
Web-Scale Responsive Visual Search at Bing
Houdong Hu, Yan Wang, Linjun Yang, Pavel Komlev, Li Huang,

Xi (Stephen) Chen, Jiapei Huang, Ye Wu, Meenaz Merchant, Arun Sacheti
Microsoft

Redmond, Washington
{houhu,wanyan,linjuny,pkomlev,huangli,chnxi,jiaphuan,wuye,meemerc,aruns}@microsoft.com

ABSTRACT
In this paper, we introduce a web-scale general visual search system
deployed in Microsoft Bing. The system accommodates tens of
billions of images in the index, with thousands of features for each
image, and can respond in less than 200 ms. In order to overcome
the challenges in relevance, latency, and scalability in such large
scale of data, we employ a cascaded learning-to-rank framework
based on various latest deep learning visual features, and deploy in
a distributed heterogeneous computing platform. Quantitative and
qualitative experiments show that our system is able to support
various applications on Bing website and apps.

KEYWORDS
Content-based Image Retrieval, Image Understanding, Deep Learn-
ing, Object Detection
ACM Reference Format:
Houdong Hu, Yan Wang, Linjun Yang, Pavel Komlev, Li Huang, Xi (Stephen)
Chen, Jiapei Huang, Ye Wu, Meenaz Merchant, Arun Sacheti. 2018. Web-
Scale Responsive Visual Search at Bing. In Proceedings of (KDD). ACM, New
York, NY, USA, Article 4, 9 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Visual search, or Content-based Image Retrieval, is a popular and
long-standing research area [1, 12, 18, 23, 25]. Given an image,
a visual search system returns a ranked list of visually similar
images. It associates a query image with all known information of
the returned images, and thus can derive various applications, for
example, locating where a photo was taken [5], and recognizing
fashion items from a selfie [14]. Therefore, it is also of great interest
in the industry.

Relevance is the main objective and metric of visual search. With
the recent development of deep learning [20], visual search systems
have also got a boost on relevance, and have become more read-
ily available for general consumers. There has been exploration
on visual search systems from industry players [23, 25], but the
works focused more on the feasibility of vertical-specific systems,
e.g. images on Pinterest or eBay, and lacked discussions on more
advanced targets such as relevance, latency, and storage. In this
paper, we would like to provide an overview of the visual search
system in Microsoft Bing, hoping to provide insights on how to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

build a relevant, responsive, and scalable web-scale visual search
engine. To the best of the authors’ knowledge, this is the first work
introducing a general web-scale visual search engine.

Web-scale visual search engine is more than extending existing
visual search approaches to a larger database. Here web-scale means
the database is not restricted to a certain vertical or a certain web-
site, but from a spider of a general web search engine. Usually the
database contains tens of billions of images, if not more. With this
amount of data, the major challenges come from three aspects. First,
a lot of approaches that may work on a smaller dataset become im-
practical. For example, Bag of Visual Words [17] generally requires
the inverted index to be stored in memory for efficient retrieval.
Assuming each image has merely 100 feature points, the inverted
index will have a size of about 4 TB, letting alone the challenges in
doing effective clustering and quantization to produce reasonable
visual words. Second, even with proper sharding, storage scalability
is still a problem. Assuming we only use one single visual feature,
the 4096-dimension AlexNet [11] fc7 feature, and shard the feature
storage to 100 machines, each machine still needs to store 1.6 TB
of features. Note these features cannot be stored in regular hard
disks, otherwise the low random access performance will make the
latency unacceptable. Third, modern visual search engines usually
use a learning-to-rank architecture [3, 10] to utilize complimentary
information from multiple features to obtain the best relevance. In
a web-scale database, this posts another challenge on latency. Even
the retrieval of the images can be parallelized, the query feature
extraction, data flow control among sharded instances, and final
data aggregation all require both sophisticated algorithms and en-
gineering optimizations. In addition to the aforementioned three
difficulties from the index size, there is another unique challenge
for general search engine. The vertical-specific search engine usu-
ally has a controlled image database with well organized metadata.
However, this is not the case for general visual search engine, where
the metadata is often unorganized, if not unavailable. And this puts
more emphasis on the capability to understand the content of an
image.

In other words, it is very challenging to achieve high relevance,
low latency, and high storage scalability at the same time in a
web-scale visual search system. We propose to solve the dilemma
with smart engineering trade-offs. Specifically, we propose to use
a cascaded learning-to-rank framework to trade off relevance and
latency, employ Product Quantization (PQ) [4] to trade off between
relevance and storage, and use distributed Solid State Drive (SSD)
equipped clusters to trade off between latency and storage scalabil-
ity. In the cascaded learning-to-rank framework, a sharded inverted
index is first used to efficiently filter out “hopeless” database images,
and generate a list of candidates. And then more descriptive and
also more expensive visual features are used to further rerank the

ar
X

iv
:1

80
2.

04
91

4v
2

 [
cs

.C
V

]
 2

0
Fe

b
20

18

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

KDD, 2018, London, United Kingdom H. Hu et al.

Figure 1: Example user interfaces of the visual search system at Bing. The left figure shows the desktop experience, where
detected objects are shown as hotspots overlaid on the images. Users are able to click a spot or specify their own crop box to
get the visually similar products or images. The right figure shows the mobile experience, where related products and images
are shown for a query image of sunglasses.

Figure 2: Workflow overview of the web-scale visual search system in Bing. The query image is first processed to be trans-
formed into a feature vector, and then goes through a three-level cascaded ranker framework. The result image list is returned
to the user after postprocessing. More details are available in Section 2.

candidates, the top of which is then passed to the final level ranker.
In the final level ranker, full-fledged visual features are retrieved
and fed into a Lambda-mart ranking model [2] to obtain similarity
score between the query and each candidate image, based on which
the ranked list is produced.

The remaining part of the paper is organized as follows. In Sec-
tion 2, we will give a workflow overview of the entire system. Then

we will introduce the details together with engineering implementa-
tion of the system in Section 3, followed by applications introduced
in Section 4. Section 5 will provide quantitative and qualitative
results of the proposed system in terms of relevance, latency and
storage scalability, with conclusions in Section 6.

Web-Scale Responsive Visual Search at Bing KDD, 2018, London, United Kingdom

Figure 3: The application scenarios of the DNN models used in the proposed system.

2 SYSTEM OVERVIEW
Before diving into how the system is built, let us first introduce the
workflow. When a user submits a query image that he/she finds
on the Web or takes by a camera in Bing Visual Search, visually
similar images and products will be identified for the user to explore
or purchase (examples are shown in Figure 1). Bing Visual Search
system comprises three major stages/components as summarized
below, and Figure 2 illustrates the general processing workflow of
how a query image turns to the final result images.

Query understanding: We extract a variety of features from a
query image to describe its content, including deep neural network
(DNN) encoders, category recognition features, face recognition
features, color features and duplicate detection features. We also
generate an image caption that can identify the key concept in the
query image. Scenario triggering model is then called to determine
whether to invoke different scenarios in visual search. For instance,
when a shopping intent is detected from the query, searches are
directed to show a specific experience, rich in a particular segment
of shopping. Figure 1 shows an example of the user interface for
related product shopping scenario. Bing Visual Search returns re-
sults with shopping information, such as store website links and
prices. Users can then follow the links to finish their purchase on
the store websites. Object detection models will also run to detect
objects, and users can click automatically tagged objects to view
related products and related images.

Image retrieval: The heavy lifting happens in the image re-
trieval module, which retrieves visually similar images based on
the extracted features and intents. As introduced before, the image
retrieval process has a cascaded framework, dividing the entire
process into Level-0 matching, Level-1 ranking and Level-2 ranking
stages. The details of the module will be introduced in Subsec-
tion 3.2. After the ranked list is generated, we do postprocessing to

remove duplicates and adult contents as needed. This final result
set is then returned to the user.

Model training: Multiple models used in the retrieval process
require a training stage. First, several DNN models are leveraged in
our system to improve the relevance. Each DNN model individually
provides complementary information due to different training data,
network structures and loss functions. Second, a joint k-Means
algorithm [22] is utilized to build the inverted index in Level-0
matching. Third, PQ is employed to improve the DNNmodel serving
latency without too much relevance compromise. We also take
advantage of object detection models to improve user experiences.
Details of these models are introduced in the following sections.

3 APPROACH
In this section, we will cover the details of howwe handle relevance,
latency and storage scalability, including some extra features such
as object detection.

3.1 Relevance
To optimize search relevance, we use multiple features, among
which DNN features are most prominent. We use several state-of-
the-art DNNs includingAlexNet [11], ZFSPPNet [6, 24], GoogleNet [8,
19], and ResNet [7]. The last hidden layer is used as deep embedding
features. We train the networks using training data collected from
multiple resources, including human labeling and web scraping,
while it is also possible to leverage open source datasets. Our train-
ing datasets broadly cover thousands of major categories in daily
life, and in-depth training datasets are also collected for specific
domains, such as shopping. We employ multiple loss functions to
supervise the DNN training, such as softmax loss, pairwise loss and
triplet loss. A complete set of the features we use is summarized in
Table 1.

KDD, 2018, London, United Kingdom H. Hu et al.

Figure 3 illustrates three examples of the DNN models we use.
Figure 3(a) is an object detection model, which does object local-
ization and corresponding semantic category classification on the
query image. Figure 3(b) is a product classification network with
a softmax loss. We generate both the product category taxonomy
and training data using segment specific repositories, which cover
fashion, home furniture, electronics, and so on. The category set
includes thousands of fine-grained categories, such as 10 subcate-
gories in hats and caps including baseball caps, sun hats, and fedoras.
We use Inception-BN network to obtain a trade-off between accu-
racy and latency. The network is trained from scratch with various
combinations of hyper learning parameters. Both the pool5 layer
DNN feature and the softmax layer category feature are used in
visual search ranker. Figure 3(c) is a triplet network, which directly
learns an embedding from images to an Euclidean space where
distances between feature points correspond to image dissimilarity.
The network is trained on a large set of image triplets (Q, I1, I2)
annotated by human labelers, while each labeler answers questions
about which image I1, or I2 is more similar to the query Q . We
fine-tune the triplet network on a pre-trained DNN network using
ImageNet data, with the loss being minimized as

L =
N∑
i=1

(
| f (xqueryi) − f (xposi)|2

−| f (xqueryi) − f (xnegi)|2 +margin
)
+
.

(1)

Here f (x) represents a compact embedding layer after last fully
connected layer in original DNN, and this embedding layer is used
as another DNN feature in visual search.

Various DNN features, non-DNN visual features, object detec-
tion and text matching features are aggregated and leveraged in
the visual search ranker. More details are listed in Table 1. We
also use local features [21] to remove duplicate images. A Lambda-
mart ranking model, which is a known multivariate regression
tree model with a ranking loss function, takes the feature vector
and produces a final ranking score. The final result images are
sorted by ranking scores, and are returned to the user. The ranker
training data collection process is similar as triplet training data
collection. An additional regression model is used to transform raw
pair-wise judgments to list-wise judgments as the Lambda-mart
ranking model training ground truth.

3.2 Latency
The image index contains tens of billions of images. It is thus very
challenging to provide responsive user experience. A cascaded
ranking framework is designed to achieve a good balance between
relevance and latency. The intuition is, filtering out “hopeless” can-
didates is much easier than retrieving visually similar images. There-
fore, cheap feature(s) can be used to significantly reduce the search
space, followed by more expensive and expressive features for high-
quality reranking. An inverted index can be used to generate the
initial candidate set.

As shown in Figure 4, the cascaded ranking framework includes
Level-0 matching, Level-1 ranking and Level-2 ranking. Level-0
matching generates the initial candidate set based on an inverted
index. Following Arandjelovic et al. [1], we use visual words trained

Category Feature

DNN

AlexNet
ZFSPPNet
GoogleNet
GoogleNetBN
ResNet-50

Visual Generic category
Product category
Face features
Dominant color

Object detection Faster-RCNN
SSD

Text matching Text matching with page metadata
Text matching with click metadata

Deduplication
Md5
T2S2
DupID

Table 1: Visual features used in Bing Visual Search. Note the
DNNs are trained with customized data and loss functions.

from joint k-Means as a cheap representation of an image, the detail
of which is illustrated in Figure 5. After quantization, each image
is represented by N visual words. Only index images with visual
words matched with the query image are kept, and subsequently
sent to the Level-1 ranker.

The visual words narrow down a set of candidates from billions
to several millions within several milliseconds. However, it is still
impractical to apply a full-fledged ranker discussed in the last sec-
tion. Therefore, we use a light-wighted Level-1 ranker to further
reduce the number of candidates. A single DNN feature is calculated
as a Level-1 ranker to further reduce the number of candidate index
images. Due to the cost of both storing the features and calculating
the Euclidean distance between features, we employ PQ here. The
intuition is similar to Bag of Visual Words. Instead of dealing with
high-dimensional features, we use cluster centers to approximate
the feature vectors. The time cost of distance calculation can be
dramatically reduced because the distance between cluster centers
can be pre-computed. The space cost can be saved as well because
only IDs need to be stored, with a dictionary. Figure 6 provides an
illustration of a high-dimensional vector decomposed into many
low-dimensional sub-vectors to form a PQ vector. Firstly we reduce
the dimension of the DNN feature to 4n dimensions by Principal
Component Analysis (PCA). Then each new 4n-dimensional DNN
feature is divided into n 4-dimensional vectors, and the nearest clus-
ter centroid from PQ model is determined for each 4-dimensional
vector. Finally each DNN encoder can be represented by n centroid
IDs, which take only n bytes, forming a PQ vector. Then the feature
distance can be approximately calculated as the distance between
the query PQ vector {PQq

i }
n
i=1 and candidate image PQ vectors

{PQc
i }

n
i=1. Note the Euclidean distance between each PQq

i and PQc
i

could be pre-calculated and pre-cached.
As a result of Level-1 ranker, a candidate set can be reduced

from millions to thousands. At this point, a more expensive Level-2
ranker discussed in the last section is performed to rank the images

Web-Scale Responsive Visual Search at Bing KDD, 2018, London, United Kingdom

Figure 4: Cascaded architecture of the web-scale visual search system in Bing. Only the inverted index on Bag of Visual Words
is used in Level-0 matching stage, to reduce the size of candidate set 10000 times. In Level-1 reranking stage, a single cheap
DNN feature is used to further reduce the candidate number by 1000 times. Finally, full-fledged features are used to rerank the
candidate images.

more accurately. All the DNN features used in Level-2 ranker also
use PQ for acceleration.

3.3 Storage
All the features used in our cascaded framework need to be stored
in memory for efficient retrieval. We represent DNN features as PQ
IDs instead of real values, which greatly reduces storage require-
ment. For example, the space requirement for a 2048-dimensional
ResNet DNN encoder reduces from 8 KB space to 25 bytes for each
image by PCA and PQ, assuming 256 clusters are used for each
4-dimensional vector clustering and n = 25 in PQ. Visual words
are used to reduce storage requirement in the matching step as
well. Specifically, one set of visual words occupies only 64 bytes for
each image. Finally, we shard all the features, including the visual
words inverted index, and PQ IDs into multiple (up to hundreds)
machines to further save the calculation and storage burdens. As
also introduced in Subsection 3.2, we use a three-layer architecture
to effectively manage the distributed index.

3.4 Object Detection
we utilize state-of-the-art object detection technology to provide
easy and accurate guidance of visual search entry for users. For
instance, if the user is looking for outfit inspiration in a search
engine, we predict the search/shopping intent of the user, and
automatically detect several objects of user interests andmark them,
so the user does not have to fiddle with the bounding box anymore.
We choose two approaches from several DNN based object detection
frameworks for speed and accuracy balance: Faster R-CNN [15]
and Single Shot Multi-box Detection (SSD) [13]. Various backbone
structures and extensive parameter tuning have been experimented
during model training to obtain the model with best precision and
recall. Fashion and home furniture are the first two segments that
object detection models target on. Object detection models will

run only when specific visual intents are detected in the query
image to save computational cost. In addition to providing accurate
localization of the bounding box, the object detection module also
gives inferred object category. We use the detected category to
match the existing image category in index to further improve the
relevance.

3.5 Engineering
We profiled the entire visual search process, and found that the most
time-consuming procedures were feature extraction and similar
image retrieval (the Level-0, Level-1, Level-2 steps). As a result, we
leverage extensive engineering optimization in these two modules
to reduce system latency and improve development agility.

Feature extraction on CPU: While the project started when
GPU acceleration was not common, a heavily optimized library
called Neural Network Tool Kit (NNTK) was developed to optimize
the DNN model deployment on CPU. All core operations such as
matrix multiplication and convolution are written in assembly lan-
guage using latest vectorization instructions. Convolution layer
forward propagation is also carefully optimized for different chan-
nel sizes and feature map sizes to make them cache friendly. we also
use thread-level, machine-level parallelization and load balancing
to further improve throughput.

Considering different application scenarios may demand differ-
ent features, in order to allow flexibly reorganizing feature extrac-
tion pipelines without time-consuming recompilation, we develop a
Domain Specific Language (DSL). The DSL is executed with a graph
execution engine to dynamically determine which operations need
to be performed in order to obtain the asked features, and then
execute in multiple threads. For maximum reliability and flexibility,
we implement the feature extraction system using Microsoft Ser-
viceFabric, a micro-service framework, and deploy it on Microsoft
Azure cloud service. There is also a cache layer storing the features

KDD, 2018, London, United Kingdom H. Hu et al.

Figure 5: Illustration of the training and matching stages of Bag of Visual Words.

of all the images in the index, together with all the recently visited
images by users.

Feature extraction on GPU:With the emerge of production-
quality GPU-accelerated DNN frameworks such as Microsoft Cog-
nitive Toolkit (CNTK) [16] and Caffe [9], we are one of the first
teams deploying the serve stack of web-scale visual search sys-
tems on GPUs. GPU-based DNN evaluation is able to speed up the
feature extraction by 10 to 20 times, depending on the model. We
deploy latency-sensitive models such as object detection to elastic
GPU clusters on Azure, and achieve 40 ms latency. Proper caching
systems are able to further reduce the latency and cost.

Efficient distributed retrieval: In addition to the cascaded
framework, we also use a distributed framework to accelerate the
image retrieval and reranking system, whose bottleneck is in Level-
0 matching and feature retrieval. The inverted index retrieval stage
in Level-0 matching is performed in parallel on hundreds of ma-
chines, with aggressive timeout mechanism. And the features are
stored in SSDs which have significantly better random access per-
formance than regular hard disks.

4 APPLICATIONS
Bing Visual Search has been deployed into both Bing.com and Bing
App. In both scenarios, the query image could be a web type image
or a photo captured from the phone. Bing Visual Search allows a
user to specify an entire image as a search query by default. It also
supports a region of interest, so part of the image can act as the
query.

4.1 Bing.com
In Bing.com, there are four entry points that would invoke visual
search.

Suppose Alice is looking for kitchen decoration inspiration in
Bing image search, and an image attracts her attention. She clicks
the image, and goes to the Image Details Page. She can then find
similar images in a related images section on the right side of Image
Details Page (See the left column of Figure 1).

Alice is particularly interested in a nice-looking chandelier in
the image. She can click the visual search button in the top right
of the image, which is the second place to trigger visual search. It
will display a visual search box on the image. Alice can drag and
adjust the box to cover just the chandelier. It will trigger related
images search. Bing also automatically detects users’ search intent.
When a shopping intent is detected, in addition to regular image
search, Bing also runs a product search to find matching products.
In this case, Bing will return a list of chandelier products. Alice can
simply click on the chandelier that is right for her, pick the best
merchant in the related products section and finalize her purchase.
Every time she adjusts the visual search box, Bing automatically
re-runs a visual search using the selected portion of the image as
the query.

In the Image Details Page, Bing also detects objects automatically
and marks them using overlaid hotspots. So Alice does not have
to adjust the bounding box manually – just click the hotspot, and
trigger a visual search. This is considered as the third entry point.

In addition to the aforementioned three scenarios, users can also
go to Bing image search page, and upload an image or paste an
image URL by clicking the camera button inside the search bar.
Then visual search results can be displayed.

4.2 Bing App
We support visual search on mobile in two ways. Firstly, we provide
the same visual search functionalities on m.Bing.com as Bing.com.
Secondly, users can install Bing’s mobile app. Both m.Bing.com and
Bing App support visual search using existing photos in the photo
album, or directly taking a photo using the phone camera. Besides
it shows related products and related images, the essential goal is
to excavate the knowledge behind the images using visual search
techniques.

5 EXPERIMENTS
In this section, we provide evaluations on the proposed system,
which is deployed on Bing. Following the major motivation, we use
relevance, latency, and storage consumption to evaluate a general

Web-Scale Responsive Visual Search at Bing KDD, 2018, London, United Kingdom

Figure 6: Illustration of the calculation of PQ, with comparison to the approach without PQ.

web-scale visual search engine. We also provide some qualitative
results to show the general result quality and experience of the
proposed system.

Relevance: NDCG is used to evaluate the relevance. A measure-
ment set is prepared with thousands of queries sampled from Bing’s
search log. With the queries, we obtain the most relevant candidate
images we can get from Bing and other search engines. Then we
ask human labelers to do pairwise judgments on the relevance of
the candidate images, based on which the ground truth ranking is
calculated. Based on this measurement set, we use the visual search
system to rerank the candidate images, and compute NDCG@5 as
the final metric.

This metric has its advantages and drawbacks. An ideal way
to evaluate the relevance of a search engine is to get a ground
truth ranking between a certain query and all the images in the
index. With tens of billions images in the index, this is obviously
infeasible. That is where the proposed NDCG on a constrained
measurement set has advantages: the approach makes the relevance
evaluation feasible with acceptable labeling workload. However,
when analyzing the numbers, we also need to be aware that only
the Level-2 reranking module is evaluated in this process, while
index size, Level-0 matching and Level-1 reranking do not affect
the NDCG number.

In Table 2, we report the NDCG@5 for the proposed system and
different baselines with only a single feature. All the DNN models
listed in Table 2 are trained with Bing dataset over thousands of
generic categories. From the table we can see that the chosen DNN
features do provide complementary information and all contribute
to improve the relevance. We also analyze how the trade-off be-
tween storage and relevance affects relevance: the NDCG@5 of the
system using raw DNN features, DNN features with dimensions
reduced by PCA, and quantized DNN features by PQ on top of PCA
are compared in the Table 3.

Model NDCG@5
AlexNet fc7 + PQ 58.87
ZFSPPNet fc7 + PQ 64.68
GoogleNetBN pool5 + PQ 71.16
ResNet-50 pool5 + PQ 70.81
Proposed system 74.20

Table 2: NDCG@5 on different systems.

Latency:Wemeasure and report the End-to-End and component-
wise system latency in Table 4. As introduced in Section 4, there
are two different scenarios from a technical perspective. One is
when the query image is in our index, where visual discovery is the
intended usage. And the other is the query is uploaded by users, or
when the user specifies a crop box to do visual search on a region
of interest. In the former case, because we already have the visual
features, the system latency can be reduced by saving the network
transferring and feature extraction time. And the latter case will
show a longer latency because we have to do full-fledged feature
extraction. As we can see from the table, because of the aggres-
sive optimization on the cascaded reranking module, the latency
bottleneck is actually the retrieval or calculation of visual features,
depending on the scenario. Note currently the feature extraction is
still performed on CPU, which will be significantly accelerated if
GPU is used.

Storage:We compare the storage cost per image with raw DNN
feature, and quantized PQ ID in Table 5. PQ generally shows 100 to
1000 times saving.

Figure 7 shows some examples of Bing Visual Search system,
providing qualitative illustration of the system’s performance on
various scenarios, including queries with and without cropping
boxes, related images and related products results.

KDD, 2018, London, United Kingdom H. Hu et al.

Figure 7: Qualitative visual search results. The left column shows the query image, and the right column shows the returned
results. The first two rows are from related images, and the other rows are from related products, with price and store infor-
mation returned.

Model NDCG@5
ResNet-50 pool5 71.84
ResNet-50 pool5 + PCA 71.17
ResNet-50 pool5 + PQ 70.81

Table 3: NDCG@5 on ResNet-50 raw feature, PCA and PQ.

6 CONCLUSIONS
In this paper, we introduce approaches to overcome the challenges
of a web-scale visual search system in relevance, latency, and stor-
age scalability. We use state-of-the-art deep learning features to
achieve good relevance. Training data in the form of pairwise judg-
ment also contribute to improving relevance in the learning-to-rank
framework. We utilize both algorithms tailored for large-scale data
and engineering optimization to achieve a latency less than 200
ms and cost-effective storage. Algorithms examples include PQ,

Web-Scale Responsive Visual Search at Bing KDD, 2018, London, United Kingdom

Scenario/component Latency
Visual Search (in-index image) 174ms
Visual Search (user-uploaded image) 1083ms
Object detection 188ms
Feature extraction 634ms
Cascaded ranking 49ms

Table 4: End-to-end and component-wise 50% latency of Bing
Visual Search on different baselines. The difference between
in-index image scenario and user-uploaded image scenario
is whether we can pre-compute the visual features and omit
the network transfer.

Model Raw DNN
Feature

PQ Compression
Ratio

AlexNet 16384 25 655x
ZFSPPNet 16384 25 655x
GoogleNet 4096 25 164x
GoogleNetBN 4096 25 164x
ResNet-50 8192 25 328x

Table 5: DNN feature storage cost per image in bytes.

inverted index, Lambda-mart ranker, and the cascaded ranker struc-
ture. Engineering optimization includes GPU/CPU acceleration,
distributed platform, and elastic cloud-based deployment.

There are many interesting directions one can pursue based on
the proposed system. The first is to further increase the index size.
The value of a search system as well as technical challenges increase
dramatically when its scale improves. Index containing more than
hundreds of billion images may call for smarter encoding in fea-
tures, more efficient index for feature retrieval, and more advanced
models to achieve high relevance. The second interesting direction
is metric development. While relevance is a major motivation a user
chooses a search engine over another, a set of diverse, attractive, and
personal search results will also help user growth. However, these
expectations often go against DCG. How to define a comprehensive
metric consistent with users’ needs remains an important yet open
question. Last but not least, extending the system to leverage other
devices such as FPGAs is another direction full of potential. We
learned many lessons when building Bing Visual Search, and see
more challenges and opportunities along the way.

ACKNOWLEDGMENTS
We thank SaurajitMukherjee, Yokesh Kumar, Vishal Thakkar, Kuang-
Huei Lee, Rui Xia, TingtingWang, Aaron Zhang, Ming Zhong, Wen-
bin Zhu, Edward Cui, Andrey Rumyantsev, Tianjun Xiao, Viktor
Burdeinyi, Andrei Darabanov, Kun Wu, Mikhail Panfilov, Vikas
Cheruku, Surendra Ulabala, Bosco Chiu, Vladimir Vakhrin, Anil
Akurathi, Lin Zhu, Aleksandr Livshits, Alexey Volkov, Mark Bolin,
Souvick Sarkar, Avinash Vemuluru, Bin Wang, Alexandre Michelis
and Yanfeng Sun for their supports.

REFERENCES
[1] R. Arandjelovic and A. Zisserman. 2012. Three things everyone should know to

improve object retrieval. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 2911–2918. https://doi.org/10.1109/CVPR.2012.6248018

[2] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[3] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient
boosting algorithm for combining preferences. Journal of machine learning
research 4, Nov (2003), 933–969.

[4] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization for approximate nearest neighbor search. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2946–2953.

[5] J. Hays and A. A. Efros. 2008. IM2GPS: estimating geographic information from a
single image. In 2008 IEEE Conference on Computer Vision and Pattern Recognition.
1–8. https://doi.org/10.1109/CVPR.2008.4587784

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. In european
conference on computer vision. Springer, 346–361.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[8] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. 448–456.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[10] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 217–226.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[12] S. Lazebnik, C. Schmid, and J. Ponce. 2006. Beyond Bags of Features: Spatial Pyra-
mid Matching for Recognizing Natural Scene Categories. In 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2.
2169–2178. https://doi.org/10.1109/CVPR.2006.68

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[14] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. 2016. Deepfash-
ion: Powering robust clothes recognition and retrieval with rich annotations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1096–1104.

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[16] Frank Seide and Amit Agarwal. 2016. Cntk: Microsoft’s open-source deep-
learning toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2135–2135.

[17] Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach
to object matching in videos. In null. IEEE, 1470.

[18] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. 2000. Content-
based image retrieval at the end of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22, 12 (Dec 2000), 1349–1380. https://doi.org/
10.1109/34.895972

[19] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. 2015.
Going deeper with convolutions. Cvpr.

[20] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yong-
dong Zhang, and Jintao Li. 2014. Deep Learning for Content-Based Image
Retrieval: A Comprehensive Study. In Proceedings of the 22Nd ACM Interna-
tional Conference on Multimedia (MM ’14). ACM, New York, NY, USA, 157–166.
https://doi.org/10.1145/2647868.2654948

[21] Simon AJ Winder and Matthew Brown. 2007. Learning local image descriptors.
In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on.
IEEE, 1–8.

[22] Yan Xia, Kaiming He, Fang Wen, and Jian Sun. 2013. Joint inverted indexing. In
Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 3416–3423.

[23] Fan Yang, Ajinkya Kale, Yury Bubnov, Leon Stein, Qiaosong Wang, Hadi Kiapour,
and Robinson Piramuthu. 2017. Visual Search at eBay. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17). ACM, New York, NY, USA, 2101–2110. https://doi.org/10.
1145/3097983.3098162

[24] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[25] Andrew Zhai, Dmitry Kislyuk, Yushi Jing, Michael Feng, Eric Tzeng, Jeff Donahue,
Yue Li Du, and Trevor Darrell. 2017. Visual Discovery at Pinterest. In Proceedings
of the 26th International Conference on World Wide Web Companion (WWW ’17
Companion). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland, 515–524. https://doi.org/10.1145/
3041021.3054201

https://doi.org/10.1109/CVPR.2012.6248018
https://doi.org/10.1109/CVPR.2008.4587784
https://doi.org/10.1109/CVPR.2006.68
https://doi.org/10.1109/34.895972
https://doi.org/10.1109/34.895972
https://doi.org/10.1145/2647868.2654948
https://doi.org/10.1145/3097983.3098162
https://doi.org/10.1145/3097983.3098162
https://doi.org/10.1145/3041021.3054201
https://doi.org/10.1145/3041021.3054201

	Abstract
	1 Introduction
	2 System overview
	3 Approach
	3.1 Relevance
	3.2 Latency
	3.3 Storage
	3.4 Object Detection
	3.5 Engineering

	4 Applications
	4.1 Bing.com
	4.2 Bing App

	5 Experiments
	6 Conclusions
	Acknowledgments
	References

