radius and sparsity are tightly related
to the significant complexity measures of distributed
network algorithms. In all applications considered in
the sequel, smaller cluster radii in a given cover di-
rectly translate into lower time complexities, due to
the fact that computations are performed inside clus-
ters, on shortest path trees spanning the clusters. At
the same time, low sparsity (to be specific, low de-
grees of vertices in the cover) guarantees low memory
requirements, since each vertex is actively involved in
(and thus stores information for) only the clusters it
belongs to. Finally, and perhaps most importantly,
the communication complexity of cover-based prote
cols strongly depends on both parameters (typically in
their product).

It is therefore worthwhile to attempt to devise graph
covers that are efficient in both parameters. The key
problem we are faced with lies in the fact that the
two parameters apear to be inherently conflicting, and
improving one of them usually results in degrading the
other. Our task therefore becomes that of striking a
balance between the two parameters, and seeking the
appropriate break-point for each of our applications.

Note that if one ignores the sparsity requirement, it
is a simple matter to design a locality preserving cover
even for arbitrary networks: for any desirable radius m
(serving as the “locality” parameter), select the cover
Nm containing all the radius m neighborhoods of every
node in the network. This guarantees that if two nodes
are at distance at most m of each other, there exists a

common cluster containing both of them. The obvious
problem with this cover is that it might not be sparse;
it may be that some nodes occur in many clusters,
incurring high costs.

1.3 Constructions

All the algorithms presented in this abstract for con-
structing good (namely, sparse) covers are based on the
central idea of coarsening. These algorithms share the
following overall structure. We are given some initial
cover SI dictated by the application. This will usually
be some natural cover (for instance, the neighborhood
cover N, for some m), that is not necessarily sparse.
The goal of our algorithm is to construct, via repeated
cluster merging, a coarsening cover 7 (namely, with
the property that each original cluster is fully sub-
sumed in one of the clusters of 7) that is relatively
sparse on the one hand, and whose cluster radii are
not much larger than those of S on the other hand.
(We refer to the ratio between the respective radii of
S and 7 clusters as the radius ratio of the coarsening.)
Our results exhibit a tradeoff between the two param-
eters: better sparsity implies worse radius ratio, and
vice versa. For example, one may get coarsening cov-
ers with radius ratio O(k) and average degree O(n1Ik),
for every 1 5 k 5 logn. (Throughout, n denotes the
number of vertices in the network.) The lower bounds
established in Thm. 5.4 imply that these tradeoffs are
nearly tight.

When addressing our sparsity criteria, it is possible
to consider either the mazimum or the average spar-
sity. The algorithms for reducing the average sparsity
are simpler, and in fact, for some applications they
suffice to enable considerable reduction in space and
communication complexities. However, our strongest
algorithms manage to bound also the maximum spar-
sity measure (albeit with somewhat inferior bounds).
The special significance of bounding the maximum de-
grees is that this typically enables us to bound the
space and communication costs of individual processes,
rather than just the total costs, and therefore enable us
to balance both the memory loads and the work in-
vested in communication among the processors in a
satisfactory manner.

Clustering techniques become most potent when
used in conjunction with a hierarchical structure. The
idea is to construct a hierarchy of covers, with higher
levels using larger radii clusters. This enables commu-
nication and data structures to be organized at the
appropriate level according to the “locality level” of
the application itself: an application that only calls for
neighboring vertices to communicate with each other
can be carried out at the lowest level of the hierarchy,

504

incurring the lowest costs possible. On the other hand,
tasks involving distant vertices will be performed on
higher levels of the hierarchy, and will cost accordingly.
These ideas are demonstrated in the applications pre-
sented in the sequel.

We shall also dwcuss several other graph-theoretic
structures that are strongly related to covers. These
include sparse spanners (cf. [PS89]), tree covers of
graphs (cf. [AKPSO]), and the new concepts of re-
gional matchings and diameter-based separators. All
of these structures are constructible using one of our
clustering algorithms, and each of them has proved to
provide a convenient representation for handling cer-
tain network applications.

Another related graph structure is the network de-
composition defined in [AGLP89]. Linial and Saks
[LS90] have given the best known sequential algorithm
for constructing such a decomposition, which is related
to diameter-based separators, and also devised an in-
genious randomized distributed implementation.

1.4 Applications

The new clustering techniques described herein have
already found several applications in the area of dis-
tributed network algorithms. One such application is
that of maintaining locality preserving distributed data
structures, particularly directories. This application
is handled in [Pel901 using the average cover algorithm
A V X O V E R described in Section 5.

Another application involves the classical problem of
deadlock-free routing. In [AKPSO], it is shown how
to use the tree covers of Section 6.4 in order to de-
vise a deadlock-free routing scheme using fewer buffers
at the cost of increasing the route length. Specifically,
the resulting routing requires O(k nilk .log Diam(G))
buffers per vertex, where Diam(G) denotes the diam-
eter of the network, and the routes are at most O(k)
longer than optimal.

In [AP] we use regional matchings to construct a
novel synchronizer, with only O(10g3 n) communicb
tion overhead; this is a significant improvement over
previous solutions which have e (n) overhead. A
straightforward distributed implementation of algo-
rithm H A X P A R T , can also be used in order to yield a
fast (polylog time) preprocessing algorithm for setting
up synchronizer 7 of [Awe85].

Other applications related to our covering tech-
niques are described in [AR9O1LS9O].

In the sequel we present in detail two powerful a p
plications, for designing efficient routing and tracking
mechanisms.

Routing

Delivering messages between pairs of processors is a
primary activity of any distributed communication
network. Naturally, it is desirable to route messages
along short paths. The straightforward approach of
storing a complete routing table in each vertex U in the
network guarantees optimal routes, but requires a total
of O(n2 log n) memory bits in the network. Thus, one
basic goal in large scale communication networks is the
design of routing schemes that produce efficient routes
and have relatively low memory requirements. Evi-
dently, locality-preserving representations of the net-
work play an important role in this task.

The problem of efficiency-memory tradeofi for rout-
ing schemes was first raised in [KK77], and later
studied extensively (e.g. [BJ86,Per82,FJ88,SK85,
vLT86,PU89a,ABLP89,Pel90]). It turns out that this
efficiency-memory tradeoff is strongly related to the
radius-sparsity tradeoff of neighborhood covers. This
observation served as the basis of the previous so-
lutions to the routing problem in [PU89a,ABLP89,
Pe1901, although the particular clustered representa-
tions used in these papers, as well as the resulting
routing procedures, are considerably different than our
current ones.

Let us briefly compare the properties of our new
scheme with previous ones. The efficiency of a rout-
ing scheme is measured in terms of its stretch, namely,
the maximum ratio between the length of a route
produces by the scheme for some pair of processors
and their distance. The family of hierarchical rout-
ing schemes (for every integer k 2 1) presented in
[PUSSa] guarantee stretch O(k) and require storing
a total of O(k3n1+lik logn) bits of routing informa-
tion in the network. This behavior is almost optimal
as far as total memory requirements are concerned,
as implied from a lower bound given in [PU89a] on
the space requirement of any scheme with a given
stretch. However, this scheme does not bound the in-
dividual memory requirements of each vertex, and it
is also limited to unit cost edges. The schemes pro-
posed in [ABLP89,Pe190] bound the worst-case indi-
vidual memory requirements of vertices, but at the
cost of an inferior efficiency-space tradeoff. In particu-
lar, in an n-processor network G of weighted diameter
Diam(G), the schemes HSk of [ABLP89], for A 2 1,
use O(k.logn.nt) bits of memory per vertex and guar-
antee a stretch of O(k2 - gk), while the schemes Rk of
[Pelgo], for k 2 1, use O(1og Diam(G).log n - n t) bits of
memory per vertex and guarantee a stretch of 0(4k).
Thus the stretch becomes exponential in k, in contrast
with the linear dependency achieved in [PU89a].

Our new schemes remedy this situation. For ev-

ery (weighted) network G and every integer k 2
1, we construct a name independent hierarchi-
cal routing scheme ?ik with stretch o(k2) using
0(kn1lk logn log Diam(G))) memory bits per vertex.
Thus the new scheme regains the polynomial depen-
dency of the stretch factor on k. We comment that the
schemes of [ABLPSS] have the advantage of a purely
combinatorial space complexity, i.e., complexity that
does not depend on the edge weights.

Online tracking of mobile users

When users in a distributed communication network
are mobile, i.e., are allowed to move from one network
vertex to another, it is necessary to have a mechanism
enabling one to keep track of them and contact them
at their current residence. Our purpose is to design
efficient tracking mechanisms, based on distributed di-
rectory structures (cf. [LEH85]), minimizing the com-
munication redundancy involved.

There are many types of network activities that may
fall under the category of mobile users. A prime ex-
ample is that of cellular phone networks. In fact, one
may expect that in the future, all telephone systems
will be based on “mobile telephones numbers,” i.e.,
ones that are not bound to any specific physical loca-
tion. Another possible application is a system one may
call “distributed yellow pages,” or “distributed match-
making” [MV88]. Such a system is necessary in an en-
vironment consisting of mobile “servers” and “clients.”
The system has to provide means for enabling clients
in need of some service to locate the whereabouts of
the server they are looking for.

In essence, the tracking mechanism has to support
two operations: a “move” operation, causing a user to
move to a new destination, and a “find” operation, en-
abling one to contact the current address of a specified
user. However, the task of minimizing the communi-
cation overheads of the “move” and %nd” operations
simultaneously appears difficult, as can be realized by
examining the following two extreme strategies (con-
sidered in [MVSS]). The ful l - infomation strategy re-
quires every vertex in the network to maintain a com-
plete directory containing upto-date information on
the whereabouts of every user. This results in cheap
“find” operations, but very expensive “move” opera-
tions. In contrast, the no-information strategy per-
forms no updates following a “move,” thus abolishing
altogether the concept of directories and making the
“move” operations cheap. However, establishing a con-
nection via a ”find” operation becomes very expensive,
as it requires a global search over the entire network.
Alternatively, it is possible to require that whenever a
user moves, it leaves a “forwarding” pointer a t the old

address, pointing to its new address. Unfortunately,
this heuristic still does not guarantee any good worst-
case bound for the ”find” operations.

Our purpose is to design some intermediate “partial-
information” strategy, that will perform well for any
find/move pattern. This problem was tackled also
by [MV88]. However, their approach considers only
the worst-case performance, and the schemes designed
there treat all requests alike, and ignore locality con-
siderations. Our goal is to design more refined strate-
gies that take into account the inherent costs of the
particular requests at hand, which in many cases may
be lower than implied by the worst-case analysis. In
particular, we would like moves to a near-by loca-
tion, or searches for near-by users, to cost less. Thus
we are interested in the worst case overhead incurred
by a particular strategy. This overhead is evaluated
by comparing the total cost invested in a sequence of
“move” and “find” operations against the inherent cost
(namely, the cost incurred by the operations them-
selves, assuming full information is available for free.)
This comparison is done over all sequences of “move”
and ‘%find” operations. The strategy proposed guaran-
tees overheads that are polylogan’thmtc in the size and
the diameter of the network. Again, our strategy is
based on a locality-preserving hierarchical representa-
tion of the network, which forms the structural skele-
ton for the data structures maintained by the tracking
mechanism. The overheads of the “move” and “find”
operations grows as the product of the radius and the
maximum degree of the underlying hierarchy of neigh-
borhood covers.

2 Definitions
We consider an arbitrary weighted graph G(V, E, w) ,
where V is the set of vertices, E is the set of edges
and w : E + R+ is a weight function, assigning a
non-negative weight w(e) to every edge e E E.

For two vertices U, w in G, let distG(u, w) denote
the (weighted) length of a shortest path in G between
those vertices, where the length of a path (e l , . . . , e ,)
is Cll i l r w (e i) . (We sometimes omit the subscript G
where no confusion arises.) This definition is general-
ized to sets of vertices U, W in G in the natural way,
by letting

distc(U, w) = min{distG(u, w) I U E U , w E w).
The j-neighborhood of a vertex U E V is defined

as Nj(u) = { w I dist(w,u) 5 j) . Given a subset
of vertices R V, denote ” (R) = { “ (U) I U E
R). Let Diam(G) denote the (weighted) diameter of
the network, i.e., mq, ,Ev(dis tc(u,v)) . For a ver-
tex U E V, let Rad(v,G) = max,EV(distG(v,w)).

Let Rad(G) denote the radius of the network, i.e.,
miq,Ev(Rad(u,G)). In order to simplify some of the
following definitions we avoid problems arising from
0-diameter or 0-radius graphs, by defining Rad(G) =
Diam(G) = 1 for the single-vertex graph G =
({ u } , 0) . Observe that for every graph G, Rad(G) 5
Diam(G) 5 2Rad(G).

V , let G(S) denote the
subgraph induced by S in G. A cluster is a subset of
vertices S V such that G(S) is connected. Through-
out we denote clusters by capital P, Q, R etc., and col-
lections of clusters by calligraphic type, P , Q, 7Z etc.
We use Rad(u, S) (respectively, Rad(S), Diam(S))
as a shorthand for Rad(u,G(S)) (reap., Rad(G(S)),
D i a m (G (S))) . A cover is a collection of clusters
S = {Si,.. .,Sm} such that Ui Si = V. A parti-
tion of G is a cover S with the additional property
that S n S’ = 8 for every S, S’ E S. Given a collec-
tion of clusters S, let Diam(S) = maxi Diam(Si) and
Rad(S) = maxi Rad(Si).

We use the following measures for the sparsity (or
“interaction level”) of covers and partitions. First
consider a cover S. For every vertex U E V, let
deg(u ,S) denote the degree of U in the hypergraph
(V,S) , i.e., the number of occurrences of U in clusters
S E S. The mazimum degree of a cover S is defined
as A(S) = m w E v d e g (u , S) . The auerage degree of a
cover S is defined as A(S) = (EvEv deg(u, S))/n.

For partitions we may be interested in several dif-
ferent measures, based on the neighborhood relations
among clusters or between clusters and individual ver-
tices. Given a partition S and a cluster S E S, let us
define the uertez-neighborhood of S as r,(S) = N l (S) ,
and the cluster-neighborhood of S as I’,(S) = {St I
St E S, dist(S,S’) = 1). The maximum and aver-
age uertez-degree and cluster-degree of the partition S
are defined accordingly as A,(S) = maxscs \ru(S)l1

Given a set of vertices S

A U W = (CS@ IL(S)l)/n, &(S) = “SES ’qp,
and = (L E 6 lL(W/ISl.

Given two covers S = {SI,.. .,Sm} and 7 =
{TI,.. . ,Tk}, we say that 7 coarsens S if for every
Si E S there exists a Ti E 7 such that Si Ti. In
this case, we refer to the ratio Rad(l) /Rad(S) as the
radius ratio of the coarsening.

3 Sparse coarsening covers
This section describes an algorithm for the construc-
tion of a sparse coarsening cover, i.e., a cover with low
maximum degree. The main result is:

Theorem 3.1 Given a graph G = (V,E) , IVl = n, a
cover S and an integer k 2 1, it is possible to construct a
coarsening cover 7 that satisfies the following properties:

(1) R a d (7) 5 (2k - l)Rad(S), and
(2) A(7) 5 2klS111k.

Let us remark that it is possible to replace the degree
bound of Property (2) with O(k nilk). This requires
a more complex algorithm and analysis, and therefore
we prefer to state the theorem as above. In most of
our applications there is no real difference, as IS1 = n.
We also mention that this result is close to optimal in
some cases, as implied from Thm. 5.4.

The coarsening problem is handled by reducing it to
the sub-problem of constructing a partial cover. The
input of this problem is a graph G = (V, E) , IVl= n, a
collection of (possibly overlapping) clusters ‘R and an
integer E 2 1. The output consists of a collection of
disjoint clusters, V7, that subsume a subset V’R 7Z
of the original clusters. The goal ia to subsume “many”
clusters of ‘R while maintaining the radii of the output
clusters in V I relatively small. We now describe a
procedure Cover(7Z) achieving this goal.

Procedure Cover(R) starts by setting U, the collec-
tion of unprocessed clusters, to equal ‘R. The proce-
dure operates in iterations. Each iteration constructs
one output cluster Y E V7, by merging together some
clusters of U. The iteration begins by arbitrarily pick-
ing a cluster S in U and designating it as the kernel of
a cluster to be constructed next. The cluster is then
repeatedly merged with intersecting clusters from U.
This is done in a layered fashion, adding one layer at
a time. At each stage, the original cluster is viewed as
the internal kernel Y of the resulting cluster 2. The
merging process is carried repeatedly until reaching a
certain sparsity condition (specifically, until the next
iteration increases the number of clusters merged into
2 by a factor of less than I’RI1lk). The procedure then
adds the kernel Y of the resulting cluster 2 to a collec-
tion ’07. It is important to note that the newly formed
cluster consists of only the kernel Y, and not the en-
tire cluster 2, which contains an additional “external
layer” of ‘R clusters. The role of this external layer
is to act as a “protective barrier” shielding the gener-
ated cluster Y, and providing the desired disjointness
between the different clusters Y added to V 7 .

Throughout the process, the procedure keeps also
the “unmerged” collections Y , 2 containing the origi-
nal ‘R clusters merged into Y and 2. At the end of the
iterative process, when Y is completed, every cluster
in the collection Y is added to V’R, and every cluster
in the collection 2 is removed from U. Then a new it-
eration is started. These iterations proceed until U is
exhausted. The procedure then outputs the sets V7Z
and VI.

Note that each of the original clusters in VR is cov-
ered by some cluster Y E V I constructed during the

execution of the procedure. However, some original 'R
clusters are thrown out of consideration without being
subsumed by any cluster in V7; these are precisely the
clusters merged into some external layer Z - Y .

Procedure Cover is formally described in Figure 2.
Its properties are summarized by the following lemma.

Lemma 3.2 Given a graph G = (V ,E) , IVl = n, a
collection of clusters 'R and an integer k , the collections
V 7 and V'R constructed by Procedure Cover(7Z) satisfy
the following properties:

(1) V7 coarsens V'R,
(2) Y n Y' = 0 for every Y, Y' E '07,
(3) 2 l'Rll-l/k, and
(4) Rad(V7) 5 (2) - l)Rad('R).

Proof: First let us note that since the elements of
U at the beginning of the procedure are clusters (i.e.,
their induced graphs are connected), the construction
process guarantees that every set Y added to V7 is
a cluster. Property (1) now holds directly from the
construction.

Let us now prove Property (2) . Suppose, seeking to
establish a contradiction, that there is a vertex U such
that v E Y n Y'. Without loins of generality suppose
that Y was created in an earlier iteration than Y'.
Since v E Y', there must be a cluster S' such that
v E S' and S' was still in U when the algorithm started
constructing Y'. But every such cluster S' satisfies
S' n Y # 8, and therefore the final construction step
creating the collection Z from Y should have added S'
into Z and eliminated it from U; a contradiction.

It is imme-
diate from the termination condition of the inter-
nal loop that the resulting pair Y , 2 satisfies 121 5
~ ' R ~ l ~ k ~ y ~ . Therefore l'Rl = CZ 121 5 Cy I'RI'I'IYI =
~'R~l~k~V'R~, which proves Property (3).

Finally we analyze the increase in the radius of clus-
ters in the cover. Consider some iteration of the main
loop of Procedure Cover starting with the selection of
some cluster S E 'R. Let J denote the number of times
the internal loop was executed. Denote the initial set
2 by 20. Denote the set 2 (respectively, Y,Y) con-
structed on the i'th internal iteration (1 5 i < J)
by Zi (resp., yI.,yi). Note that for 1 5 i 5 J , 2j
is constructed on the basis of Yil yi = Zi-1 and
yI. = USEYi S. We proceed along the following chain
of claims. We first observe that l2il 2 l'Rli/k for every
0 5 i 5 J - 1, and strict inequality holds for i 2 1.
This implies J 5 k . Finally, we prove that for every
1 5 i 5 J , Rad&) 5 (2i - l)Rad('R). It follows from
the last two claims that Rad(Y1) 5 (2k - l)Rad('R),
which completes the proof of the last property of the
Lemma. I

Property (3) is derived as follows.

R c S ; 7 - 0
repeat
(DR, 07) + Corer(R)
7 -7uv7
R - R \ V R

until 'R = 0

Figure 1: Algorithm HAXPOVEL

U t R ; 07-0; VR4-0
repeat

Select an arbitrary cluster S E U.

repeat
2 - {SI

Y + Z

Figure 2: Procedure ~ o r e r (R) .

We now present the algorithm HAX-COVER, whose
task is to construct a cover as in Theorem 3.1. The
input to the algorithm is a graph G = (V, E) , [VI = n,
a cover S and an integer k 2 1. The output collection
of cover clusters, 7, is initially empty. The algorithm
maintains the set of "remaining" clusters 'R. These are
the clusters not yet subsumed by the constructed cover.
Initially 77, = S, and the algorithm terminates once
'R = 8. The algorithm operates in phases. Each phase
consists of the activation of the procedure Cover@),
which adds a subcollection of output clusters 237 to 7
and removes the set of subsumed original clusters V'R
from 'R.

Algorithm HAX-COVER is formally described in Fig. 1.
We are now ready to prove Theorem 3.1 itself. We

need to prove that given a graph G = (V, E) , IVl = n,
a cover S and an integer k 2 1, the cover 7 constructed
by Algorithm HAX-COVER coarsens S and satisfies the
two properties of the Theorem.

Let 'R' denote the contents of the set 'R at the be-
ginning of phase i , and let ri = l'Ril. Let V7' denote
the collection VI added to 7 at the end of phase i ,
and let VR' be the set V'R removed from 'R at the end
of phase i .

The fact that 7 coarsens S follows from the fact
that 7 = Ui D P , S = Ui VR' and by Property (1)
of Lemma 3.2, 07' coarsens VRi for every i . Prop
erty (1) follows directly from Property (4) of Lemma
3.2. It remains to prove Property (2). This property
relies on the fact that by Property (2) of Lemma 3.2,
each vertex U participates in at most one cluster in
each collection 07'. Therefore it remains to bound
the number of phases performed by the algorithm.
This bound relies on the following observations. By
Property (3) of Lemma 3.2, in every phase i, at least
10Ril 2 lRill-l/k clusters of R' are removed from the
set Ri, i.e., ri+l 5 ri - ri

Claim 3.3 Consider the recurrence relation
zi+l = zi - 2:. for 0 < Q < 1. Let f(n) denote the
least index i such that zi 5 1 given 20 = n. Then
f(n) < ((1 - ~) l n 2) - ' n ' - ~ .

Proof: It follows from the definition of f(n) that

1-l/k .

From this we get

Consequently, since ro = n, S is exhausted after no
more than &lSllIk phases of Algorithm IIAX-COVER,
and hence A(7) 5 2hISJ11k. This completes the proof
of Theorem 3.1. 1

Algorithm MAX-COVER as described here requires
O(n2) steps, and its straightforward distributed imple-
mentation has communication cost O(n2). In [AP90]
we describe a more efficient distributed algorithm.

4 Sparse coarsening part it ions
In this section we discuss algorithms for the construc-
tion of sparse coarsening partitions, according to the
maximum vertex- and cluster-degree measures.

Our first result concerns a maximum vertex-degree
partition algorithm IIAXPART,. This is the only alge
rithm in which our tradeoff deviates considerably from
the known lower bound, in that the radius ratio is ex-
ponential in k.

Theorem 4.1 Given a graph G = (V,E) . IVl = n, a
partition S and an integer k 2 1, it is possible to con-
struct a coarsening partition 7 that satisfies the following
properties:

(1) R a d (7) 5 2 - 5k Rad(S), and
(2) Au(7) = O(h . nlIk).

The algorithm and the proof of the theorem will be
presented in the full paper (see also [Pe189]).

Our next result concerns a maximum cluster-degree
partition algorithm MAXPART,. The polynomial bound
obtained for the radius ratio here is the result of the
weaker sparsity criterion.

Theorem 4.2 Given a graph G = (V, E). IVl = n, a
partition S and an integer h 2 1, it is possible to con-
struct a coarsening partition 7 that satisfies the following
properties:

(1) Rad(7) 5 2 k'q'Rod(S), and
(2) Ac(7) = O(l0g h * nl/').

The algorithm and the proof of the theorem will be
presented in the full paper.

5 Average degree clustering
In this section we consider algorithms for construct-
ing coarsening covers and partitions with low average
degree. Generally speaking, we expect to get better
tradeoffs in this case. Let us first consider the case of
covers.

Theorem 5.1 Given a graph G = (V , E) , IVl = n, a
cover S and an integer h 2 1, i t is possible to construct a
coarsening cover 7 that satisfies the following properties:

(1) Rad(7)
(2) A(7) = O(n1ik).

(2) + l)Rad(S), and

The algorithm AV-COVER can be thought of as based
on a single application of Procedure C o v e r (used in al-
gorithm IIAXXOVER), taking the entire clusters 2 pro-
duced by the procedure (including the external layers)
as output clusters. A formal description of the alg-
rithm and a proof of the lemma are omitted from the
abstract (see [Pe189,Pe190]).

Next let us consider partitions. For the cluster-
degree measure, a minor modification of Algorithm
AV-COVER yields Algorithm A V S A R T , for this problem.
This algorithm is in fact a natural extension of the
algorithm for constructing synchronizer 7 in [AwesS].
We thus have

Theorem 5.2 Given a graph G = (V,E) , IVl = n, a
partition S and an integer 1: 2 1, it is possible to con-
struct a coarsening partition 7 that satisfies the following
properties:

(1) R a d (7) 5 (2k + l)Rad(S), and
(2) A(7) = O(nl/k).

The situation is again harder with the vertex de-
gree measure, since the radius ratio guaranteed by al-
gorithm HAX-PART, is exponential. In the full paper
we describe a simple variant of algorithm AV-COVER,
named A V P A R T , , that solves a weaker problem, in
which the output clusters are allowed to be discon-
nected. (It is necessary to define cluster radius in this
case based on distances in the entire graph G.) We re-
fer to this problem as the problem of "weak partitions"
with low average vertex-degree. We get

Theorem 5.3 Given a graph G = (V,E), IVl = n,
a partition S and an integer k 2 1, it is possible t o
construct a weak coarsening partition 7 that satisfies the
following properties:

(1) Rad(7) 5 (2k + l)Rad(S), and
(2) A(7) = O(n'/k).

Let us now turn our attention to the question of
lower bounds for clustering algorithms. Relying on the
lower bound of [PS89] for spanners (see Sec. 6.2), and
on the relationships between spanners and covers, we
show the following.

Theorem 5.4 For every k 2 3, there exist unweighted
n-vertex graphs G = (V, E) for which
(a) for every cover 7 coarsening Nl(V), if R a d (7) 5 k
then A(7) = R(nl/k).
(b) for every partition 7 coarsening&(V). if Rad(7) 5
k then A,(7) = R(n'/k).

These bounds clearly imply similar bounds for the
average vertex-degree partition problem, as well as for
all maximum degree problems.

6 Related graph structures

6.1 Regional Matchings
In [MV88], Mullender and Vi thyi proposed a gen-
eral paradigm for distributed match-making between
clients and servers in a distributed network. Intu-
itively, a match-making system is a specification of
rendezvous locations in the network, enabling users to
locate and communicate with one another.

Since our goal is to reduce storage and communica-
tion costs, it is desirable to keep topological considera-
tions in mind, and devise a match-making mechanism
taking locality into account. In this subsection we in-
troduce the concept of a regional matching, geared to-
wards this goal.

The basic components of our construction are a read
set Read(u) V and a write set Write(u) C V, defined
for every vertex U. Consider the collection 'RW of all
pairs of sets, namely

'RW = { Read(u), Write(u) I U E V }.

Definition 6.1 T h e collection 'RW is an m-regional
matching (for some integer m 2 1) if for all u,u E V
such that dist(u, U) 5 m, Write(u) f l Read(u) # 0.

The relevant parameters of a regional matching are
its radius, which the maximal distance from a vertex
to any other vertex in its read or write set, and its de-
gree, which is the maximal number of vertices in any
read or write set. Formally, for any m-regional match-
ing 'RW define the following four parameters:
Degreod('RW) = ~ = E V IRead(v)l,
Radreod('RW) =

and DegWrite('RW), Ra&,jt,('RW) are defined anal-
ogously based on the sets Write(v). Again, there ap-
pears to be a trade-off between these two parameters,
making simultaneous minimization of both of them a
nontrivial task. Using algorithm IIAX-COVER we get the
following result, whose proof is deferred to the full pa-
per (see also [AP89a]).

Theorem 6.2 For all m,k 2 1, it is possible to con-
struct an m-regional matching 7ZWm,k with

maxu,uEv{dist(u, U) I U E Read(v)},

Degre,,('RWm,k) 5 2k *

Degwrite (RWm ,L) = 1
hdreod('RWm,k) I 2k + 1

Radwrite('RWm,k) I 21: + 1
6.2 Spanners
Spanners [PU89b1PS89,ADDJ90] appear to be the un-
derlying graph structure in various constructions in
distributed systems and communication networks.

Definition 6.3 Given a connected simple graph G =
(V,E), a subgraph G' = (V,E') is a t-spanner of G
if for every U, U E V , distc,(u, U) 5 t distG(u, U). We
refer t o t as the stretch factor o f the spanner G'.

Using the average cluster-degree partition algorithm
A V P A R T , (or in fact, its variant from [Awe85]), it is
shown in [PS89] that

Lemma 6.4 [PS89] For every unweighted n-vertex
graph G and for every fixed k 2 1, there exists a
(polynomial-time-constructible) (4k + 1)-spanner with
O(n'+'/') edges.

5 10

Using algorithm AV-COVER, it is possible to derive
a similar result for weighted graphs, although with
an additional logarithmic factor based on the edge
weights. Recently, a more efficient algorithm for con-
structing spanners for weighted graphs was proposed
in [ADDJSO].

6.3 Low diameter separators
Separators (cf. [LT79]) are traditionally based on car-
dinality considerations. For arbitrary networks it is
not always possible to construct separators of this na-
ture. However, for various distributed applications it
may be useful to have separators based on diameter
parameters.

Definition 6.5 Given a graph G(V, E), a subset of the
vertices V” V is an (m,p,r)-separatorif the subgraph
G’ induced by V’ = V - V“ in G has the following two
properties:

1. every two connectd components in G’ are at dis-

2. every connectd component in G’ has diameter of

3. The fraction of nodes in V’ is at least O(t).

Intuitively, one should view the set V” as the small
cardinality separator and set V’ as the “nicely-packed”
interior of the network. The typical goal is to remain
with most of the nodes being in the interior, and at
the same time to keep p,7 small for all fixed m.

Using a single application of the inner loop of Pro-
cedure Cover in Figure 2, and taking the vertices in all
the output clusters in V7 as V’ (and the rest of the
vertices as V”), we get

Lemma 6.6 For every graph G, for all m > 0 and k 2
1, it is possible to construct an (m, k, nilk) separator.

tance m or more of each other.

O(m . p) in G, and

6.4 Tree Covers
Another useful structure involves constructing a sparse
tree collection in a graph.

Definition 6.7 Given an undirected graph G(V, E) , an
(r,m)-tree couer is a collection F of trees in G , that
satisfies the following properties:

1. For every two nodes U, w E V , there exists a tree
F E F such that distF(u, w) 5 re distG(u, U).

2. Every node belongs to at most m different trees.

Thm. 3.1 is used in [AKPSO] to prove

Lemma 6.8 For every undirected graph G(V,E) and
integer k 2 1, it is possible to construct an (r,m)-
tree cover 3 k for G, with r = 8k and m = k nilk .
logDiam(G).

7 Applications

7.1 Routing
A routing scheme RS for the (weighted) network G is
a mechanism for delivering messages in the network.
It can be invoked at any origin vertex U and be re-
quired to deliver a message to some destination vertex
U (specified by a fixed name) via a sequence of message
transmissions.

We now give precise definitions for our complexity
measures for stretch and memory. The communication
cost of transmitting an O(1ogn) bit message over edge
e is the weight w(e) of that edge. Let Cost(RS,u,w)
denote the communication cost of the routing scheme
when invoked at an origin U, w.r.t. a destination w and
an O(1og n) bit measage, i.e., the total communication
cost of all measage transmissions associated with the
delivery of the message. Given a routing scheme RS
for an n-processor network G = (V, E) , we define the
stretch factor of the scheme RS to be

{ Cost(RS, U, U)}
Stretch(RS) = “yV dist(u, U)

The memory requirement of a protocol is the max-
imum amount of memory bits used by the protocol
in any single processor in the network. We denote
the memory requirement of a routing scheme RS by
Mem o.y(RS) .

Our solution is based on constructing a hierarchy
of covers in the network, and using this hierarchy for
routing. In each level, the graph is covered by clusters,
each managed by a center vertex. Each cluster has its
own internal routing mechanism enabling routing to
and from the center. Messages are always transferred
to their destinations using the internal routing mecha-
nism of some cluster, along a route going through the
cluster center. It is clear that this approach reduces the
memory requirements of the routing schemes, since one
has to define routing paths only for cluster centers, but
it increases the communication cost, since messages
need not be moving along shortest paths. Through an
appropriate choice of the cluster cover we guarantee
that both overheads are low.

The routing component used inside clusters is based
on a variant of the interual routing scheme, or ITR
[SK85,PU89a,ABLP89], that uses a shortest path tree
rooted at a vertex r and spanning the cluster.

Each level in our hierarchy constitutes a regional
(C, m)-routing scheme, which is a scheme with the fol-
lowing properties. For every two processors u,u, if
dist(u, w) 5 m then the scheme succeeds in delivering
messages from U to w . Otherwise, the routing might

511

end in failure, in which case the message is returned to
U. In either case, the communication cost of the entire
process is at most C.

We construct a regional (O(k2m), m)-routing
scheme, for any integers Elm 2 1. The main stage
of the construction involves an application of Theorem
3.1. We start by setting S = &(V) and construct-
ing a coarsening cover 7 as in the theorem. Next, we
provide internal routing services in each cluster T by
selecting a center t(T) and constructing a tree routing
component for T rooted at this center. We associate
with every vertex v E V a home cluster, home(u) E 7,
which is the cluster containing N,(v). (In case there
are several appropriate clusters, select one arbitrarily.)
A processor U routes a message by sending it to its
home cluster leader, t(home(u)). The leader uses the
ITR mechanism to forward the message to its desti-
nation. If that destination is not found in the cluster,
the message is returned to the root and from there to
the originator.

Finally we present our family of hierarchical rout-
ing schemes. For every fixed integer k > 1, con-
struct the hierarchical scheme Xk as follows. Let
6 = pogDiam(G)1. For 1 5 i 5 6 construct a re-
gional (0(k22'), 2')-routing scheme &. Each proces-
sor v participates in all 6 regional routing schemes a.
In particular, U has a home cluster homei(v) in each
&, and it stores all the information it is required to
store for each of these schemes.

The routing procedure operates as follows. Suppose
a vertex U wishes to send a message to a vertex v. Then
U first tries using the lowest-level regional scheme RI,
i.e., it forwards the message to its first home cluster
leader, !(homel(u)). If this trial fails, U retries sending
its message, this time using regional scheme R2, and
so on, until it finally succeeds.

In the full paper (see also [APSSb]) we analyze the
scheme and prove (relying on Thm. 3.1):

Theorem 7.1 For every graph G and every fixed
integer k 2 1 it is possible to construct (in
polynomial time) a hierarchical routing scheme %k
with Stretch('&) = O(k2) using Memory(%,) =
O(n'/, log2 n log Diam(G)) bits per vertex.

7.2
Denote by Add<() the current address of a specific
user (. A directory I> with respect to the user (is a
distributed data structure which enables the following
two operations.

Online tracking of mobile users

Find(D, (, v) : invoked at the vertex U, this operation
delivers a search message from U to the location
s = Add<() of the user (.

Hove(D,(, s , t) : invoked at the current location s =
Add(() of the user (, this operation moves (to a
new location t and performs the necessary updates
in the directory.

We are interested in measuring the communication
complexity overheads incurred by our Find and Hove
algorithms, compared to the minimal "inherent" costs
associated with these operations. Let Cost(F) (re-
spectively, Cost(M)) denote the actual communica-
tion cost of the .operation F (resp., M). For a Find
instruction F = Find(D, (, U), define the optimal cost
of F as Opt-cost(F) = dist(v, Add<()). For a Hove
instruction M = Hove(D,(, s , t) , let f i lm((, s , t) de-
note the actual relocation cost of the user (from s to
t . We define the optimal cost of M as Opt-cost(M) =
ReZoc((, s , t) , which is the inherent cost assuming no
extra operations, such as directory updates, are taken.
This cost depends on the distance between the old and
new location, and we assume it satisfies ReZoc(<, s , t) 2
dist(s,t). (In fact, the relocation of a server is typi-
cally much more expensive than just sending a single
message between the two locations.)

We would like to define the "amortized overhead"
of our operations, compared to their optimal cost.
For that purpose we consider mixed sequences of
Hove and Find operations. Given such a sequence
8 = 6 1 , . ..,ut, let F(5) denote the subsequence
obtained by picking only the Find operations from
5. Define the optimal cost and the cost of the
subsequence F(5) = (F l , . . .,Fp) in the natural
way, setting Opt-cost(F(5)) = Opt-cost(Fi) and

The find-stretch of the directory with respect to a
Cost(F(5)) = Ci=l Cost(Fi).

given sequence of operations 5 is defined as

The find-stretch of the directory, denoted StTetChfind,
is the least upper bound on StretChji,d(5), takenover
all finite sequences 5.

the subsequence M (5) ,
the costs Opt-cost(M(5)) and Cost(M(5)) and the
moue-stretch factors Stretch,,,,,,(i?) and Stretch,,,,,,
analogously.

Our tracking mechanism is based on a hierarchy of
2'-regional matchings plus several additional control
mechanisms. In the full paper (see also [AP89a]) we
provide a detailed description of the solution and prove
(using Thm. 6.2):

Define

Theorem 7.2 For every graph G and every fixed integer
k 2 1 it is possible t o construct (in polynomial time)
a directory D that satisfies, Stretchfind = O(log2 n)

512

and Stretch,,,ove = O(log2 n) and uses a total of O(N .
log2 n + n log n) memory bits for handling N users.

Acknowledgments
We are grateful to Yehuda Afek, Steve Ponzio, Moti
Ricklin and an anonymous referee for pointing out
some errors in previous versions of the paper. We
also thank Michael Fischer for stimulating discussions,
and Oded Goldreich and Richard Karp for their help-
ful comments.

References
[ABLP89]

[ADD J90]

[AGLP89]

[AKPSO]

[API

[AP89a]

[AP89b]

[AP90]

[AR90]

[Awe851

Baruch Awerbuch, Amotz Bar-Noy, Nati Linial,
and David Peleg. Compact distributed data
structures for adaptive network routing. In
Proc. 21 st A CM Symp. on Theory of Comput-
ing, pages 230-240, ACM, May 1989.

I. Althiifer, G. Das, D. Dobkin, and D.
Joseph. Generating sparse spanners for
weighted graphs. In Proc. 2nd Scandianvian
Workshop on Algorithm Theory, July 1990.

Baruch Awerbuch, Andrew Goldberg, Michael
Luby, and Serge Plotkin. Network decomp-
sition and locality in distributed computation.
In Proc. 30th IEEE Symp. on Foundations of
Computer Science, IEEE, May 1989.

Baruch Awerbuch, Shay Kutten, and David Pe-
leg. On buffer-economical storeand-forward
deadlock prevention. March 1990. Unpublished
manuscript.

Baruch Awerbuch and David Peleg. Network
synchronization with polylogarithmic overhead.
These proceedings.

Baruch Awerbuch and David Peleg. Online
Tracking of mobile users. Technical Memo TM-
410, MIT, Lab. for Computer Science, August
1989.

Baruch Awerbuch and David Peleg. Routing
with Polynomial Communication - Space Trade-
OB Technical Memo TM-411, MIT, Lab. for
Computer Science, September 1989.

Baruch Awerbuch and David Peleg. ED-
cient Distributed Construction of Sparse Cov-
ers. Technical Report CS90-17, The Weizmann
Institute, July 1990.

Y. Afek and M. Ricklin. Sparser: a paradigm
for running distributed algorithms. April 1990.
Unpublished manuscript.

Baruch Awerbuch. Complexity of network syn-
chronization. J. of the ACM, 32(4):804-823,
October 1985.

[BJ86] Alan E. Baratz and Jeffrey M. JaRe. Establish-
ing virtual circuits in large computer networks.
Computer Networks, :27-37, December 1986.
Greg N. Frederickson and Ravi Janardan. De-
signing networks with compact routing tables.
Algorithmim, 3:171-190, August 1988.
L. Kleinrock and F. Kamoun. Hierarchical rout-
ing for large networks; performance evaluation
and optimization. Computer Networks, 1:155-
174, 1977.

K.A. Lantz, J.L. Edighoffer, and B.L. Histon.
Towards a universal directory service. In Pro-
ceedings of 4th PODC, pages 261-271, Calgary,
Alberta, Canada, August 1985.

[FJ88]

[KK77]

[LEH85]

[LS90]

[LT79]

[MV88]

[Pel891

[Pelgo]

[Per821

[PS89]

[PUSga]

[PUSSb]

[SK85]

[vLT86]

N. Linial and M. Saks. Finding low-diameter
graph decompositions distributively. April
1990. Unpublished manuscript.
Richard J. Lipton and Robert E. Tarjan. A
separator theorem for planar graphs. SIAM J.
on Applied Math., 36(2):177-189, April 1979.

S.J. Mullender and P.M.B. Vithyi. Distributed
match-making. Algorithmica, 3:367-391, 1988.

D. Peleg. Sparse Graph Partitions. Techni-
cal Report CS89-01, The Weizmann Institute,
February 1989.
D. Peleg. Distance-dependent distributed di-
rectories. Info. and Computation, 1990. To ap-
pear. Also in Tech. Report CS89-10, The Weiz-
mann Institute, May 89.

R. Perlman. Hierarchical networks and the sub-
network partition problem. In 5'h Conference
on System Sciences, 1982.

David Peleg and Alejandro A. Schiiffer. Graph
spanners. J. of Graph Theory, 13:99-116, 1989.

D. Peleg and E. Upfal. A tradeoff between size
and efficiency for routing tables. J. of the ACM,
36:510-530, 1989.

David Peleg and Jeffrey D. Ullman. An optimal
synchronizer for the hypercube. SIAM J . on
Comput., 18(2):740-747, 1989.

N. Santoro and R. Khatib. Labelliug and im-
plicit routing in networks. The Computer Jour-
nal, 28:5-8, 1985.

J. van Leeuwen and R.B. Tan. Routing with
compact routing tables. In G. Rozenberg and
A. Salomaa, editors, The Book of L, pages 259-
273., Springer-Verlag, New York, New York,
1986.

513

