Go! for multi-threaded deliberative agents

K. L. Clark! and F. G. McCabe?

! Dept. of Computing, Imperial College, London
2 Fujitsu Labs of America, Sunnuvale, CA

Abstract. Go! is a multi-paradigm programming language that is ori-
ented to the needs of programming secure, production quality, agent
based applications. It is multi-threaded, strongly typed and higher or-
der (in the functional programming sense). It has relation, function
and action procedure definitions. Threads execute action procedures,
calling functions and querying relations as need be. Threads in differ-
ent agents communicate and coordinate using asynchronous messages.
Threads within the same agent can also use shared dynamic relations
acting as memory stores.

In this paper we introduce the essential features of Go! illustrating them
by programming a simple multi-agent application comprising hybrid
reactive/deliberative agents interacting in a simulated ballroom. The
dancer agents negotiate to enter into joint commitments to dance a par-
ticular dance (e.g. polka) they both desire. When the dance is announced,
they dance together. An agent’s reactive and deliberative components are
concurrently executing threads which communicate and coordinate us-
ing belief, desire and intention memory stores. We believe such a multi-
threaded agent architecture represents a powerful and natural style of
agent implementation, for which Go! is well suited.

1 Introduction

Go! is a logic programming descendant of the multi-threaded symbolic program-
ming language April[22]® | with influences from IC-Prolog II [5] and L&O[21].
April was initially developed as the implementation language for the much
higher level MAI2L[15] agent programming of the EU Imagine project. It has
more recently been used to implement one of the FIPA compliant agent plat-
forms of the EU AgentCities project[31], and the agent services running on that
platform at Imperial College and Fujitsu. We are currently investigating the use
of Go! as an ontology server within that agent platform.

A significant theme in the design of Go! is software engineering in the service
of high-integrity intelligent systems. To bring the benefits of logic programming
to applications developers requires fitting the language into current best-practice;
and, especially since applications are increasingly operating in the public Inter-
net, security, transparency and integrity are critical to the adoption of logic
programming technology.

3 Go is the sound of a Japanese word for 5. April is the 4th month.

Although Go! has many features in common with Prolog, particularly multi-
threaded Prolog’s, there are significant differences related to transparency of
code and security. Features of Prolog that mitigate against transparency, such
as the infamous cut (!) primitive, are absent from Go!. Instead, its main uses
are supported by higher level programming constructs, such as single solution
calls, iff rules, and the ability to define functional’ relations as functions.

In Prolog, the same clause syntax is used both for defining relations, with
a declarative semantics, and for defining procedures, say that read and write
to files, which really only have an operational semantics. In Go!, behaviours
are described using action rules, which have a different syntax. While Prolog
is a meta-order language, Go! is higher-order (in the functional programming
sense) and strongly typed, using a modified Hindley/Milner style type inference
technique[23].

A key feature of Go! is the ability to group a set of definitions into a lexical
unit by surrounding them with {} braces. We call such a unit a theta environ-
ment. Theta environments are Go!’s program structuring mechanism. Two key
uses of theta environments are where expressions, analogous to the let ... in

. construct of some functional programming languages, and labeled theories,
which are labeled theta environments.

Labeled theories are based on McCabe’s L&O [21] extension of Prolog. A
labeled theory is a theta environment labeled by a term where variables of the
label term are global variables of the theory. Instances of the theory are cre-
ated by given values to these label variables. Labeled theories are analogous to
class definitions, and their instances are Go!’s objects. Objects can have state,
recorded by cell and dynamic relation objects. New labeled theories can be de-
fined in terms of one or more existing theories using inheritance rules. Labeled
theories provide a rich knowledge representation notation akin to that of frame
systems[24].

Go! does not directly support any specific agent architecture or agent pro-
gramming methodology, although this could be done using library modules. It
is a language is which different architectures and methodologies can be quickly
prototyped and explored. We illustrate this by developing a simple multi-agent
application comprising hybrid reactive/deliberative agents interacting at a simu-
lated ball. Although an artificial example we believe it is representative of many
multi-agent applications.

In section 2 we give a brief overview of Go! and its facilities for programming
task orientated agents. In the limited space available we cannot give a compre-
hensive description of Go!. For a more complete description of the language see
[7].

In section 3 we explore Go! in the context of the simulated ballroom. Each
dancer agent is programmed using multiple concurrently executing threads that
implement different aspects of its behaviour — coordinated by shared belief,
desire and intention dynamic relation memory stores. This internal run-time
architecture has implicit interleaving of the various activities of the agent. This
contrasts with the explicit interleaving of observation, short deliberation and

partial execution of the classic single threaded BDI (Beliefs, Desires,Intentions)
architecture[2].

The belief, desire and intention memory stores are used in a manner
similar to Linda tuple stores[3]. For example, memory store updates are atomic,
and a thread can suspend waiting for a belief to be added or deleted. Linda tuple
stores have been used for inter-agent coordination [25]. For scalability and other
reasons, we prefer to use asynchronous point-to-point messages between agents,
as in KQML[11]. However, we strongly advocate concurrency and Linda style
shared memory co-ordination for internal agent design.

In section 4 we briefly discuss related work before giving our concluding
remarks.

2 Key Features of Go!

Go! is a multi-paradigm language with a declarative subset of function and
relation definitions and an imperative subset comprising action procedure defi-
nitions.

2.1 Function, relation and action rules
Functions are defined using sequences of rewrite rules of the form:
f(Ay,..,A)::Test => Exp

where the guard Test is omitted if not required.

As in most functional programming languages, the testing of whether a func-
tion rule can be used to evaluate a function call uses matching not unification.
Once a function rule has been selected there is no backtracking to select an
alternative rule.

Relation definitions comprise sequences of Prolog-style : - clauses ; with some
modifications — such as permitting expressions as well as data terms, and no cut.
We can also define relations using iff rules.

The locus of action in Go! is a thread; each Go! thread executes a procedure.
Procedures are defined using non-declarative action rules of the form:

a(d1,..,4;)::Test —> Actioni;...;Action,

As with equations, the first action rule that matches some call, and whose test
is satisfied, is used; once an action rule has been selected there is no backtracking
on the choice of rule.

The permissible actions of an action rule include: message dispatch and re-
ceipt, I/O, updating of dynamic relations, the calling of a procedure, and the
spawning of any action, or sequence of actions, to create a new action thread.

Threads in a single Go! invocation can communicate either by thread-to-
thread message communication or by synchronisable access and update of shared
data, such as dynamic relations. Threads in different Go! invocations can only

communicate using messages. To support thread-to-thread communication, each
thread has its own buffer of messages it has not yet read, which are ordered in
the buffer by time of arrival. To place a message in a thread’s buffer the sender
has to have the threads unique handle identity.

The message send action:

Msg >> To

sends the message Msg to the thread identified by the handle To. It is a non-
blocking asynchronous communication. Handles are terms of the form hd1 (Id,Group)
where Id and Group are symbols that together uniquely identify the thread. Typ-
ically, threads within the same agent share the same Group name, which can be
the unique agent’s name.

To look for and remove from the message buffer a message matching Ptn sent
by a thread From the receive action:

Ptn << From

can be used.
To look for any one of several messages, and to act appropriately when one
is found, the conditional receive:

(Ptny << From -> Actions;
|

| Ptn, << From, -> Actions,

)

can be used. When executed, the message buffer of the thread is searched to find
the first message that will fire one of these alternate message receive rules. The
matched message is removed from the message buffer and corresponding actions
are executed. Messages that don’t match are left in the message buffer for a later
message receive to pick up.

Both forms of message receive suspend if no matching message is found, caus-
ing the thread to suspend. The thread resumes only when a matching message
is received. This is the message receive semantics of Erlang[l] and April[22].

Communication daemons and a special external communications system mod-
ule allow threads in different invocations of Go! to communicate using the same
message send and receive actions as are used between threads of a single invoca-
tion, see [7]. This allows an application comprising several modules, developed
and tested as one multi-threaded Go! invocation, to be converted into a dis-
tributed application with minimal re-programming.

2.2 Programming behaviour with action rules

As an example of the use of action rules let us consider programming the top
level of an agent with a mission: this is to achieve some fixed goal by the repeated
execution of an appropriate action. The two action rule procedure:

performMission()::Goal -> {}.
performMission() -> doNextStep; performMission().

captures the essence of this goal directed activity. ({} is the empty action.) This
procedure would be executed by one thread within an agent whilst another con-
currently executing thread is monitoring its environment, constantly updating
the agent’s beliefs about the environment; these beliefs being queried by Goal,
and by doNextStep. performMission is a tail recursive procedure and will be
executed as an iteration by the Go! engine.

Some missions — such as survival — do not have a termination goal but rather
one or more continuation actions:

survive() : : detectDanger (D) -> hideFrom (D) ;survive().
survive() : :detectFood (F) -> eat (F); survive().
survive() -> wanderFor (safeTime ()); survive().

The order of the rules prioritises avoiding danger. safeTime is a function
that queries the belief store to determine a ’safe’ period to wander, given cur-
rent knowledge about the environment, before re-checking for danger. Again we
assume the belief store is being concurrently manipulated by an environment
monitoring thread within the agent. hideFrom(D) would typically cause the sur-
vival thread to suspend until the monitoring thread deletes those beliefs that
made detectDanger (D) true.

Invoking queries from actions The declarative part of a Go! program can be
accessed from action rules in a number of ways:

— Any expression can invoke functions.

— An action rule guard — (41,..,Ag):: @ — can augment the argument matching
test with a query @.

— If @ is a query, {§@}, indicating a single solution to §, can appear as an
‘action’ in an action rule body.

— We can use a set expression {Trm || g} to find all solutions to some query.
This is Go!’s findall. Since Trm can involve defined functions, it can also
be used to map a function over the set of solutions to Q.

— We can use Go!’s forall action. (§ *> A4) iterates the action 4 over all
solutions to query §.

— We can use a conditional action. (§ 7 4; | 43) executes 4; if § succeeds,
else 4.

As an example of the use of *>:

(is_a_task(Task), \+ Icando(Task), cando(Ag,Task)
x> request(Task) >> Ag)

might be used to send a ’request’ message, for each task that the agent cannot
itself do, to some agent it believes can do the task. \+ is Go!’s negation-as-failure
operator.

2.3 Type definitions and type inference

Go! is a strongly typed language; using a form of Hindley/Milner’s type inference
system|[23]. For the most part it is not necessary for programers to associate
types with variables or other expressions. However, all constructors and unquoted
symbols are required to be introduced using type definitions. If an identifier is
used as a function symbol in an expression it is assumed to refer to an ‘evaluable’
function unless it has been previously introduced in a type definition.

The pair of type definitions:

dance::= polka | jive | waltz | tango | quickstep | samba.
Desire::= toDance(dance,number) | barWhen(dance).

introduce two new types — an enumerated type dance, which has 6 literal values:
polka, jive, waltz, tango, quickstep, samba

and a Desire type that has a constructor functions toDance mapping a dance
and a number into a Desire and barWhen mapping a dance.

Go! has primitives types such as symbol, string and number and the poly-
morphic recursive type 1ist [T] - a list of elements of of type T of unbounded
length. So:

[1’4:_8]
[(’harry’,23),(°paul’,12)]

are respectively of type list[number], list[(symbol,number)]. Notice that
’harry’ and ’paul’ are quoted. This is because Go! does not have a variable
name convention like Prolog. Variable names can begin with upper or lower case
letters. So, unless a symbol has been declared as a term of an enumerated type,
such as dance, it must be quoted.

2.4 Dynamic relations

In Prolog we can use assert and retract to change the definition of a dynamic
relation whilst a program is executing. The most frequent use of this feature is
to modify a definition comprising a sequence of unconditonal clauses. In Go!,
such a dynamic relation is an object with updateable state. It is an instance of a
polymorphic system class dynamic[T], T being the type of the argument of the
dynamic relation. All Go! dynamic relations are unary, but the unary argument
can be a tuple of terms.

The dynamic relations class has methods: add, for adding an argument term
to the end of the current extension of the relation, del for removing the first
argument term that unifies with a given term, delall for removing all argu-
ment terms unifying with a given term, mem, for accessing the instantiation of
each current argument term that unifies with a given term, and finally ext for
retrieving the current extension as a list of terms.

Creating a new dynamic relation A dynamic relation object can be created and

initialised using:

desire = $dynamic[Desire] ([toDance(jive,2), toDance(waltz,1),
...,barWhen(polka)])

dynamic takes two kinds of argument. The type of the argument terms to be
stored, in this case Desire, and any initial extension given as a list of terms. This
list could be empty. The above initialisation is equivalent to giving the following
sequence of clauses for a Prolog dynamic relation:

desire(toDance(jive,2)).
desire(toDance(waltz,1)).

desire(barWhen(polka)) .

Querying a dynamic relation If we want to query such a dynamic relation we
use the mem method as in:

desire.mem(todance(D,N)) ,N>2

Modifying a dynamic relation To modify a dynamic relation we can use the add,
and del action methods. For example:

desire.add(barWhen(quickstep))

and:

desire.del(toDance(jive,N)) ;desire.add(toDance(jive,N-1))

The second is analogous to the following sequence of Prolog calls:

retract(desire(toDance(jive,N)) ,NewN is N-1,
assert(toDance(jive,NewN))

One difference is that we cannot backtrack on a del call to delete further match-
ing facts. This is because it is an action, and all Go! actions are deterministic. A
del call always succeeds, even if there is no matching term. The delall method
deletes all unifying facts as a single action:

desire.delall(barWhen(_))

will delete all current barWhen desires. delall is the similar to prolog’s retractall.

2.5 Multi-threaded applications and data sharing

It is often the case, in a multi-threaded Go! application, that we want the dif-
ferent threads to be able to share information. For example, in a multi-threaded
agent we often want all the threads to be able to access the beliefs of the agent,
and we want to allow some or all these threads to be able to update these beliefs.

We can represent the relations for which we will have changing information as
dynamic relations. A linda a polymorphic subclass of the dynamic relations class
has extra methods to facilitate the sharing of dynamic relations across threads.
Instances if this subclass are created using initializations such as:

LinRel = $lindaltype]l ([...])

For example, it has a replace method allowing the deleting and adding of a
shared linda relation term to be executed atomically, and it has a memw relation
method. A call:

LinRel.memw(Trm)

will suspend if no term unifying with Trm is currently contained in LinRel until
such a term is added by another thread.
There is also a dual, notw such that:

LinRel.notw(Trm)

will suspend if a term unifying with Trm is currently contained in LinRel until all
such terms are deleted by other threads. It also has a suspending delete method,
delw.

memw and delw and the analogues of the Linda[3] readw and inw methods for
manipulating a shared tuple store. There is no analogue of notw in Linda.

2.6 Theta environments

In many ways, theta environments form the ‘heart’ of Go! programs: they are
where most programs are actually defined; they are also the only place where new
types may be defined. The scope of the type definition is the theta environment
in which it appears.

A theta environment is of a set of definitions, each of which is either a

— A Var=Ezxpression assignment definition

— A Type::=TypeEpression new type definition

— A Type:> TypeEpression renaming type definition

— A relation definition

— A function definition

— An action procedure definition

— A DCG grammar|[26)

— A labeled theta environment - a class definition (see 2.7)
— A class rule - defining an inheritance relation (see 2.7)

grouped inside {} brackets. The rules and definitions are separated by the ‘..’
operat0r4.

where expressions A common use of a theta environment is a where expression,
which is an expression of the form:

Ezp..ThetaEnvironment

The .. is read as where. Ezxp is evaluated relative to the definitions inside
ThetaEnvironment which otherwise are local the environment.

4 Where ‘.’ means a period followed at least one whitespace character.

where calls As well as expressions, calls can be evaluated relative to a theta
environment. The call, whether relation or action call, is written:

Call..ThetaEnvironment

2.7 Classes and objects

Classes in Go! are labeled theta environments, which we can view as labeled
theories as in L&O[21]°. The labels can contain variables, which are global to
all the definitions of the theory. The label variables must be explicitly typed, by
attaching a type annotation.

Class definitions also double as type definitions - the functor of the class label
is implicilty defined as a new type name that can be used to characterise the
type of the object instances of the class.

We can create an instance of a labeled theory by giving values to the global
variables of the theory label. The instance is an object characterised by these
global variable values - they define its static state. Different object instances of
the theory will generally have different values for these global variables.

Two system classes, the dynamic relations class and the cell class, have in-
stances with mutable state. A new labeled theory can contain variables bound
to instances of these mutable state classes. If so, instances of the theory will be
objects with mutable state.

Finally, inheritance can be used to define a new labeled theory. This is done
using inheritance rules using the class labels.

The following set of definitions constitute a mini-theory of a person:

dateOfB :> (number,number,number). -- type renaming def
sex::= male | female. -- new type def.
person(Nm:symbol,BrthDate:date0fB, Sx:sex,Home: symbol){
age()= __yearsBetween(time2date(now()) ,BrthDate) .
sex=5x.
name=Nm.
lives (Home) .
__yearsBetween(....) =>

}.

The label arguments Nm, Brthdate, Sx, Home are parameters to the theory which,
when known, make it the theory of a specific person.

A person’s age is computed by converting the difference between the current
time returned by the primitive function now, converted to a date, and the person’s
date of birth. The conversion is done using a function __yearsBetween that is
private to the theory. It is private since its name begins with __.

We can create two instances of the theory, i.e. two person objects, and query
them as follows:

® We shall use the terms labeled theory and class interchangeably.

P1=$person(’Bill’, (1978,3,22) ,male, ’London,England’).
P2=$person(’Jane’, (1986,11,1) ,female,’Cardiff,Wales’).

P1.name —-- returns name ’Bill’ of P1
P2.age() -- returns current age of P2
P2.lives(Place) -- gives solution: Place=’Cardiff,Wales’

Inheritance The following is a labeled theory for a student. It inherits from the
person theory.

student (Nm, BrthDate,Sx, Hm, _,_)<=person(Nm, BrthDate,Sx,Hm) .
student(_, _,_,_,Cge,Sbj){

lives(Pl) :-location_of (Cge,P1).

lives(P1) : -super.person.lives(P1l).

studies_at (Sbj,Cge) .

}.

The separate <= rule says that this theory inherits from the person theory with
overriding inheritance. This means that any attribute defined in student with the
same name as a person attribute automatically replaces the inherited definition.
In this case, there is only one relation, 1ives, which is so redefined but its new
definition explicitly extends the definition of the parent super class by virtue of
its second clause.

location_of is defined outside the student theory. It has a normal definition
such as:

location_of (’Imperial’,’London,England’) .
location_of (’Caltec’,’Pasadena,CA’).

We can create the theory of a specific student and query it as follows:

S=$student(’mary’,19,female,’Bath,England’ ,’Imperial’,
> computing’)

S.lives(Place) -- has two answers:
-- Place=’Bath,England’, Place=’London,England’
S.age() -- returns 19

Te above two labeled theories can be viewed as a small ontology about the
person and student concepts. The use of Go!’s for ontology construction and
querying is further explored in [6].

2.8 Modules

A module is a where expression that evaluates to a single higher order value,
or to a tuple of values, some of which are higher order. A module that contains
the class definitions for person and student given earlier, which exports both
definitions, has the form:

(person,student) . .{
person(Nm,Age,Sx,Hm) {...}.
student (...)<=person(...).
student(_,_,_,_,Cge,Sbj){...}

}

The following is a module that exports the relation ordered and the function
reverse. The definition of the auxiliary relation ord and the auxiliary function
rev are local to the theta environment and not visible outside. ordered and
reverse iare themselves defined using where expressions.

(ordered,reverse) .. {
ordered(list,less) :- ord(list) .. {
ord([1).
ord([_]).
ord([E1,E2,..L]):- less(E1,E2),ord([E2,..L]).
}.
reverse(L) => rev(L,[1)..{
rev([],R) => R.
rev([E,..L],R) => rev(L,[E,..R]).
}
}.

Incidentally, ordered is a higher order polymorphic relation of type:
[T1-(1ist[T], (T,T{P{}

which says that for any T ([T]- inidicates the quantification), it is a binary
relation (signaled by the postfix {}), taking as first argument a list of elements
of type T (the type expression list(T)) , and as second argument a binary relation
over elements of type T (the type expression (T,T){}).

2.9 Higher order values

The ordered relation is parameterized with respect to the ordering relation
used to compare elements of the list. ordered is further defined in terms of
the auxilliary relation ord, itself defined in a subsiduary where expression. This
illustrates how where expressions may be used at many levels — not just the
top-level of a program. Note that the less variable — which holds the ordering
relation — is only mentioned where it is important: where it is introduced as a
parameter of ordered and where it is used in ord. This is an example of variables
having a somewhat extended scope compared to Prolog. In Prolog, to achieve
the same effect, we would have had to ‘pass down’ the less relation through
all the intermediate programs from the top-level to where it is needed; this is a
significant source of irritation in Prolog programming.

A call to ordered must supply the list to be checked and an ordering relation.
In many cases the ordering relation is given as the value of a variable with

a higher order value®; however, it is also possible to use a lambda rule, or a
disjunction of such rules, to give an on-the-fly definition of the relation. For
example, the call:

ordered([(3,5),(3,8),(10,12),...],
C ((X1,0),(X2,.0):-X1=<Xx2 | ((X,Y1D), (X,Y2)) :-Y1=<Y2))

The relation argument is given as a disjunction of lambda relation rules that
uses the standard =< relation to define an ordering on pairs of numbers.

Go! has lambda forms of all of its rule types: relation rules, function rules,
action rules and grammar rules.

3 Multi-threaded dancer agents at a ball

In our agents’ ball, we have male and female dancer agents that are attempting to
dance with each other and a band that ‘plays’ music for different kinds of dances.
The two kinds of dancer agent are required to discover like-minded agents and
to negotiate over possible dance engagements. In addition to dancing, dancer
agents may have additional goals — such as getting refreshed at the bar. This
scenario is a compact use case that demonstrates many of the aspects of building
intelligent agents and of coordinating their activities.

Following a BDI model[2][28], each agent has a belief, a desire and an
intention relation. The belief relation contains beliefs about what other
dancers there currently are and what dances they like to do. The desire re-
lation contains the goals each dancer would like to achieve, for example, which
dances it would like to dance. The intention relation holds its current intentions
— these normally represent the agent’s commitments to perform some particular
dance with some partner agent; however, it can also be an intention to go to the
bar when a dance is announced.

The dancers use a directory server to discover one another. As each dancer
agent ’arrives’ at the dance in some random and phased order, it registers with
the directory server. The dancers also subscribe in order to be informed about
other dancers that are already ’at the dance’, and those that will arrive later.

The internal execution architecture of each dancer agent comprises three
threads — corresponding to the three key activities of the agent: a directory
server interface thread, a negotiations thread and an intention execution thread.
The directory server interface interacts with the directory server to publish its
own description and to subscribe for the descriptions of other dancer agents.
The negotiations thread communicates with other dancer agents in order to

5 Note the contrast with Prolog. In Prolog a relation is passed as argument by passing
in its name - which is an atom. Prolog’s metal level call is then used to map the
name to the value at run-time by accessing a run-time dictionary linking atom names
with code values. In Go! the code value is passed, not the name. Moreover, its type
is checked at compile time to make sure it is consistent with its intended use. In
Prolog, a type inconsistency will generally result in a runtime error or failure.

agree joint intentions to dance the next dance of a particular kind. The inten-
tions execution thread coordinates the actual dance activities and any ‘drinking’
activities. The architecture is depicted in figure below.

These threads communicate using the shared linda dynamic relations: belief,
desire and intention. Note that while all the dancers could be executed in a
single invocation of the Go! engine, they will not have direct access to each oth-
ers’ beliefs, desires and intentions. Furthermore, it is a simple task to distribute
the progam across multiple invocations and machines, making each dancer a
separate Go! process. The internal architecture of each agent is depicted in the
figure above. The fat arrows indicate the internal agent communication through
the shared dynamic relations, and the thin arrows indicate the external message
communciation.

Agent architecture

Message Am ges

from Band

Other dancers

Aer dancers

3.1 A dancer’s intention execution thread

A dancer’s intention execution thread handles the execution of intentions when
they are triggered by dance announcements. We assume a band agent which
sends an announcement message to every currently registered dancer when it
starts, and when it later stops playing each dance ‘number’.

The procedures for the intention execution threads of the male and female
dancers are very similar with respect to how they ’listen’ for announcements
from the band. They differ in what happens when a dance is starting and there
is an intention to do that dance. We present here only the male case — as the
male dancer is expected to take the initiative during the dance.”

" This symmetry is an aspect of the ballroom scenario; one that we would not expect
for general agent systems.

maleIntention. . {
-- type defs
maleIntention(belief,desire,intention,band) ->
(starting(D) << band ->
belief.replace(bandNotPlaying,bandPlaying(D));
check_intents(D) ;
maleIntention(belief,desire,intention,band)
| stopping(D) << band ->
belief.replace(bandPlaying(D) ,bandNotPlaying) ;
maleIntention(belief,desire,intention,band)
| ball_over << band -> belief.add(ballOver)
).
check_intents(D)::intention.mem(toDanceWith(D,FNm)) ->
intention.del (toDanceWith(D,FNm)) ;
maleDance(D,FNm)) .

}

The above is a module that exports the maleIntention action procedure. The
procedure iterates ’listening’ for messages; in this case messages from the band.
It terminates when it receives a ball_over message.

When it receives a starting (D) message, and there is an intention to do that
dance, the maleDance procedure is executed. The intended partner should sim-
ilarly have called its corresponding femaleDance procedure and the interaction
between the dance procedures of the two dancers is the joint dancing activity.

Notice that the maleIntention procedure reflects its environment by main-
taining an appropriate belief regarding what the band is currently doing and
when the ball is over. replace is an atomic update action on a linda dynamic
relation.

3.2 A dancer’s negotiation thread

The procedures executed by the negotiation threads of our dancers are the most
complex. They represent the rational and pro-active activity of the agent for
they convert desires into new intentions using current beliefs and intentions. In
contrast, the intentions execution and directory interface threads are essentially
reactive activities.

A male dancer’s negotiation thread must decide which uncommitted desire
to try to convert into an intention, and, if this is to do some dance the next
time it is announced, which female dancer to invite to do the dance. This may
result in negotiation over which dance they will do together, for the female who
is invited may have a higher priority desire. Remember that each dancer has a
partial model of the other dancer in that it has beliefs that tell it the desires
the other dancer registered with the directory server on arrival. But it does not
know the priorities, or which have already been fully or partially satisfied.

The overall negotiation procedure is satisfyDesires:

satisfyDesires()::belief.mem(ballOver) -> {}.
satisfyDesires() ->
{belief .memw(bandNotPlaying)}; -- wait until band not playing
(chooseDesire(Des,FNm),\+ intention.mem(toDanceWith(D,_),
still_ok_to_negotiate()) *>
negotiateOver(Des,FNm)); -- negotiation loop
{belief.memw(bandPlaying(_))};
-- wait, 1f need be, until band playing
satisfyDesires().
still_ok_to_negotiate():-
belief .mem(bandNotPlaying),\+ belief.mem(ballOver) .

The satisfyDesires procedure terminates when there is a belief® that the band
has finished — a belief that will be added by the intentions execution thread when
it receives the message ball_over. If not, the first action of satisfyDesires is
the memw call. This is a query action to the belief relation that will suspend,
if need be, until bandNotPlaying is believed. For our dancers we only allow
negotiations when the band is not playing. This is not a mandatory aspect of all
scenarios — other situations may permit uninterrupted negotiations over desires.

There is then an attempt to convert into commitments to dance as many
unsatisfied desires as possible, before the band restarts or announces that the
ball is over. This is done by negotiating over each such desire with a female FNm
whom the male dancer believes shares the desire. When the negotiation forall
loop terminates, either because there are no more solutions to chooseDesire, or
the dancer no longer believes it is appropriate to continue negotiating, the action
procedure waits, if need be, until the dancer believes the band has restarted®
The possible wait is to ensure there is only one round of negotiation in each
dance interval. The next time the band stops playing, the answers returned by
chooseDesire will almost certainly be different because the beliefs, desires and
intentions of the dancer will have changed. (Other female dancers may have
arrived, and the dancer may have executed an intention during the last dance.)
Even if one of the answers is the same, a re-negotiation with the same female
may now have a different outcome because of changes in her mental state.

chooseDesire(toDance(D,N) ,FNm) :-
uncmtdFeasibleDesire(toDance(D,N) ,FNm),
(desire.mem(toDance (0OthrD,0thrN)),0thrD\=D *> OthrN < N).
chooseDesire(toDance(D,N) ,FNm) :-
uncmtdFeasibleDesire (toDance(D,N),FNm),
\+ belief.mem(haveDanced(D,_)).

8 All the procedures for this thread access the linda dynamic relations as global vari-
ables since the procedures will be defined in the environment where these relations
are introduced.

9 The bandPlaying belief will be added by its intention execution thread. If the band
does not restart, the negotiation thread never resumes.

uncmtdDesire (toDance(D,N)) : -
desire.mem(toDance(D,N)), N>O0,
\+ intention.mem(toDanceWith(D,_)).

The above clauses are a partial definition of a chooseDesire that might be
used by one of the male dancers. The two given clauses both return a dance
desire only if it is currently uncommitted and feasible. It is an uncommitted
desire if it is still desired to perform the dance at least once, and there is not
a current intention to do that dance. (We allow a dancer to enter into at most
one joint commitment to do a particular type of dance since this is understood
as a commitment to do the dance with the identified partner the next time that
dance is announced.) It is feasible if the male believes some female still desires
to do that dance. The first rule selects a dance if, additionally, it is desired more
times than any other dance. The second selects a dance if it has not so far been
danced with any partner. Each male dancer can have a different chooseDesire
definition.

Below is a negotiateOver procedure for a simple male dancer negotiation
strategy that starts with a dance proposal:

negotiateOver(Dance(D,N) ,FNm) ->
ngtOverDance (D,N,FNm,hd1(’neg’ ,FNm), []1).
ngtOverDance(D,N,FNm,FNgtTh,PrevDs) ->
willYouDance(D) >> FNgtTh; -- invite female to dance D
(okDance(D) << FNgtTh -> -- female has accepted
desire.replace(toDance(D,N),toDance(D,N-1));
intention.add(toDanceWith(D,FNm))
| sorry << FNgtTh -> {} -- female has declined
| willYouDance(D2)::uncmtdDesire(toDance(D2,N2))) << FNgtTh ->
-- a counter-proposal to dance D2 accepted since uncom. des.
intention.add(toDanceWith(D2,FNm)) ;
desire.replace(toDance(D2,N2),toDance(D2,N2-1));
okDance (D2) >> FNgtTh
| willYouDance(D2) << FNgtTh ->
-- to dance D2 mot an uncom. des., must counter-propose
counterP (FNm,FNgtTh, [D,D2, . .PrevDs])
| barWhen(D2) : :uncmtdDesire (BarWhen(D2)) << FNgtTh ->
-- a counter-proposal to go to the bar D2 accepted
intention.add(toBarWhen(D2,FNm)) ;
desire.del (BarWhen(D2));
okBar(D2) >> FNgtTh
| barWhen(D2) << FNgtTh ->
-— to go to the bar when D2 not an uncom. des., counter-propose
counterP (FNm,FNgtTh, [D,D2, . .PrevDs])

counterP (FNm,FNgtTh,PrevDs) : :
(chooseDesire(toDance(D,N) ,FNm) ,\+(D in PrevDs))->
-- continue with a proposal to do a new dance
ngtOverDance (D,N,FNm,FNgtTh,PrevDs) .
counterP(_,FNgtTh,_) -> -- terminate the negotiation
sorry >> FNgtTh)).

The negotiation is with the negotiation thread, hdl(’neg’ ,FNm), in the female
dancer with name FNm.

The negotiation to fulfill a dance desire with a named female starts with the
male sending a willYouDance (D) message to her negotiation thread. There are
four possible responses: an okDance (D) accepting the invitation, a sorry mes-
sage declining, or a counter proposal to do another dance, or to go to the bar
when some dance is played. A counter proposal is accepted if it is currently an
uncommitted desire. Otherwise, the counterP procedure is called to suggest an
alternative dance. This calls chooseDesire to try find another feasible dance D
for female FNm, different from all previous dances already mentioned in this nego-
tiation (the PrevDs argument). If this succeeds, the dance negotiation procedure
is re-called with D as the new dance to propose. If not, a sorry message is sent
and the negotiation with this female ends. Each negotiation could be spawned
as a new thread providing we use another dynamic relation to keep track of the
current desire being considered in each negotiation to ensure they do not result
in conflicting commitments.

3.3 The male dancer agent

Below we give the overall structure of the male dancer class definition. It uses
modules defining the maleIntention and DSinterface procedures and it spawns
them as separate threads.

maleDancer (MyNm,MyDesires,DS,band) {
-- type defs
belief=$linda[Belief] ([]).
desire=$linda[Desire] ([1).
intention=$linda[Intention] ([]).
init() ->
(Des on MyDesires *> desire.add(Des));
spawn DSinterface(MyNm,male,belief,MyDesires,DS);
spawn maleIntention(belief,desire,intention,band)
as hdl(’exec’,MyNm);
spawn satisfyDesires() as hdl(’neg’,MyNm);
waitfor(hdl(’exec’ ,MyNm)) .
-- defs of satisfyDesires etc

}

The init method of this class is the one called to activate an instance of the class:
$maleDancer (MyNm,MyDesires,DS,band) .init (). If we launch several dancers
inside one Go! process this call would be spawned as a new thread.

An instance is specified by four parameters: a unique symbol name MyNm of
the dancer agent, such as *bill 1. smith’, a list MyDsires of its initial desires
such as [toDance(jive,2) ,barWhen(polka),..], and the handles DS, band of
the directory server and band agent of the ball it is to attend. Each instance will
have its own three linda dynamic relations encoding the dynamic state of the
dancer.

The init action method adds each desire of MyDesires parameter to the
dancer’s desire linda relation. It then spawns the directory server interface, the
intention execution and the negotiation threads for the dancer. The latter are
assigned standard handle identities based on the agents symbol name. The init
procedure then waits for the intention execution thread to terminate (when the
ball is over). Termination of init terminates the other two spawned threads.

The negotiation thread executes concurrently with the other two threads.
The directory interface thread will be adding beliefs about other agents to the
shared belief relation as it receives inform messages from the directory server,
and the execute intentions thread will be concurrently accessing and updating
all three shared relations.

The female dancer is similar to the male dancer; we assume that the female
never takes the initiative. The female negotiation thread must wait for an initial
proposal from a male but thereafter it can make counter proposals. It might
immediately counter propose a different dance or to go to the bar, depending on
its current desires and commitments.

4 Related Work

4.1 Other Logic Based Programming Languages

Qu-Prolog[8], BinProlog[29], CTAO Prolog [4], SICStus-MT Prolog[10], IC-Prolog
I1[5] are all multi-threaded Prolog systems. The closest to Go! are Qu-Prolog and
IC-Prolog II.

Threads in Qu-Prolog communicate using messages or via the dynamic data
base. As in Go!, threads can suspend waiting for another thread to update some
dynamic relation. Threads in IC-Prolog II communicate either using unidirec-
tional pipes, shared data base, or mailboxes. Mailboxes must be used for commu-
nication between threads in different invocations of IC-Prolog II. IC-Prolog also
supports the L&O class notation[21]. Neither language has higher order features
or type checking support, and all threads in the same invocation share the same
global dynamic data base. In Go!, a dynamic relation is the value of a variable.
Only threads whose procedures access the variable as a global variable, or which
are explicitly given access to the dynamic relation as a call argument or in a
message, can access it.

SICStus-MT[10] Prolog threads also each have a single message buffer, and
threads can scan the buffer looking for a message of a certain form. But this
buffered communication only applies to communication between threads in the
same Prolog invocation. Threads running on different hosts must use lower level
TCP/IP communication primitives.

Mozart/Oz[30] is a higher order, untyped, concurrent constraint language
with logic, functional and object oriented programming components. Threads
are explicitly forked and can communicate either via shared variable bindings in
the constraint store, which acts as a shared memory, or ports which are multiple
writer/single reader communication channels similar to Go! message queues.
Threads in different hosts can communicate using public names for ports, which
ascii strings called tickets. Tickets can be used to share any data value across a
network.

In BinProlog[29], threads in the same invocation communicate through the
use of Linda tuple spaces[3] acting as shared information managers. BinProlog
also supports the migration of threads, with the state of execution remembered
and moved with the thread!®. The CIAO Prolog system [4] uses just the global
dynamic Prolog database for communicating between thread’s in the same pro-
cess. Through front end compilers, the system also supports functional syntax
and modules.

Mercury[32] is a pure logic programming language with polymorphic types
and modes. The modes are used to aid efficient compilation. It is not multi-
threaded.

Escher [20], and Curry [14] are both hybrid logic/functional programming
languages with types, the latter with type inference similar to Go!. They differ
from Go! in using lazy evaluation of functions and Curry uses narrowing - func-
tion evaluations can instantiate variables in the calls. Escher has a proposed [19]
explicit fork primitive ensemble that forks a set of threads. The threads commu-
nicate via a shared global blackboard that contains mutable variables has well
as I/O channels and files. Curry also has concurrent execution and its threads
can communicate as in concurrent logic programming via incremental binding
of shared variables, or via Oz style ports.

Concurrent MetateM [12] is based on temporal logic. Each agent executes a
program comprising a set rules with preconditions that refer to past or current
events. The rules specify future events that may or must occur, that are in the
control of the agent. A broadcast communication to all other agents is one such
event. Receipt of a message of a certain form is a possible current or past event.
The agent uses the rules to determine its behaviour by endeavoring to make the
description of the future implied by the rules and events come true.

Dali[9] is an extension of Prolog which has reactive rules as well as nor-
mal clauses. It is untyped and not explicitly multi-threaded. The reactive rules
define how a Dali agent reacts to external and internal events. The arrival of
a message sent by another agent is an external event, as is a signal, such as
alarm_clock_ring, sent by the environment. An internal event is a goal G that
can be inferred from the history of past events. Internal events are generated
as a result of the agent automatically attempting to prove certain goals at a

10°A Go! thread executing a recursive procedure can also be migrated by sending a
closure containing a ’continuation’ call to this procedure in a message. The recipient
then spawns the closure allowing the threads computation to continue in a new
location. The original thread can even continue executing, allowing cloning.

frequency that can be specified by try G ... statements. The periodic retrying
of these goals gives the agent implicit multi-threading. In that a Dali program
determines future actions based on the history of past events it is similar to
Concurrent MetateM [12].

4.2 Logic and action agent languages

Vip[17], AgentSpeak(L)[27], 3APL[16], Minerva[18] and ConGolog[13] are all
proposals for higher level agent programming languages with declarative and
action components. We are currently investigating whether the implied architec-
tures of some of these languages can be readily realised in Go!. Vip and 3APL
have internal agent concurrency.

These languages typically have plan libraries indexed by desire or event de-
scriptors with belief pre-conditions of applicability. Such a plan library can be
encoded in Go! as a set of planFor and reactTo action rules of the form:

planFor(Desire)::beliefCond -> Actions
reactTo(Event)::beliefCond -> Actions

The actions can include updates of the belief store, or the generation of new
desires whose fulfillment will complete the plan. Calls to planFor or reactTo
can be spawned as new threads, allowing concurrent execution of plans.

5 Conclusions

Go! is a multi-paradigm programming language — with a strong logic program-
ming aspect — that has been designed to make it easier to build intelligent agents
while still meeting strict software engineering best practice. There are many im-
portant software engineering features of the language that we have not had the
space to explore — for example the I/O model, permission and resource con-
strained execution and the techniques for linking modules together in a safe and
scalable fashion. We have also omitted any discussion of how Go! applications
are distributed and of how Go! programs interoperate with standard technologies
such as DAML, SOAP and so on. Some of these topics are covered in [7].

The ballroom scenario is an interesting use case for multi-agent programming.
Although the agents are quite simple, it encompasses key behavioural features
of agents: autonomy, adaptability and responsibility. Our implementation fea-
tures inter-agent communication and co-ordination via messages, multi-threaded
agents, intra-agent communication and co-ordination via shared memory stores.
We believe these features, which are so easily implemented in Go!, are firm
foundations on which to explore the development of much more sophisticated
deliberative multi-threaded agents.

6

Acknowledgments

The first named author wishes to thank Fujitsu Labs of America for a research
contract that supported the collaboration between the authors on the design of
Go! and the writing of this paper.

References

1.

2.

10.

11.

12.

13.

14.

15.

J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.
Prentice-Hall International, 1993.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource bounded
practical reasoning. Computational Intelligence, 4:349-355, 1988.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, 1989.

M. Carro and M. Hermenegildo. Concurrency in Prolog using Threads and a
Shared Database. In D. D. Schreye, editor, Proceedings of ICLP99, pages 320-334.
MIT Press, 1999.

D. Chu and K. L. Clark. IC-Prolog II: a multi-threaded Prolog system. In G. Succi
and G. Colla, editors, Proceedings of the ICLP’93 Workshop on Concurrent €
Parallel Implementations of Logic Programming Systems, pages 115-141, 1993.
K. Clark and F. McCabe. Ontology representation and inference in Go! Technical
report, Dept. of Computing, Imperial College, London, 2003.

K. Clark and F. McCabe. Go! — a multi-paradigm programming language for imple-
menting multi-threaded agents. Annals of Mathematics and Artificial Intelligence,
2004, to appear.

K. L. Clark, P. J. Robinson, and R. Hagen. Multi-threading and message commu-
nication in Qu-Prolog. Theory and Practice of Logic Programming, 1(3):283-301,
2001.

. S. Constantini and A. Tocchio. A logic programming language for multi-agent

systems. In Proc. JELIA02 - 8th European Conf. on Logics in Al pages 1-13.
Springer-Verlag, LNAI, Vol 2424, 2002.

J. Eskilson and M. Carlsson. Sicstus MT - a multithreaded execution environment
for SICStus Prolog. In K. M. Catuscia Palamidessi, Hugh Glaser, editor, Principles
of Declarative Programming, LNCS 1490, pages 36-53. Springer-Verlag, 1998.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communi-
cation language. In Proceedings 3rd International Conference on Information and
Knowledge Management, 1994.

M. Fisher. A survey of concurrent MetateM- the language and its applications.
In D. Gabbay and H. Ohlbach, editors, Temporal Logic, pages 480-505. Springer-
Verlag, LNAI, Vol 827, 1994.

G. D. Giacomo, Y. Lesperance, and H. Levesque. Congolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 1-2(121):109—
169, 2000.

M. Hanus. A unified computation model for functional and logic programming. In
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
pages 80-93, 1997.

H. Haugeneder and D. Steiner. Co-operative agents: Concepts and applications. In
N. R. Jennings and M. J. Wooldridge, editors, Agent Technology, pages 175-202.
Springer-Verlag, 1998.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. C. Meyer. Formal seman-
tics for an abstract agent programming language. In Singh, Rao, and Wooldridge,
editors, Intelligent Agents 1V, LNAI, pages 215-230. Springer-Verlag, 1997.

D. Kinny. VIP:A visual programming language for plan execution systems. In
1st International Joint Conf. Autonomous Agents and Multi-agent Systems, pages
721-728. ACM Press, 2002.

J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva-A dynamic logic prorgamming
agent architecture. In Intelligent Agents VIII, LNAI 2333, pages 141-157, 2001.
J. Lloyd. Interaction and concurrency in a declarative programming language.
Unpublished report, Dept. of Computer Science, Bristol University, London, 1988.
J. W. LLoyd. Programming in an integrated functional and logic programming
language. Journal of Functional and Logic Programming, pages 1-49, March 1999.
F. McCabe. L&O: Logic and Objects. Prentice-Hall International, 1992.

F. McCabe and K. Clark. April - Agent PRocess Interaction Language. In N. Jen-
nings and M. Wooldridge, editors, Intelligent Agents, LNAI, 890, pages 324—340.
Springer-Verlag, 1995.

R. Milner. A theory of type polymorphism in programming. Computer and System
Sciences, 17(3):348-375, 1978.

M. Minsky. A framework for representing knowledge. In P. Winston, editor,
Psychology of Computer Vision, pages 211-277. MIT Press, 1975.

A. Omnicini and F. Zambonelli. Coordination for internet application development.
Autonomous Agents and Multi-agent systems, 2(3):251-269, 1999.

F. Pereira and D. H. Warren. Definite clause grammars compared with augmented
transition network. Artificial Intelligence, 13(3):231-278, 1980.

A. S. Roa. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Agents Breaking Away, LNAI 1038, pages 42-55. Springer-Verlag, 1996.

A. S. Roa and M. P. Georgeff. An abstract architecture for rational agents. In
Proceedings of Knowledge Representation and Reasoning (KRE&R92), pages 349—
349, 1992.

P. Tarau and V. Dahl. Mobile Threads through First Order Continuations. In
Proceedings of APPAI-GULP-PRODE’98, Coruna, Spain, 1998.

P. Van Roy and S. Haridi. Mozart: A programming system for
agent applications. In International Workshop on Distributed and Inter-
net Programming with Logic and Constraint Languages. http://www.mozart-
oz.org/papers/abstracts/diplcl99.html, 1999. Part of International Conference on
Logic Programming (ICLP 99).

S. N. Willmott, J. Dale, B. Burg, C. Charlton, and P. O’Brien. Agentcities: A
Worldwide Open Agent Network. Agentlink News, (8):13-15, November 2001.

F. H. Zoltan Somogyi and T. Conway. Mercury: an efficient purely declarative
logic programming language. In Proceedings of the Australian Computer Science
Conference, pages 499-512, 1995.

