
There Is More Consensus in Egalitarian Parliaments

Iulian Moraru, David G. Andersen, Michael Kaminsky
Carnegie Mellon University and Intel Labs

Abstract
This paper describes the design and implementation of
Egalitarian Paxos (EPaxos), a new distributed consensus
algorithm based on Paxos. EPaxos achieves three goals:
(1) optimal commit latency in the wide-area when toler-
ating one and two failures, under realistic conditions; (2)
uniform load balancing across all replicas (thus achieving
high throughput); and (3) graceful performance degrada-
tion when replicas are slow or crash.

Egalitarian Paxos is to our knowledge the first protocol
to achieve the previously stated goals efficiently—that
is, requiring only a simple majority of replicas to be non-
faulty, using a number of messages linear in the number
of replicas to choose a command, and committing com-
mands after just one communication round (one round
trip) in the common case or after at most two rounds
in any case. We prove Egalitarian Paxos’s properties
theoretically and demonstrate its advantages empirically
through an implementation running on Amazon EC2.

1 Introduction
Distributed computing places two main demands on repli-
cation protocols: (1) high throughput for replication in-
side a computing cluster; and (2) low latency for repli-
cation across data centers. Today’s clusters use fault-
tolerant coordination engines such as Chubby [4], Box-
wood [22], or ZooKeeper [12] for activities including
operation sequencing, coordination, leader election, and
resource discovery. Many databases are accessed si-
multaneously from different continents, requiring geo-
replication [2, 8].

An important limitation on these systems is that dur-
ing efficient, failure-free operation, all clients communi-
cate with a single master (or leader) server at all times.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2517350

This optimization—termed “Multi-Paxos” for systems
based on the Paxos protocol [16]—is important to achiev-
ing high throughput in practical systems [7]. Changing
the leader requires invoking additional consensus mecha-
nisms that substantially reduce performance.

This algorithmic limitation has several important con-
sequences. First, it impairs scalability by placing a dis-
proportionately high load on the master, which must pro-
cess more messages than the other replicas [23]. Second,
when performing geo-replication, clients incur additional
latency for communicating with a remote master. Third,
as we show in this paper, traditional Paxos variants are
sensitive to both long-term and transient load spikes and
network delays that increase latency at the master. Fi-
nally, this single-master optimization can harm availabil-
ity: if the master fails, the system cannot service requests
until a new master is elected. Previously proposed so-
lutions such as partitioning or using proxy servers are
undesirable because they restrict the type of operations
the cluster can perform. For example, a partitioned clus-
ter cannot perform atomic operations across partitions
without using additional techniques.

Egalitarian Paxos (EPaxos) has no designated leader
process. Instead, clients can choose at every step which
replica to submit a command to, and in most cases the
command is committed without interfering with other
concurrent commands. This allows the system to evenly
distribute the load to all replicas, eliminating the first bot-
tleneck identified above (i.e., having one server that must
be on the critical path for all communication). EPaxos’s
flexible load distribution better handles permanently or
transiently slow nodes, as well as the latency heterogene-
ity caused by geographical distribution of replicas; this
substantially reduces both the median and tail commit la-
tency. Finally, the system can provide higher availability
and higher performance under failures because there is
no transient interruption caused by leader election: there
is no leader, and hence, no need for leader election, as
long as more than half of the replicas are available.

We begin by reviewing the core Paxos algorithm and
the intuition behind Egalitarian Paxos in Section 2. We
then describe several Paxos variants that reduce overhead
or commit latency in Section 3. Throughout the paper
we compare extensively against Multi-Paxos and two re-

358

cent Paxos derivatives: Mencius [23] and Generalized
Paxos [17]. Mencius successfully shares the master load
by distributing the master responsibilities round-robin
among the replicas. Generalized Paxos introduces the
idea that non-conflicting writes can be committed inde-
pendently in state machine replication to improve commit
latency. Our results in Section 7 confirm that Mencius
is effective, but only when the nodes are homogeneous:
EPaxos achieves higher throughput and better perfor-
mance stability under a variety of realistic conditions,
such as wide-area replication, failures, and nodes that
experience performance variability. Generalized Paxos
relies on a single master node, and thus suffers from the
associated problems.

2 Overview
We begin by briefly describing the classic Paxos algo-
rithm, followed by an overview of Egalitarian Paxos.

2.1 Paxos Background
State machine replication aims to make a set of possibly
faulty distributed processors (the replicas) execute the
same commands in the same order. Because each proces-
sor is a state machine with no other inputs, all non-faulty
processors will transition through the same sequence of
states. Given a particular position in the command se-
quence, running the Paxos algorithm guarantees that, if
and when termination is reached, all non-faulty replicas
agree on a single command to be assigned that position.
To be able to make progress, at most a minority of the
replicas can be faulty—if N is the total number of repli-
cas, at least bN/2c+ 1 must be non-faulty for Paxos to
make progress. Paxos, EPaxos, and other common Paxos
variants handle only non-Byzantine failures: a replica
may crash, or it may fail to respond to messages from
other replicas indefinitely; it cannot, however, respond in
a way that does not conform to the protocol.

The execution of a replicated state machine that uses
Paxos proceeds as a series of pre-ordered instances,
where the outcome of each instance is the agreement
on a single command. The voting process for one in-
stance may happen concurrently with voting processes
for other instances, but does not interfere with them.

Upon receiving a command request from a client, a
replica will try to become the leader of a not-yet-used
instance by sending Prepare messages to at least a ma-
jority of replicas (possibly including itself). A reply to a
Prepare contains the command that the replying replica
believes may have already been chosen in this instance
(in which case the new leader will have to use that com-
mand instead of the newly proposed one), and also con-
stitutes a promise not to acknowledge older messages
from previous leaders. If the aspiring leader receives at
least bN/2c+ 1 acknowledgements in this prepare phase,

it will proceed to propose its command by sending it to a
majority of peers in the form of Accept messages; if these
messages are also acknowledged by a majority, the leader
commits the command locally, and then asynchronously
notifies all its peers and the client.

Because this canonical mode of operation requires at
least two rounds of communication (two round trips)
to commit a command—and more rounds in the case
of dueling leaders—the widely used “Multi-Paxos” op-
timization designates a replica to be the stable leader
(or distinguished proposer). A replica becomes a stable
leader by running the prepare phase for a large (possibly
infinite) number of instances at the same time, thus taking
ownership of all of them. In steady state, clients send
commands only to the stable leader, which directly pro-
poses them in the instances it already owns (i.e., without
running the prepare phase). When a non-leader replica
suspects the leader has failed, it tries to become the new
leader by taking ownership of the instances for which it
believes commands have not yet been chosen.

Section 3 discusses several Paxos variants that improve
upon this basic protocol.

2.2 Egalitarian Paxos: Contributions and
Intuition

The main goals when designing EPaxos were: (1) optimal
commit latency in the wide area, (2) optimal load balanc-
ing across all replicas, to achieve high throughput, and
(3) graceful performance degradation when some replicas
become slow or crash. To achieve these goals, EPaxos
must allow all replicas to act as proposers (or command
leaders) simultaneously, for clients not to waste round
trips to remote sites, and functionality to be well bal-
anced across replicas. Furthermore, each proposer must
be able to commit a command after communicating with
the smallest possible number of remote replicas (i.e., quo-
rums must be as small as possible). Finally, the quorum
composition must be flexible, so that command leaders
can easily avoid slow or unresponsive replicas.

EPaxos achieves all this due to the novel way in which
it orders commands. Previous algorithms ordered com-
mands either by having a single stable leader choose the
order (as in Multi-Paxos and Generalized Paxos), or by
assigning them to instances (i.e., command slots) in a
pre-ordered instance space (as in canonical Paxos and
Mencius) whereby the order of the commands is the pre-
established order of their respective slots. In contrast,
EPaxos orders the instances dynamically and in a decen-
tralized fashion: in the process of choosing (i.e., voting) a
command in an instance, each participant attaches order-
ing constraints to that command. EPaxos guarantees that
all non-faulty replicas will commit the same command
with the same constraints, so every replica can use these
constraints to independently reach the same ordering.

359

C1: update obj_A ACK C1

PreAccept C1

R3

R1

R2
Commit C1

R4

R5

OK C1

C2: update obj_B

PreAccept C2 OK C2 Commit C2

ACK C2

C3: update obj_A
ACK C3

PreAccept C3

R3

R1

R2
Commit C3

R4

R5

OK C3

C4: update obj_A

PreAccept C4 OK C4 Commit C4

ACK C4

 C3→C4

Accept C3(→C4) OK C3

Figure 1: EPaxos message flow. R1, R2, ... R5 are the five replicas. Commands C1 and C2 (left) do not interfere,
so both can commit on the fast path. C3 and C4 (right) interfere, so one (C3) will be committed on the slow
path. C3→ C4 signifies that C3 acquired a dependency on C4. For clarity, we omit the async commit messages.

This ordering approach is the source of the benefits
EPaxos has over previous algorithms. First, committing
a command is contingent upon the input of any majority
of replicas (unlike in Multi-Paxos where the stable leader
must be part of every decision, or in Mencius, where
information from all replicas is required)—this benefits
wide-area commit latency, availability, and also improves
performance robustness, because it decouples the perfor-
mance of the fastest replicas from that of the slowest.
Second, any replica can propose a command, not just a
distinguished proposer, or leader—this allows for load
balancing, which increases throughput.

In taking this ordering approach, EPaxos must main-
tain safety and provide a linearizable ordering of com-
mands, while minimizing both the number of replicas
that must participate in voting for each command and
the number of messages exchanged between them. One
observation that makes this task easier—by substantially
reducing the number of ordering constraints in the com-
mon case—was made by generic broadcast algorithms
and Generalized Paxos before us: it is not necessary to
enforce a consistent ordering for the common case of
commands that do not interfere with each other.

Figure 1 presents a simplified example of how Egal-
itarian Paxos works. Commands can be sent by clients
to any replica—we call this replica the command leader
for that command, not to be confused with the stable
leader in Multi-Paxos. In practical workloads, concur-
rent proposals interfere only rarely (for now, think of
this common case as concurrent commands that update
different objects). EPaxos can commit these commands
after only one round of communication between the com-
mand leader and a fast-path quorum of peers—F +

⌊F+1
2

⌋
replicas in total, including the command leader, where F
is the number of tolerated failures (F = 2 in the example
from Figure 1).

When commands interfere, they acquire dependencies
on each other—attributes that commands are committed
with, used to determine the correct order in which to
execute the commands (the commit and the execution

orders are not necessarily the same, but this does not
affect correctness). To ensure that every replica commits
the same attributes even if there are failures, a second
round of communication between the command leader
and a classic quorum of peers—F + 1 replicas including
the command leader—may be required (as in Figure 1
for command C3). We call this the slow path.

3 Comparison with Related Work
Multi-Paxos [15, 16] makes efficient forward progress by
relying on a stable leader replica that brokers communica-
tion with clients and other replicas. With N replicas, for
each command, the leader handles Θ(N) messages, and
non-leader replicas handle only O(1). Thus, the leader
can become a bottleneck, as practical implementations
of Paxos have observed [4]. When the leader fails, the
state machine becomes temporarily unavailable until a
new leader is elected. This problem is not easily solved:
aggressive leader re-election can cause stalls if multiple
replicas believe they are the leader. Chubby [4] and Box-
wood [22] use Multi-Paxos, while ZooKeeper [12] relies
on a stable leader protocol similar to Multi-Paxos.

Mencius [23] distributes load evenly across replicas
by rotating the Paxos leader for every command. The in-
stance space is pre-partitioned among all replicas: replica
Rid owns every instance i where (i mod N) = Rid . The
drawback of this approach is that every replica must hear
from all other replicas before committing a command A,
because otherwise another command B that depends on
A may be committed in an instance ordered before the
current instance (the other replicas reply either that they
are also committing commands for their instances, or that
they are skipping their turn). This has two consequences:
(1) the replicated state machine runs at the speed of the
slowest replica, and (2) Mencius can exhibit worse avail-
ability than Multi-Paxos, because if any replica fails to
respond, no other replica can make progress until a fail-
ure is suspected and another replica commits no-ops on
behalf of the possibly failed replica.

Fast Paxos [18] reduces the number of message delays

360

until commands are committed by having clients send
commands directly to all replicas. However, some repli-
cas must still act as coordinator and learner nodes, and
handle Θ(N) messages for every command. Like Multi-
Paxos, Fast Paxos relies on a stable leader to start voting
rounds and arbitrate conflicts (i.e., situations when accep-
tors order client commands differently, as a consequence
of receiving those commands in different orders).

Generalized Paxos [17] commits commands faster by
committing them out of order when they do not inter-
fere. Replicas learn commands after just two message
delays—which is optimal—as long as they do not in-
terfere. Generalized Paxos requires a stable leader to
order commands that interfere, and learners handle Θ(N)
messages for every command.1 Furthermore, messages
become larger as new commands are proposed, so the
leader must frequently stop the voting process until it
can commit a checkpoint. Multicoordinated Paxos [5] ex-
tends Generalized Paxos by using multiple coordinators
to increase availability when commands do not conflict,
at the expense of using more messages for each com-
mand: each client sends its commands to a quorum of
coordinators instead of just one. It too relies on a stable
leader to ensure consistent ordering if interfering client
commands arrive at coordinators in different orders.

In the wide-area, EPaxos has three important advan-
tages over Generalized Paxos: (1) First and foremost, the
EPaxos fast-path quorum size is smaller than the fast-
path quorum size for Generalized Paxos by exactly one
replica, for any total number of replicas—this reduces
latency and the overall number of messages exchanged,
because a replica must contact fewer of its closest peers
to commit a command. (2) Resolving a conflict (two
interfering commands arriving at different acceptors in
different orders) requires only one additional round trip
in EPaxos, but will take at least two additional round
trips in Generalized Paxos. (3) For three-site replication,
EPaxos can commit commands after one round trip to the
replica closest to the proposer’s site even if all commands
conflict. We present the empirical results of this compar-
ison in Section 7.2. These advantages make EPaxos a
good fit for MDCC [14], which uses Generalized Paxos
for wide-area commits.

An important distinction between the fast path in
EPaxos and that of Fast and Generalized Paxos is that
EPaxos incurs three message delays to commit, whereas
Fast and Generalized Paxos require only two. However,
in the wide area, the first message delay in EPaxos is
usually negligibly short because the client and its closest
replica are co-located within the same datacenter. This

1Based on our experience with EPaxos, we believe it may be possi-
ble to modify Generalized Paxos to rotate learners between commands,
in the same ballot, to balance load if there are no conflicts. Even so,
Generalized Paxos would still depend on the leader for availability.

distinction allows EPaxos to have smaller fast-path quo-
rums and has the added benefit of not requiring clients to
broadcast their proposals to a supermajority of nodes.

In S-Paxos [3], the client-server communication load
is shared by all replicas, which batch commands and
send them to the leader. The stable leader still handles
ordering, so S-Paxos suffers Multi-Paxos’s problems in
wide-area replication and with slow or faulty leaders.

Consistently ordering broadcast messages is equiva-
lent to state machine replication. EPaxos has similarities
to generic broadcast algorithms [1, 26, 29], that require
a consistent message delivery order only for conflicting
messages. Thrifty generic broadcast [1] has the same
liveness condition as (E)Paxos, but requires Θ(N2) mes-
sages for every broadcast message. It relies on atomic
broadcast [27] to deliver conflicting messages, which has
a latency of four message delays. GB, GB+ [26], and op-
timistic generic broadcast [29] handle fewer machine fail-
ures than (E)Paxos, requiring that more than two thirds
of the nodes remain live. They also handle conflicts less
efficiently: GB and GB+ may see conflicts even if mes-
sages arrive in the same order at every replica and they
use Consensus [6] to solve conflicts; optimistic generic
broadcast uses both atomic broadcast and one Consen-
sus instance for every pair of conflicting messages. In
contrast, EPaxos requires only at most two additional
one-way message delays to commit commands that in-
terfere; the communication is performed in parallel for
all interfering commands; and EPaxos does not need a
stable leader to decide the ordering.

Eve [13] takes the orthogonal approach of parallelizing
command execution on multi-core systems.

4 Design
In this section we describe Egalitarian Paxos in detail,
state its properties and sketch informal proofs of those
properties. Formal proofs and a TLA+ specification of the
protocol can be found in a technical report accompanying
this paper [25]. We begin by stating assumptions and
definitions, and by introducing our notation.

4.1 Preliminaries
Messages exchanged by processes (clients and replicas)
are asynchronous. Failures are non-Byzantine (a ma-
chine can fail by stopping to respond for an indefinite
amount of time). The replicated state machine comprises
N = 2F + 1 replicas, where F is the maximum number
of tolerated failures. For every replica R there is an un-
bounded sequence of numbered instances R.1, R.2, R.3, ...
that replica R is said to own. The complete state of each
replica comprises all the instances owned by every replica
in the system (i.e., for N replicas, the state of each replica
can be regarded as a two-dimensional array with N rows
and an unbounded number of columns). At most one

361

command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not. Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for the system to execute those commands.

To read (part of) the state, clients send Read(objectIDs)
messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(γ, objectIDs)
to propose command γ and atomically read the machine
state immediately after γ is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing EPaxos in detail, we must define
command interference: Two commands γ and δ inter-
fere if there exists a sequence of commands Σ such that
the serial execution Σ,γ,δ is not equivalent to Σ, δ,γ
(i.e., they result in different machine states and/or differ-
ent values returned by the reads within these sequences).

4.2 Protocol Guarantees
The formal guarantees that EPaxos offers clients are sim-
ilar to those provided by other Paxos variants:

Nontriviality: Any command committed by any
replica must have been proposed by a client.

Stability: For any replica, the set of committed com-
mands at any time is a subset of the committed commands
at any later time. Furthermore, if at time t1 a replica R
has command γ committed at some instance Q.i, then R
will have γ committed in Q.i at any later time t2 > t1.

Consistency: Two replicas can never have different
commands committed for the same instance.

Execution consistency: If two interfering commands
γ and δ are successfully committed (by any replicas) they
will be executed in the same order by every replica.

Execution linearizability: If two interfering com-
mands γ and δ are serialized by clients (i.e., δ is pro-
posed only after γ is committed by any replica), then
every replica will execute γ before δ.

Liveness (w/ high probability): Commands will even-
tually be committed by every non-faulty replica, as long
as fewer than half the replicas are faulty and messages
eventually go through before recipients time out.2

2Paxos provides the same liveness guarantees. By FLP [9], it is
impossible to provide stronger guarantees for distributed consensus.

4.3 The Basic Protocol
For clarity, we first describe the basic Egalitarian Paxos,
and improve on it in the next section. This basic EPaxos
uses a simplified procedure to recover from failures, and
as a consequence, its fast-path quorum3 is 2F (out of
the total of N = 2F + 1 replicas). The fully optimized
EPaxos reduces this quorum to only F +

⌊F+1
2

⌋
replicas.

The slow-path quorum size is always F + 1.

4.3.1 The Commit Protocol

As mentioned earlier, committing and executing com-
mands are separate. Accordingly, EPaxos comprises (1)
the protocol for choosing (committing) commands and
determining their ordering attributes; and (2) the algo-
rithm for executing commands based on these attributes.

Figure 2 shows the pseudocode of the basic protocol
for choosing commands. Each replica’s state is repre-
sented by its private cmds log that records all commands
seen (but not necessarily committed) by the replica.

We split the description of the commit protocol into
multiple phases. Not all phases are executed for every
command: a command committed after Phase 1 and Com-
mit was committed on the fast path. The slow path in-
volves the additional Phase 2 (the Paxos-Accept phase).
Explicit Prepare (Figure 3) is run only on failure recovery.

Phase 1 starts when a replica L receives a request for a
command γ from a client and becomes a command leader.
L begins the process of choosing γ in the next available
instance of its instance sub-space. It also attaches what it
believes are the correct attributes for that command:

deps is the list of all instances that contain commands
(not necessarily committed) that interfere with γ;
we say that γ depends on those instances and their
corresponding commands;

seq is a sequence number used to break dependency cy-
cles during the execution algorithm; seq is updated
to be larger than the seq of all interfering commands
in deps.

The command leader forwards the command and the
initial attributes to at least a fast-path quorum of replicas
as a PreAccept message. Each replica, upon receiving the
PreAccept, updates γ’s deps and seq attributes according
to the contents of its cmds log, records γ and the new
attributes in the log, and replies to the command leader.

If the command leader receives replies from enough
replicas to constitute a fast-path quorum, and all the up-
dated attributes are the same, it commits the command.
If it does not receive enough replies, or the attributes in
some replies have been updated differently than in others,
then the command leader updates the attributes based

3We use quorum to denote both a set of replicas with a particular
cardinality, and the cardinality of that set.

362

Phase 1: Establish ordering constraints Phase 2: Paxos-Accept

Commit

Fast
Path

Slow
Path

then

else

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({logL[Q][j].seq |

logL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | logL[Q][j].cmd ⇠ �}
4: logL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to every

replica in F \{L}, where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + logR[Q][j].seq |
logR[Q][j].cmd ⇠ �}

7: update deps� deps� [{(Q, j) |
logR[Q][j].cmd ⇠ �}

8: logR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: logL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: logR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i
21: logL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: logR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

In contrast, Generalized Paxos’s fast quorum size when
N = 3 is three. Its latency is therefore determined by a
round-trip to the farthest replica. The high 99%ile la-
tency experienced by Generalized Paxos is caused by

checkpoint commits. Furthermore, conflicts cause two
additional round trips in Generalized Paxos (for any num-
ber of replicas). Thus, in this experiment, EPaxos is not
affected by conflicts, but Generalized Paxos experiences

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a

te
n

cy
 (

m
e

d
ia

n
 /

 9
9

%
)

[m
s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq� 1+ max ({cmdsL[Q][j].seq | 9 instance Q. j

s.t. cmdsL[Q][j].cmd ⇠ �}[{0})
3: deps� {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| 9 instance Q. j s.t. cmdsR[Q][j].cmd ⇠ �})

7: update deps� deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
cy

 (
m

e
d
ia

n
 /
 9

9
%

)
[m

s]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 5: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][j] interferes w/ �}

2: seq� 1+ max ({cmdsL[Q][j].seq |
Q. j 2 InterfL,�}[{0})

3: deps� InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq� max({seq�}[{1 + cmdsR[Q][j].seq
| Q. j 2 InterfR,�})

7: update deps� deps� [InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps� Union(deps� from all replies)
14: update seq� max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

upon a simple majority (bN/2c+1 = F +1) of replies (tak-
ing the union of all deps, and the highest seq), and tells at
least a majority of replicas to accept these attributes. This
can be seen as running classic Paxos to choose the triplet
(γ,depsγ ,seqγ) in γ’s instance. At the end of this extra
round, after replies from a majority (including itself), the
command leader will reply to the client and send Commit
messages asynchronously to the other replicas.

As in classic Paxos, every message contains a ballot
number (for simplicity, we represent it explicitly in our
pseudocode only when describing the Explicit Prepare
phase in Figure 3). The ballot number ensures message
freshness: replicas disregard messages with a ballot that
is smaller than the largest they have seen for a certain
instance. For correctness, ballot numbers used by differ-
ent replicas must be distinct, so they include a replica

ID. Furthermore, a newer configuration of the replica
set must have strict precedence over an older one, so
we also prepend an epoch number (epochs are explained
in Section 4.7). The resulting ballot number format is
epoch.b.R, where a replica R increments only the natural
number b when trying to initiate a new ballot in Explicit
Prepare. Each replica is the default (i.e., initial) leader
of its own instances, so the ballot epoch.0.R is implicit at
the beginning of every instance R.i.

4.3.2 The Execution Algorithm

To execute command γ committed in instance R.i, a
replica will follow these steps:

1. Wait for R.i to be committed (or run Explicit Prepare
to force it);

2. Build γ’s dependency graph by adding γ and all com-

363

Explicit Prepare
Replica Q for instance L.i of potentially failed replica L

25: increment ballot number to epoch.(b + 1).Q, (where
epoch.b.R is the highest ballot number Q is aware of in
instance L.i)

26: send Prepare(epoch.(b + 1).Q,L.i) to all replicas
(including self) and wait for at least bN/2c+ 1 replies

27: let R be the set of replies w/ the highest ballot number
28: if R contains a (γ,seqγ ,depsγ ,committed) then
29: run Commit phase for (γ,seqγ ,depsγ) at L.i
30: else if R contains an (γ,seqγ ,depsγ ,accepted) then
31: run Paxos-Accept phase for (γ,seqγ ,depsγ) at L.i
32: else if R contains at least bN/2c identical replies

(γ,seqγ ,depsγ ,pre-accepted) for the default ballot
epoch.0.L of instance L.i, and none of those replies is
from L then

33: run Paxos-Accept phase for (γ,seqγ ,depsγ) at L.i
34: else if R contains at least one

(γ,seqγ ,depsγ ,pre-accepted) then
35: start Phase 1 (at line 2) for γ at L.i, avoid fast path
36: else
37: start Phase 1 (at line 2) for no-op at L.i, avoid fast

path

Replica R, on receiving Prepare(epoch.b.Q,L.i) from Q

38: if epoch.b.Q is larger than the most recent ballot
number epoch.x.Y accepted for instance L.i then

39: reply PrepareOK(cmdsR[L][i],epoch.x.Y,L.i)
40: else
41: reply NACK

Figure 3: The EPaxos simplified recovery procedure.

mands in instances from γ’s dependency list as nodes,
with directed edges from γ to these nodes, repeating
this process recursively for all of γ’s dependencies
(starting with step 1);

3. Find the strongly connected components, sort them
topologically;

4. In inverse topological order, for each strongly con-
nected component, do:

4.1 Sort all commands in the strongly connected com-
ponent by their sequence number;

4.2 Execute every un-executed command in increasing
sequence number order, marking them executed.

4.3.3 Informal Proof of Properties

Together, the commit protocol and execution algorithm
guarantee the properties stated in Section 4.2. We prove
this formally in a technical report [25], but give informal
proofs here to convey the intuition of our design choices.

Nontriviality is straightforward: Phase 1 is only exe-
cuted for commands proposed by clients.

To prove stability and consistency, we first prove:

Proposition 1. If replica R commits command γ at in-
stance Q.i (with R and Q not necessarily distinct), then
for any replica R′ that commits command γ′ at Q.i it must
hold that γ and γ′ are the same command.

Proof sketch. Command γ is committed at instance Q.i
only if replica Q has started Phase 1 for γ at instance Q.i.
Q cannot start Phase 1 for different commands at the same
instance, because (1) Q increments its instance number
for every new command, and (2) if Q fails and restarts, it
will be given a new, unused identifier (Section 4.7).

Proposition 1 implies consistency. Furthermore, be-
cause commands can be forgotten only if a replica
crashes, this also implies stability if the cmds log is
maintained on persistent storage. Execution consistency
also requires stability and consistency for the command
attributes.

Definition. If γ is a command with attributes seqγ and
depsγ , we say that the tuple (γ,seqγ ,depsγ) is safe at
instance Q.i if (γ,seqγ ,depsγ) is the only tuple that is or
will be committed at Q.i by any replica.

Proposition 2. Replicas commit only safe tuples.

Proof sketch. A tuple (γ,seqγ ,depsγ) can only be
committed at a certain instance Q.i (1) after the Paxos-
Accept phase, or (2) directly after Phase 1.

Case 1: A tuple is committed after the Paxos-Accept
phase if more than half of the replicas have logged the
tuple as accepted (line 20 in Figure 2). The tuple is safe
via the classic Paxos algorithm guarantees.

Case 2: A tuple is committed directly after Phase 1
only if its command leader receives identical responses
from N − 2 other replicas (line 11). The tuple is now safe:
If another replica tries to take over the instance (because
it suspects the initial leader has failed), it must execute
the Prepare phase and it will see at least bN/2c identical
replies containing (γ,seqγ ,depsγ), so the new leader will
identify this tuple as potentially committed and will use
it in the Paxos-Accept phase.

So far, we have shown that tuples, including their at-
tributes, are committed consistently across replicas. They
are also stable, if recorded on persistent storage.

We next show that these consistent, stable committed
attributes guarantee that all interfering commands are
executed in the same order on every replica:

Lemma 1 (Execution consistency). If interfering com-
mands γ and δ are successfully committed (not necessar-
ily by the same replica), they will be executed in the same
order by every replica.

Proof sketch. If two commands interfere, at least one
will have the other in its dependency set by the time they

364

are committed: Phase 1 ends after the command has been
pre-accepted by at least a simple majority of the replicas,
and its final set of dependencies is the union of at least
the set of dependencies updated at a majority of replicas.
This also holds for recovery (line 32 in the pseudocode)
because all dependencies are based on those set initially
by the possibly failed leader. Thus, at least one replica
pre-accepts both γ and δ, and its PreAcceptReplies are
taken into account when establishing the final dependen-
cies sets for both commands.

By the execution algorithm, a command is executed
only after all the commands in its dependency graph have
been committed. There are three possible scenarios:

Case 1: Both commands are in each other’s depen-
dency graph. By the way the graphs are constructed, this
implies: (1) the dependency graphs are identical; and
(2) γ and δ are in the same strongly connected compo-
nent. Therefore, when executing one command, the other
is also executed, and they are executed in the order of
their sequence numbers (with arbitrary criteria to break
ties). By Proposition 2 the attributes of all committed
commands are stable and consistent across replicas, so
all replicas build the same dependency graph and execute
γ and δ in the same order.

Case 2: γ is in δ’s dependency graph but δ is not in
γ’s. There is a path from δ to γ in δ’s dependency graph,
but there is no path from γ to δ. Therefore, γ and δ
are in different strongly connected components, and γ’s
component will come before δ’s in inverse topological
order. By the execution algorithm, γ will be executed
before δ. This is consistent with the situation when γ had
been executed on some replicas before δ was committed
(which is possible, because γ does not depend on δ).

Case 3: Just like case 2, with γ and δ reversed.

Lemma 2 (Execution linearizability). If two interfering
commands γ and δ are serialized by clients (i.e., δ is
proposed only after γ is committed by any replica), then
every replica will execute γ before δ.

Proof sketch. Because δ is proposed after γ was com-
mitted, γ’s sequence number is stable and consistent by
the time any replica receives PreAccept messages for
δ. Because a tuple containing γ and its final sequence
number is logged by at least a majority of replicas, δ’s
sequence number will be updated to be larger than γ’s,
and δ will contain γ in its dependencies. Therefore, when
executing δ, δ’s graph must contain γ either in the same
strongly connected component as δ (but δ’s sequence
number will be higher), or in a component ordered be-
fore δ’s in inverse topological order. Regardless, by the
execution algorithm, γ will be executed before δ.

Finally, liveness is ensured as long as a majority of
replicas are non-faulty. A client keeps retrying a com-
mand until a replica gets a majority to accept it.

4.4 Optimized Egalitarian Paxos
We have described the core concepts of our protocol in
the previous section. We now describe modifications that
allow EPaxos to use a smaller fast-path quorum—only
F +

⌊F+1
2

⌋
replicas, including the command leader. This

is an important optimization because, by decreasing the
number of replicas that must be contacted, EPaxos has
lower latency (especially in the wide area) and higher
throughput, because replicas process fewer messages for
each command. For three and five replicas, this fast path
quorum is optimal (two and three replicas respectively).

The recovery procedure (i.e., the Explicit Prepare
Phase) changes substantially, starting with line 32 in our
pseudocode description. The new command leader Q
looks for only

⌊F+1
2

⌋
replicas that have pre-accepted a

tuple (γ,depsγ ,seqγ) in the current instance with iden-
tical attributes. Upon discovering them, it tries to con-
vince other replicas to pre-accept this tuple by sending
TryPreAccept messages. A replica receiving a TryPreAc-
cept will pre-accept the tuple only if it does not conflict
with other commands in the replica’s log—i.e., an inter-
fering command that is not in depsγ and does not have
γ in its deps either, or one that is in depsγ but has a seq
attribute at least as large as seqγ . If the tuple does conflict
with such a command, and that command is committed,
Q will know γ could not have been committed on the
fast path. If a un-committed conflict exists, Q defers re-
covery until that command is committed. Finally, if Q
convinces F + 1 replicas (counting the failed command
leader and the remainders of the fast-path quorum) to pre-
accept (γ,depsγ ,seqγ), it commits this tuple by running
the Paxos-Accept phase for it.

One corner case of recovery is the situation where
a dependency has changed its seq attribute to a value
higher than that of the command being recovered. We
can preclude this situation by allowing command leaders
to commit command γ on the fast path only if for each
command in depsγ at least one acceptor has recorded it
as committed. For N ≤ 7, a more efficient solution is to
attach updated deps attributes to Accept and AcceptReply
messages, and ensure that the recipients of these mes-
sages record them. This information will be used only to
aid recovery.

The associated technical report [25] contains detailed
proofs that recovery can always make progress if a ma-
jority of replicas are alive—the new size of the fast-path
quorum is necessary and sufficient for this to hold—and
that optimized EPaxos provides the guarantees enumer-
ated in Section 4.2.

Before concluding this subsection, it is important to
point out another implication of the new fast-path quo-
rums size. After F failures, there may be as few as

⌊F+1
2

⌋
surviving members of a fast quorum, which will not con-
stitute a majority among the remaining replicas. There-

365

fore, if the command leader sends PreAccept messages to
every replica (instead of sending PreAccepts to only the
replicas in a fast quorum), the recovery procedure may
not be able to correctly identify which replicas’ replies the
failed command leader took into consideration if it com-
mitted the instance. Still, such redundancy is sometimes
desirable because the command leader may not know in
advance which replicas are still live or which replicas will
reply faster. When this is the case, we change the fast-
path condition as follows: a command leader will commit
on the fast path only if it receives F +

⌊F+1
2

⌋
−1 PreAccep-

tReplies that match its initial ordering attributes—and
every replica that replies without updating these attributes
marks this in its log so the recovery procedure can take
only these replicas into consideration.

When not sending redundant PreAccepts, a three-
replica system will always be able to commit on the fast
path—there can be no disagreement in a set with only
one acceptor.

4.5 Keeping the Dependency List Small
Instead of including all interfering instances, we include
only N dependencies in each list: the instance number R.i
with the highest i for which the current replica has seen
an interfering command (not necessarily committed). If
interference is transitive (usually the case in practice) the
most recent interfering command suffices, because its
dependency graph will contain all interfering instances
R. j, with j < i. Otherwise, every replica must assume
that any unexecuted commands in previous instances
R. j (j < i) are possible dependencies and independently
check them at execute time. This is a fast operation when
commands are executed soon after commit.

4.6 Recovering from Failures
A replica may need to learn the decision for an instance
because it has to execute commands that depend on that
instance. If a replica times out waiting for the commit
for an instance, the replica will try to take ownership of
that instance by running Explicit Prepare, at the end of
which it will either learn what command was proposed
in this problem instance (and then finalize committing it),
or, if no other replica has seen a command, will commit
a no-op to finalize the instance.

If clients are allowed to time-out and re-issue com-
mands to a different replica, the replicas must be able to
recognize duplicates and execute the command only once.
This situation affects any replication protocol, and stan-
dard solutions are applicable, such as unique command
IDs or ensuring that commands are idempotent.

4.7 Reconfiguring the Replica Set
Reconfiguring a replicated state machine is an extensive
topic [19, 20, 21]. In EPaxos, ordering ballots by their

epoch prefix enables a solution that resembles Vertical
Paxos [19] with majority read quorums: A new replica, or
one that recovers without its memory, must receive a new
ID and a new (higher) epoch number, e.g., from a config-
uration service or a human. It then sends Join messages
to at least F +1 live replicas that are not themselves in the
process of joining. Upon receiving a Join, a live replica
updates its membership information and the epoch part of
each ballot number it uses or expects to receive for new
instances. It will thus no longer acknowledge messages
for instances initiated in older epochs (instances that it
was not already aware of). The live replica will then
send the joining replica the list of committed or ongoing
instances that the live replica is aware of. The joining
replica becomes live (i.e., it proposes commands and par-
ticipates in voting the proposals of other replicas) only
after receiving commits for all instances included in the
replies to at least F + 1 Join messages. Production imple-
mentations optimize this process using snapshots [7].

4.8 Read Leases
As in any other state machine replication protocol, a Read
must be committed as a command that interferes with
updates to the objects it is reading to avoid reading stale
data. However, Paxos-based systems are often optimized
for read-heavy scenarios in one of two ways: assume the
clients can handle stale data and perform reads locally
at any replica, as in ZooKeeper [12]; or grant a read
lease to the stable leader so that it can respond without
committing an operation [7]. EPaxos can use read leases
just as easily, with the understanding that a (infrequent)
write to the leased object must be channeled through
the node holding the lease. In wide-area replication, the
leaderless design of EPaxos and Mencius allows different
sites to hold leases for different objects simultaneously
(e.g., based on the observed demand for each object).

4.9 Avoiding Execution Livelock
With a fast stream of interfering proposals, command
execution could livelock: command γ will acquire depen-
dencies on newer commands proposed between sending
and receiving the PreAccept(γ). These new commands
in turn gain dependencies on even newer commands. To
prevent this, we prioritize completing old commands
over proposing new commands. Even without this op-
timization, however, long dependency chains increase
only execution latency, not commit latency. They also
negligibly affect throughput, because executing a batch
of n inter-dependent commands at once adds only modest
computational overhead: finding the strongly connected
components has linear time complexity (the number of
dependencies for each command is usually constant—
Section 4.5), and sorting the commands by their sequence
attribute adds only an O(logn) factor.

366

5 Practical Considerations
Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could
work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be
examined before execution to determine which rows they
will update (e.g. the New-Order transaction in the TPC-C
benchmark [28]). For other transactions it will be diffi-
cult to predict what exact state they will modify, but it is
safe to assume they interfere with any other transaction.

Consistency guarantees. EPaxos guarantees per-object
linearizability. As shown by Herlihy and Wing [11], lin-
earizability is a local property, meaning that “a system
is linearizable if each individual object is linearizable”.
This only applies to operations that target single objects,
or more generally, to operations for which interference
is transitive. The equivalent property for multi-object
operations is strict serializability. If interference is not
transitive, EPaxos maintains per-object linearizability,
but does not guarantee strict serializability without a sim-
ple modification: the commit notification for a command
is sent to clients only after every instance in the com-
mand’s graph of dependencies has been committed (the
proof is in the associated tech report [25]). This has the
added benefit that it simplifies the protocol: approximate
sequence numbers are no longer necessary (commands
within the same strongly connected component are sorted
by an arbitrary criterion), which makes for a simplified
recovery procedure. The drawback of this version of
EPaxos is increased perceived latency at the client for
operations that conflict with other concurrent operations—
for the common case of non-interfering operations the
latency remains the same as in canonical EPaxos.

6 Implementation
We implemented EPaxos, Multi-Paxos, Mencius, and
Generalized Paxos in Go, version 1.0.2.

6.1 Language-specific details
Behind our choice of Go was the goal of comparing the
performance of the four Paxos variants within a common
framework in which the protocols share as much code
as possible to reduce implementation-related differences.
While subjective, we believe we achieved this, applying
roughly equal implementation optimization to each; we

are releasing our implementations for others to perform
comparisons or further optimization [24].

Go presented two challenges: First, the garbage collec-
tion that eased implementation of four complete Paxos
variants adds performance variability; and second, its
RPC implementation is slow. We solved the latter by
implementing our own RPC stub generator. We have
not fully mitigated the GC penalty, but EPaxos is more
affected than the other protocols because its attribute-
containing messages are larger, so our results are fair to
the other protocols.

6.2 Thrifty Operation
For all protocols except Mencius, we used an optimiza-
tion that we call thrifty. In thrifty, a replica in charge of a
command (the command leader in EPaxos, or the stable
leader in Multi-Paxos) sends Accept and PreAccept mes-
sages to only a quorum of replicas, including itself, not
the full set. This reduces message traffic and improves
throughput. The drawback is that if an acceptor fails
to reply quickly, there is no quick fall-back to another
reply. However, thrifty can aggressively send messages
to additional acceptors when a reply is not received after
a short wait time; doing so does not affect safety and only
slightly reduces throughput. Mencius cannot be thrifty be-
cause the replies to Accept messages contain information
necessary to commit the current instance (i.e., whether
previous instances were skipped or not).4

7 Evaluation
We evaluated Egalitarian Paxos on Amazon EC2, us-
ing large instances5 for both state machine replicas and
clients, running Ubuntu Linux 11.10.

7.1 Typical Workloads
We evaluate these protocols using a replicated key-value
store where client requests are updates (puts). This is
sufficient to capture a wide range of practical workloads:
From the point of view of replication protocols, reads
and writes are typically handled the same way (reads
might be serviced locally in certain situations, as dis-
cussed in Section 4.8). Nevertheless, writes are the more
difficult case because reads do not interfere with other
reads. Our tests also capture conflicts, an important work-
load characteristic—a conflict is a situation when po-
tentially interfering commands reach replicas in differ-
ent orders. Conflicts affect EPaxos, Generalized Paxos,

4A Mencius replica must receive Accept replies from the owners of
all instances it has not received messages for. We tried Mencius-thrifty,
in which the current leader sends Accepts first to the replicas it must
hear from, and to others only if quorum has not yet been reached. It did
not improve throughput, however: under medium and high load, only
rarely are all previous instances “filled” when a command is proposed.

5Two 64-bit virtual cores with 2 EC2 Compute Units each and
7.5 GB of memory. The typical RTT in an EC2 cluster is 0.4 ms

367

and, to a lesser extent, Mencius. One example of con-
flicts are those experienced by a lock service, where con-
flicts are equivalent to write-write conflicts from multiple
clients updating the same key. A read-heavy workload
is where concurrent updates rarely target the same key,
corresponding to low conflict rates. Importantly, lease
renewal traffic—constituting over 90% of the requests
handled by Chubby [4]—generates no conflicts, because
only one client can renew a particular lease.

From the available evidence, we believe that 0% and
2% command interference rates are the most realistic. For
completeness, we also evaluate 25% and 100% command
interference (for 25%, 1

4 of commands target the same
key while 3

4 target different keys). In Chubby, fewer than
1% of all commands (observed in a ten-minute period [4])
could possibly generate conflicts. In Google’s advertising
back-end, F1, which uses the geo-replicated table store
Spanner (which, in turn, uses Paxos) fewer than 0.3% of
all operations may generate conflicts, since more than
99.7% of operations are reads [8].

We indicate the percentage of interfering commands as
a number following the experiment (e.g., “EPaxos 0%”’).

7.2 Latency In Wide Area Replication
We validate empirically that EPaxos has optimal median
commit latency in the wide area with three replicas (tol-
erating one failure) and five replicas (tolerating two fail-
ures). The replicas are located in Amazon EC2 datacen-
ters in California (CA), Virginia (VA) and Ireland (EU),
plus Oregon (OR) and Japan (JP) for the five-replica
experiment. At each location there are also ten clients
co-located with each replica (fifty in total). They gen-
erate requests simultaneously, and measure the commit
and execute latency for each request. Figure 4 shows
the median and 99%ile latency for EPaxos, Multi-Paxos,
Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
In contrast, Generalized Paxos’s fast quorum size when
N = 3 is three. Its latency is therefore determined by a
round-trip to the farthest replica. The high 99%ile la-
tency experienced by Generalized Paxos is caused by
checkpoint commits. Furthermore, conflicts cause two
additional round trips in Generalized Paxos (for any num-
ber of replicas). Thus, in this experiment, EPaxos is
not affected by conflicts, but Generalized Paxos experi-
ences median latencies of 341 ms with 100% command
interference.

With five replicas, EPaxos avoids the two most distant
replicas, while Generalized Paxos avoids only the most
distant one. Thus, EPaxos has optimal commit latency
for the common case of non-interfering concurrent com-
mands, with both three and five replicas. For five replicas,

interfering commands cause one extra round trip to the
closest two replicas for EPaxos, but up to two additional
round trips for Generalized Paxos.

Mencius performs relatively well with multiple clients
at every location and all locations generating commands
at the same aggregate rate. Imbalances force Mencius to
wait for more replies to Accept messages. In the worst
case, with active clients at only one location at a time,
Mencius experiences latency corresponding to the round
trip time to the replica that is farthest away from the
client, for any number of replicas.

Multi-Paxos has high latency because the local replica
must forward all commands to the stable leader.

The results in Figure 4 refer to commit latency. For
EPaxos, execution latency differs from commit latency
only for high conflict rates because a replica must delay
executing a command until it receives commit confir-
mations for the command’s dependencies. With 100%
interference rate (i.e., worst case), three-replicas EPaxos
experiences median execution latencies of 125 ms to
139 ms (depending on the site), whereas for five repli-
cas, median execution latencies range from 304 ms to
319 ms (compared to 274 ms to 296 ms for Mencius, and
unchanged latencies for Multi-Paxos and Generalized
Paxos 100%). As explained in the previous section, this
worst case scenario is highly unlikely to occur in prac-
tice. Furthermore, commit latency is the only one that
matters for writes6, while for reads, which have a lower
chance of generating conflicts, there is a high likelihood
that commit and execution latency are the same. Fur-
thermore, reads will also benefit from read leases, which
allow reads to be serviced locally.

However, if high command interference is common,
there is a wide range of techniques that we can use to
reduce latency, but we leave for future work: e.g., for-
warding PreAccepts among fast quorum members to re-
duce slow-path commit latency by one message delay,
or reverting to a partitioned Multi-Paxos mode, where
the same site acts as command leader for all commands
in a certain group (thus eliminating conflicts among the
commands within that group).

7.3 Throughput in a Cluster
We compare the throughput achieved by EPaxos, Multi-
Paxos, and Mencius, within a single EC2 cluster. We
omit Generalized Paxos from these experiments because
it was not designed for high throughput: It runs at less
than 1

4 the speed of EPaxos, and its availability is tied to
that of the leader, as for Multi-Paxos.7

6From the client’s perspective, there is no difference between a com-
mitted but not-yet-executed write, and a write that has been executed
(it is, however, guaranteed that execution will occur before subsequent
interfering reads).

7Learners handle Θ(N) messages per command and the leader must
frequently commit checkpoints—see Section 3.

368

 0

 100

 200

 300

 400

 500

CA VA EU

L
a
te

n
c
y
 (

m
e
d
ia

n
 /
 9

9
%

)
[m

s
]

85ms 90ms

156ms

99%ile
latency

EPaxos 100%
Mencius balanced

Mencius imbalanced
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

 0

 100

 200

 300

 400

 500

VA CA OR JP EU
21ms 127ms

118ms

278ms

99%ile
latency

EPaxos 0%
EPaxos 2%

EPaxos 100%
Mencius best

Mencius worst
Multi-Paxos

Gen. Paxos 0%
Gen. Paxos 100%

Figure 4: Median commit latency (99%ile indicated by lines atop the bars) at each of 3 (left graph) and 5 (right
graph) wide-area replicas. The Multi- and Generalized Paxos leader is in CA. In Mencius imbalanced, EU
generates commands at half the rate of the other sites (no other protocol is affected by imbalance). In Mencius
worst, only one site generates commands at a given time. The bottom of the graph shows inter-site RTTs.

3 Replicas

Throughput [reqs / sec]

0 10000 20000 30000 40000 50000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Multi−Paxos
�

EPaxos,slow−acc,0%
EPaxos,slow−acc,100%

Mencius,slow−acc
Multi−Paxos,slow−leader

5 Replicas

Throughput [reqs / sec]

0 10000 20000 30000 40000 50000

Figure 5: Throughput for small (16 B) commands (error bars show 95% CI).

3 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000

EPaxos,0%
EPaxos,2%

EPaxos,25%
EPaxos,100%

Mencius
Multi−Paxos
�

EPaxos,slow−acc,0%
Mencius,slow−acc,0%

5 Replicas

Throughput [reqs / sec]

0 5000 10000 15000 20000 25000

Figure 6: Throughput for large (1 KB) commands (with 95% CI).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Multi-
Paxos

Mencius Mencius
min-log

EPaxos,
100%

T
h
ro

u
g
h
p
u
t
[r

e
q
s
 /
 s

e
c
]

Figure 7: Tput for 3 replicas, 16 B com-
mands, sync. log to Flash (w/ 95% CI).

A client on a separate EC2 instance sends batched re-
quests in an open loop8 (only client requests are batched;
messages between replicas are not), and measures the rate
at which it receives replies. For EPaxos and Mencius, the
client sends each request to a replica chosen uniformly at
random. Replicas reply to the client only after executing
the request. Although it is often sufficient to acknowl-
edge after commit, we wished to also assess the effects
of EPaxos’s more complex execution component.

Figure 5 shows the throughput achieved by 3 and 5
replicas when the commands are small (16 B). Figure 6
shows the throughput achieved with 1 KB requests.

EPaxos outperforms Multi-Paxos because the Multi-
Paxos leader becomes bottlenecked by its CPU. By being

8In practice, a client needing linearizability must wait for commit
notifications before issuing more commands; the open loop mimics an
unbounded number of clients to measure maximum throughput.

thrifty (Section 6.2), EPaxos processes fewer messages
per command than Mencius, so its throughput is gener-
ally higher—with the notable exception of many conflicts
for more than three replicas, when EPaxos executes an
extra round per command (Mencius is not significantly
influenced by command interference—there was no in-
terference in the Mencius tests). EPaxos messages are
slightly larger because they carry attributes, hence our
EPaxos implementation incurs more GC overhead.

Processing large commands narrows the gap between
protocols: All replicas spend more time sending and
receiving commands (either from the client or from the
leader), but Mencius and EPaxos exhibit significantly
higher throughput than leader-bottlenecked Multi-Paxos.

Figures 5 and 6 also show throughput when one node is
slow (for Multi-Paxos that node is the leader—otherwise
its throughout is mostly unaffected). In these experi-

369

ments, two infinite loop programs contend for the two
virtual cores on the slow node. EPaxos handles a slow
replica better than Mencius or Multi-Paxos because the
other replicas can avoid it: Each replica monitors the
speed with which its peers process pings over time, and
excludes the slowest from its quorums. Mencius, by
contrast, fundamentally runs at the speed of the slow-
est replica because its instances are pre-ordered and a
replica cannot commit an instance before learning about
instances ordered before it—and 1/N of those instances
belong to the slow replica.

7.4 Logging Messages Persistently
To resume immediately after a crash, a replica must pre-
serve the contents of its memory intact, otherwise it may
break safety (for all of the protocols we evaluate). This
implies persistently logging every state change before
acting upon or replying to any message. The preceding
experiments did not include this overhead, because it is
avoidable in some circumstances: if power failure of all
replicas is not a threat, replicas can recover from failures
as presented in Section 4.7; in addition, persistent mem-
ory technologies keep improving, and battery-backed
memory is sometimes feasible. We nevertheless wanted
to evaluate whether EPaxos is fundamentally more I/O
intensive than Multi-Paxos or Mencius.

For the experiments in this section we used Amazon
EC2 High-I/O instances equipped with high-performance
solid state drives. Every replica logs its state changes
synchronously to an SSD-backed file, for all protocols.

Here (Figure 7), all protocols are I/O bound, but Multi-
Paxos places a higher I/O load on the stable leader than
on non-leader replicas, making it slower. EPaxos outper-
forms Mencius due to the thrifty optimization: in EPaxos,
unlike in Mencius, it is sufficient to send (pre-)accept
messages to only a quorum of replicas, and therefore
EPaxos requires fewer logging operations per command
than Mencius. However, we make the (novel, to our
knowledge) observation that while every Mencius accep-
tor must reply to accept messages, not all acceptors must
log their replies synchronously—it is sufficient that a quo-
rum of acceptors log synchronously before responding,
and the command leader commits only after receiving
their replies. “Mencius min-log” (in Figure 7), needs only
slightly more synchronous logging than EPaxos (every
min-log replica must still log its own skipped instances
synchronously).

7.5 Execution Latency in a Cluster
This section examines client-perceived execution latency
using three replicas. Despite its more complex execution
algorithm, EPaxos has lower execution latency than either
Multi-Paxos or Mencius, regardless of interfering com-
mands. In addition, our strategy for avoiding livelock in

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
e

d
ia

n
 L

a
te

n
c
y
 [

m
s
]

Throughput [requests/second]

Multi-Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2000 4000 6000 8000 10000 12000 14000 16000 18000

9
9

%
ile

 L
a

te
n

c
y
 [

m
s
]

Throughput [requests/second]

Multi-Paxos
Mencius 100%

Mencius 0%
EPaxos 100%

EPaxos 25%
EPaxos 0%

Figure 8: Latency vs. throughput for 3 replicas.

 1

 10

 100

 1000

 10000

 0 100000 200000 300000 400000 500000

M
e

d
ia

n
 L

a
te

n
c
y
 [

m
s
]

Throughput [requests/second]

Multi-Paxos
EPaxos 100%

EPaxos 0%

Figure 9: Latency vs. throughput for 5 replicas when
batching small (16 B) commands every 5 ms.

EPaxos’s execution algorithm (Section 4.9) is effective.
Figure 8 shows median (top graph) and 99%ile latency

under increasing load in EPaxos, Mencius and Multi-
Paxos. We increase throughput by increasing the number
of concurrent clients sending commands in a closed loop
(each client sends a command and waits until it has been
executed before sending the next) from 8 to 300. The
maximum throughput is lower than in the throughput
experiments because here, replicas bear the additional
overhead of hundreds of simultaneous TCP connections.

7.6 Batching
Batching increases the maximum throughput of Multi-
Paxos by 5x and of EPaxos by 9x (Figure 9). Commands
are generated open loop from a separate machine in the
cluster. Every 5 ms, each proposer batches all requests in
its queue, up to a preset maximum batch size: 1000 for
EPaxos, 5000 for Multi-Paxos. Command leaders issue
notifications to clients only after execution. Each point is
the average over ten runs.

EPaxos’s advantage here still arises from sharing the

370

 0
 10000

 0
 10000

T
h

ro
u

g
h

p
u

t
[r

e
q

s
 /

 s
e

c
]

 0
 10000
 20000
 30000

 0 5 10 15 20 25 30 35
Time [seconds]

replica failure
delayed commits

EPaxos

Multi-Paxos

Mencius

Figure 10: Commit throughput when one of three
replicas fails. For Multi-Paxos, the leader fails.

load more evenly across replicas, whereas Multi-Paxos
places it all on the stable leader. Under the same client
throughput, Mencius and EPaxos will send up to 5x more
messages: each leader will send batches, instead of hav-
ing one leader aggregate the commands into a single
larger batch. However, the cost of these extra messages
is amortized rapidly across large batches, becoming neg-
ligible versus processing and executing the commands.

Importantly, and perhaps counter-intuitively, batching
diminishes the negative effects of command interference
in EPaxos. This is because (1) the cost of the extra round
of communication for handling a conflict is amortized
across multiple commands, and becomes insignificant
for large batch sizes (second phase messages are short,
because command leaders send only the new attributes to
replicas that have already received the batch in the first
phase); and (2) at low throughputs, even if all commands
interfere, conflicts are less frequent because the possibil-
ity of there being multiple batches in flight at the same
time (and arriving at different replicas in different orders)
diminishes. As a result, EPaxos with 100% interference
is effectively as fast as EPaxos with no interference.

Although we have not tested Mencius with batching,
as long as replicas do not experience performance vari-
ability, we expect it to be as fast as EPaxos, since the
difference in messaging patterns has a diminished effect
with batching.

7.7 Service Availability under Failures
Figure 10 shows the evolution of the commit throughput
in a three-replica setup that experiences the failure of
one replica. A client sends requests in an open loop, at
the same rate for every system—approximately 10,000
requests per second (a rate at which none of the systems
is close to saturation, hence the steady throughput).

With Multi-Paxos, or any variant that relies on a stable
leader, a leader failure prevents the system from process-
ing client requests until a new leader is elected. Although
clients could direct their requests to another replica (after
they time out), a replica will usually not try to become the
new leader immediately. False suspicions can degrade
performance by causing stalls, so the fail-over time will
usually be on the order of seconds [4, 22]. The failure of
a non-leader replica (a situation not depicted in Figure 10)

does not affect the availability of the system.
In contrast, any replica failure disrupts Mencius: a

replica cannot finalize an instance before knowing the
outcome of (or at least which commands are being pro-
posed in) all instances that precede it, and instances are
pre-assigned to replicas round-robin. Unlike in Multi-
Paxos, clients can continue to send requests to the remain-
ing replicas; they will be processed up to the point where
they are ready to be committed. Eventually, a live replica
will time out and commit no-ops on behalf of the failed
replica, thus freeing the instances waiting on them. At
this point, the delayed commands are committed and ac-
knowledged, which causes the throughput spike depicted
in Figure 10. Live replicas commit no-ops periodically
until the failed replica recovers, or until a reconfiguration.

Both in Multi-Paxos and Mencius, the timeout duration
is a trade-off between the availability of the service and
the impact that acting too frequently on false positives has
on throughput and latency. EPaxos avoids this dilemma
because it can operate uninterrupted by the crash of a
minority of replicas. Clients with commands outstanding
at a failed replica will time out and retry those requests
at another replica. Although live replicas will commit
commands unhindered, some of these commands may
have acquired dependencies on commands proposed by
the failed replica. Executing the former (as opposed to
committing them) will therefore be delayed until another
replica finalizes committing the latter. Unlike in Mencius,
this occurs only once: an inactive replica cannot continue
to generate dependencies. Moreover, it occurs rarely for
workloads with low conflict rates.

8 Conclusion
We have presented the design and implementation of
Egalitarian Paxos, a new state machine replication proto-
col based on Paxos. We have shown that its decentralized
and uncoordinated design has important theoretical and
practical benefits for the availability, performance and
performance stability of both local and wide area replica-
tion.

Acknowledgements: We thank our shepherd Nickolai
Zeldovich, the anonymous SOSP and OSDI reviewers;
Miguel Castro for his insightful feedback; John Wilkes,
Michael Abd-El-Malek and Garth Gibson for helping us
understand real-world applications of Paxos; Bin Fan,
Hyeontaek Lim, Andy Pavlo, Greg Ganger and Jon How-
ell for their useful comments. This research was funded
in part by Intel via the Intel Science and Technology Cen-
ter for Cloud Computing (ISTC-CC), by the National
Science Foundation under award CCF-0964474, and by
a gift from Google. We thank Amazon for donating part
of the EC2 time used for the experiments reported in this
paper.

371

References
[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and

S. Toueg. Thrifty generic broadcast. In Proc. 14th Interna-
tional Conference on Distributed Computing, DISC ’00,
pages 268–282, London, UK, UK, 2000. Springer-Verlag.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In Proc. of the Conference on
Innovative Data system Research (CIDR), pages 223–234,
2011.

[3] M. Biely, Z. Milosevic, N. Santos, and A. Schiper. S-
paxos: Offloading the leader for high throughput state ma-
chine replication. In Reliable Distributed Systems (SRDS),
2012 IEEE 31st Symposium on, 2012.

[4] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proc. 7th USENIX OSDI, Seattle,
WA, Nov. 2006.

[5] L. J. Camargos, R. M. Schmidt, and F. Pedone. Multico-
ordinated paxos. In Proc. 26th annual ACM symposium
on Principles of distributed computing, PODC ’07, pages
316–317, New York, NY, USA, 2007. ACM.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43:
225–267, Mar. 1996.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proc. 26th ACM
SOSP, PODC ’07, pages 398–407, New York, NY, USA,
2007. ACM.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In Proc. 10th USENIX
OSDI. USENIX, 2012.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossi-
bility of distributed consensus with one faulty process. J.
ACM, 32(2):374–382, Apr. 1985. ISSN 0004-5411.

[10] Google AppEngine. High replication datas-
tore, 2012. https://developers.google.
com/appengine/docs/java/datastore/
overview.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3), July 1990.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: wait-free coordination for internet-scale sys-
tems. In Proc. USENIX ATC, USENIXATC’10, Berkeley,
CA, USA, 2010. USENIX Association.

[13] M. Kaptritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
and M. Dahlin. Eve: Execute-verify replication for multi-
core servers. In Proc. 10th USENIX OSDI, Hollywood,
CA, Oct. 2012.

[14] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and

A. Fekete. MDCC: Multi-data center consistency. In
Proc. 8th ACM European Conference on Computer Sys-
tems (EuroSys), Apr. 2013.

[15] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998. ISSN 0734-
2071.

[16] L. Lamport. Paxos made simple. ACM SIGACT News, 32
(4), Dec. 2001.

[17] L. Lamport. Generalized consensus and Paxos.
http://research.microsoft.com/apps/
pubs/default.aspx?id=64631, 2005.

[18] L. Lamport. Fast Paxos. http://research.
microsoft.com/apps/pubs/default.aspx?
id=64624, 2006.

[19] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos and
primary-backup replication. Technical report, Microsoft
Research, 2009.

[20] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a
state machine. SIGACT News, 41(1), Mar. 2010.

[21] B. Liskov and J. Cowling. Viewstamped replication revis-
ited. Technical Report MIT-CSAIL-TR-2012-021, MIT
Computer Science and Artificial Intelligence Laboratory,
2012.

[22] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath,
and L. Zhou. Boxwood: abstractions as the foundation for
storage infrastructure. In Proc. 6th USENIX OSDI, San
Francisco, CA, Dec. 2004.

[23] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: build-
ing efficient replicated state machines for WANs. In Proc.
8th USENIX OSDI, pages 369–384, San Diego, CA, Dec.
2008.

[24] I. Moraru, D. G. Andersen, and M. Kaminsky. Epaxos
code base. https://github.com/efficient/
epaxos, Aug. 2013.

[25] I. Moraru, D. G. Andersen, and M. Kaminsky. A proof of
correctness for Egalitarian Paxos. Technical report, Paral-
lel Data Laboratory, Carnegie Mellon University, Aug.
2013. http://www.pdl.cmu.edu/PDL-FTP/
associated/CMU-PDL-13-111.pdf.

[26] F. Pedone and A. Schiper. Handling message semantics
with generic broadcast protocols. Distributed Computing,
15:97–107, Apr. 2002.

[27] F. Pedone and A. Schiper. Optimistic atomic broadcast: a
pragmatic viewpoint. Theoretical Computer Science, 291:
79–101, Jan. 2003.

[28] tpc-c. TPC benchmark C. http://www.tpc.org/
tpcc/spec/tpcc_current.pdf, 2010.

[29] P. Zieliński. Optimistic generic broadcast. In Proc.
19th International Symposium on Distributed Computing
(DISC), pages 369–383, Kraków, Poland, Sept. 2005.

372

https://developers.google.com/appengine/docs/java/datastore/overview
https://developers.google.com/appengine/docs/java/datastore/overview
https://developers.google.com/appengine/docs/java/datastore/overview
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
https://github.com/efficient/epaxos
https://github.com/efficient/epaxos
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-111.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-111.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

	Introduction
	Overview
	Paxos Background
	Egalitarian Paxos: Contributions and Intuition

	Comparison with Related Work
	Design
	Preliminaries
	Protocol Guarantees
	The Basic Protocol
	The Commit Protocol
	The Execution Algorithm
	Informal Proof of Properties

	Optimized Egalitarian Paxos
	Keeping the Dependency List Small
	Recovering from Failures
	Reconfiguring the Replica Set
	Read Leases
	Avoiding Execution Livelock

	Practical Considerations
	Implementation
	Language-specific details
	Thrifty Operation

	Evaluation
	Typical Workloads
	Latency In Wide Area Replication
	Throughput in a Cluster
	Logging Messages Persistently
	Execution Latency in a Cluster
	Batching
	Service Availability under Failures

	Conclusion

