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Abstract

Graphical user interfaces (GUIs) mediate almost all of our interactions with

computers, whether it is through web pages, phone apps, or desktop applications.

Functional Reactive Programming (FRP) is a promising approach to GUI design.

This thesis presents Elm, a concurrent FRP language focused on easily creating re-

sponsive GUIs. Elm has two major features: (1) purely functional graphical layout

and (2) support for Concurrent FRP. Purely functional graphical layout is a high

level framework for working with complex visual components. It makes it quick and

easy to create and combine text, images, and video into rich multimedia displays.

Concurrent FRP solves some of FRP's long-standing e�ciency problems: global de-

lays and needless recomputation. Together, Elm's two major features simplify the

complicated task of creating responsive and usable graphical user interfaces. This

thesis also includes a fully functional compiler for Elm, available at elm-lang.org.

This site includes an interactive code editor that allows you to write and compile

Elm programs online with no download or install.

http://elm-lang.org
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1 Introduction

Functional Reactive Programming (FRP) is a declarative way to create reac-
tive systems. FRP has already shown its potential in a diversity of domains:
robotics [20, 35], music synthesis [16], animation [10], video games [7], and
graphical user interfaces [6]. These domains are reactive because they re-
quire interaction with a wide range of outside inputs, from keyboards to
accelerometers.

This work focuses on graphical user interfaces, the most important and
widely-used of these domains. Graphical user interfaces (GUIs) mediate
almost all of our interactions with computers, whether it is through web
pages, phone apps, or desktop applications. Graphical user interfaces are
also a particularly di�cult domain. In addition to the normal challenges of
programming � transforming and analyzing data � GUIs face the problems
of data presentation and usability. A GUI also reacts to many outside input
from users and sensors. A useful GUI must also be responsive, providing the
user quick feedback in spite of the complex computations that occur behind
the scenes.

Functional reactive programming is a declarative approach to GUI design.
The term declarative makes a distinction between the �what� and the �how�
of programming. A declarative language allows you to say what is displayed,
without having to specify exactly how the computer should do it. With
functional reactive programming, many of the irrelevant details are left to
the compiler, freeing the programmer to think on a much higher level than
with most existing GUI frameworks.

The term declarative is important because most current frameworks for
graphical user interfaces are not declarative. They mire programmers in the
many small, nonessential details of handling user input and modifying the
display. The declarative approach of functional reactive programming makes
it quick and easy to specify complex user interactions. FRP also encourages
a greatly simpli�ed approach to graphical layout. As a result, FRP makes
GUI programming much more manageable than with traditional approaches.

As an example of declarative programming, we will consider a basic FRP
program, shown in Figure 1. This example displays the current mouse posi-
tion as text. Think of Mouse.position as a time-varying value that changes
whenever the mouse moves. It is always equal to the current position of
the mouse relative to the top left corner of the screen. The asText function
converts a value � such as a pair of numbers � into text that can be displayed
on screen. The lift function combines a function and a time-varying value.
In this case, lift combines asText and Mouse.position, converting the
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main = lift asText Mouse.position

Figure 1: A Basic FRP Program: Tracking Mouse Movement

mouse position (which updates automatically) into displayable text (which
also updates automatically). The value of main is displayed to the user, so
the user sees the current mouse position. The corresponding diagram shows
our example program as the mouse moves around the screen. Notice that
the x and y coordinates increase as the mouse moves farther from the top
left corner.

With one line of code, we have created a simple GUI that responds
to user input, displays values on screen, and updates automatically. To
perform these tasks in a traditional GUI framework � such as JavaScript
� would require signi�cantly more code: manually extracting the mouse
position from an event and describing exactly how to update the displayed
value. As a declarative framework, FRP makes this task considerably easier
by taking care of the �how� of events, display, and updates.

This thesis presents Elm, a concurrent FRP language focused on eas-
ily creating responsive GUIs. We have already seen Elm in action with
the example above, a working Elm program. Elm has two major features:
(1) purely functional graphical layout and (2) support for Concurrent FRP.
Purely functional graphical layout is a high level framework for working with
complex visual components. It makes it quick and easy to create and com-
bine text, images, and video into rich multimedia displays. Concurrent FRP
solves some of FRP's long-standing e�ciency problems: global delays and
needless recomputation.

A global delay occurs when a GUI cannot immediately process incoming
events, making the GUI less responsive. Past FRP formulations maintain a
strict ordering of incoming events. They are processed one at a time, so if one
event takes a long time, all of the subsequent events must wait. This strict
ordering of events is not always necessary, especially in the case of events
that are not directly related. Concurrent FRP allows the programmer to
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specify when a strict ordering of events is unnecessary, resulting in more
responsive GUIs. Concurrent FRP can safely include long computations
without degrading user experience or requiring unnatural coding practices.

Needless recomputation occurs when a function is recomputed even though
its input has not changed. In a purely functional language like Elm, every
function � when given the same inputs � always produces the same output.
Therefore, there is no need to recompute a function unless its inputs have
changed. Many previous formulations of FRP do not take advantage of this
fact. A program consists of many interdependent functions, but changing
one input to the program is unlikely to a�ect all of them. Previously, when
one of the many inputs to an FRP program changes, the whole program is
recomputed even though most of the inputs have not changed. With this
strategy, every incoming event can cause a signi�cant number of needless
recomputations. Elm's concurrent runtime system avoids this with memo-
ization, an optimization technique that saves previously computed values to
avoid future computations. Speci�cally, Elm saves the most recently com-
puted values, so when one of the many inputs to a program changes, only
functions that depend on that particular input must be recomputed.

These two e�ciency improvements add to FRP's strengths as a GUI
framework. In particular, Elm's mechanism for avoiding global delays is ex-
tremely useful, yet distressingly uncommon. Not only is it new for FRP, but
it is also an improvement over a majority of popular modern GUI frame-
works such as JavaScript or Java, which both enforce a strict order of events
at the expense of either responsiveness or code clarity.

This thesis also presents a prototype implementation of Elm that com-
piles for the web. The Elm compiler produces HTML, CSS, and JavaScript.
This has two major bene�ts: (1) Elm programs already run on any device
that supports modern web standards and (2) Elm is much more accessible
than many previous FRP frameworks. An overview of Elm, an interactive
code editor, numerous examples, and documentation have all been posted
online at elm-lang.org. The interactive editor allows you to write and com-
pile Elm programs with no download or install. This ease of access permits
developers to quickly dive into FRP and GUI programming even if they have
little previous experience. The online implementation and learning resources
are a signi�cant portion of this thesis, making FRP research more accessible
and raising awareness of Elm and FRP in general.

The structure of this thesis is as follows. Chapter 2 presents detailed
background information on functional reactive programming and GUIs. It
discusses the strengths and weaknesses of the related work on this topic,
providing context and motivation for Elm's design choices. Chapters 3 and
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4 contain a core language that captures the theoretical contributions of this
thesis. Elm is compiled in two phases. The �rst phase � source language to
well-behaved intermediate representation � is the topic of Chapter 3. This
chapter also discusses Elm's relation to previous FRP frameworks. The sec-
ond phase � intermediate representation to concurrent runtime system � is
the topic of Chapter 4. Here we will discuss the details of the concurrent
system and the resulting e�ciency bene�ts. Chapter 5 is an introduction
to the practical use of Elm. It describes how to create graphical user in-
terfaces, using real examples to illustrate Elm's most important graphics
libraries. Chapter 6 discusses Elm's prototype implementation. The Elm
compiler produces HTML, CSS, and JavaScript. This means Elm programs
can already run on any modern web browser. It also means that the Elm
compiler must still overcome some of JavaScript's weaknesses, such as lim-
ited support for concurrency. Finally, Chapter 7 discusses how this work �ts
into past research and directions for future work.
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2 Background and Related Works

A graphical user interface is an interactive multimedia display, but what is a
functional graphical user interface? The term functional refers to a style of
programming in which functions can be passed around like any other value,
promoting code reuse. A functional GUI would be designed in the functional
style.

Languages that are purely functional are very strict about how a pro-
gram can interact with the rest of the computer. Such languages have two
important properties: (1) all values are immutable, never changing after in-
stantiation, and (2) functions are pure, always producing the same output
when given the same input. These mutually dependent properties are great
for program reliability and maintainability, yet they are quite rare in mod-
ern languages. This is because many important values are mutable, able to
change. This includes the position of the mouse, whether a key is pressed,
and any other input that changes over time. How can we reconcile purely
functional programming and mutable values?

The restrictions of purely functional programming languages give us the
opportunity to model mutable values on our own terms. If mutable values
are introduced through �safe� abstractions, they need not undermine the
pleasant properties of purely functional programs. This chapter addresses
two important approaches to introducing mutablity: Functional Reactive
Programming and Message-Passing Concurrency. Both approaches elegantly
bridge the gap between purely functional languages and mutable values such
as user input. By starting from scratch, these approaches reexamine the
essense of mutable values and user input, resulting in new abstractions that
simplify GUI programming.

This chapter �rst examines functional reactive programming (FRP). Elm
uses this general approach to GUI programming. Next, we turn to message-
passing concurrency for another perspective. Message-passing concurrency
presents some important insights into GUI programming that can help make
FRP more robust. In short, concurrency matters! Finally, we will examine
the existing FRP GUI frameworks, trying to identify common pitfalls. This
background information lays the groundwork for an e�cient and useable
implementation of FRP for GUIs.

2.1 Functional Reactive Programming

Functional Reactive Programming (FRP) is a declarative programming paradigm
for working with mutable values. FRP recasts mutable values as time-varying
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values, better capturing the temporal aspect of mutability. In FRP, time-
varying values are called signals. Signals can represent any mutable value.
For example, consider the position of the mouse. The mouse position signal
� called Mouse.position in Elm � holds the current mouse position. When
the mouse moves, the value of Mouse.position changes automatically.

Signals can also be transformed and combined. Imagine we have a
function that takes a mouse position as input and determines whether the
mouse is hovering over a certain button. We can apply this function to
Mouse.position. This results in a signal of boolean values that updates
automatically: true when the mouse is hovering over the button and false
otherwise. In contrast with traditional approaches, this declarative style of
FRP abstracts away many inconsequential details, allowing programmers to
do more with less code.

The original formulation of FRP was extremely expressive, giving pro-
grammers many high-level abstractions. This expressiveness came at the cost
of e�ciency because there was not always a clear way to implement such high-
level abstractions. Subsequent research aimed to resolve the tension between
expressiveness and e�ciency. We will focus on three major semantic families
of Functional Reactive Programming: Classical FRP; Real-time FRP and
Event-Driven FRP; and Arrowized FRP. We examine them chronologically
to see how the semantics of FRP have evolved. As we move through FRP's
three semantic families, we will better understand the remaining e�ciency
problems and how to resolve them.

2.1.1 Classical FRP

Functional Reactive Programming was originally formulated by Paul Hudak
and Conal Elliott in their 1997 paper Functional Reactive Animation [10].
Their implementation is embedded in Haskell, a functional language that can
easily be extended. Their initial formulation � which we will call Classical
FRP � introduced two new types of values: Behaviors and Events.

Behaviors are continuous, time-varying values. This is represented as a
function from a time to a value.

Behavior α = Time→ α

These time indexed functions are just like the equations of motion in
Newtonian physics. At time t, the behavior has value v. Behaviors
help with a very common task in animation: modeling physical phe-
nomena. Position, velocity, acceleration, and analog signals can all
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be represented quite naturally with behaviors. This abstraction helps
produce concise and declarative code by leaving the details of updates
to the compiler.

Events represent a sequence of discrete events as a time-stamped list of
values.

Event α = [(Time, α)]

The time values must increase monotonically. Events can model any
sort of discrete events, from user input to HTTP communications.
Originally intended for animations, events would commonly be used to
model inputs such as mouse clicks and key presses. Events would be
used the same way in GUIs.

This initial focus on animation strongly in�uenced the semantics and goals
of future FRP work. In particular, continuous time-varying values have
appeared in almost all subsequent work.

Although elegant, the original implementation of classical FRP � named
Fran for �functional reactive animation� � is prone to di�cult-to-spot space
and time leaks. In other words, memory usage may grow unexpectedly (space
leaks), resulting in unexpectedly long computations (time leaks).

Fran inherits a variety of space and time leaks from its host language,
Haskell. Haskell delays computation until it is absolutely necessary, evaluat-
ing programs �lazily�. This makes it easy to create in�nite data structures,
but it can also cause memory problems. In FRP, the value of a behavior
may be inspected infrequently, and thus, an accumulated computation can
become quite large over time, taking up more and more memory (space leak).
When inspected, the entire accumulated computation must be evaluated all
at once, potentially causing a signi�cant delay or even a stack over�ow (time
leak). These leaks appear in the implementation of Fran. Subsequent Haskell
FRP libraries were able to create a leak free implementation, but that does
not fully address the problem. Even with a leak free implementation, space
and time leaks can still appear in FRP programs. This problem is common
to all Haskell FRP libraries.

Why embed in Haskell if it allows space and time leaks? Hudak argues
that embedding a domain speci�c language in an established host language is
often the best way to create a special purpose language [18]. Such a domain
speci�c embedded language (DSEL) allows you to focus on your particular
problem without designing a new language, writing an e�cient compiler, and
convincing everyone that your language is a good idea. Haskell's typeclasses
provide a very general framework to embed sublanguages, making it a great
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host language when your DSEL is amenable to laziness. In the case of FRP,
laziness permits space and time leaks. Any Haskell-embedded FRP language
can have space leaks. This problem is solved by embedding FRP in a strict
language.

In addition to space and time leaks, Classical FRP allows the de�nition of
behaviors that depend on past, present, or future values [21]. Programs that
violate causality � relying on future values � are unimplementable. Programs
that rely on past values can cause another kind of memory leak in which the
program is forced to remember all past values of a Behavior or Event. This
means that memory usage could grow in proportion to the time the program
has been running.

2.1.2 Real-time FRP and Event-Driven FRP

Real-time FRP [34] was introduced by Paul Hudak and others at Yale in
2001. It aims to resolve the ine�ciencies of Classical FRP. Real-Time FRP
(RT-FRP) overcame both space and time leaks, but this came at the cost
of expressiveness. To produce e�ciency guarantees, RT-FRP introduced an
isomorphism between Behaviors and Events:

Event α ≈ Behavior (Maybe α)

where Maybe α is an abstract data type that can either be Just α (an event is
occurring, here is the relevant value) or Nothing (an event is not occurring,
nothing to see here). This simpli�es the semantics of FRP. Both behaviors
and events can be represented as a common type which has been called a
signal.

Signal α = Time→ α

With this simpler mental model, RT-FRP then de�nes a language that
ensures that signals cannot be used �unsafely�, in ways that do not have a
clear, e�cient implementation. To do this, RT-FRP presents a two-tiered
language: an unrestricted base language and a more limited reactive lan-
guage for manipulating signals. The base language is a basic lambda calculus
that supports recursion and higher order functions. This base language is em-
bedded in a much more restrictive reactive language that carefully controls
how signals can be accessed and created. The reactive language supports
recursion but not higher-order functions.

The original paper on RT-FRP provides proofs about resource bounded-
ness for both time and space [34]: For time, reactive updates will terminate
as long as the embedded base language terms terminate as well. For space,
memory will not grow unless it grows in the base language.
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Although the separation between base language and reactive language
made it much easier to prove properties about RT-FRP, it is somewhat less
expressive than Classical FRP. Since the reactive language is not higher
order, the connections between signals must all be explicitly de�ned in the
source code. They cannot be speci�ed with the full power of the embedded
lambda calculus.

In 2002 � soon after introducing RT-FRP � Hudak et al. proposed Event-
Driven FRP [35]. Event-Driven FRP (E-FRP) is a direct descendent of RT-
FRP that introduces discrete signals, signals that only change on events.
Thus, E-FRP programs are event-driven in that no changes need to be prop-
agated unless an event has occurred.

This may seem needlessly restrictive, but as it turns out, many potential
applications of FRP are highly event-oriented. The original E-FRP paper
focused on controlling robots, but graphical user interfaces are also primarily
event driven. We will explore discrete signals more in the next chapter.

Although Real-time FRP and Event-driven FRP solved many of the e�-
ciency problems of Classical FRP, research focus has shifted away from this
approach in hopes of recapturing the full expressiveness of Classical FRP.
The last published paper on RT-FRP goes so far as to suggest a concur-
rent runtime as future work [36], but this was never pursued. Furthermore,
neither RT-FRP nor E-FRP was ever adapted to create graphical user inter-
faces. These two lines of research appear to have fallen by the wayside, but
the prospect of a concurrent, event-driven, and strict FRP language remains
promising.

2.1.3 Arrowized FRP

Arrowized FRP [28] aims to maintain the full expressiveness of Classical
FRP without the di�cult-to-spot space and time leaks. Arrowized FRP was
formulated at Yale in 2002 by Henrik Nilsson, Antony Courtney, and John
Peterson. Borrowing from the recent results of RT-FRP and E-FRP, events
are no longer used. Arrowized FRP (AFRP) instead uses signal functions.
A signal function can be thought of as a function from signal to signal.

SF α β = Signal α→ Signal β

where signals are exactly the same as in Real-Time FRP.

Signal α = Time→ α

To avoid time and space leaks, signals are not directly available to the
programmer [24]. Instead, one programs only with signal functions. These
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signal functions are conceptually equivalent to regular functions, but they
make it possible to rule out time and space leaks in the implementation of the
AFRP system. Because signal functions are speci�ed at the source level, it is
possible to carefully control how recursive functions are evaluated, ensuring
that intermediate computations are not kept in memory. This eliminates
a major source of space and time leaks. Of course, as a Haskell-embedded
framework, space and time leaks are still possible when signal functions
accumulate a computation without inspecting its value. Thus, Arrowized
FRP does not have space and time leaks in its implementation, but programs
written with AFRP can still have them.

Signal functions also ensure causality. Signal functions explicitly model
input and output, so any future dependent signal function can be ruled
out statically [23, 32]. Signal functions belong to the category of arrows, an
abstraction developed by John Hughes in 2000 [19]. This abstraction had not
yet been revealed when Classical FRP was designed. As an added bene�t,
Ross Paterson's arrow notation [29] allows programmers to name the inputs
and outputs of arrows in a controlled way, making the use of arrows much
more natural.

Because there is no direct access to signals, Arrowized FRP may appear
to be less expressive than Classical FRP. AFRP achieves the �exibility of
Classical FRP with continuation-based switching and dynamic collections
of signal functions. We will not discuss these two features in depth, but
their general role is to allow signal functions to be safely moved around at
runtime. Together, these two features provide comparable expressivity to
Classical FRP without reintroducing space and time leaks.

Signi�cant work has gone into making Arrowized FRP more e�cient
[27, 23], but there is a foundational problem that AFRP inherited from
Classical FRP: continuous signals. While Classical FRP was still the domi-
nant paradigm, Hudak andWan proved that their semantics can be respected
with one important condition: �as the sampling interval goes to zero, the im-
plementation is faithful to the formal, continuous semantics� [33]. In other
words, the continuous semantics cannot be respected unless updates are in-
stantaneous, which is impossible on a real machine. We will call this the
instant-update assumption. The instant-update assumption introduces at
least two major sources of ine�ciency: global delays and unnecessary up-
dates.

Global delays are caused by long computations. All of the FRP systems
we have seen so far enforce a strict order of events. Events are processed one
at a time in the exact order of occurrence. The instant-update assumption
has masked a fundamental issue with this approach. If an update takes zero
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time, no event will ever cause a delay. But updates do take time, sometimes
a signi�cant amount of time. The instant-update assumption is simply not
true. Long updates block all pending events. As a result, one long-running
computation will slow down the whole program.

Unnecessary updates are caused by discrete inputs, such as mouse clicks.
Continuous signals assume that signal values are always changing. Thus, it
is necessary to recompute the whole program as frequently as possible. With
continuous signals, there is always a new value waiting to be shown to the
user, so every part of the program is recomputed.

The trouble is that not all time-varying values are continuous. Inputs
like mouse clicks are discrete, changing relatively infrequently. In fact, all
user input is discrete. And from a purely practical standpoint, continuous
signals do not actually exist in a digital system. Even time is discrete.

When the whole program is recomputed, the many discrete inputs cause
recomputations, even though their values may not have changed. This would
be acceptable if the instant-update assumption was true, but in practice, it
means that each update wastes time recomputing values which cannot have
changed. Consider the case of mouse coordinates. Instead of waiting for
new mouse movements, a continuous signal of mouse coordinates updates as
frequently as possible. Updates occur even when the mouse is stationary,
causing a cascade of needless recomputation.

In a graphical user interface, all of the major inputs are discrete. Clicks,
key presses, window resizes, mouse movements. Any sort of user input is a
discrete event. All of these values induce busy-waiting in a system built for
continuous signals.

Global delays and unnecessary updates both result from the instant-
update assumption and the use of continuous signals. They are not inherent
to FRP or Arrowized FRP. In his 2009 paper Push-Pull Functional Reactive
Programming, Conal Elliott suggests that a distinction between continuous
and discrete signals is better than a distinction between behaviors and events
[9]. Elliott does not provide a detailed description of a push-based, or event-
driven, implementation. Such a description will be provided in this thesis.
In an e�ort to avoid global delays and unnecessary updates, the rest of our
discussion of FRP will focus on examining the repercussions of removing the
instant-update assumption and dealing instead with discrete signals.

2.2 Message-Passing Concurrency

Message-passing concurrency is a functional approach to concurrent systems.
John Reppy and Emden Gansner began advocating this approach as early
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as 1987 [11]. Their subsequent work resulted in Concurrent ML and eX-
ene, which together form the basis of a robust GUI framework. This work
also demonstrates that GUIs are naturally concurrent. That is, the many
independent components of a GUI can and should be handled concurrently.

Previous work in FRP has assumed that all events are strictly ordered
and processed one at a time. Concurrent ML and eXene illustrate that this
is an unnecessary restriction. The original order of events does not always
need to be maintained, especially when some events are unrelated to others.
Furthermore, many events should be processed at the same time. If one part
of a program takes a long time, this should not block everything else. By
relaxing the event ordering restrictions, message-passing concurrency pro-
vides solutions to Arrowized FRP's two e�ciency problems. Conceptually,
message-passing concurrency is a set of concurrent threads that communi-
cate by sending messages. This paradigm is discrete and concurrent from the
start, so it is robust to both discrete inputs and long running computations.

In this section, we will �rst discuss Concurrent ML (CML). CML is a well-
designed and type-safe language that illustrates the strengths of message-
passing concurrency. Second, we will discuss Concurrent ML's GUI frame-
work: eXene. eXene will show us how concurrency is necessary to create
robust and responsive GUIs.

2.2.1 Concurrent ML

Interactive systems, such as graphical user interfaces, are the primary moti-
vation for much of the work on Concurrent ML [30]. User input is one of the
most complicated aspects of an interactive system, with many input devices
interacting with the overall system. Concurrent ML aims to make it easier
to design interactive systems by recognizing their natural concurrency.

A Concurrent ML program is a collection of sequential threads that com-
municate via messages. Concurrent ML extends Standard ML which pro-
vides a well-designed, sequential base language.

CML threads are lightweight � very cheap to create and run. Threads
communicate through channels, allowing information to �ow between threads
that have no shared state. This is the essence of message passing. A channel
of type

type 'a chan

can carry values of type 'a back-and-forth between threads. Values � or
messages � are sent and received with two intuitively named functions:

val send : ('a chan * 'a) -> unit
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val recv : 'a chan -> 'a

Every send must be paired with a recv. Each function will block execu-
tion within its thread until a matching function is called. send blocks until
another thread wants to recv. Therefore, send and receive are synchronous.

Concurrent ML's threads can be created dynamically with the spawn

function:

val spawn : (unit -> unit) -> thread_id

An unbounded number of threads can be created, but limited system re-
sources may not allow all of them to run simultaneously. Therefore, threads
must take turns. The CML runtime system periodically interrupts threads.
Threads yield to each other automatically, ensuring that they all get to run.
This is called preemptive scheduling.

Concurrent ML has some lower level concurrency primitives that make
it possible to de�ne a wide diversity of message passing constructs, even
asynchronous ones. This includes two types of communication that will
eventually be very important to us: mailboxes and multicast. (1) A mailbox
allows messages to be sent asynchronously. Messages are sent to a mailbox
without waiting for a receiver. Messages queue up until the receiver is ready
to look at them. The receiver always takes the oldest message available.
Furthermore, receiving a message only blocks when the mailbox is empty.
A mailbox can also be called a FIFO channel or queued channel. This is
useful for asynchronous communication. (2) Basic message passing is point-
to-point: one sender and one receiver. Multicast messages have one sender
and many receivers. This is useful when one thread must send the same
message to many others.

Concurrent ML is powerful enough to implement a variety of higher level
concurrency strategies, but the overall approach is not as declarative as FRP.
The programmer must think more about the �how� of GUI programming.
Instead of automatically updating and transforming signals, CML requires
the programmer to explicitly shuttle updates between threads. Nonetheless,
Concurrent ML is a powerful framework for GUIs.

2.2.2 eXene: Creating concurrent GUIs

To avoid the complexity of �exible event ordering, many GUI frameworks
are sequential. This ensures that the original order of events is strictly main-
tained. JavaScript, for instance, has a central event loop where all events
queue up to be dispatched one by one. This means that any long compu-
tation will block all other pending events, making the GUI unresponsive.
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JavaScript programmers must explicitly break any expensive algorithm into
manageable chunks. This explicit interleaving is a poor substitute for real
concurrency.

eXene � Concurrent ML's GUI library � realizes the bene�ts of a con-
current GUI by giving the programmer full access to a concurrent system
[13, 12, 15, 14, 8]. A graphical user interface is particularly well-suited to
this model because events in one part of the system usually do not need to
be synchronized with events in another. For instance, all key presses need
to be handled in their original order, but it may be okay if timer updates
jump ahead or fall behind relative to the key presses. This means that GUI
components can be updated independently, not blocking each other.

Concurrent ML and eXene have the �exibility to take advantage of this
common case, producing more e�cient GUIs. This is great for responsive-
ness, but it pushes the task of maintaining the order of events onto the
programmer. Just as with any low-level abstraction, speed gains are tied to
a whole new way to write buggy programs. In the case of CML, this means
programs that su�er from deadlock and livelock.

Even acknowledging the event ordering problem, the modular nature of
graphical user interfaces make them well-suited to a concurrent implemen-
tation. Concurrency improves performance without requiring invasive code
rewrites such as breaking expensive algorithms up into small pieces. Even
this unpleasant solution would be di�cult with FRP. Because of the instant-
update assumption, previous FRP implementations update the whole pro-
gram at once, so breaking an algorithm into smaller pieces would not result
in faster updates. As we will see in Chapter 4, concurrency is the ideal
way to mitigate the damage of expensive computations. We will try to reap
the bene�ts of concurrency without the synchronization headache. In Elm,
preservation of event ordering is handled primarily by the compiler, not the
programmer.

2.3 Existing FRP GUI Frameworks

Both Classical FRP and Arrowized FRP have been used as the basis for
GUI frameworks. These GUI frameworks su�er from the same e�ciency
problems of their base language, but the biggest problem for every imple-
mentation is accessibility. Accessibility includes ease of installation, quality
of documentation and examples, and apparent conceptual di�culty.

Many Haskell-embedded frameworks have been created over the years.
These include FranTk, the original GUI framework for Fran [31]; Fruit,
AFRP's �rst GUI framework [6]; Yampa/Animas, AFRP's most recent GUI
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frameworks [7, 16]; and Reactive Banana, based on classical FRP which
avoids time leaks with carefully constructed API's. Every Haskell-embedded
library su�ers from three problems:

Space leaks: As we discussed before, this is just a part of Haskell. Lazi-
ness sometimes leads to unexpectedly slow updates and unnecessary
memory usage.

Di�cult installation: Haskell FRP libraries all rely on imperative GUI
frameworks � Tcl/Tk, Gtk, or wxWidgets � which complicates the
install process. Each of these frameworks comes with their own set of
constraints, often not easily supporting new platforms such as Android
or iOS.

Apparent conceptual di�culty: All Haskell-embedded libraries rely on
Haskell's robust type system to achieve clarity and usability. Classical
FRP uses monads to introduce behaviors and events. Arrowized FRP
uses the arrow framework to manipulate signal functions. In both
cases, new users must learn the syntax and basic theory of monads
or arrows to even begin coding. Although these abstractions are clear
to the experienced Haskell user, beginners can �nd them imposing
and discouraging. Of course, the di�culty may be more psychological
than conceptual, but it is a di�culty nonetheless. This perception of
di�culty is compounded because much of the documentation for these
GUI frameworks can be found only in academic papers.

Because Haskell-embedded FRP libraries map onto imperative backends,
there is also a danger of incorporating imperative abstractions into the li-
brary. While not necessarily wrong, this results in GUI frameworks that feel
imperative. FranTk included event listeners � an imperative abstraction �
because they mapped more naturally onto the Tcl/Tk backend, but most
other libraries have avoided imperative in�uence.

Of the frameworks discussed here, it appears that Reactive Banana is
the only one that is actively maintained and improved as of this writing.

Not all e�orts have been focused on Haskell. FRP has even appeared in
some imperative languages. For instance, the Frappé framework [5] targets
Java. This implementation was produced by Antony Courtney in 2001, right
before co-authoring the initial Arrowized FRP paper. Another imperative
embedding is Flapjax [26] which targets JavaScript. Flapjax was produced
by a diverse collaboration in 2009. The portion of the Flapjax team based
at Brown University has also produced an FRP system for Scheme [3].
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Flapjax is particularly interesting in that it addresses all three of the
problems faced by every Haskell implementation. JavaScript is a strict lan-
guage, so time leaks must be created explicitly by manually delaying compu-
tation. Flapjax is a JavaScript library, so �installation� is easy: just include
the �le in your webpage. Flapjax also avoids the apparent conceptual di�-
culty of Haskell-embedded libraries because its documentation just does not
talk about monads. Of course it could discuss behaviors and events in terms
of monads, but the analogy is not particularly useful when developing in
JavaScript. Because Flapjax is web based, many interactive examples are
available online, further helping with accessibility.

Similar to Flapjax, Elm provides documentation and examples online
at elm-lang.org in an attempt to avoid di�cult installation and apparent
conceptual di�culty.
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3 The Core Language

The core language of Elm aims to provide �exibility and expressiveness,
yet only commit to abstractions that can be implemented e�ciently in a
concurrent system.

Elm achieves expressiveness in two major ways. (1) The core language
combines a basic functional language with a small set of reactive primitives.
Programmers have direct access to signals, and signals can be transformed
and combined with the full power of a functional language. By carefully
restricting Elm's reactive primitives, we can avoid the problems of Classical
FRP without giving up signals. (2) Elm's core language is compatible with
Arrowized FRP. Elm's small set of reactive primitives do not provide the
ability to dynamically change how signals are used at runtime. Classical
FRP and Arrowized FRP both have this ability. By ensuring that Arrowized
FRP can be embedded in Elm, we show that Elm can be just as expressive,
even without directly embedding these features in the core language.

Elm's e�ciency improvements are based on two design choices. (1) Elm
does not make the instant-update assumption. This assumption actively ig-
nores many signi�cant barriers to e�ciently implementing FRP. By avoiding
the instant-update assumption, Elm can avoid global delays and needless
recomputations. (2) The core language of Elm maps onto an intermediate
language that cleanly separates reactive primitives from the rest of the lan-
guage. Why bother with a two-tiered intermediate language? Real-Time
FRP and Event-Driven FRP use a two-tiered language to great e�ect, al-
lowing proofs about e�ciency and memory usage and promoting e�cient
implementations. For RT-FRP and E-FRP, the two-tiered source language
came at the cost of expressiveness. By only using the two-tiered representa-
tion internally, Elm can bene�t from its useful properties without restrict-
ing source level expressiveness. Elm's intermediate representation also maps
nicely onto a concurrent system.

3.1 The Syntax: Manipulating Discrete Signals

Global delays and needless recomputation are two major sources of ine�-
ciency in modern FRP formulations. Both are rooted in the instant-update
assumption which requires that recomputation takes zero time. Following in
the footsteps of Event-Driven FRP [35], we will not make this assumption.
Like E-FRP, Elm is entirely event-driven. These discrete signals contrast
with continuous signals that are always changing. This means that all up-
dates in Elm are event-driven, recomputing only when an event has occurred.
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In Elm, no event occurs at exactly the same moment as another. This
ensures that there is a strict ordering of events, and simpli�es the mental
model for events: events happen one at a time. The exact co-occurrence of
events is also extremely uncommon in GUIs which deal primarily with user
input. On the time-scale of computers, users are slow enough that user input
events really are strictly ordered.

Elm's basic design choices point the way to a core language. We want a
set of reactive primitives that work nicely with event-driven updates, discrete
signals, and strictly ordered events. Elm's reactive primitives are embedded
directly in a simple lambda calculus. This appears to be quite similar to the
formulation of classical FRP, but our compilation strategy will disallow the
major ine�ciencies that we have come to expect of this syntax.

e ::=() | n | λx. e | e1 e2 | x | let x = e1 in e2 |
i | liftn e e1 ... en | foldp e1 e2 e3 | async e

n ∈ Z x ∈ Var i ∈ Input

For now, it is best to think of i as a unique identi�er for input signals,
such as mouse position or key presses. The Input set represents all possible
identi�ers for input signals. We will give a more detailed interpretation
of Input in Chapter 4. These inputs i receive values from some external
event source. The external source can be any system input, from mouse
movements to memory access. Furthermore, Elm's input signals must have
a default value; they cannot be unde�ned. As long as a signal is unde�ned,
any program that depends on it will be unde�ned. It is best to rule this out
altogether.

Basic signals are Elm's only way of accessing stateful system values; they
are the inputs to an Elm program. But just having access is not enough. Elm
also needs a way tomanipulate signals. This is the role of Elm's other reactive
primitives. With the liftn and foldp primitives, Elm accommodates three
types of signal manipulation: transformation of a signal, combination of
multiple signals, and past-dependent transformation of a signal.

Before discussing signal manipulation in depth, we must brie�y introduce
Elm's �nal primitive: async. Elm allows you to add the async annotation
indicating when certain signal manipulations can be computed in parallel
with the rest of the program. Such signals are asynchronous.

async :: Signal a→ Signal a

The async annotation takes in a signal and returns the exact same signal.
The annotation just informs the Elm compiler that events �owing through
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the signal do not need to be perfectly synchronized with the events in the
rest of the system, allowing an important optimization. This primitive will
be more fully described in Chapter 4. For now, it is enough to understand
async simply as an annotation for the Elm compiler.

The following examples illustrate the usage and importance of Elm's
reactive primitives. The syntax used in the examples is the actual surface
syntax of Elm.

3.1.1 Transformation

Basic signals such as mouse position or window size are not interesting unless
they can be transformed into some other value. This is accomplished with

lift :: (a→ b)→ Signal a→ Signal b

Think of lift as a directive to lift a normal function into a signal. This
primitive can create time-indexed animations when given a function from
times to pictures. One simple time-indexed function is a value that slides
between negative and positive one, updating every �fth of a second:

cosWave = lift cos (Time.every 0.2)

sinWave = lift sin (Time.every 0.2)

The function Time.every takes a number n and produces a signal carrying
the time since the program began, updated every n seconds. Lift can also be
used on more traditional inputs such as (Window.width :: Signal Int)

which carries the current width of the display. One basic use is �tting a
component to the window width up to a certain value:

fitUpTo w = lift (min w) Window.width

The signal (fitUpTo 800) is equal to the window width up until window
width 800 pixels, where it stops growing.

Elm also supports a basic signal called (never :: Signal ()) which
has the default value unit and never produces another value. This special
input signal can be used to safely lift constant values into signals.

constant c = lift (λx → c) never

This transforms the default value of never, so the resulting signal carries
the value c. This can be useful when you would like to pass a constant to a
function that takes a signal.
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3.1.2 Combination

Combining signals is also quite useful. For this task, we have

lift2 :: (a→ b→ c)→ Signal a→ Signal b→ Signal c

This allows you to combine two signals. The given function acts on the most
recent values available. With this we can combine some of our earlier signals:

point = lift2 (,) cosWave sinWave

The (,) function takes two values and pairs them together in a tuple, so
point is a signal of number pairs. We can treat these number pairs as
coordinates, much like the coordinates produced by the Mouse.position

signal. From here you could calculate the current distance between di�erent
points:

lift2 distance point Mouse.position

The distance function takes two coordinates and returns the distance be-
tween them. The resulting signal dynamically updates as the values of point
and Mouse.position change.

In Elm, any GUI that relies on multiple inputs requires the lift2 prim-
itive. Transformation with lift is not enough to combine signals. Further-
more, lift2 can be used to de�ne a lift on any number of signals:

lift3 f s1 s2 s3 = lift2 ($) (lift2 f s1 s2) s3

The ($) function is function application, so (f $ x) is the same as (f x).
Although all lift functions can be derived from lift2, Elm uses a di�erent
primitive for stateless signal transformations: liftn. The liftn primitive
encompasses all stateless signal transformations, including lift, lift2, etc.

3.1.3 Past-dependent Transformation

So far we have no way to remember the past. The lift operations only act
on the current value. Elm also has a stateful transformer:

foldp :: (a→ b→ b)→ b→ Signal a→ Signal b

The foldp function is meant to be read as "fold from the past", just as
foldl for lists can be read �fold from the left�. As foldp receives values
from the input signal, it combines them with an accumulator. The output
signal is the most recent value of the accumulator. This is needed for any
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past-dependent user interface. For example, remembering the sequence of
keys a user has typed:

foldp (λk word -> word ++ [k]) "" Keys.lastPressed

where (Keys.lastPressed :: Signal Char) carries the most recent key
press. This expression produces a string signal that automatically updates
upon keyboard events.

3.2 The Type System: Enforcing the Safe Use of Signals

Signals are generally quite �exible, but there are certain signals that we want
to rule out altogether: signals of signals. Signals of signals would permit
programs that dynamically change the structure of the Elm runtime system.
In many circumstances this is �ne. For instance, there would be no problem
if two input signals were dynamically switched in and out. The real issue is
stateful signals created with foldp. Imagine if a stateful signal � dependent
on mouse inputs � was switched out of the Elm program. Should it still
update on mouse inputs? Should it only update when it is in the program?
When working directly with signals, neither answer is pleasant. Elm opts to
avoid this behavior by ruling out switching.

Elm's type system rules out signals of signals by dividing types into two
categories: primitive types and signal types. Primitive types are safe types
that are allowed everywhere, including in signals. Signal types are dangerous
types that are allowed everywhere except in signals.

τ ::= unit | number | τ → τ ′

σ ::= τ signal | τ → σ | σ → σ′

η ::= τ | σ

Mnemonics for types τ , σ, and η are as follows: Tau is for type. Sigma is
for signal type. And with a very strong accent, Eta is for either.

Our typing judgments for the lambda calculus primitives are extremely
permissive. Higher-order functions and recursive functions can include sig-
nals. The important restrictions are on our reactive primitives. For instance,
liftn can only lift functions that act on base types τ , not signal types σ.
This makes it impossible to create signals of signals. Even if such signals
were permitted, there is no primitive to turn a signal of signals into a useable
signal.

Notice that the types of our input signals i must be looked up in the typ-
ing environment. Because these signals are Elm's direct access to the system,
their types must be explicitly stated in the default typing environment.
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Unit

Γ ` () : unit

Number

Γ ` n : number

Var

Γ(x) = η

Γ ` x : η

Lam

Γ, x : η ` e : η′

Γ ` λx : η. e : η → η′

App

Γ ` e1 : η → η′ Γ ` e2 : η

Γ ` e1 e2 : η′

Let

Γ ` e1 : η Γ, x : η ` e2 : η′

Γ ` let x = e1 in e2 : η′

Input

Γ(i) = τ

Γ ` i : τ signal

Async

Γ ` e : τ signal

Γ ` async e : τ signal

Lift

Γ ` e : τ1 → · · · → τn → τ Γ ` ei : τi signal ∀i ∈ 1..n

Γ ` liftn e e1 ... en : τ signal

Fold

Γ ` ef : τ → τ ′ → τ ′ Γ ` eb : τ ′ Γ ` es : τ signal

Γ ` foldp ef eb es : τ ′ signal

Figure 2: Typing Judgments
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3.3 Embedding Arrowized FRP in Elm

By embedding Arrowized FRP in Elm, we show that Elm and AFRP can
achieve equal levels of expressiveness. As we saw in the previous section,
Elm's type system rules out dynamic signal switching to avoid ill-de�ned
uses of stateful signals. Embedding Arrowized FRP in Elm will give us
dynamic switching without the ambiguous behavior. We will begin this task
with a more general question about theoretical expressiveness: how does
Elm's core language relate to Classical FRP and Arrowized FRP? McBride
and Paterson's work on applicative functors clari�es this question [25].

As we discussed in the previous section, Elm does not allow signals of
signals, but otherwise signals can be combined in a fairly general way. These
restrictions can be helpfully examined in terms of applicative functors.

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

instance Applicative Signal where

pure c = constant c

f <*> x = lift2 ($) f x

So signals in Elm are applicative functors, but are they also monads?
Classical FRP uses monads to represent its signals, but does Elm? A monad
is simply an applicative functor with one extra function:

class Applicative m => Monad m where

join :: m (m a) -> m a

Monads can be �attened. This would allow signals of signals to be �attened,
precisely what we want to avoid. With join, it would be possible to dy-
namically change the structure of the signal graph, a problem for stateful
signal transformers. Elm signals do not have this capability by design, and
therefore, they are not monads.

So signals in Elm are not monads, but are they arrows? The work on
Arrowized FRP has shown that the arrow abstraction is a powerful and safe
framework for signals. According to McBride and Paterson, �By �xing the
�rst argument of an arrow type, we obtain an applicative functor� [25]. We
have already shown that Elm signals are applicative functors, so they must
also be arrows which have their �rst argument �xed.

In our case, the �rst argument of the arrow type is �the world�. Recall
that in Arrowized FRP, the arrow type is called a signal function, so an
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arrow type from a to b would be written as (SF a b). Thanks to McBride
and Paterson, we have the following isomorphism.

Signal a = SF World a

Each signal in Elm represents a signal function that transforms the world
into some value. So yes, Elm's signals are arrows too.

McBride and Paterson ultimately conclude that �We have identi�ed Ap-
plicative functors, an abstract notion of e�ectful computation lying between
Arrow and Monad in strength� [25]. Working through this with signals has
shown us that Elm falls between Arrowized FRP and Classical FRP in terms
of theoretical expressiveness. These connections suggest three directions for
future work:

Nicer syntax: McBride and Paterson's notation for applicative functors
may be a good �t for Elm. Furthermore, a modi�ed version of Pater-
son's arrow notation may also be desirable [29].

Fully Embedding Arrowized FRP: Since Elm's signals are an applica-
tive functor � or an arrow from �the world� to a value � Arrowized FRP
could be fully embedded in Elm. Elm's signals could compose easily
with AFRP's signal functions. This means that Elm could potentially
use AFRP's dynamic collections of signal functions. With this addi-
tion, Elm would have all of the expressive power of AFRP with the
bene�ts of a concurrent runtime.

Potential Framework for Testing and Code Reuse: Since a signal can
be understood as a signal function from �the world� to a value, it may
be possible to modify �the world� before it is given to an Elm signal.
For instance, a signal of mouse clicks � which normally receives events
from the mouse � could be modi�ed to receive events from a timer,
indicating clicks at prede�ned intervals. Imagine providing a scripted
world in which the mouse coordinates follow a pre-determined path,
the keyboard input is timed and scripted, etc. This would allow auto-
mated interface testing directly in Elm. The arrow isomorphism could
also allow existing components to be reused in new ways. A compo-
nent written to rely on mouse coordinates could be modi�ed to accept
coordinates from keyboard input, HTTP responses, a timed signal, etc.
If used too liberally, this could be a very dangerous addition, poten-
tially making it di�cult to change the implementation of a widely used
component.
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3.4 Syntax-Directed Initialization Semantics

Elm's source language is quite expressive. Programmers have direct access
to signals, and Arrowized FRP can be fully embedded in Elm, providing us
with all the expressivenes of AFRP. This expressiveness makes it di�cult to
directly compile the source language to a concurrent runtime system. This
section describes how to convert Elm's source language into a well-behaved
intermediate representation that can produce a concurrent system more eas-
ily. The intermediate representation is two-tiered, separating reactive values
� such as lift and foldp � from the rest of the language. Elm's intermediate
representation closely resembles the source language of Real-Time FRP and
Event-Driven FRP.

Remember Elm's base expression language:

e ::=() | n | λx. e | e1 e2 | x | let x = e1 in e2 |
i | liftn e e1 ... en | foldp e1 e2 e3 | async e

n ∈ Z x ∈ Var i ∈ Input

We will now specify initialization semantics which turn these expressions
into values. In addition to traditional values v, Elm also has signal values s.
This distinction separates base values and reactive values, just as in Real-
Time FRP.

v ::= () | n | λx. e

s ::= x | let x = s1 in s2 | i | liftn v s1 ... sn | foldp v1 v2 s | async s

These v and s values will be our intermediate representation. Every source
level expression e can be mapped onto either a traditional value v or signal
value s. The signal values s will eventually form the basis of our concur-
rent runtime system, each value performing repeated computations. For
example, the s value (lift (clamp 100 200) Mouse.x) produces a value
between 100 and 200 based on the mouse coordinates, clamping the range of
Mouse.x. This s value performs computation every time the mouse moves.
If this s value were to be copied to multiple locations in our �nal interme-
diate representation, it would be computed multiple times in our concurrent
runtime system, which is based on s values. We want to ensure that no s
value appears multiple times to avoid needlessly duplicated computations.

To avoid copying signal values, Elm's intermediate representation in-
cludes let-expressions and variables. Signal values that are used many times
are bound to a variable x, but not actually copied to the uses of x. This
allows a signal value to appear only once, but to be used in many places.
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Context

e −→ e′

E[e] −→ E[e′]

Application

(λx. e1) e2 −→ let x = e2 in e1

Reduce

let x = v in e −→ e[v/x]

Drop

x /∈ fv(e)

let x = s in e −→ e

Expand

x /∈ fv(e2)

(let x = s in e1) e2 −→ let x = s in (e1 e2)

Figure 3: Syntax-directed Initialization Semantics

The mapping to s and v values is achieved with the evaluation context E
and the initialization semantics shown in Figure 3. The evaluation context
for initialization is fairly standard. This formulation is call-by-value to avoid
copying signals, which would be possible with a call-by-name semantics.

E ::= [·] | E e | v E |
let x = E in e | let x = s in E |
liftn E e1 ... en | liftn v s1 ... E ... en |
foldp E e2 e3 | foldp v1 E e3 | foldp v1 v2 E |
async E

The evaluation context E covers a majority of cases, but there are two
kinds of reductions that remain unspeci�ed: reduction of applications and
of let-expressions. These cases require special care because they could allow
multiple copies of s values, even in a call-by-value semantics. If we used
standard β-reduction, values bound to a variable x would be copied to all
uses of x. Our initialization semantics � shown in Figure 3 � are syntax-
directed to avoid this.

Applications are converted into let-expressions with the �Application�
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rule, shown in Figure 3. Thus, every bound value will be placed in a let-
expression. In the case of traditional values v, we can just copy v to all of the
places that use it. This is the role of the �Reduce� rule. By contrast, signal
values s are captured by let-expressions. The signal value cannot escape from
the let-expression; they are instead represented by a variable. This ensures
that multiple uses of a signal do not require multiple copies of a signal.

Given an expression e, the fv(e) function returns the set of free variables
in that expression. It is used to ensure that the �Drop� and �Expand� rules
are safe. The �Drop� rule throws out any bound signal value that is not
actually used. The �Expand� rule allows function application in cases where
a function uses a signal value multiple times. Any variable naming con�icts
that occur because of the �Expand� rule can be resolved with α conversion
� renaming variables.

Again, this initialization process results in either a traditional value v or
signal value s. These two-tiered values closely resemble the surface syntax
of RT-FRP and E-FRP, separating the reactive primitives from the more
powerful primitives of the lambda calculus. The initialization process also
avoids copying signal values. We now have an intermediate representation
that is easier to map onto an e�cient concurrent runtime system.
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4 Concurrent FRP

Elm's source language allows declarative speci�cations of user interaction,
but how can a speci�cation be turned into an e�cient runtime system? This
chapter describes Concurrent FRP, an e�cient variant of FRP that avoids
the problems of space leaks, global delays, and needless recomputations.

By examining Concurrent ML and eXene in Chapter 2, we saw that GUIs
are naturally concurrent. They have many distinct components that can
safely run independently. Elm's intermediate representation can be easily
mapped onto a concurrent system. This allows Elm to reap the bene�ts of
concurrency without low-level concurrency primitives. Instead, concurrency
is implicit in the structure of an Elm program. Each reactive primitive
produces a thread, and the structure of an Elm program indicates how these
threads should communicate.

The order of events is not guaranteed in a concurrent system. Traditional
FRP used sequential updates, so only one event could be processed at a time.
This ensured that the original order of events was maintained. In Concurrent
FRP, many updates can be processed at the same time. Because there are
many paths through the concurrent system, it is possible for an event to
�jump ahead� of others. For instance, key presses could get out of order,
unexpectedly scrambling user input. As with many concurrent systems, Elm
must provide a synchronization mechanism for each thread to maintain the
original order of events. This mechanism also ensures that values are not
recomputed unless absolutely necessary, avoiding the needless recomputation
of previous FRP systems.

In Elm, synchronization is enabled by default, strictly maintaining the
global order of events. But by its very nature, synchronization incurs a
delay. It requires faster results to wait for slower results before moving
on. In certain cases, it is acceptable to ignore the global order of events.
Elm's async primitive allows programmers to explicitly annotate such cases.
By indicating that synchronization is not necessary, Elm can avoid the delay
incurred by synchronization, resulting in faster updates. The async primitive
is the most important part of Concurrent FRP. It allows the Elm runtime
system to run expensive computations entirely independently of the rest of
the program. This �nally solves the problem of global delays.

After addressing synchronization, we will discuss a direct mapping from
Elm's intermediate representation to Concurrent ML. This will provide a
more concrete speci�cation of how the concurrent runtime system works.
Finally, we will discuss the maximum theoretical bene�ts of our concurrent
system and what that means for optimization.
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4.1 An Intuition for Signal Graphs

How should Elm's intermediate representation be mapped onto a concurrent
system? Every Elm program can be thought of as a signal graph: reactive
primitives are nodes, connected by directed edges that indicate the �ow of
values. This is best illustrated by example:

Input primitives such as Mouse.x and Mouse.y create hexagonal nodes
with no incoming edges. The �rst example shows this very simple case.
Lifted functions � as seen in the second example � create nodes that have one
or more inputs, allowing us to transform signals. In the third example, lifting
sqrt allows us to take the square root of the mouse's current x coordinate.
Let-expressions make it possible to use one signal multiple times. In the
third example, we use a let-expression to double the current y coordinate.

Nodes perform computation on the values received on their incoming
edges. The result is then sent out of every outgoing edge. It is easy to
imagine each node running in parallel, but problems arise quickly. How do
we ensure that the order of events is maintained? Consider the following
program which takes in a signal of English words, pairing both the original
word and the French translation of the word in a 2-tuple:

wordPairs = lift2 (,) words (lift toFrench words)

We assume that words is a primitive input i. The signal graph for wordPairs
would look like this:

Of the two inputs to lift2, the second input path is much more expen-
sive. Say that toFrench references a English to French dictionary in memory,
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so it will always take longer than just showing the original word. Even if the
word events are fed into the graph in order, there is no guarantee this order
will be preserved as they �ow through. Without event order guarantees,
wordPairs may produce mismatched pairings.

Without a guarantee that event order is preserved, our concurrent system
would create an unpredictable and inconsistent user experience in almost all
cases. Imagine a GUI that sometimes processed keyboard input out of order!
How can this be avoided?

4.2 Signal Graphs and the Global Event Dispatcher

Our event ordering problem is very common in distributed systems [22, 17].
In our case, the problem is simpli�ed by the fact that Elm's signal graphs
are always directed acyclic graphs (DAGs). Our reactive primitives created
edges that pass information in only one direction (directed). Furthermore, It
is impossible for an edge to depend on itself by looping back into the graph
in an arbitrary way (acyclic). This means that a message will pass through
each node only once, never more. Since we are working with DAGs, feedback
loops are impossible. We just need to make sure that no event �jumps ahead�
of any other as we saw in the wordPairs example.

Elm uses a global event dispatcher to ensure that events are properly
distributed. This dispatcher manages all of the input to an Elm program.
Whenever a new event comes in, the event dispatcher noti�es all input nodes,
even if the update does not change the node. Input nodes can be thought of
as having an implied incoming edge from the global event dispatcher.

In this diagram, �The World� signi�es any external data source. All in-
teractions with the external world � mouse movements, key presses, �le I/O,
HTTP requests, etc. � pass from the world to the global event dispatcher.

Every node is reachable from an input node. By sending updates to
every input node, we know that every internal node will eventually receive
the updates as well. Our graph edges are queued � �rst-in-�rst-out � which
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guarantees that no update �jumps ahead� of another.
More formally, the concurrent system and global event dispatcher works

as follows:

• Each node is a concurrent thread, and each edge is a channel.

• Multi-input nodes must receive a value from each input edge before
computing a result.

• All input nodes receive a noti�cation when any event occurs. When
the event is relevant to the input node, it passes along its new value.
In the more common case, that the event is irrelevant, the input node
passes along a message indicating that nothing has changed.

• Each edge in the graph is queued. This is useful for nodes with multiple
inputs. If one input is updated more quickly than the others, it just
waits on the queued edge. This accommodates many di�erent �ow
rates within a signal graph.

Note that input nodes always propagate a message, even if it just says �no
change�. These �no change� messages are a form of memoization. A naive im-
plementation would always propagate the actual value, causing every node
in the graph to recompute its value. This is an easy way to ensure that
every internal node receives messages from input nodes, but it is wasteful
because an update indicates that one input value has changed, not all in-
puts. Therefore, much of resulting recomputation would be wasted work,
producing exactly the same value as previously computed. The �no change�
messages avoid these unnecessary recomputations.

Continuous formulations of FRP struggled with discrete inputs. Elm
solves this problem with �no change� messages. These messages tell nodes to
send along the latest computed value rather than computing it again. Thus,
discrete inputs only cause computations when a relevant event occurs.

The synchronization mechanisms speci�ed in this section ensure that the
order of events is maintained without causing unnecessary recomputations.
Looking back at the wordPairs example, we see that these mechanisms make
it impossible to create mismatched translations. The node that combines En-
glish and French words must wait on a message from both inputs. Messages
on the English path just queue up if they arrive too quickly.
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4.3 Asynchronous Updates

There is a tension between synchronization and fast updates. Elm's synchro-
nization scheme is necessary, but it imposes an update delay. Lift nodes are
forced to wait for an input on all incoming edges, even if one input takes
much longer to compute than the others. This may cause an unacceptable
delay.

Consider an expression that combines our wordPairs signal with the
mouse position.

lift2 (,) wordPairs Mouse.position

For simplicity, this example uses Mouse.position directly, but the following
arguments still apply when the mouse position is used in more exciting ways.
The important aspect of this example is that one input updates quickly and
frequently, whereas the other input updates less often and less quickly. This
example gives us the following graph:

We know that the order of events must be maintained within the wordPairs
section of the graph, but do we need to maintain the global order of events?
Imagine that this graph receives one words event and then �ve mouse events.
All mouse inputs would be delayed until the English word has been success-
fully translated. But why? These inputs are unrelated, so there is no reason
for the mouse updates to wait. From the user's perspective, it is perfectly
�ne if the mouse events �jump ahead� of the translation events. The resulting
system would be more responsive.
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This is the role of the async primitive. Think of it as an annotation that
says, �this subgraph does not need to respect the global order of events�.
The async primitive simply performs a local graph rewrite.

It replaces a normal graph node with an input node, allowing the com-
putation f to take place while other events �ow through the graph. This
behavior is better explained by returning to our example.

In this case, we can use async to indicate that the wordPairs subgraph
should not block mouse updates.

let pairs = async wordPairs in

lift2 (,) pairs Mouse.position

This produces a graph with two fairly distinct sections: the �primary sub-
graph� that combines translation pairs with the mouse position and the
�secondary subgraph� that produces translation pairs.

The primary subgraph � on the right � is now much smaller than the
original fully-synchronous graph. It just combines two input values, a fairly
quick operation. The values produced by the secondary subgraph are sent
to the global event dispatcher whenever they are ready. Thus, the primary
subgraph does not block mouse events while a translation is in progress.
Notice that the wordPairs subgraph still ensures that translations are always
paired correctly.
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Returning to our original event order � one event for the words input and
then �ve events for the mouse input � we see the that the translation no longer
blocks mouse updates. The �rst event does not cause any new computation
in the primary subgraph. The �ve mouse events are propagated through,
performing minor computations. When the translation is �nally complete,
the global event dispatcher will pass the translation pair to the primary
subgraph. This means the pairs update will come after all of the mouse
updates.

E�ectively, the async primitive breaks a fully synchronous graph into one
primary subgraph and an arbitrary number of secondary subgraphs running
independently. Event order is maintained within each subgraph, but not
between them. The resulting graph is more responsive, but it does not respect
global event ordering. In the example above, this is a desirable improvement.

In cases that permit asynchrony, async can signi�cantly improve update
speeds by removing a long computation from the primary subgraph. This
powerful optimization is often possible in graphical user interfaces, which
tend to be fairly modular. With the async primitive, we have �nally found
a way to allow expensive computations without slowing down the entire
program.

4.4 Translation to Concurrent ML

Having developed an understanding of Concurrent FRP, we will now explore
how to translate Elm's intermediate representation to a concurrent runtime.
We will target Concurrent ML because it is type-safe and theoretically well
understood. Nonetheless, the approach taken here is quite general, so many
other concurrent backends could be targeted with the same approach.

To help us with the translation, we de�ne a small set of useful functions
in Figure 4on page 35. These helper functions include two important de�ni-
tions: the event data type which includes a �change� or �no change� �ag to
avoid needless recomputation and a guid function to create globally unique
identi�ers.

Next we have the basics of our concurrent runtime system in Figure 5
on page 35. The basic runtime system includes two important loops: the
global event dispatcher eventDispatch which propagates events and the
display loop displayLoop which updates the user's view as new display
values are produced. Together, these loops are the input and output for
an Elm program, with eventDispatch feeding values in and displayLoop

outputing values to the screen.
The global event dispatcher receives noti�cations of new events through
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datatype 'a event = NoChange 'a | Change 'a

either f g e = case e of | NoChange v => f v

| Change v => g v

change = either (fn _ => False) (fn _ => True)

bodyOf = either id id

counter = ref 0

guid () = counter := !counter + 1; !counter

Figure 4: Helper Functions

newEvent = mailbox ()

eventNotify = mChannel ()

eventDispatch () = let id = recv newEvent in

send eventNotify id ; eventDispatch ()

initialDisplay, nextDisplay = JsK
send display initialDisplay

displayLoop () = let v = recv nextDisplay in

send display v ; displayLoop ()

spawn eventDispatch ; spawn displayLoop

Figure 5: Concurrent ML Runtime System

the newEvent mailbox. This mailbox is a queued channel, guaranteeing that
the order of event noti�cations is preserved.

An event noti�cation carries a unique identi�er indicating which input
has changed. Upon receiving an event noti�cation, the global event dis-
patcher sends the event ID out through the eventNotify multi-cast chan-
nel. This multi-cast channel � or mChannel � sends the event ID to all input
nodes.

The displayLoop depends on the translation of an Elm program in inter-
mediate form s. The translation produces both the initialDisplay which
is the �rst screen to be displayed and the nextDisplay channel upon which
display updates are sent. The display loop just funnels values from the
nextDisplay channel to the screen.

We �nally turn to the translation from s values to Concurrent ML as seen
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is Figure 6 on page 38. This translation takes in an s value and produces
a pair. The pair contains the initial value of the program and the signal
graph that updates on events. The translations correspond to the graph
representation we built up in previous sections, which are all displayed in
the following diagram.

The most important part of each translation is the loop function which
speci�es the behavior of the resulting thread.

First we have the translation for input signals i. Until now we have
just thought of an input as an identi�er in the set Input, but now that we
are providing a runtime system, we can give a better interpretation. When
translating to CML, an input i is a 3-tuple containing (1) a unique identi�er
which allows the runtime system to di�erentiate between input signals, (2)
a multi-channel event source that sends new values along from the runtime
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system, and (3) a default value which ensures that no signal is unde�ned.
An input thread receives event IDs from the eventNotify multi-channel.

If the ID matches the input thread's internal ID, it takes a value from its
event source and passes it along. Otherwise, it just maintains its current
value, passing a �no change� message.

Next we have the translation for lift nodes. A lift node has one function
and n signals. Each of the n signals must be translated, producing n default
inputs and n input channels. The default inputs are used to compute the
default value of the current node. The loop for lift waits to receive a message
from every input channel. It then checks to see if any of the inputs have
changed. If so, the new output value is computed and a change is reported.
Otherwise, the node sends a �no change� message with the most recent output
value.

Fold nodes take one input, but rather than taking the default value from
the input, fold nodes use their base value v as the default. Upon receiving a
new input value, the fold node uses the accumulator function f to combine
the new value and the existing node state. This new value is passed along
to the next node and then saved as the current node state.

Let expressions and variables work together to ensure that Elm's run-
time system does not have duplicate nodes. A let expression node serves
as a multi-cast station, forwarding messages along to many di�erent nodes.
The let expression node computes a default value and creates a multi-cast
channel. The variable node just returns the given default value and creates
a port on the multi-cast channel.

Asynchronous nodes spawn a loop just like any other node, but instead
of returning on the output channel of the loop, it returns a new input node.
The loop ignores any �no change� messages. Since everything remains the
same, there is no need to trigger a new global event. When the loop receives
a new value, it passes it along to the newly created input node and informs
the global event dispatcher that an event has occurred via the newEvent

channel. This triggers an update, propagating the asynchronously computed
value through the concurrent system.
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J 〈id, mcin, v〉 K = spawn (fn _ => loop v) ; (v, cout)

where cin, cout = port mcin, mailbox ()

eid = port eventNotify

loop prev =

let msg = if recv eid == id then Change (recv cin)

else NoChange prev

in send cout msg ; loop (bodyOf msg)

Jliftn f s1 ... snK = spawn (fn _ => loop v) ; (v, cout)

where (v1, c1), ... , (vn, cn) = Js1K, ... , JsnK
v, cout = f v1 ... vn, mailbox ()

loop prev =

let (m1, ... , mn) = (recv c1, ... , recv cn)

msg = if exists change [m1, ... , mn] then

Change (f (bodyOf x1) ... (bodyOf xn))

else NoChange prev

in send cout msg ; loop (bodyOf msg)

Jfoldp f v sinK = spawn (fn _ => loop v) ; (v, cout)

where (_, cin), cout = JsinK, mailbox ()

loop acc = let msg = case recv cin of

| NoChange _ -> NoChange acc

| Change v -> Change (f v acc)

in send cout msg ; loop (bodyOf msg)

Jlet x = sin in soutK = spawn loop ; (let xv,xch = v,mcout in JsoutK)
where (v, cin), mcout = JsinK, mChannel ()

loop () = send mcout (recv cin) ; loop ()

JxK = (xv, port xch)

Jasync sinK = spawn loop ; J 〈id, cout, v〉 K
where (v, cin), cout, id = JsinK, mChannel (), guid ()

loop () = case recv cin of

| NoChange _ -> loop ()

| Change v -> send cout v ;

send newEvent id ; loop ()

Figure 6: Translation from Signal Values to CML
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4.5 Bene�ts of Concurrency

Traditional FRP performed each update one-by-one. This is the worst case
scenario in Concurrent FRP. Elm's concurrent runtime provides two major
bene�ts � parallelism and pipelining � which can signi�cantly improve update
speeds.

Computations are said to be parallel when they are performed simulta-
neously in hardware. Given n computations that each take time ti, running
them sequentially would take

∑
ti whereas running them in parallel would

take max ti. Because an Elm program consists of many concurrent threads,
the work required for one update can be parallelized. Computations can
overlap each other in time, reducing the total time needed for a single up-
date.

Parallelism improves latency : the time needed for a single update. La-
tency can be further improved with the async primitive. This primitive can
remove long computations from an update entirely. When used on expen-
sive computations, async also reduces the synchronization delays. Together,
parallelism and async permit signi�cant improvements to latency.

Traditional FRP computes each update one at a time. One update must
end before the next update can begin. Pipelining is when multiple updates
are performed simultaneously. Pipelining improves throughput : the rate at
which multiple updates can be performed. Given a computation that takes
time t, running it �ve times in sequence would take time 5t. With pipelining,
each of the �ve runs can overlap in time, making 5t the worst case scenario.
Note that a single update still takes the same amount of time, but since they
can occur simultaneously multiple updates can be processed in less time.

Pipelining is most e�ective when a computation can be broken up into
many equally sized chunks. This maximizes the number of computations
that can be running at the same time. If one chunk takes longer than the
others it becomes a bottleneck. These bottlenecks can be removed with
async primitive, further improving throughput.

Optimizations in Elm � such as graph rewrites or algebraic rewrites of the
intermediate language � must consider parallelism and pipelining. Arrowized
FRP was able to achieve a speed-up of two orders of magnitude by collapsing
all of their signal functions � the equivalent of nodes � into a single monolithic
node [23]. As we have seen, this does not allow any parallelism or pipelining,
so this approach is not appropriate for Elm. Elm must strike a balance
between reducing the number of nodes and taking advantage of parallelism
and pipelining. Finding this balance is a topic for future work.

39



5 Functional GUIs with Elm

Elm is a declarative language for graphical user interfaces. Elm uses a declar-
ative approach to graphical layout, allowing the programmer to say what they
want to display, without getting bogged down in exactly how this should be
done. Elm has two major categories of graphical primitives: elements and
forms. These categories attempt to balance simplicity and �exibility, making
it as easy as possible for a programmer to turn their idea for a display into
an actual display.

Elm's basic visual building block is the Element, a rectangle with a known
width and height. Elements can contain text, images, or video. They can be
easily created and composed, making it simple to quickly lay out a multime-
dia display. Elm's elements are also designed to promote a clean separation
between data and data presentation. Frameworks such as HTML con�ate
data and data presentation, forcing you to directly annotate data with how
it should be displayed. By combining these two distinct aspects of a multi-
media display, HTML becomes frail; it is di�cult to add more data and to
change how the data is displayed because each is dependent on the other.

A general framework for multimedia displays should not be limited to
rectangles. Elm's second visual building block is the Form, which allows
irregular shapes and text. Forms permit lines and irregular polygons to
be displayed in a non-structured way. Forms can be moved, rotated, and
scaled. They can overlap each other. Forms allow much greater freedom
than Elm's rectangular elements, providing the ability to create richer and
more complicated layouts when necessary.

Elements and forms are designed to work naturally with the functional
reactive paradigm, cleanly interactive with Elm's reactive primitives. This
chapter introduces all of the basics of GUI programming in Elm, using an
example-driven approach. New functions will be accompanied by real exam-
ples of their use. You can follow along with the interactive code editor at
elm-lang.org. There you will �nd a fully functional code editor and compiler,
so you can get started with only a browser.

5.1 The Elements of Data Display

Elm's basic unit of presentation is the Element. These design elements also
inspired the name of this language. For ease of composition, all Elements
are rectangles. Primitive elements include text, images, and video.

text, image, video :: String -> Element
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main = text "Hello, World!"

Figure 7: Hello, World!

main = flow right [ video "bear.ogg", image "elm.jpg" ]

Figure 8: Element Layout

With the text function, we can already write our �rst real program in Elm,
shown in Figure 7. The value of main is used as the screen output. In this
case, we output the text �Hello, World!�. Note that each of these primitives
is rectangular, making them easy to combine. Elm has one major way to
combine primitive elements: the flow function.

flow :: Direction -> [Element] -> Element

up, down :: Direction

left, right :: Direction

inward, outward :: Direction

The flow function allows the creation of complicated layouts, as seen in
Figure 8 which shows a video and an image. The flow function can de�ne a
number of useful composition functions.

above e1 e2 = flow down [ e1, e2 ]

below e1 e2 = flow up [ e1, e2 ]

beside e1 e2 = flow right [ e1, e2 ]

layer elems = flow inward elems

Although not strictly necessary, these derived functions are sometimes more
natural than flow. For instance, the layout code from Figure 8 � showing a
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people = [ ( "Alonzo Church" , "church.jpg" )

, ( "Kurt Godel" , "godel.jpg" )

, ( "Alan Turing" , "turing.jpg" )

]

display (name,pic) = image pic �above� text name

main = flow right (map display people)

Figure 9: Combining Elements

video and image, side-by-side � can also be de�ned in terms of beside.

main = video "bear.ogg" �beside� image "elm.jpg"

A normal function quoted with grave accents can be used in the in�x position,
allowing a more natural reading of some functions.

In addition to creating and composing Elements, we need to be able to
resize elements.

width, height :: Int -> Element -> Element

size :: Int -> Int -> Element -> Element

This small set of primitives accounts for most common layouts. Let's look
at these primitives in a more complicated example. Given a list of people,
this example � shown in Figure 9 � displays their name and photo. In
this example people is a variable bound to a list of pairs. The display

variable is a function from pairs to elements, displaying a person's image
above their name. The map function applies display to all of the pairs in
people, resulting in a list of elements which can be displayed with flow.

The example in Figure 9 illustrates two of our goals. (1) It demon-
strates the natural creation and composition of standard GUI elements. The
display function is fairly straightforward, placing an image above a name.
(2) More importantly, this example cleanly separates data from display. We
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could add or remove tuples to people without touching display. Alterna-
tively, we could completely change the display code without changing any
data.

Elm's separation of data and display also make it easy to handle dynamic
data. If the list of people was instead provided by a server call, our display
code would not need to change drastically. We would just need to lift the
code to act on a signal of people:

main = lift (flow right . map display) peopleSignal

This simple example would be frighteningly complicated with pure HTML
and CSS. Note that the period signi�es function composition, so (f . g) is
the same as (λx → f (g x)).

5.2 Irregular Forms and Complex Composition

Rectangles are boring. What about triangles and pentagons? These shapes
do not compose as naturally as rectangles, so they do not make good layout
primitives. Nonetheless, they are important and useful.

To supplement the purely rectangular world of Elements, Elm has a more
�exible set of layout primitives called forms. A form is an arbitrary 2D shape
enhanced by texture and color. This includes lines, shapes, text, and images.
There are currently two ways to create a form: with lines and with shapes.
Forms can also be moved, rotated, and scaled.

A collage gives you the ability to combine a variety of 2D forms in an
unstructured way. Every collage has a width, height, and list of forms.

collage :: Int -> Int -> [Form] -> Element

This de�nes both the available space and the forms that �ll it. Further-
more, it ensures that an Element is still a well-behaved rectangle, even if its
constituents are not.

5.2.1 Lines

Lines are the simplest sub-form, de�ned as a sequence of points. After
creating a line, it can be turned into a form by adding color and visual style.
As suggested by the function names, it is possible to create solid, dotted,
and dashed lines.

line :: [(Int,Int)] -> Line

solid, dotted, dashed :: Color -> Line -> Form
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zigzag = line [ (10,10), (20,20), (30,10), (40,20) ]

main = collage 50 30 [ solid red zigzag ]

Figure 10: Lines

These functions were named to allow very natural collage speci�cations.
Consider the extremely small collage shown in Figure 10. The zigzag line is
displayed in a declarative style that reads very naturally. The line is hard-
coded in this example, but it need not be. Lines can be created with the full
power of Elm, making it easier to create complicated lines and shapes.

5.2.2 Shapes

Shapes are a high-level way to think about forms in a collage. Rather than
thinking on a pixel-by-pixel level, shapes give you an abstract entity that can
be moved and manipulated. The existing shape primitives are as follows:

polygon :: [(Int,Int)] -> Shape

rect, oval, ngon :: Int -> Int -> (Int, Int) -> Shape

filled, outlined :: Color -> Shape -> Form

customOutline :: [Int] -> Color -> Shape -> Form

With polygon, shapes can be de�ned as a sequence of points. This di�ers
from the line function in that a polygon is always closed, connecting the
�rst and last point in the given sequence. This function allows the creation
of any two-dimensional polygon, regular or irregular, concave or convex.

Although shape is extremely �exible, it can become tedious to de�ne all
shapes that way. Therefore, a number of common cases have special purpose
functions. rect and oval create rectangles and ovals when given a width,
height, and midpoint. The ngon function produces a regular polygon when
given a number of edges, a radius, and a midpoint. Here radius represents
the distance from midpoint to vertex.

Just as with a Line, a Shape becomes a form when given a color and
visual style. The possible visual styles are exactly as their names suggest:
filled for �lled in shapes, outlined for a solid outline, and customOutline

for arbitrary outlining patterns.
With this relatively small set of primitives, it is easy to create complex

yet readable compositions. In the example in Figure 11, we �rst create a
square, circle, and pentagon and then compose them together in a collage.
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square = rect 130 130 (70,70)

circle = oval 110 110 (70,70)

pentagon = ngon 5 45 (70,70)

main = collage 140 140

[ filled green pentagon

, outlined black square

, customOutline [8,4] blue circle

]

Figure 11: Creating and Combining Shapes

Just as with the Line example, creating complex irregular scenes is quite
straightforward and natural.

5.2.3 Move, Rotate, and Scale

A set of standard transformations can be applied to any Form:

move :: Int -> Int -> Form -> Form

rotate, scale :: Int -> Form -> Form

With these transformations, forms can be arbitrarily moved, rotated,
and scaled. This makes it possible to create abstract transformations and
animations that act on any kind of form.

More advanced Form manipulation is possible, but not yet implemented.
Elm's shape primitives open the door for complex shape creation with func-
tions like union and intersection which could combine existing shapes or
check for collisions. This would be quite useful, but calculating the union and
intersection of arbitrary shapes is a notoriously di�cult and costly problem
in general. Although possible, it has not made it into Elm yet.
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5.3 Reactive GUIs

So far we have only seen static values. These programs are extremely e�cient
but make for a rather uninteresting user interface. We'll now introduce some
basic, event-driven signals:

Mouse Signals: For mouse coordinates we have Mouse.x and Mouse.y,
both integer signals. We also have Mouse.position, a tuple of both
mouse coordinates. To monitor the left button we have two boolean
signals: Mouse.isDown which is true when the left button is pressed
down and Mouse.isClicked which is true very brie�y following each
click.

Keyboard Signals: Keyboard.keysDown carries a list of currently pressed
keys and Keyboard.keyPress carries a key option that brie�y holds
the value of each pressed key.

Window Signals: Window.width and Window.height provide the dimen-
sions of window. Window.dimensions combines these two values into
a single tuple.

Time Signals: Time.before and Time.after take a time and return a
boolean signal indicating whether it is before or after that time. Time.every
takes a time t. The resulting signal starts at zero and, every t seconds,
it is updated to the time since the program began. This function per-
mits time-indexed animations and allows update rates to be tuned by
the programmer.

Input Signals: This includes standard input elements like text boxes, but-
tons, and sliders. All input signals are paired with an input ele-
ment that can be displayed on the screen. Elm currently supports
Input.textField and Input.password. Both take a string and pro-
duce a paired element and signal of strings. The string appears as
greyed out text when the box is empty.

These signals can be quite useful in specifying GUIs. We already saw some
simple reactive examples in Chapter 3, so we will now look at a more complex
scenario. The example in Figure 12 displays a single image of a set. The
user can cycle through all of the available images by pressing `f' and `b'

which stand for forward and back. In the given diagram, the arrows indicate
possible transitions between portraits, not actual graphical elements. The
code naturally divides into a reactive section and a display section. If we
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update key index =

case key of { Just `f' -> index + 1

; Just `b' -> index - 1

; _ -> index }

index = foldp update 0 Keyboard.keyPress

pics = [ "church.jpg", "godel.jpg", "turing.jpg" ]

display i = image $ ith (i �mod� length pics) pics

main = lift display index

Figure 12: A Simple Slide-Show: Reacting to User Input

ever want to change how the user switches between images, we just need to
change index. It could just as easily be replaced with a signal that counts
mouse clicks or increments after a given time interval.

5.4 The Bene�ts of Functional GUIs

As our examples have illustrated, Elm can represent fairly complex inter-
actions with a small amount of code. The signal abstraction encourages a
separation between reactive code and display code. The display code itself
lends itself to a clean separation of data and data presentation. GUI pro-
grammers strive for these separations, but imperative GUI frameworks test
their resolve. In Elm, divisions between data code, display code, and user in-
teraction code arise fairly naturally, helping programmers write robust GUI
code.
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6 Implementing Elm

Elm targets the most widespread GUI platform � the web. Targeting HTML,
CSS, and JavaScript has many practical bene�ts:

• Elm can already run in any browser that supports modern web stan-
dards. This enables wide device support without an unwieldy backend.

• Browser-incompatibilities are no longer a problem for developers, only
for compiler writers.

• Elm circumvents JavaScript's notoriously small standard library.

• The web's low-level API's can be encapsulated in more pleasant ab-
stractions. For example, collage abstracts away the low-level impera-
tive canvas interface. Elements abstract away many of the unpleasant
aspects of composition and styling that come with HTML and CSS,
such as the surprisingly di�cult task of centering elements.

Elm's current implementation achieves all of these bene�ts. But targeting
the web comes with a number of important downsides that have not yet been
adequately addressed in this implementation. JavaScript has the following
limitations:

• Tail-call optimization is generally unsupported today. This may change
in the next revision of JavaScript (EcmaScript version 6, optimistically
nicknamed Harmony).

• Concurrency support is limited. JavaScript supports �workers�, which
are independent threads of execution that can communicate only through
message passing. This sounds extremely promising, but there are se-
vere limitations on the kinds of values that can be passed. Currently,
functions cannot be passed between workers; only primitive values such
as numbers, strings, arrays, and records are allowed.

Furthermore, workers are heavy-weight threads. They create OS-level
threads with a large memory footprint, very di�erent from threads in
Concurrent ML. Therefore, it is not feasible to map nodes onto workers.
Thread pooling would bring the cost of this strategy down, making it
a practical option.

Neither of these limitations are fatal to Elm. In fact, the tail-call opti-
mization problem is widely acknowledged by the JavaScript community, and
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many source level solutions have been proposed. A compile-time optimiza-
tion should be able to avoid this problem.

JavaScript's limited concurrency support is more troubling. Elm must
work around the fact that JavaScript's �workers� use heavy-weight threads
that cannot pass functions. If Elm avoids workers entirely, thread pooling
would provide the bene�ts of async, but not parallelism. Elm could be more
�exible though, conditionally allowing nodes to appear in a worker. If a node
does not take functions as input or produce functions as output, it can be
placed in a worker.

Alternatively, the concurrency problem can be �solved� with an extremely
unpleasant hack. Elm could be compiled to a sublanguage that avoids vari-
able capture [2]. From there, JavaScript's toString and eval functions
could be used to transmit functions as strings. In addition to being quite
infrastructure heavy, this would also provide an opportunity to compromise
security. This option does not appear to be worthwhile.

Those are the future di�culties, but almost all of the code presented in
this thesis already runs in the current implementation of Elm. The only
exception is the keyboard signals. Fortunately, this feature does not pose
any fundamental issues, so the addition of keyboard signals will be time-
consuming but straightforward.

The Elm compiler itself is written entirely in Haskell. Haskell provides
many useful libraries that make this a good choice. Many parsing libraries
exist, making it relatively pleasant to create a lexer and parser. The current
version of the compiler does some mild optimizations � such as constant
propagation � before generating JavaScript. The runtime system for the
generated JavaScript is a combination of HTML, CSS, and JavaScript that
handles events and screen updates.

Elm's website is written primarily in Elm and served using Haskell. Ex-
cluding the code editor, the entire website is written in Elm. Haskell was
chosen as the server framework because it was already the language used
to write the compiler. This allows the server and compiler to interact very
cleanly. Although this choice was initially made for convenience, it has be-
come an important part of writing code in Elm. Rather than compile an
Elm project and serve that code with some separate framework, the combi-
nation compiler/server can compile and serve Elm �les automatically. When
an Elm �le is changed, the compiler/server automatically starts serving the
new version, making the changes immediately viewable in a web browser.
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7 Conclusion

Elm is a declarative approach to graphical user interfaces. Concurrent FRP
allows programmers to specify user interactions on a very high level. Concur-
rent FRP also addresses some of FRP's long-standing e�ciency problems:
needless recomputation and global delays. An Elm programmer does not
need to worry about including long computations or discrete inputs in their
program. Furthermore, Elm's declarative graphics libraries make it simple to
create complex multimedia displays. Together, Concurrent FRP and declar-
ative graphics libraries simplify the creation of rich graphical user interfaces.

Elm also promotes an approach to functional GUIs that cleanly separates
data from data presentation, and display code from reactive code. These
natural separations make it easier to write modular and maintainable code.

Concurrent FRP creates many areas for future work:

• Exploring the connections between Elm and Arrowized FRP. A discrete
version of AFRP would almost certainly map onto a concurrent system
as described in this work. Since Elm compiles for the web, AFRP can
also be adapted to run in browsers. Arrows could also be used to test
and modify Elm signals.

• Creating events. It may be possible for events to trigger new events in
a controlled way, allowing more robust signal creation. This may allow
event-driven FRP to replicate the functionality of continuous signals.

• Filtering events. Elm notably leaves out a primitive that could �lter
out event updates. Because foldp updates on every incoming event,
it might be nice to have a way to drop events entirely. This quickly
requires tough design choices because, if introduced naively, such a
primitive could lead to unde�ned signals. As presented, Elm signals
are always de�ned, ruling out this problem. Is there a nice way to in-
clude this functionality without introducing unde�ned signals? Would
filter for signals need a default value?

• An exploration of algebraic reductions of Elm's intermediate language.
When does reduction help? Is it useful to create more nodes than
speci�ed by the programmer? How is concurrency best utilized?

• Elm's synchronization mechanisms currently require many �no change�
messages. A more e�cient solution might determine each node's up-
date dependencies and pass the �no change� message directly to an
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internal node, skipping over the many intermediate nodes that would
have just forwarded the message along.

• An exploration of the connection between FRP and Umut Acar's self-
adjusting code [1, 4]. These two paradigms appear to have much in
common. Nodes that are updated as outlined by Acar are likely to be
much more e�cient.

I hope that my contributions and questions will help push FRP towards
an e�cient and expressive implementation. As a practical language, Elm
creates the opportunity for many projects that focus on common day-to-
day tasks such as a typed data-protocol between Elm and Haskell. From
a research perspective, Elm provides a potential platform for future FRP
work that is unencumbered by Haskell's design choices. I would welcome
contributions or collaborations on either front.
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