
Paxos Made Moderately Complex

Robbert van Renesse
Cornell University
rvr@cs.cornell.edu

March 25, 2011

Abstract

For anybody who has ever tried to implement it,
Paxos is by no means a simple protocol, even though
it is based on relatively simple invariants. This paper
provides imperative pseudo-code for the full Paxos
(or Multi-Paxos) protocol without shying away from
discussing various implementation details. The ini-
tial description avoids optimizations that complicate
comprehension. Next we discuss liveness, and list
various optimizations that make the protocol practi-
cal.

1 Introduction

Paxos [13] is a protocol for state machine replication
in an asynchronous environment that admits crash
failures. It is useful to consider the terms in this
sentence carefully:

• A state machine consists of a collection of states,
a collection of transitions between states, and a
current state. A transition to a new current state
happens in response to an issued operation and
produces an output. Transitions from the cur-
rent state to the same state are allowed, and are
used to model read-only operations. In a deter-
ministic state machine, for any state and oper-
ation, the transition enabled by the operation is
unique.

• In an asynchronous environment, there are no
bounds on timing characteristics. Clocks run ar-
bitrarily fast, network communication takes ar-
bitrarily long, and state machines take arbitrar-

ily long to transition in response to an operation.
The term “asynchronous” as used here should
not be confused with nonblocking operations on
objects that are often called asynchronous as
well.

• A state machine has experienced a crash fail-
ure if it will make no more transitions and thus
its current state is fixed indefinitely. No other
failures of a state machine, such as experienc-
ing undocumented transitions, are allowed. In a
“fail-stop environment” [21], crash failures can
be reliably detected—not so in an asynchronous
environment.

• State Machine Replication (SMR) [12, 22] is a
technique to mask failures, and crash failures in
particular. A collection of replicas of a deter-
ministic state machine are created. The replicas
are then provided with the same sequence of op-
erations, so they end up in the same state and
produce the same sequence of outputs. It is as-
sumed that at least one replica never crashes.

Deterministic state machines are used to model
server processes, such as a file server, a DNS server,
and so on. A client process, using a library “stub rou-
tine,” can send a command to such a server over a
network and await an output. A command is a triple
〈κ, cid, operation〉, where κ1 is the identifier of the
client that issued the command and cid a client-local
unique command identifier (such as a sequence num-
ber). The command identifier must be included in
the response from the server so the client can match

1As in [13], we will use Greek letters to identify processes.

1

responses with commands. In SMR replication, that
stub routine is replaced with another to provide the
illusion of a single remote server that is highly avail-
able. The stub routine sends the command to all
replicas and returns only the first response to the
command.

The difficulty comes with multiple clients, as con-
current commands may arrive in different orders at
the replicas, and thus the replicas may end up taking
different transitions, producing different outputs as
a result and possibly ending up in different current
states. A protocol like Paxos ensures that this can-
not happen: the replicated state machine behaves
logically identical to a single remote state machine
that never crashes [9].

While processes may crash, we assume that mes-
saging between processes is reliable (but not neces-
sarily FIFO):

• a message sent by a non-faulty process to a non-
faulty destination process is eventually received
(at least once) by the destination process;

• if a message is received by a process, it was sent
by some (possibly faulty) process. That is, mes-
sages are not garbled and do not appear out of
the blue.

This paper gives an operational description of the
multi-decree Paxos protocol, sometimes called multi-
Paxos. Single-decree Paxos is significantly easier to
understand, and is the topic of such papers as [15, 14].
But the multi-decree Paxos protocol is the one that
is used (or some variant thereof) within industrial-
strength systems like Chubby [4] and ZooKeeper [10].

2 How and Why Paxos Works

Replicas and Slots

In order to tolerate f crashes, Paxos needs at
least f + 1 replicas. When a client κ wants to
execute a command 〈κ, cid, op〉, it broadcasts a
〈request, 〈κ, cid, op〉〉 message to all replicas and
waits for a 〈response, cid, result〉 message from one
of the replicas.

The replicas can be thought of as having a sequence
of slots that need to be filled with commands. Each

process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;

function propose(p)
if 6 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N+ ∧
6 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};

proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if

end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then

slot num := slot num + 1;
else

〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic

send(κ, 〈response, cid, result〉);
end if

end function

for ever

switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p′ : 〈slot num, p′〉 ∈ decisions do

if ∃p′′ : 〈slot num, p′′〉 ∈ proposals ∧
p′′ 6= p′ then

propose(p′′);
end if

perform(p′);
end while;

end switch

end for

end process

Figure 1: Pseudo code for a replica.

2

slot is indexed by a slot number. A replica, on re-
ceipt of a 〈request, p〉 message, proposes command
p for the lowest unused slot. In the face of concur-
rently operating clients, different replicas may end up
proposing different commands for the same slot. In
order to avoid inconsistency, a replica awaits a deci-
sion for a slot before actually updating its state and
computing a response to send back to the client.

Replicas are not necessarily identical at any time.
They may propose different commands for different
slots. However, replicas apply operations to the ap-
plication state in the same order. Figure 1 shows
pseudo-code for a replica. Each replica ρ maintains
four variables:

• ρ.state, the (opaque) application state (all repli-
cas are started with the same initial application
state);

• ρ.slot num, the replica’s current slot number
(equivalent to the version of the state, and ini-
tially 1). It contains the index of the next slot
for which it needs to learn a decision before it
can update the application state;

• ρ.proposals, a set of 〈 slot number, command 〉
pairs for proposals that the replica has made in
the past (initially empty); and

• ρ.decisions, another set of 〈 slot number, com-
mand 〉 pairs for decided slots (also initially
empty).

Before giving an operational description of replicas,
we present some important invariants that hold over
the collected variables of replicas:

R1: There are no two different commands decided
for the same slot: ∀s, ρ1, ρ2, p1, p2 : 〈s, p1〉 ∈
ρ1.decisions ∧ 〈s, p2〉 ∈ ρ2.decisions⇒ p1 = p2

R2: All commands up to slot num are in the set of
decisions: ∀ρ, s : 1 ≤ s < ρ.slot num⇒

(∃p : 〈s, p〉 ∈ ρ.decisions)

R3: For all replicas ρ, ρ.state is the result of applying
the operations in 〈s, ps〉 ∈ ρ.decisions for all s
such that 1 ≤ s < slot num, in order of slot
number, to initial state.

R4: For each ρ, the variable ρ.slot num cannot de-
crease over time.

From Invariants R1-3, it is clear that all replicas
apply operations to the application state in the same
order, and thus replicas with the same slot number
have the same state. Invariant R4 ensures that a
replica cannot go back in time.

Returning to Figure 1, a replica runs in an infi-
nite loop, receiving requests in messages. Replicas
receive two kinds of messages: requests from clients,
and decisions. When it receives a request for com-
mand p from a client, the replica invokes propose(p).
This function checks if there has been a decision for
p already. If so, the replica has already sent a re-
sponse and the request can be ignored. If not, the
replica determines the lowest unused slot number s′,
and adds 〈s′, p〉 to its set of proposals. It then sends
a 〈propose, s′, p〉 message to all leaders. Leaders are
described below.

Decisions may arrive out-of-order and multiple
times. For each decision message, the replica adds
the decision to the set of decisions. Then, in a loop,
it considers which decisions are ready for execution
before trying to receive more messages. If there is
a decision p′ corresponding to the current slot num,
the replica first checks to see if it has proposed a dif-
ferent command p′′. If so, it re-proposes p′′, which
will be assigned a new slot number. Next, it invokes
perform(p′).

The function perform() is invoked with the same se-
quence of commands at all replicas. First, it checks to
see if has already performed the command. Different
replicas may end up proposing the same command for
different slots, and thus the same command may be
decided multiple times. The corresponding operation
is evaluated only if the command is new.

Note that both proposals and decisions are
“append-only” in that there is no code that removes
entries from these sets. Doing so makes it easier to
formulate invariants and reason about the correctness
of the code. In Section 4.2 we will discuss correctness-
preserving ways of removing entries that are no longer
used.

It is clear that the code enforces Invariant R4. The
variables state and slot num are updated atomically
in order to ensure that Invariant R3 holds, although

3

in practice it is not actually necessary to perform
these updates atomically, as the intermediate state
is not externally visible. Since slot num is only ad-
vanced if the corresponding decision is in decisions,
it is clear that Invariant R2 holds.

The real difficulty lies in enforcing Invariant R1. It
requires that the set of replicas agree on the order of
commands. For each slot, the Paxos protocol chooses
a command from among a collection of commands
proposed by clients. This is called consensus, and in
Paxos the subprotocol that implements consensus is
called the multi-decree Synod protocol.

The Synod Protocol, Ballots, and Acceptors

In the Synod protocol, there is an infinite collection
of ballots. Ballots are not created; they just are. As
we shall see later, ballots are the key to liveness in
Paxos. Each ballot has a unique leader,2 a determin-
istic state machine in its own right. A leader can be
working on arbitrarily many ballots, although it will
be predominantly working on one at a time, even as
multiple slots are being decided. A leader process
has a unique identifier called the leader identifier. A
ballot has a unique identifier as well, called its ballot
number. Ballot numbers are totally ordered, that is,
for any two different ballot numbers, one is before or
after the other.

In this description, we will have ballot numbers be
lexicographically ordered pairs of an integer and its
leader identifier (consequently, leader identifiers need
to be totally ordered as well). This way, given a ballot
number, it is trivial to see who the leader of the ballot
is. We will use one special ballot number ⊥ that is
ordered before any normal ballot number.

Besides replicas and leaders, there is a fixed collec-
tion of acceptors, deterministic state machines them-
selves (although not replicas of one another, because
they get different sequences of input). Acceptors are
servers, and leaders are their clients. As we shall
see, acceptors are the memory of Paxos, preventing
conflicting decision from being made. We will as-
sume that at most a proper minority of acceptors
can crash. Thus, in order to tolerate f crash failures,
Paxos needs at least 2f + 1 acceptors.

2We stress here that the leader of a ballot is fixed: it is not
elected, and it is allowed to crash.

An acceptor is quite simple, as it is passive and
only sends messages in response to requests. Its state
consists of two variables. Let a pvalue be a triple
consisting of a ballot number, a slot number, and a
proposal (which is a command). If α is the identifier
of an acceptor, then the acceptor’s state is described
by

• α.ballot num: a ballot number, initially ⊥;

• α.accepted: a set of pvalues, initially empty.

Under the direction of request messages sent by
leaders, the state of an acceptor can change. Let e =
〈b, s, p〉 be a pvalue consisting of a ballot number b, a
slot number s, and a proposal p. When an acceptor
α adds e to α.accepted, we say that α accepts e. (An
acceptor may accept the same pvalue multiple times.)
When α sets its ballot number to b for the first time,
we say that α adopts b.

We start by presenting some important invariants
that hold over the collected variables of acceptors.
Knowing these invariants are an invaluable help to
understanding the Synod protocol:

A1: an acceptor can only adopt strictly increasing
ballot numbers;

A2: an acceptor α can only add 〈b, s, p〉 to α.accepted
(i.e., accept 〈b, s, p〉) if b = ballot num;

A3: acceptor α cannot remove pvalues from
α.accepted (we will modify this impractical
restriction later);

A4: Suppose α and α′ are acceptors, with 〈b, s, p〉 ∈
α.accepted and 〈b, s, p′〉 ∈ α′.accepted. Then
p = p′. Informally, given a particular ballot
number and slot number, there can be at most
one proposal under consideration by the set of
acceptors.

A5: Suppose that for each α among a majority of
acceptors, 〈b, s, p〉 ∈ α.accepted. If b′ > b and
〈b′, s, p′〉 ∈ α′.accepted, then p = p′. We will con-
sider this crucial invariant in more detail later.

Figure 2 shows pseudo-code for an acceptor. It
runs in an infinite loop, receiving two kinds of re-
quest messages from leaders (note the use of pattern
matching):

4

process Acceptor()
var ballot num := ⊥, accepted := ∅;

for ever

switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case

case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if

send(λ, 〈p2b, self(), ballot num〉);
end case

end switch

end for

end process

Figure 2: Pseudo code for an acceptor.

• 〈p1a, λ, b〉: Upon receiving a “phase 1a” request
message from a leader with identifier λ, for a
ballot number b, an acceptor makes the following
transition. First, the acceptor adopts b if and
only if it exceeds its current ballot number. Then
it returns to λ a “phase 1b” response message
containing all pvalues accepted thus far by the
acceptor.

• 〈p2a, λ, 〈b, s, p〉〉: Upon receiving a “phase 2a”
request message from leader λ with pvalue
〈b, s, p〉, an acceptor makes the following transi-
tion. If b exceeds the current ballot number, then
the acceptor first adopts b. If the current bal-
lot number equals b, then the acceptor accepts
〈b, s, p〉. The acceptor returns to λ a “phase 2b”
response message containing its current ballot
number.

It is easy to see that the code enforces Invariants
A1, A2, and A3. For checking the remaining two
invariants, which involve multiple acceptors, we have
to study what a leader does first.

Leaders and Commanders

Leaders are responsible for selecting proposals within
a ballot, and have to make sure that they do not select
proposals that could conflict with decisions on other
ballots. A leader may work on multiple slots at the
same time. When, in ballot b, its leader tries to get a
proposal p for slot number s chosen, it spawns a lo-
cal commander thread for 〈b, s, p〉. While we present
it here as a separate process, the commander is re-
ally just a thread running within the leader. As we
shall see, the following invariants hold in the Synod
protocol:

C1: For any b and s, at most one commander is
spawned;

C2: Suppose that for each α among a majority of
acceptors 〈b, s, p〉 ∈ α.accepted. If b′ > b and a
commander is spawned for 〈b′, s, p′〉, then p = p′.

Invariant C1 implies Invariant A4, because by C1
all acceptors that accept a pvalue for a particular
ballot and slot number received the pvalue from the
same commander. Similarly, Invariant C2 implies In-
variant A5.

Figure 3(a) shows the pseudo-code for a comman-
der. A commander sends a 〈p2a, λ, 〈b, s, p〉〉 message
to all acceptors, and waits for responses of the form
〈p2b, α, b′〉. In each such response b′ ≥ b will hold
(see the code for acceptors). There are two cases:

1. If a commander receives 〈p2b, α, b〉 from all ac-
ceptors in a majority of acceptors, then the com-
mander learns that proposal p has been chosen
for slot s. In this case the commander notifies
the replicas and exits. In order to satisfy In-
variant R1, we need to enforce that if a com-
mander learns that p is chosen for slot s, and
another commander learns that p′ is chosen for
the same slot s, then p = p′. This is a con-
sequence of Invariant A5: if a majority of ac-
ceptors accept 〈b, s, p〉, then for any later ballot
b′ and the same slot number s, acceptors can
only accept 〈b′, s, p〉. Thus if the commander of
〈b′, s, p′〉 learns that p′ has been chosen for s, it
is guaranteed that p = p′ and no inconsistency
occurs, assuming—of course—that Invariant C2
holds.

5

process Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever

switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

∀ρ ∈ replicas :
send(ρ, 〈decision, s, p〉);

exit();
end if;

else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end process

process Scout(λ, acceptors, b)
var waitfor := acceptors, pvalues := ∅;

∀α ∈ acceptors : send(α, 〈p1a, self(), b〉);
for ever

switch receive()
case 〈p1b, α, b′, r〉 :
if b′ = b then

pvalues := pvalues ∪ r;
waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then

send(λ, 〈adopted, b, pvalues〉);
exit();

end if;
else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch

end for

end process

(a) (b)

Figure 3: (a) Pseudo code for a commander. Here λ is the identifier of its leader, acceptors the set of acceptor
identifiers, replicas the set of replicas, and 〈b, s, p〉 the pvalue the commander is responsible for. (b) Pseudo
code for a scout. Here λ is the identifier of its leader, acceptors the identifiers of the acceptors, and b the
desired ballot number.

2. If a commander receives 〈p2b, α′, b′〉 from some
acceptor α′, with b′ 6= b, then it learns that a
ballot b′ (which must be larger than b) is active.
This means that ballot b may no longer be able
to make progress, as there may no longer exist
a majority of acceptors that can accept 〈b, s, p〉.
In this case, the commander notifies its leader
about the existence of b′, and exits.

Under the assumption that at most a minority of
acceptors can fail and messages are delivered reliably,
the commander will eventually do one or the other.

Scouts, Passive and Active Modes

The leader must enforce Invariants C1 and C2. In-
variant C1 is trivial to enforce by not spawning more
than one commander per ballot number and slot
number. In order to enforce Invariant C2, the leader
of a ballot runs what is often called a view change pro-
tocol before spawning commanders for that ballot.3

The leader spawns a scout thread to run the view
change protocol for some ballot b. A leader starts at
most one of these for any ballot b, and only for its
own ballots.

Figure 3(b) shows the pseudo-code for a scout. The
code is similar to that of a commander, except that

3The term “view change” is used in the Viewstamped Repli-
cation protocol [19], largely identical to the Paxos protocol.

6

it sends and receives phase 1 instead of phase 2 mes-
sages. A scout completes successfully when it has
collected 〈p1b, α, b, rα〉 messages from all acceptors
in a majority (again, guaranteed to complete eventu-
ally), and returns an 〈adopted, b,

⋃
rα〉 message to

its leader λ. As we will see later, the leader needs⋃
rα, the union of all pvalues accepted by this ma-

jority of acceptors, in order to enforce Invariant C2.
Figure 4 shows the main code of a leader. Leader

λ maintains three state variables:

• λ.ballot num: a monotonically increasing ballot
number, initially (0, λ);

• λ.active: a boolean flag, initially false; and

• λ.proposals: a map of slot numbers to proposals
in the form of a set of 〈slot number, proposal 〉
pairs, initially empty. At any time, there is at
most one entry per slot number in the set.

The leader starts by spawning a scout for its initial
ballot number, and then enters into a loop awaiting
messages. There are three types of messages that
cause transitions:

• 〈propose, s, p〉: A replica proposes command p
for slot number s;

• 〈adopted, ballot num, pvals〉: Sent by a scout,
this message signifies that the current ballot
number ballot num has been adopted by a major-
ity of acceptors. (If an adopted message arrives
for an old ballot number, it is ignored.) The set
pvals contains all pvalues accepted by these ac-
ceptors prior to ballot num.

• 〈preempted, 〈r′, λ′〉〉: Sent by either a scout or
a commander, it means that some acceptor has
adopted 〈r′, λ′〉. If 〈r′, λ′〉 > ballot num, it may
no longer be possible to use ballot num.

A leader goes between passive and active modes.
When passive, the leader is waiting for an
〈adopted, ballot num, pvals〉 message from the last
scout that it spawned. When this message arrives,
the leader becomes active and spawns commanders
for each of the slots for which it has a proposal, but
must select proposals that satisfy Invariant C2. We
will now consider how the leader goes about this.

The leader knows that a majority of accep-
tors, say A, have adopted ballot num and thus no
longer accept pvalues for ballot numbers less than
ballot num (because of Invariants A1 and A2). There
are two cases to consider:

1. If, for some slot s, there is no pvalue in pvals,
then, prior to ballot num, it is not possible that
any pvalue has been chosen or will be chosen
for slot s. After all, suppose that some pvalue
〈b, s, p〉 were chosen, with b < ballot num. This
would require a majority of acceptors A′ to ac-
cept 〈b, s, p〉, but we have responses from a ma-
jority A that have adopted ballot num and have
not accepted, nor can accept, pvalues with a bal-
lot number smaller than ballot num (Invariants
A1 and A2). Clearly, there is a contradiction,
because A∩A′ is non-empty. Thus any proposal
for slot s will satisfy Invariant C2.

2. Otherwise, let 〈b, s, p〉 be the pvalue with the
maximum ballot number for slot s. Because of
Invariant A4, this pvalue is unique—there can-
not be two different proposals for the same bal-
lot number and slot number. Also note that
b < ballot num (because acceptors only report
pvalues they accepted before ballot num). Like
the leader of ballot num, the leader of b must
have picked p carefully to ensure that Invari-
ant C2 holds, and thus if a pvalue is chosen
before or at b, its proposal must be p. Since
all acceptors in A have adopted ballot num, no
pvalues between b and ballot num can be chosen
(Invariants A1 and A2). Thus, by using p as a
proposal, λ enforces Invariant C2.

This inductive argument is the crux for the correct-
ness of the Synod protocol. It demonstrates that In-
variant C2 holds, which in turn implies Invariant A5,
which in turn implies Invariant R1 that ensures that
all replicas apply the same operations in the same
order.

Back to the code, after the leader receives
〈adopted, ballot num, pvals〉, it determines for each
slot the proposal corresponding to the maximum bal-
lot number in pvals by invoking the function pmax.
Formally, the function pmax(pvals) is defined as fol-
lows:

7

process Leader(acceptors, replicas)
var ballot num = (0, self()), active = false, proposals = ∅;

spawn(Scout(self(), acceptors, ballot num));
for ever

switch receive()
case 〈propose, s, p〉 :

if 6 ∃p′ : 〈s, p′〉 ∈ proposals then

proposals := proposals ∪ {〈s, p〉};
if active then

spawn(Commander(self(), acceptors, replicas, 〈ballot num, s, p〉);
end if

end if

end case

case 〈adopted, ballot num, pvals〉 :
proposals := proposals⊕ pmax(pvals);
∀〈s, p〉 ∈ proposals : spawn(Commander(self(), acceptors, replicas, 〈ballot num, s, p〉);
active := true;

end case

case 〈preempted, 〈r′, λ′〉〉 :
if (r′, λ′) > ballot num then

active := false;
ballot num := (r′ + 1, self());
spawn(Scout(self(), acceptors, ballot num));

end if

end case

end switch

end for

end process

Figure 4: Pseudo code skeleton for a leader. Here acceptors is the set of acceptor identifiers, and replicas
the set of replica identifiers.

pmax(pvals) ≡ {〈s, p〉 | ∃b : 〈b, s, p〉 ∈ pvals ∧
∀b′, p′ : 〈b′, s, p′〉 ∈ pvals⇒ b′ ≤ b }

The update operator ⊕ applies to two maps of slot
numbers to proposals (sets of 〈slot number, proposal 〉
pairs). x⊕ y returns the elements of y as well as the
elements of x that are not in y. Formally:

x⊕ y ≡ {〈s, p〉 | 〈s, p〉 ∈ y ∨
(〈s, p〉 ∈ x ∧ 6 ∃p′ : 〈s, p′〉 ∈ y)}

Thus the line proposals := proposals⊕pmax(pvals);
updates the map of slot numbers to proposals, replac-
ing for each slot number the proposal corresponding
to the maximum pvalues in pvals. Now the leader can
start commanders for each proposal while satisfying
Invariant C2.

If a new proposal arrives while the leader is active,
the leader checks to see if it already has a proposal for
the same slot (and has thus spawned a commander for
that slot) in its set proposers. If not, the new proposal
will satisfy Invariant C2, and thus the leader adds the
proposal to proposers and spawns a commander.

8

If either a scout or a commander notifies that
an acceptor has adopted a ballot number b, with
b > ballot num, then it sends the leader a preempted

messsage. The leader becomes passive and spawns a
new scout with a ballot number that is higher than b.

Figure 5 shows an example of a leader spawning a
scout to become active, and a client sending a request
to a replica, which in turns sends a proposal to an
active leader.

3 When Paxos Works

It would clearly be desirable that, if a client broad-
casts a new command to all replicas, that it even-
tually receives at least one response. This is often
referred to as liveness. It requires that if one or more
commands have been proposed for a particular slot,
that some command is eventually decided for that
slot. Unfortunately, the Synod protocol as described
does not guarantee this, even in the absence of any
failure whatsoever.

Consider the following scenario, with two leaders
with identifiers λ and λ′ such that λ < λ′. Both start
at the same time, respectively proposing commands
p and p′ for slot number 1. Suppose there are three
acceptors, α1, α2, and α3. In ballot 〈0, λ〉, leader λ is
successful getting α1 and α2 to adopt the ballot, and
α1 to accept pvalue 〈〈0, λ〉, 1, p〉.

Now leader λ′ gets α2 and α3 to adopt 〈0, λ′〉
(which is after 〈0, λ〉 because λ < λ′). Note that
neither α2 or α3 accepted any pvalues. Leader λ′

then gets α3 to accept 〈〈0, λ′〉, 1, p′〉.
Going on, leader λ gets α1 and α2 to adopt 〈1, λ〉.

The maximum pvalue accepted by α1 and α2 is
〈〈0, λ〉, 1, p〉, and thus λ must propose p. Suppose λ
gets α1 to accept 〈〈1, λ〉, 1, p〉. Subsequently, leader
λ′ gets α2 and α3 to adopt 〈1, λ′〉, and gets α3 to
accept 〈〈1, λ′〉, 1, p′〉.

As is now clear, this can be indefinitely continued,
with no ballot ever succeeding in choosing a pvalue.
This is true even if p = p′, that is, the leaders pro-
pose the same command. The well-known “FLP im-
possibility result” [7] demonstrates that in an asyn-
chronous environment that admits crash failures, no
consensus protocol can guarantee termination, and
the Synod protocol is no exception. The argu-

ment does not apply directly if transitions have non-
deterministic actions—for example changing state in
a randomized manner. However, it can be demon-
strated that such protocols cannot guarantee a deci-
sion either.

If we could somehow guarantee that some leader
would be able to work long enough to get a majority
of acceptors to adopt a high ballot and also accept a
pvalue, then Paxos would be guaranteed to choose
a proposed command. A possible approach could
be as follows: when a leader λ discovers (through
a preempted message) that there is a higher ballot
with leader λ′ active, rather than starting a new scout
with an even higher ballot number, it starts monitor-
ing the leader of b by pinging it on a regular basis.
As long as λ′ responds timely to pings, leader λ waits
patiently. Only if λ′ stops responding will λ select a
higher ballot number and start a scout.

This concept is called failure detection, and theo-
reticians have been interested in the weakest proper-
ties failure detection should have in order to support
a consensus algorithm that is guaranteed to termi-
nate [6]. In a purely asynchronous environment it is
impossible to determine through pinging or any other
method whether a particular leader has crashed or is
simply slow. However, under fairly weak assumptions
about timing, we can design a version of Paxos that
is guaranteed to choose a proposal. In particular, we
will assume that both the following are bounded:

• the clock drift of a process, that is, the rate of
its clock is within some factor of the rate of real-
time;

• the time between when a non-faulty process ini-
tiates sending a message, and the message hav-
ing been received and handled by a non-faulty
destination process.

We do not need to assume that we know what those
bounds are—only that such bounds exist. From a
practical point of view, this seems entirely reason-
able. Modern clocks are certainly within a factor of 2
of real-time. A message between two non-faulty pro-
cesses is likely delivered within a year, say. Even if
the network was partitioned at the time the sender
started sending the message, by the time a year has

9

Figure 5: The time diagram shows a client, two replicas, a leader (with a scout and a commander), and
three acceptors, with time progressing downward. Arrows represent messages. Dashed arrows are messages
that end up being ignored. The leader first runs a scout to become active. Later, when a replica proposes a
command (in response to a client’s request), the leader runs a commander, which notifies the replicas upon
learning a decision.

expired the message is highly likely to have been de-
livered and processed.

These assumptions can be exploited as follows: we
use a scheme similar to the one described above,
based on pinging and timeouts, but the value of the
timeout interval depends on the ballot number: the
higher the competing ballot number, the longer a
leader waits before trying to preempt it with a higher
ballot number. Eventually the timeout at each of the
leaders becomes so high that some correct leader will
always be able to get its proposals chosen.

For good performance, one would like the timeout
period to be long enough so that a leader can be suc-
cessful, but short enough so that a faulty leader is pre-

empted as quickly as possible. This can be achieved
with a TCP-like AIMD (Additive Increase, Multi-
plicative Decrease) approach for choosing timeouts.
The leader associates an initial timeout with each bal-
lot. If a ballot gets preempted, the next ballot uses a
timeout that is multiplied by some factor larger than
one. With each chosen proposal, this initial timeout
is decreased linearly. Eventually the timeout will be-
come too short, and the ballot replaced with another
even if its leader is non-faulty, but this does not affect
correctness.

(As an aside: some people call this process leader
election or weak leader election. This is, however,

10

confusing, as each ballot has a fixed leader that is
not elected.)

For further improved liveness, crashes should be
avoided. The Paxos protocol can tolerate a minority
of its acceptors failing, and all but one of its repli-
cas failing. If more than that fail, consistency is still
guaranteed, but liveness will be violated. For this
reason, one may want to keep the state of acceptors
and replicas on disk. A process that suffers from a
power failure but can recover from disk is not theo-
retically considered crashed—it is simply slow for a
while. However, a process that suffers a permanent
disk failure would be considered crashed.

4 Paxos Made Pragmatic

We have described a simple version of the Paxos pro-
tocol with the intention to make it understandable,
but the described protocol is not practical. The state
of the various components, as well as the contents
of p1b messages, grows much too quickly. Also, we
have not made it clear where the various components
should run. This section is a list of various optimiza-
tions and design decisions.

4.1 State Reduction

First note that although a leader gets a set of all
accepted pvalues from a majority of acceptors, it only
needs to know if this set is empty or not, and if not,
what the maximum pvalue is. Thus, a large step
toward practicality is that acceptors only maintain
the most recently accepted pvalue for each slot (⊥ if
no pvalue has been accepted) and return only these
pvalues in a p1b message to the scout. This gives the
leader all information needed to enforce Invariant C2.

The p1b message can be further reduced in size if
a leader keeps track of which slots have been com-
pleted. A leader includes on the p1a request the first
slot for which it does not know the decision. Accep-
tors do not need to respond with pvalues for smaller
slot numbers.

Also note that the set requests maintained by a
replica only needs to contain those requests for slot
numbers higher than slot num.

Finally, note that the leader maintains proposals
for all slots and starts new commanders upon turning
active for each slot for which it has a proposal, even
if those slots already have been decided. Clearly a
lot of storage and work could be avoided if the leader
kept track of which slots have been decided already.
Leaders can learn this from their co-located comman-
ders, or alternatively from replicas in case leaders and
replicas are co-located (see Section 4.3).

4.2 Garbage Collection

When all replicas have learned that some slot has
been decided, then there is no longer a good reason
for an acceptor to maintain the corresponding pvalues
in its accepted set. To enable this garbage collection,
replicas could respond to leaders when they have per-
formed a command, and upon a leader learning that
all replicas have done so it could notify the acceptors
to release the corresponding state.

The state of an acceptor would have to be extended
with a new variable that contains a slot number:
all pvalues lower than that slot number have been
garbage collected. This slot number must be included
in p1b messages so that a leader does not mistakenly
conclude that the acceptors have not accepted any
pvalues for those commands.

This garbage collection technique does not work if
one of the replicas is faulty or slow, leaving the ac-
ceptors no option but to maintain state for all slots.
A solution is to use 2f +1 or more replicas instead of
just f + 1. Acceptor state is garbage collected when
more than f replicas have performed a command. If
because of this a replica is not able to learn a partic-
ular command, then it can always obtain a snapshot
of the state from another replica that has learned the
operation and continue on.

Another, but more complicated, solution is to make
the set of replicas adaptive, by having the replicas
themselves keep track of which f +1 replicas are cur-
rently active. A special command is used to change
the set of replicas in case one or more are suspected
of having failed.

11

4.3 Co-location

So far we have treated leaders (along with their re-
spective scouts and commanders) as if they were run-
ning on separate machines. In practice, however,
leaders are typically co-located with replicas. That
is, each machine that runs a replica also runs a leader.

A client sends its proposals to replicas. If co-
located, the replica can send a proposal for a partic-
ular slot to its local leader, say λ, rather than broad-
casting the request to all leaders. If λ is passive, mon-
itoring another leader λ′, it may forward the request
to λ′. If λ is active, it will start a commander.

An alternative not often considered is to have
clients and leaders be co-located instead of replicas
and leaders. Thus, each client runs a local leader.
By doing so, one obtains a protocol that is much like
Quorum Replication [23, 2]. While traditional quo-
rum replication protocols can only support read and
write operations, this Paxos version could support ar-
bitrary (deterministic) operations. In practice, how-
ever, services probably want to be in control over
their own liveness, and choose to co-locate leaders
with replicas.

Replicas are also often co-located with acceptors.
As shown in Section 4.2, one may need as many repli-
cas as acceptors in any case. When leaders are co-
located with acceptors, one has to be careful that
they use separate ballot number variables.

4.4 Read-only Commands

The Paxos protocol does not treat read-only com-
mands any different from other commands, and this
leads to more overhead than necessary. One would
however be naive in thinking that a client that wants
to do a read-only command could simply query one
of the replicas—doing so would easily violate consis-
tency as the selected replica may not be up-to-date.

Therefore, read-only commands are typically sent
to the leader just like update commands. One simple
optimization is for a leader to send a chosen read-
only command to only a single replica instead of to
all replicas.4 After all, the state of none of the repli-
cas needs to change, but one of the replicas has to

4For this to work, a leader needs to be able to recognize
read-only commands.

compute the result and send it to the client. (One
has to consider the case that the selected replica is
faulty and does not send a result to the client. Again,
the end-to-end argument applies, and the client may
have to query the service to see if its command has
been performed and, if so, what the result was.)

A read-only command does not actually require
that acceptors accept a pvalue. A leader does have
to run a scout and wait for an adopted message to
ensure that its ballot is current. The leader then “at-
taches” the command to the highest slot number for
which it knows the decision or for which it is propos-
ing a command that contains an update command.
Once decided, the leader can send all read-only com-
mands attached to the slot number to one of the repli-
cas, which can perform the read-only commands after
it has performed the update command for the corre-
sponding slot number.

However, while this avoids unnecessary accepts,
running a view change for each read-only command
is an expensive proposition. The better solution in-
volves so-called leases [8, 13]. Leases require an ad-
ditional assumption on timing, which is that there is
a known bound on clock drift. For simplicity, we will
assume that there is no clock drift whatsoever.

Before a leader sends a p1a request to the accep-
tors, it records the time. The leader includes in the
p1a request a lease period. For example, the lease pe-
riod could be “10 seconds.” An acceptor that adopts
the ballot number promises not to adopt another
(higher) ballot number until the lease period expires
(measured on its local clock from the time the ac-
ceptor received the p1a request). If a majority of
acceptors accept the ballot, the leader can be certain
that from the recorded time, until the lease period
expires on its own clock, no other leader can preempt
its ballot, and thus it is impossible that other leaders
introduce update commands.

Knowing that its ballot is current, a leader can
treat read-only commands as above, attaching them
to the highest slot number that is outstanding or cho-
sen. The leasing technique can be integrated with
adaptive timeout technique described in Section 3.

12

5 Exercises

This paper is accompanied by a Java package that
contains a Java implementation for each of the
pseudo-codes presented in this paper. Below find a
list of suggestions for exercises using this code.

1. Implement the state reduction techniques for
acceptors and p1b messages described in Sec-
tion 4.1.

2. In the current implementation, ballot numbers
are pairs of round numbers and leader pro-
cess identifiers. If the set of leaders is fixed
and ordered, then we can simplify ballot num-
bers. For example, if the leaders are {λ1, ..., λn},
then the ballot numbers for leader λi could be
i, i+n, i+2n, Ballot number ⊥ could be rep-
resented as 0. Modify the Java code accordingly.

3. Implement a simple replicated bank applica-
tion. The bank service maintains a set of client
records, a set of accounts (a client can have zero
or more accounts), and operations such as de-
posit, withdraw, transfer, inquiry.

4. In the Java implementation, all processes run as
threads within the same Java machine, and com-
municate over message queue. Allow processes
to run in different machines and have them com-
municate over TCP connections. Hint: do not
consider TCP connections as reliable. If they
break, have them periodically try to re-connect
until successful.

5. Implement the failure detection scheme of Sec-
tion 3 so that most of the time only one leader
is active.

6. Improve the security of the Java implementa-
tion by securing connections. For example, one
can use the TCP MD5 option for internal (non-
client) connections. As a bonus, also implement
SSL connections for clients.

7. Co-locate leaders and replicas as suggested in
Section 4.3, and garbage collect unnecessary
leader state, that is, leaders can forget about
proposals for commands numbers that have al-
ready been decided. Upon becoming active,

leaders do not have to start commanders for such
slots either.

8. In order to increase fault tolerance, the state of
acceptors and leaders can be kept on stable stor-
age (disk). This would allow such processes to
recover from crashes. Implement this. Take into
consideration that a process may crash while it
is saving its state.

9. Acceptors can garbage collect pvalues for de-
cided commands that have been learned by all
replicas. Implement this.

10. Implement the leasing scheme to optimize read-
only operations as suggested in Section 4.4.

6 Conclusion

In this paper we presented Paxos as a collection of
five kinds of processes, each with a simple operational
specification. We started with an impractical but
relatively easy to understand description, and then
showed how various aspects can be improved to ren-
der a practical protocol.

The paper is the next in a long line of papers
that describe the Paxos protocol or the experience
of implementing it. A partial list follows. The View-
stamped Replication protocol by Oki and Liskov [19],
largely identical to Paxos, was published in 1988.
Leslie Lamport’s Part-time Parliament paper [13]
was first written in 1989, but not published until
1998. Butler Lampson wrote a paper explaining
the Part-time Parliament paper using pseudo-code
in 1996 [15], and in 2001 gives an invariant-based de-
scription of various variants of Paxos [16]. In 2000,
De Prisco, Lampson, and Lynch present an imple-
mentation of Paxos in the General Timed Automaton
formalism [20]. Lamport wrote “Paxos made Sim-
ple” in 2001, giving a simple invariant-based expla-
nation of the protocol [14]. In their 2003 presenta-
tion, Boichat et al. [3] give a formal account of var-
ious variants of Paxos along with extensive pseudo-
code. Chandra et al. describe Google’s challenges in
implementing Paxos in 2007 [5]. Also in 2007, Li et
al. give a novel simplified presentation of Paxos using
a write-once register [17]. In his 2007 report “Paxos

13

made Practical” [18], David Mazières gives details of
how to build replicated services using Paxos. Kirch
and Amir describe their 2008 Paxos implementation
experiences in [11]. Alvaro et al., in 2009 [1], de-
scribe implementing Paxos in Overlog, a declarative
language.

References

[1] P. Alvaro, T. Condie, N. Conway, J.M. Heller-
stein, and R.C. Sears. I Do Declare: Con-
sensus in a logic language. In Proceedings
of the SOSP Workshop on Networking Meets
Databases (NetDB), 2009.

[2] H. Attiya, A. Bar Noy, and D. Dolev. Sharing
memory robustly in message passing systems.
Journal of the ACM, 42(1):121–132, 1995.

[3] R. Boichat, P. Dutta, S. Frolund, and R. Guer-
raoui. Deconstructing Paxos. ACM SIGACT
News, 34(1), March 2003.

[4] M. Burrows. The Chubby Lock Service for
loosely-coupled distributed systems. In 7th Sym-
posium on Operating System Design and Imple-
mentation, Seattle, WA, November 2006.

[5] T.D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: an engineering perspective.
In Proc. of the 26th ACM Symp. on Principles
of Distributed Computing, pages 398–407, Port-
land, OR, May 2007. ACM.

[6] T.D. Chandra and S. Toueg. Unreliable failure
detectors for asynchronous systems. In Proc.
of the 11th ACM Symp. on Principles of Dis-
tributed Computing, pages 325–340, Montreal,
Quebec, August 1991. ACM SIGOPS-SIGACT.

[7] M.J. Fischer, N.A. Lynch, and M.S. Patterson.
Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374–382, April
1985.

[8] C. Gray and D. Cheriton. Leases: an effi-
cient fault-tolerant mechanism for distributed
file cache consistency. In Proc. of the Twelfth
ACM Symp. on Operating Systems Principles,

pages 202–210, Litchfield Park, AZ, November
1989.

[9] M. Herlihy and J. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463 – 492, 1990.

[10] F. Junqueira, P. Hunt, M. Konar, and B. Reed.
The ZooKeeper Coordination Service (poster).
In Symposium on Operating Systems Principles
(SOSP), 2009.

[11] J. Kirsch and Y. Amir. Paxos for system
builders. Technical Report CNDS-2008-2, Johns
Hopkins University, 2008.

[12] L. Lamport. Time, clocks, and the order-
ing of events in a distributed system. CACM,
21(7):558–565, July 1978.

[13] L. Lamport. The part-time parliament. Trans.
on Computer Systems, 16(2):133–169, 1998.

[14] L. Lamport. Paxos made simple. ACM
SIGACT News (Distributed Computing Col-
umn), 32(4):51–58, 2001.

[15] B. Lampson. How to build a highly available
system using consensus. In O. Babaoglu and
K. Marzullo, editors, Distributed Algorithms,
volume 115 of Lecture Notes on Computer Sci-
ence, pages 1–17. Springer-Verlag, 1996.

[16] B.W. Lampson. The ABCD’s of Paxos. In Proc.
of the 20th ACM Symp. on Principles of Dis-
tributed Computing, page 13, Newport, RI, 2001.
ACM Press.

[17] H.C. Li, A. Clement, A. S. Aiyer, and L. Alvisi.
The Paxos register. In Proceedings of the 26th
IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS 07), 2007.

[18] D. Mazières. Paxos made practi-
cal. Technical Report on the web at
scs.stanford.edu/˜dm/home/papers/paxos.pdf,
Stanford University, 2007.

14

[19] B.M. Oki and B.H. Liskov. Viewstamped repli-
cation: A general primary-copy method to sup-
port highly-available distributed systems. In
Proc. of the 7th ACM Symp. on Principles of
Distributed Computing, pages 8–17, Toronto,
Ontario, August 1988. ACM SIGOPS-SIGACT.

[20] R. De Prisco, B. Lampson, and N. Lynch. Revis-
iting the Paxos algorithm. Theoretical Computer
Science, 243(1-2):35–91, July 2000.

[21] R.D. Schlichting and F.B. Schneider. Fail-
stop processors: an approach to designing fault-
tolerant computing systems. Trans. on Com-
puter Systems, 1(3):222–238, August 1983.

[22] F.B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tuto-
rial. ACM Computing Surveys, 22(4):299–319,
December 1990.

[23] R.H. Thomas. A solution to the concurrency
control problem for multiple copy databases. In
Proc. of COMPCON 78 Spring, pages 88–93,
Washington, D.C., February 1978. IEEE Com-
puter Society.

15

