
Harvest, Yield, and Scalable Tolerant Systems

Armando Fox
Stanford University

fox@cs.stanford.edu

Eric A. Brewer
University of California at Berkeley
brewer@cs.berkeley.edu

Abstract

The cost of reconciling consistency and state manage-
ment with high availability is highly magnified by the un-
precedented scale and robustness requirements of today’s
Internet applications. We propose two strategies for im-
proving overall availability using simple mechanisms that
scale over large applications whose output behavior toler-
ates graceful degradation. We characterize this degradation
in terms of harvest and yield, and map it directly onto engi-
neering mechanisms that enhance availability by improving
fault isolation, and in some cases also simplify program-
ming. By collecting examples of related techniques in the
literature and illustrating the surprising range of applica-
tions that can benefit from these approaches, we hope to
motivate a broader research program in this area.

1. Motivation, Hypothesis, Relevance

Increasingly, infrastructure services comprise not only
routing, but also application-level resources such as search
engines [15], adaptation proxies [8], and Web caches [20].
These applications must confront the same

�������
opera-

tional expectations and exponentially-growing user loads as
the routing infrastructure, and consequently are absorbing
comparable amounts of hardware and software. The current
trend of harnessing commodity-PC clusters for scalability
and availability [9] is reflected in the largest web server in-
stallations. These sites use tens to hundreds of PC’s to de-
liver 100M or more read-mostly page views per day, pri-
marily using simple replication or relatively small data sets
to increase throughput.

The scale of these applications is bringing the well-
known tradeoff between consistency and availability [4]
into very sharp relief. In this paper we propose two gen-
eral directions for future work in building large-scale ro-
bust systems. Our approaches tolerate partial failures by
emphasizing simple composition mechanisms that promote
fault containment, and by translating possible partial failure
modes into engineering mechanisms that provide smoothly-

degrading functionality rather than lack of availability of the
service as a whole. The approaches were developed in the
context of cluster computing, where it is well accepted [22]
that one of the major challenges is the nontrivial software
engineering required to automate partial-failure handling in
order to keep system management tractable.

2. Related Work and the CAP Principle

In this discussion, strong consistency means single-
copy ACID [13] consistency; by assumption a strongly-
consistent system provides the ability to perform updates,
otherwise discussing consistency is irrelevant. High avail-
ability is assumed to be provided through redundancy, e.g.
data replication; data is considered highly available if a
given consumer of the data can always reach some replica.
Partition-resilience means that the system as whole can sur-
vive a partition between data replicas.
Strong CAP Principle. Strong Consistency, High
Availability, Partition-resilience: Pick at most 2.

The CAP formulation makes explicit the trade-offs in
designing distributed infrastructure applications. It is easy
to identify examples of each pairing of CAP, outlining the
proof by exhaustive example of the Strong CAP Principle:

� CA without P: Databases that provide distributed
transactional semantics can only do so in the absence
of a network partition separating server peers.

� CP without A: In the event of a partition, further trans-
actions to an ACID database may be blocked until the
partition heals, to avoid the risk of introducing merge
conflicts (and thus inconsistency).

� AP without C: HTTP Web caching provides client-
server partition resilience by replicating documents,
but a client-server partition prevents verification of the
freshness of an expired replica. In general, any dis-
tributed database problem can be solved with either
expiration-based caching to get AP, or replicas and ma-
jority voting to get PC (the minority is unavailable).



In practice, many applications are best described in
terms of reduced consistency or availability. For ex-
ample, weakly-consistent distributed databases such as
Bayou [5] provide specific models with well-defined consis-
tency/availability tradeoffs; disconnected filesystems such
as Coda [16] explicitly argued for availability over strong
consistency; and expiration-based consistency mechanisms
such as leases [12] provide fault-tolerant consistency man-
agement. These examples suggest that there is a Weak
CAP Principle which we have yet to characterize precisely:
The stronger the guarantees made about any two of strong
consistency, high availability, or resilience to partitions, the
weaker the guarantees that can be made about the third.

3. Harvest, Yield, and the CAP Principle

Both strategies we propose for improving availability
with simple mechanisms rely on the ability to broaden our
notion of “correct behavior” for the target application, and
then exploit the tradeoffs in the CAP principle to improve
availability at large scale.

We assume that clients make queries to servers, in which
case there are at least two metrics for correct behavior:
yield, which is the probability of completing a request, and
harvest, which measures the fraction of the data reflected
in the response, i.e. the completeness of the answer to the
query. Yield is the common metric and is typically mea-
sured in “nines”: “four-nines availability” means a comple-
tion probability of

��� �������
. In practice, good HA systems

aim for four or five nines. In the presence of faults there
is typically a tradeoff between providing no answer (reduc-
ing yield) and providing an imperfect answer (maintaining
yield, but reducing harvest). Some applications do not toler-
ate harvest degradation because any deviation from the sin-
gle well-defined correct behavior renders the result useless.
For example, a sensor application that must provide a binary
sensor reading (presence/absence) does not tolerate degra-
dation of the output.1 On the other hand, some applica-
tions tolerate graceful degradation of harvest: online aggre-
gation [14] allows a user to explicitly trade running time for
precision and confidence in performing arithmetic aggrega-
tion queries over a large dataset, thereby smoothly trading
harvest for response time, which is particularly useful for
approximate answers and for avoiding work that looks un-
likely to be worthwhile based on preliminary results.

At first glance, it would appear that this kind of degra-
dation applies only to queries and not to updates. However,
the model can be applied in the case of “single-location”
updates: those changes that are localized to a single node
(or technically a single partition). In this case, updates that

1This is consistent with the use of the term yield in semiconductor man-
ufacturing: typically, each die on a wafer is intolerant to harvest degrada-
tion, and yield is defined as the fraction of working dice on a wafer.

affect reachable nodes occur correctly but have limited vis-
ibility (a form of reduced harvest), while those that require
unreachable nodes fail (reducing yield). These localized
changes are consistent exactly because the new values are
not available everywhere. This model of updates fails for
global changes, but it is still quite useful for many prac-
tical applications, including personalization databases and
collaborative filtering.

4. Strategy 1: Trading Harvest for Yield—
Probabilistic Availability

Nearly all systems are probabilistic whether they real-
ize it or not. In particular, any system that is 100% avail-
able under single faults is probabilistically available overall
(since there is a non-zero probability of multiple failures),
and Internet-based servers are dependent on the best-effort
Internet for true availability. Therefore availability maps
naturally to probabilistic approaches, and it is worth ad-
dressing probabilistic systems directly, so that we can un-
derstand and limit the impact of faults. This requires some
basic decisions about what needs to be available and the ex-
pected nature of faults.

For example, node faults in the Inktomi search engine
remove a proportional fraction of the search database. Thus
in a 100-node cluster a single-node fault reduces the har-
vest by 1% during the duration of the fault (the overall har-
vest is usually measured over a longer interval). Implicit in
this approach is graceful degradation under multiple node
faults, specifically, linear degradation in harvest. By ran-
domly placing data on nodes, we can ensure that the 1% lost
is a random 1%, which makes the average-case and worst-
case fault behavior the same. In addition, by replicating a
high-priority subset of data, we reduce the probability of
losing that data. This gives us more precise control of har-
vest, both increasing it and reducing the practical impact of
missing data. Of course, it is possible to replicate all data,
but doing so may have relatively little impact on harvest
and yield despite significant cost, and in any case can never
ensure 100% harvest or yield because of the best-effort In-
ternet protocols the service relies on.

As a similar example, transformation proxies for thin
clients [8] also trade harvest for yield, by degrading results
on demand to match the capabilities of clients that might
otherwise be unable to get results at all. Even when the
100%-harvest answer is useful to the client, it may still be
preferable to trade response time for harvest when client-
to-server bandwidth is limited, for example, by intelligent
degradation to low-bandwidth formats [7].



5. Strategy 2: Application Decomposition and
Orthogonal Mechanisms

Some large applications can be decomposed into subsys-
tems that are independently intolerant to harvest degrada-
tion (i.e. they fail by reducing yield), but whose independent
failure allows the overall application to continue function-
ing with reduced utility. The application as a whole is then
tolerant of harvest degradation. A good decomposition has
at least one actual benefit and one potential benefit.

The actual benefit is the ability to provision each subsys-
tem’s state management separately, providing strong consis-
tency or persistent state only for the subsystems that need it,
not for the entire application. The savings can be significant
if only a few small subsystems require the extra complexity.
For example, a typical e-commerce site has a read-only sub-
system (user-profile-driven content generation from a static
corpus), a transactional subsystem (billing), a subsystem
that manages state that must be persistent over the course
of a session but not thereafter (shopping cart), and a sub-
system that manages truly persistent but read-mostly/write-
rarely state (user personalization profile). Any of these sub-
systems, except possibly billing, can fail without render-
ing the whole service useless. If the user profile store fails,
users may still browse merchandise but without the benefit
of personalized presentation; if the shopping cart mecha-
nism fails, one-at-a-time purchases are still possible; and so
on.

Traditionally, the boundary between subsystems with
differing state management requirements and data seman-
tics has been characterized via narrow interface layers; we
propose that in some cases it is possible to do even better, if
we can identify orthogonal mechanisms. Unlike a layered
mechanism, which sits above or below the next layer, an or-
thogonal mechanism is independent of other mechanisms,
and has essentially no runtime interface to the other mech-
anisms (except possibly a configuration interface). Since
Brooks [1] reveals that the complexity of a software project
grows as the square of the number of engineers and Leve-
son [17] cites evidence that most failures in complex sys-
tems result from unexpected inter-component interaction
rather than intra-component bugs, we conclude that less
machinery is (quadratically) better. The ability to exploit
orthogonal mechanisms therefore constitutes a second (po-
tential) advantage of decomposition.

5.1. Programming With Orthogonal Mechanisms

Somewhat to our surprise, we have found that orthogo-
nal mechanisms are not as limiting in practice as their de-
scription suggests. For example, the cluster-based Scalable
Network Server (SNS) [9] is a deployed example of the or-
thogonal mechanisms approach. SNS is a software layer

that provides high availability and incremental scaling on a
cluster of PC’s, but provides no persistent state management
facilities or data consistency guarantees. In fact, a program-
ming requirement for SNS-hosted applications, which are
structured as composable subsystems as described above, is
that each application module be restartable at essentially ar-
bitrary times. Although this constraint is nontrivial, it al-
lows SNS to use simple orthogonal mechanisms such as
timeouts, retries, and sandboxing to automatically handle
a variety of transient faults and load imbalances in the clus-
ter and keep application modules available while doing a
reasonable job of automatic load balancing.

Despite the restartability constraint and lack of state
maintenance in SNS, we used it to deploy a group-state
application: MediaPad [19], an adaptation proxy for the
desktop mediaboard application that allows a PalmPilot to
participate in a multi-user shared whiteboard session. Me-
diaBoard and MediaPad use SRM (Scalable Reliable Mul-
ticast) [6] as the underlying communication protocol. In
SRM applications, there are no hard copies of group or ses-
sion state, but a soft copy is maintained by each peer in the
session, and a multicast-based repair mechanism provides
the basis for collaborative state maintenance. Crash recov-
ery is based on refreshing the soft state via the repair mech-
anism. This behavior is compatible with the SNS constraint
of restartable workers, and state maintenance is orthogo-
nal to SNS, since no interfaces or behaviors were added or
modified in SNS to support SRM applications. Similar tech-
niques have been used to prototype a real-time streaming
media server using soft-state protocol modules [23] running
on SNS.

5.2. Related Uses of Orthogonal Mechanisms

Composition of orthogonal subsystems shifts the burden
of checking for possibly harmful interactions from runtime
to compile time, and deployment of orthogonal guard mech-
anisms improves robustness for the runtime interactions that
do occur, by providing improved fault containment. The
practical implication of these effects is that application writ-
ers need not concern themselves directly with the provision
of incremental scaling (replication and load management)
and high availability: the simple mechanisms in SNS per-
form these functions for all applications.

Neither use of orthogonality is new. Various forms of
sandboxing, including stack-overrun guarding [3], system-
call monitoring [11], and software fault isolation [24], con-
stitute good examples of orthogonal safety. Orthogonal pri-
vacy and data integrity is exemplified by the Secure Socket
Layer (SSL) protocol [10]: an initial out-of-band handshake
establishes a secure channel, which can then be used as
the substrate of any stream connection. Orthogonal ap-
proaches are particularly useful in adding operational fea-



tures such as security or robustness to legacy applications
that were designed without these features in mind, without
requiring special changes to the core application code. The
safety-critical systems community has also been using or-
thogonal mechanisms for some time: the mechanical inter-
locks removed from the Therac-25 radiation therapy ma-
chine unmasked a software race condition that ultimately
led to patient fatalities [18]. This and similar examples con-
stitute abundant (if anecdotal) support for the design princi-
ple of simple failsafe mechanisms with small state spaces;
our contribution is the identification of this collection of
techniques and the potential synergy of pairing them with
compile-time orthogonal composition as strategies for im-
proving robustness.

6. Discussion and Research Agenda

We presented two implemented examples of mapping
harvest degradation onto specific mechanisms that provide
engineering tractability, availability through redundancy, or
some other desired operational feature. In the case of the
Inktomi search engine, per-node timeout constraints keep
the overall system yield constant at the expense of prob-
abilistic harvest degradation. In general, it maps faults
to degradation in harvest rather than yield, thus providing
probabilistically good answers essentially all the time (al-
though the yield cannot be 100%). In the case of the SNS
cluster-based application server, the constraint that applica-
tion modules must be restartable allows the use of simple
scaling and reliability mechanisms, including orthogonal
mechanisms such as timeouts and retries, and the restarta-
bility constraint is addressed by composing the applica-
tions with orthogonal state maintenance mechanisms such
as SRM. Specific mechanisms we have been able to exploit
to simplify engineering and improve robustness or scalabil-
ity include:

� Simple mechanisms with small state spaces whose be-
haviors are easy to reason about: timeout-based par-
tial failure handling, guard timers, orthogonal secu-
rity, etc., inspired by orthogonal mechanisms in safety-
critical systems.

� The orthogonalization of these mechanisms with re-
spect to application logic, separating the application
functionality from the provision of high availability.
The composition of SNS and SRM provide a good il-
lustration of this approach.

� The replacement of hard state with refreshable soft
state, which often has the beneficial side effect of
making the recovery code the same as the mainline
code. The load balancing manager in SNS works this

way [2], using refreshable soft state mechanisms in-
spired by IP multicast routing and SRM state repair.

� Overall tractability of large-scale engineering involv-
ing hardware replication and redundancy. Only a few
very expensive specialized systems, such as Teradata’s
768-node data mining cluster [21], really compare in
size and aggregate capacity to cluster-based Internet
services.

It remains to formally characterize applications that tol-
erate graceful harvest degradation, including as a special
case those applications composed of degradation-intolerant
and possibly orthogonal subsystems. We expect that a for-
mal characterization will induce a programming model that
provides first-class abstractions for manipulating degraded
results. A formally-characterizable framework for deploy-
ing such applications would then amount to a constructive
proof of the Weak CAP Principle.

Traditionally, an application and system designed with
incremental scalability and high availability in mind have
differed from their counterparts designed without respect
to these constraints. We have found that despite their sim-
plicity, the engineering techniques we used in the design
and construction of the above example applications have
afforded surprising flexibility in the range of applications
that can be built. Simple techniques were chosen in order to
simplify the formidable programming task, and techniques
with good fault isolation were favored in order to preserve
the fault isolation advantages already inherent in clusters. In
particular, the SNS server showed that it is possible to sep-
arate scalability and availability concerns from the design
of mainline applications if the application structure can be
reconciled with the design constraints imposed by the use
of simple and orthogonal mechanisms.

We would like to motivate a broader research effort
that extends these observations, resulting in a set of design
guidelines for the construction of large-scale robust applica-
tions spanning the range from ACID to BASE [9]. We offer
the initial observations here as a first step in that direction.

We thank the anonymous reviewers for their comments
on the first draft and our colleagues at Stanford and Berke-
ley for being sounding boards for these early ideas.

References

[1] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison–Wesley, 1975 (revised 1995).

[2] Y. Chawathe and E. A. Brewer. System support for scal-
able and fault tolerant internet service. In IFIP International
Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware ’98), Lake District, UK,
Sep 1998.



[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks.
In Seventh USENIX Security Symposium (Security 98), San
Antonio, TX, January 1998.

[4] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consis-
tency in partitioned networks. ACM Computing Surveys,
17(3), 1985.

[5] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou architecture: Support for data
sharing among mobile users. In Proceedings of the 1994
Workshop on Mobile Computing Systems and Applications,
December 1994.

[6] S. Floyd, V. Jacobson, C. Liu, and S. McCanne. A Reliable
Multicast Framework for Light-Weight Sessions and Appli-
cation Level Framing. In ACM SIGCOMM ’95, pages 342–
356, Boston, MA, Aug 1995.

[7] A. Fox and E. A. Brewer. Reducing WWW Latency and
Bandwidth Requirements via Real-Time Distillation. In
Fifth International World Wide Web Conference (WWW-5),
Paris, France, May 1996. WOrld WIde WEb Consortium.

[8] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to network and client variation using active prox-
ies: Lessons and perspectives. IEEE Personal Communi-
cations (invited submission), Aug 1998. Special issue on
adapting to network and client variability.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles, St.-Malo, France, October 1997.

[10] A. O. Freier, P. Karlton, and P. C. Kocher. SSL version 3.0,
March 1996. Internet Draft, available at http://home.
netscape.com/eng/ssl3/ssl-toc.html.

[11] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se-
cure environment for untrusted helper applications: confin-
ing the wily hacker. In 1996 USENIX Security Symposium,
1996.

[12] C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache consis-
tency. Technical Report CSL-TR-90-409, Stanford Univer-
sity Dept. of Computer Science, January 1990.

[13] J. Gray. The transaction concept: Virtues and limitations. In
Proceedings of VLDB, Cannes, France, September 1981.

[14] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online ag-
gregation. In ACM–SIGMOD International Conference on
Management of Data, Tucson, AZ, May 1997.

[15] Inktomi Corporation. The Inktomi technology behind
HotBot, May 1996. http://www.inktomi.com/
whitepap.html.

[16] J. J. Kistler and M. Satyanarayanan. Disconnected Opera-
tion in the Coda File System. ACM Transactions on Com-
puter Systems, 10(1):3–25, February 1992.

[17] N. G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995.

[18] N. G. Leveson and C. S. Turner. An investigation of the
therac-25 accidents. IEEE Computer, July 1993.

[19] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir,
Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Raman,
A. Schuett, D. Simpson, A. Swan, T.-L. Tung, D. Wu, , and

B. Smith. Toward a common infrastructure for multimedia
networking middleware. In 7th Intl. Workshop on Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV 97), St. Louis, MO, May 1997. Invited paper.

[20] National Laboratory for Applied Network Research. The
Squid internet object cache. http://squid.nlanr.net.

[21] NCR Corp. Teradata scalable RDBMS. http://www3.
ncr.com/teradata.

[22] G. F. Pfister. In Search of Clusters (revised ed.). Addison-
Wesley, 1998.

[23] A. Schuett, S. Raman, Y. Chawathe, S. McCanne, and
R. Katz. A soft state protocol for accessing multimedia
archives. In NOSSDAV 97, 1997.

[24] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient Software-Based Fault Isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles,
1993.


