
Frangipani: A Scalable Distributed File System

Chandramohan A. Thekkath
Timothy Mann
Edward K. Lee

Systems Research Center
Digital Equipment Corporation

130 Lytton Ave, Palo Alto, CA 94301

Abstract

The ideal distributed file system would provide all its users with co-
herent, shared access to the same set of files,yet would be arbitrarily
scalable to provide more storage space and higher performance to
a growing user community. It would be highly available in spite of
component failures. It would require minimal human administra-
tion, and administration would not become more complex as more
components were added.

Frangipani is a new file system that approximates this ideal, yet
was relatively easy to build because of its two-layer structure. The
lower layer is Petal (described in an earlier paper), a distributed
storage service that provides incrementally scalable, highly avail-
able, automatically managed virtual disks. In the upper layer,
multiple machines run the same Frangipani file system code on top
of a shared Petal virtual disk, using a distributed lock service to
ensure coherence.

Frangipani is meant to run in a cluster of machines that are under
a common administration and can communicate securely. Thus the
machines trust one another and the shared virtual disk approach is
practical. Of course, a Frangipani file system can be exported to
untrusted machines using ordinary network file access protocols.

We have implemented Frangipani on a collection of Alphas
running DIGITAL Unix 4.0. Initial measurements indicate that
Frangipani has excellent single-server performance and scales well
as servers are added.

1 Introduction

File system administration for a large, growing computer installa-
tion built with today’s technology is a laborious task. To hold more
files and serve more users, one must add more disks, attached to
more machines. Each of these components requires human admin-
istration. Groups of files are often manually assigned to particular
disks, then manually moved or replicated when components fill
up, fail, or become performance hot spots. Joining multiple disk
drives into one unit using RAID technology is only a partial so-
lution; administration problems still arise once the system grows
large enough to require multiple RAIDs and multiple server ma-
chines.

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Frangipani is a new scalable distributed file system that manages
a collection of disks on multiple machines as a single shared pool
of storage. The machines are assumed to be under a common
administration and to be able to communicate securely. There have
been many earlier attempts at building distributed file systems that
scale well in throughput and capacity [1, 11, 19, 20, 21, 22, 26,
31, 33, 34]. One distinguishing feature of Frangipani is that it has
a very simple internal structure—a set of cooperating machines
use a common store and synchronize access to that store with
locks. This simple structure enables us to handle system recovery,
reconfiguration, and load balancing with very little machinery.
Another key aspect of Frangipani is that it combines a set of features
that makes it easier to use and administer Frangipani than existing
file systems we know of.

1. All users are given a consistent view of the same set of files.

2. More servers can easily be added to an existing Frangipani
installation to increase its storage capacity and throughput,
without changing the configuration of existing servers, or
interrupting their operation. The servers can be viewed as
“bricks” that can be stacked incrementally to build as large a
file system as needed.

3. A system administrator can add new users without concern
for which machines will manage their data or which disks
will store it.

4. A system administrator can make a full and consistent backup
of the entire file system without bringing it down. Backups
can optionally be kept online, allowing users quick access to
accidentally deleted files.

5. The file system tolerates and recovers from machine,network,
and disk failures without operator intervention.

Frangipani is layered on top of Petal [24], an easy-to-administer
distributed storage system that provides virtual disks to its clients.
Like a physical disk, a Petal virtual disk provides storage that can
be read or written in blocks. Unlike a physical disk, a virtual
disk provides a sparse 264 byte address space, with physical stor-
age allocated only on demand. Petal optionally replicates data for
high availability. Petal also provides efficient snapshots [7, 10] to
support consistent backup. Frangipani inherits much of its scala-
bility, fault tolerance, and easy administration from the underlying
storage system, but careful design was required to extend these
properties to the file system level. The next section describes the
structure of Frangipani and its relationship to Petal in greater detail.

User
program

User
program

User
program

Frangipani
file server

Frangipani
file server

Distributed
lock service Petal

distributed virtual
disk service

Physical disks

Figure 1: Frangipani layering. Several interchangeable Frangi-
pani servers provide access to one set of files on one Petal virtual
disk.

Figure 1 illustrates the layering in the Frangipani system. Multi-
ple interchangeable Frangipani servers provide access to the same
files by running on top of a shared Petal virtual disk, coordinat-
ing their actions with locks to ensure coherence. The file system
layer can be scaled up by adding Frangipani servers. It achieves
fault tolerance by recovering automatically from server failures
and continuing to operate with the servers that survive. It provides
improved load balancing over a centralized network file server by
splitting up the file system load and shifting it to the machines that
are using the files. Petal and the lock service are also distributed
for scalability, fault tolerance, and load balancing.

Frangipani servers trust one another, the Petal servers, and the
lock service. Frangipani is designed to run well in a cluster of
workstations within a single administrative domain, although a
Frangipani file system may be exported to other domains. Thus,
Frangipani can be viewed as a cluster file system.

We have implemented Frangipani under DIGITAL Unix 4.0.
Due to Frangipani’s clean layering atop the existing Petal service,
we were able to implement a working system in only a few months.

Frangipani is targeted for environments with program develop-
ment and engineering workloads. Our tests indicate that on such
workloads, Frangipani has excellent performance and scales up to
the limits imposed by the network.

2 System Structure

Figure 2 depicts one typical assignment of functions to machines.
The machines shown at the top run user programs and the Frangi-
pani file server module; they can be diskless. Those shown at the
bottom run Petal and the distributed lock service.

The components of Frangipani do not have to be assigned to
machines in exactly the way shown in Figure 2. The Petal and
Frangipani servers need not be on separate machines; it would
make sense for every Petal machine to run Frangipani as well,
particularly in an installation where the Petal machines are not
heavily loaded. The distributed lock service is independent of the
rest of the system; we show one lock server as running on each Petal
server machine, but they could just as well run on the Frangipani
hosts or any other available machines.

2.1 Components

As shown in Figure 2, user programs access Frangipani through
the standard operating system call interface. Programs running
on different machines all see the same files, and their views are
coherent; that is, changesmade to a file or directory on one machine

Petal
server

Lock
server Petal

server

Lock
server Petal

server

Lock
server

Petal virtual disk

Network

User programs

File system switch

Frangipani
file server module

Petal
device driver

User programs

File system switch

Frangipani
file server module

Petal
device driver

Figure 2: Frangipani structure. In one typical Frangipani con-
figuration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
roles.

are immediately visible on all others. Programs get essentially the
same semantic guarantees as on a local Unix file system: changes
to file contents are staged through the local kernel buffer pool
and are not guaranteed to reach nonvolatile storage until the next
applicable fsync or sync system call, but metadata1 changes
are logged and can optionally be guaranteed non-volatile by the
time the system call returns. In a small departure from local file
system semantics, Frangipani maintains a file’s last-accessed time
only approximately, to avoid doing a metadata write for every data
read.

The Frangipani file server module on each machine runs within
the operating system kernel. It registers itself with the kernel’s file
system switch as one of the available file system implementations.
The file server module uses the kernel’s buffer pool to cache data
from recently used files. It reads and writes Petal virtual disks using
the local Petal device driver. All the file servers read and write the
same file system data structures on the shared Petal disk, but each
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so that when
a Frangipani server crashes, another server can access the log and
run recovery. The Frangipani servers have no need to communicate
directly with one another; they communicate only with Petal and
the lock service. This keeps server addition, deletion, and recovery
simple.

The Petal device driver hides the distributed nature of Petal,
making Petal look like an ordinary local disk to higher layers of
the operating system. The driver is responsible for contacting the

1We define metadata as any on-disk data structure other than the contents of an
ordinary file.

correct Petal server and failing over to another when necessary.
Any Digital Unix file system can run on top of Petal, but only
Frangipani provides coherent access to the same files from multiple
machines.

The Petal servers run cooperatively to provide Frangipani with
large, scalable, fault-tolerant virtual disks, implemented on top of
the ordinary physical disks connected to each server. Petal can
tolerate one or more disk or server failures, as long as a majority of
the Petal servers remain up and in communication and at least one
copy of each data block remains physically accessible. Additional
details on Petal are available in a separate paper [24].

The lock service is a general-purpose service that provides
multiple-reader/single-writer locks to clients on the network. Its
implementation is distributed for fault tolerance and scalable per-
formance. Frangipani uses the lock service to coordinate access to
the virtual disk and to keep the buffer caches coherent across the
multiple servers.

2.2 Security and the Client/Server Configuration

In the configuration shown in Figure 2, every machine that hosts
user programs also hosts a Frangipani file server module. This
configuration has the potential for good load balancing and scaling,
but poses security concerns. Any Frangipani machine can read or
write any block of the shared Petal virtual disk, so Frangipani must
run only on machines with trusted operating systems; it would
not be sufficient for a Frangipani machine to authenticate itself to
Petal as acting on behalf of a particular user, as is done in remote
file access protocols like NFS. Full security also requires Petal
servers and lock servers to run on trusted operating systems, and
all three types of components to authenticate themselves to one
another. Finally, to ensure file data is kept private, users should be
prevented from eavesdropping on the network interconnecting the
Petal and Frangipani machines.

One could fully solve these problems by placing the machines
in an environment that prevents users from booting modified op-
erating system kernels on them, and interconnecting them with
a private network that user processes are not granted access to.
This does not necessarily mean that the machines must be locked
in a room with a private physical network; known cryptographic
techniques for secure booting, authentication, and encrypted links
could be used instead [13, 37]. Also, in many applications, partial
solutions may be acceptable; typical existing NFS installations are
not secure against network eavesdropping or even data modifica-
tion by a user who boots a modified kernel on his workstation. We
have not implemented any of these security measures to date, but
we could reach roughly the NFS level of security by having the
Petal servers accept requests only from a list of network addresses
belonging to trusted Frangipani server machines.

Frangipani file systems can be exported to untrusted machines
outside an administrative domain using the configuration illustrated
in Figure 3. Here we distinguish between Frangipani client and
server machines. Only the trusted Frangipani servers communicate
with Petal and the lock service. These can be located in a restricted
environment and interconnected by a private network as discussed
above. Remote, untrusted, clients talk to the Frangipani servers
through a separate network and have no direct access to the Petal
servers.

Clients can talk to a Frangipani server using any file access pro-
tocol supported by the host operating system, such as DCE/DFS,
NFS, or SMB, becauseFrangipani looks just like a local file system
on the machine running the Frangipani server. Of course, a pro-

User programs

File system switch

NFS or DFS client

File system switch

Frangipani
file server module

NFS or DFS server

Petal
device driver

 Network

 To lock service
 and Petal

Frangipani
client
machine

Frangipani
server
machine

Figure 3: Client/server configuration. A Frangipani server can
provide file access not only for the local machine, but also for re-
mote client machines that connect via standard network file system
protocols.

tocol that supports coherent access (such as DCE/DFS) is best, so
that Frangipani’s coherence across multiple servers is not thrown
away at the next level up. Ideally, the protocol should also support
failover from one Frangipani server to another. The protocols just
mentioned do not support failover directly, but the technique of
having a new machine take over the IP address of a failed machine
has been used in other systems [3, 25] and could be applied here.

Apart from security, there is a second reason for using this
client/server configuration. Because Frangipani runs in the kernel,
it is not quickly portable across different operating systems or even
different versions of Unix. Clients can use Frangipani from an
unsupported system by accessing a supported one remotely.

2.3 Discussion

The idea of building a file system in two layers—a lower level
providing a storage repository and a higher level providing names,
directories, and files—is not unique to Frangipani. The earliest
example we know of is the Universal File Server [4]. However,
the storage facility provided by Petal is substantially different from
earlier systems, leading to a different higher level structure as well.
Section 10 contains detailed comparisons with previous systems.

Frangipani has been designed to work with the storage abstrac-
tion provided by Petal. We have not fully considered the de-
sign changes needed to exploit alternative storage abstractions like
NASD [13].

Petal provides highly available storage that can scale in through-
put and capacity as resources are added to it. However, Petal has no
provision for coordination or sharing the storage among multiple
clients. Furthermore, most applications cannot directly use Petal’s
client interface because it is disk-like and not file-like. Frangipani
provides a file system layer that makes Petal useful to applications
while retaining and extending its good properties.

A strength of Frangipani is that it allows transparent server
addition, deletion, and failure recovery. It is able to do this easily
by combining write-ahead logging and locks with a uniformly
accessible, highly available store.

Another strength of Frangipani is its ability to create consis-
tent backups while the system is running. Frangipani’s backup

0 1 255... ...

 Param−
eters

Logs Allocation
bitmaps

Inodes
512 B each

Small blocks
4 KB each

Large blocks
1 TB each

... ...

0 1T 2T 5T 6T 134T 135T 136T 2^64

...

Figure 4: Disk layout. Frangipani takes advantage of Petal’s large, sparse disk address space to simplify its data structures. Each server
has its own log and its own blocks of allocation bitmap space.

mechanism is discussed in Section 8.
There are three aspects of the Frangipani design that can be

problematic. Using Frangipani with a replicated Petal virtual disk
implies that logging sometimes occurs twice,once to the Frangipani
log, and once again within Petal itself. Second, Frangipani does not
use disk location information in placing data—indeed it cannot—
because Petal virtualizes the disks. Finally, Frangipani locks entire
files and directories rather than individual blocks. We do not
have enough usage experience to evaluate these aspects of our
design in a general setting,but despite them, Frangipani’s measured
performance on the engineering workloads we have tested is good.

3 Disk Layout

Frangipani uses the large, sparse disk address space of Petal to
simplify its data structures. The general idea is reminiscent of
past work on programming computers with large memory address
spaces [8]. There is so much address space available that it can be
parcelled out generously.

A Petal virtual disk has 264 bytes of address space. Petal commits
physical disk space to virtual addresses only when they are written.
Petal also provides a decommit primitive that frees the physical
space backing a range of virtual disk addresses.

To keep its internal data structures small, Petal commits and
decommits space in fairly large chunks, currently 64 KB. That is,
each 64 KB range of addresses

� ���
216 ��� ��� 1 � � 216 � in which

some data has been written and not decommitted has 64 KB of
physical disk space allocated to it. Thus Petal clients cannot afford
to make their data structures too sparse, or too much physical disk
space will be wasted through fragmentation. Figure 4 shows how
Frangipani divides up its virtual disk space.

The first region stores shared configuration parameters and
housekeeping information. We allow one terabyte (TB) of vir-
tual space for this region, but in fact only a few kilobytes of it are
currently used.

The second region stores logs. Each Frangipani server obtains
a portion of this space to hold its private log. We have reserved
one TB (240 bytes) for this region, partitioned into 256 logs. This
choice limits our current implementation to 256 servers, but this
could easily be adjusted.

The third region is used for allocation bitmaps, to describe which
blocks in the remaining regions are free. Each Frangipani server
locks a portion of the bitmap space for its exclusive use. When
a server’s bitmap space fills up, it finds and locks another unused
portion. The bitmap region is 3 TB long.

The fourth region holds inodes. Each file needs an inode to
hold its metadata, such as timestamps and pointers to the location

of its data.2 Symbolic links store their data directly in the inode.
We have made inodes 512 bytes long, the size of a disk block,
thereby avoiding the unnecessary contention (“false sharing”) be-
tween servers that would occur if two servers needed to access
different inodes in the same block. We allocate one TB of inode
space, allowing room for 231 inodes. The mapping between bits in
the allocation bitmap and inodes is fixed, so each Frangipani server
allocates inodes to new files only from the portions of the inode
space that corresponds to its portions of the allocation bitmap. But
any Frangipani server may read, write, or free any existing file’s
inode.

The fifth region holds small data blocks, each 4 KB (212 bytes)
in size. The first 64 KB (16 blocks) of a file are stored in small
blocks. If a file grows to more than 64 KB, the rest is stored in one
large block. We allocate 247 bytes for small blocks, thus allowing
up to 235 of them, 16 times the maximum number of inodes.

The remainder of the Petal address spaceholds large data blocks.
One TB of address space is reserved for every large block.

Our disk layout policy of using 4 KB blocks can suffer from
more fragmentation than a policy that more carefully husbands
disk space. Also, allocating 512 bytes per inode is somewhat
wasteful of space. We could alleviate these problems by storing
small files in the inode itself [29]. What we gain with our design
is simplicity, which we believe is a reasonable tradeoff for the cost
of extra physical disk space.

The current scheme limits Frangipani to slightly less than 224

(16 million) large files, where a large file is any file bigger than
64 KB. Also, no file can be larger than 16 small blocks plus one
large block (64 KB plus 1 TB). If these limits prove too small,
we could easily reduce the size of large blocks, thus making a
larger number available, and permit large files to span more than
one large block, thus raising the maximum file size. Should the
264 byte address space limit prove inadequate, a single Frangipani
server can support multiple Frangipani file systems on multiple
virtual disks.

We have chosen these file system parameters based on our usage
experience with earlier file systems. We believe our choices will
serve us well, but only time and usage can confirm this. The
design of Frangipani is flexible enough that we can experiment
with different layouts at the cost of a backup and restore of the file
system.

4 Logging and Recovery

Frangipani uses write-ahead redo logging of metadata to simplify
failure recovery and improve performance; user data is not logged.

2In this section the word file includes directories, symbolic links, and the like.

Each Frangipani server has its own private log in Petal. When
a Frangipani file server needs to make a metadata update, it first
creates a record describing the update and appends it to its log in
memory. These log records are periodically written out to Petal
in the same order that the updates they describe were requested.
(Optionally, we allow the log records to be written synchronously.
This offers slightly better failure semantics at the cost of increased
latency for metadata operations.) Only after a log record is written
to Petal does the server modify the actual metadata in its perma-
nent locations. The permanent locations are updated periodically
(roughly every 30 seconds) by the Unix update demon.

Logs are bounded in size—128 KB in the current implementa-
tion. Given Petal’s allocation policy, a log will be composed of
two 64 KB fragments on two distinct physical disks. The space
allocated for each log is managed as a circular buffer. When the
log fills, Frangipani reclaims the oldest 25% of the log space for
new log entries. Ordinarily, all the entries in the reclaimed area
will refer to metadata blocks that have already been written to
Petal (in a previous sync operation), in which case no additional
Petal writes need to be done. If there are metadata blocks that
have not yet been written, this work is completed before the log is
reclaimed. Given the size of the log and typical sizes of Frangi-
pani log records (80–128 bytes), the log can fill up between two
periodic sync operations if there are about 1000–1600 operations
that modify metadata in that interval.

If a Frangipani server crashes, the system eventually detects
the failure and runs recovery on that server’s log. Failure may be
detected either by a client of the failed server, or when the lock
service asks the failed server to return a lock it is holding and gets
no reply. The recovery demon is implicitly given ownership of
the failed server’s log and locks. The demon finds the log’s start
and end, then examines each record in order, carrying out each de-
scribed update that is not already complete. After log processing
is finished, the recovery demon releases all its locks and frees the
log. The other Frangipani servers can then proceed unobstructed
by the failed server, and the failed server itself can optionally be
restarted (with an empty log). As long as the underlying Petal vol-
ume remains available, the system tolerates an unlimited number
of Frangipani server failures.

To ensure that recovery can find the end of the log (even when the
disk controllers write data out of order), we attach a monotonically
increasing log sequence number to each 512-byte block of the log.
The end of the log can be reliably detected by finding a sequence
number that is lower than the preceding one.

Frangipani ensures that logging and recovery work correctly in
the presence of multiple logs. This requires attention to several
details.

First, Frangipani’s locking protocol, described in the next sec-
tion, ensures that updates requested to the same data by different
servers are serialized. A write lock that covers dirty data can change
owners only after the dirty data has been written to Petal, either
by the original lock holder or by a recovery demon running on its
behalf. This implies that at most one log can hold an uncompleted
update for any given block.

Second, Frangipani ensures that recovery applies only updates
that were logged since the server acquired the locks that cover
them, and for which it still holds the locks. This is needed to
ensure that the serialization imposed by the locking protocol is
not violated. We make this guarantee by enforcing a stronger
condition: recovery never replays a log record describing an update
that has already been completed. To accomplish the latter, we keep
a version number on every 512-byte metadata block. Metadata

such as directories, which span multiple blocks, have multiple
version numbers. For each block that a log record updates, the
record contains a description of the changes and the new version
number. During recovery, the changes to a block are applied only
if the block version number is less than the record version number.

Because user data updates are not logged, only metadata blocks
have space reserved for version numbers. This creates a compli-
cation. If a block were used for metadata, freed, and then reused
for user data, old log records referring to the block might not be
skipped properly after the version number was overwritten with ar-
bitrary user data. Frangipani avoids this problem by reusing freed
metadata blocks only to hold new metadata.

Finally, Frangipani ensures that at any time only one recovery
demon is trying to replay the log region of a specific server. The
lock service guarantees this by granting the active recovery demon
an exclusive lock on the log.

Frangipani’s logging and recovery schemes assume that a disk
write failure leaves the contents of a single sector in either the old
state or the new state but never in a combination of both. If a sector
is damaged such that reading it returns a CRC error, Petal’s built-in
replication can ordinarily recover it. If both copies of a sector were
to be lost, or if Frangipani’s data structures were corrupted by a
software bug, a metadata consistency check and repair tool (like
Unix fsck) would be needed. We have not implemented such a tool
to date.

Frangipani’s logging is not intended to provide high-level se-
mantic guarantees to its users. Its purpose is to improve the per-
formance of metadata updates and to speed up failure recovery by
avoiding the need to run programs like fsck each time a server fails.
Only metadata is logged, not user data, so a user has no guarantee
that the file system state is consistent from his point of view after
a failure. We do not claim these semantics to be ideal, but they
are the same as what standard local Unix file systems provide. In
both local Unix file systems and Frangipani, a user can get better
consistency semantics by calling fsync at suitable checkpoints.

Frangipani’s logging is an application of techniques first devel-
oped for databases [2] and later used in several other log-based file
systems [9, 11, 16, 18]. Frangipani is not a log-structured file sys-
tem [32]; it does not keep all its data in the log, instead maintaining
conventional on-disk data structures, with a small log as an adjunct
to provide improved performance and failure atomicity. Unlike the
other log-based file systems cited above, but like the log-structured
file systems Zebra [17] and xFS [1], Frangipani keeps multiple
logs.

5 Synchronization and Cache Coherence

With multiple Frangipani servers all modifying shared on-disk data
structures, careful synchronization is needed to give each server a
consistent view of the data, and yet allow enough concurrency
to scale performance as load is increased or servers are added.
Frangipani uses multiple-reader/single-writer locks to implement
the necessary synchronization. When the lock service detects con-
flicting lock requests, the current holder of the lock is asked to
release or downgrade it to remove the conflict.

A read lock allows a server to read the associated data from disk
and cache it. If a server is asked to release its read lock, it must
invalidate its cache entry before complying. A write lock allows a
server to read or write the associated data and cache it. A server’s
cached copy of a disk block can be different from the on-disk
version only if it holds the relevant write lock. Thus if a server

is asked to release its write lock or downgrade it to a read lock, it
must write the dirty data to disk before complying. It can retain its
cache entry if it is downgrading the lock, but must invalidate it if
releasing the lock.

Instead of flushing the dirty data to disk when a write lock is
released or downgraded, we could have chosen to bypass the disk
and forward the dirty data directly to the requester. We did not
do this for reasons of simplicity. First, in our design, Frangipani
servers do not need to communicate with each other. They com-
municate only with Petal and the lock server. Second, our design
ensures that when a server crashes, we need only process the log
used by that server. If dirty buffers were directly forwarded and the
destination server with the dirty buffer crashed, log entries refer-
ring to the dirty buffer could be spread out across several machines.
This would pose a problem both for recovery and in reclaiming log
space as it fills up.

We have divided the on-disk structures into logical segments
with locks for each segment. To avoid false sharing, we ensure
that a single disk sector does not hold more than one data structure
that could be shared. Our division of on-disk data structures into
lockable segments is designed to keep the number of locks reason-
ably small, yet avoid lock contention in the common case, so that
the lock service is not a bottleneck in the system.

Each log is a single lockable segment, because logs are private.
The bitmap space is also divided into segments that are locked
exclusively, so that there is no contention when new files are allo-
cated. A data block or inode that is not currently allocated to a file
is protected by the lock on the segment of the allocation bitmap
that holds the bit marking it as free. Finally, each file, directory,
or symbolic link is one segment; that is, one lock protects both the
inode and any file data it points to. This per-file lock granularity is
appropriate for engineering workloads where files rarely undergo
concurrent write-sharing. Other workloads, however, may require
finer granularity locking.

Some operations require atomically updating several on-disk
data structures covered by different locks. We avoid deadlock by
globally ordering these locks and acquiring them in two phases.
First, a server determines what locks it needs. This may involve
acquiring and releasing some locks, to look up names in a directory,
for example. Second, it sorts the locks by inode address and
acquires each lock in turn. The server then checks whether any
objects it examined in phase one were modified while their locks
were released. If so, it releases the locks and loops back to repeat
phase one. Otherwise, it performs the operation, dirtying some
blocks in its cache and writing a log record. It retains each lock
until the dirty blocks it covers are written back to disk.

The cache coherence protocol we have just described is similar
to protocols used for client file caches in Echo [26], the Andrew
File System [19], DCE/DFS [21], and Sprite [30]. The deadlock
avoidance technique is similar to Echo’s. Like Frangipani, the
Oracle data base (Oracle Parallel Server), also writes dirty data to
disk instead of using cache-to-cache transfers between successive
owners of the write lock.

6 The Lock Service

Frangipani requires only a small, generic set of functions from its
lock service, and we do not expect the service to be a performance
bottleneck in normal operation, so many different implementations
could fill its requirements. We have used three different lock ser-
vice implementations in the course of the Frangipani project, and

other existing lock services could provide the necessary function-
ality, perhaps with a thin layer of additional code on top.

The lock service provides multiple-reader/single-writer locks.
Locks are sticky; that is, a client will generally retain a lock until
some other client needs a conflicting one. (Recall that the clients
of the lock service are the Frangipani servers.)

The lock service deals with client failure using leases [15, 26].
When a client first contacts the lock service, it obtains a lease. All
locks the client acquires are associated with the lease. Each lease
has an expiration time, currently set to 30 seconds after its creation
or last renewal. A client must renew its lease before the expiration
time, or the service will consider it to have failed.

Network failures can prevent a Frangipani server from renewing
its lease even though it has not crashed. When this happens, the
server discards all its locks and the data in its cache. If anything in
the cache was dirty, Frangipani turns on an internal flag that causes
all subsequent requests from user programs to return an error. The
file system must be unmounted to clear this error condition. We
have chosen this drastic way of reporting the error to make it
difficult to ignore inadvertently.

Our initial lock service implementation was a single, centralized
server that kept all its lock state in volatile memory. Such a server
is adequate for Frangipani, becausethe Frangipani servers and their
logs hold enough state information to permit recovery even if the
lock service loses all its state in a crash. However, a lock service
failure would cause a large performance glitch.

Our second implementation stored the lock state on a Petal vir-
tual disk, writing each lock state change through to Petal before
returning to the client. If the primary lock server crashed, a backup
server would read the current state from Petal and take over to pro-
vide continued service. With this scheme, failure recovery is more
transparent, but performance for the common case is poorer than
the centralized, in-memory approach. We did not fully implement
automatic recovery from all failure modes for this implementation
before going on to the next one.

Our third and final lock service implementation is fully dis-
tributed for fault tolerance and scalable performance. It consists
of a set of mutually cooperating lock servers, and a clerk module
linked into each Frangipani server.

The lock service organizes locks into tables named by ASCII
strings. Individual locks within tables are named by 64-bit inte-
gers. Recall that a single Frangipani file system uses only one
Petal virtual disk, although multiple Frangipani file systems can
be mounted on the same machine. Each file system has a table
associated with it. When a Frangipani file system is mounted, the
Frangipani server calls into the clerk, which opens the lock table
associated with that file system. The lock server gives the clerk
a lease identifier on a successful open, which is used in all sub-
sequent communication between them. When the file system is
unmounted, the clerk closes the lock table.

Clerks and the lock servers communicatevia asynchronousmes-
sages rather than RPC to minimize the amount of memory used and
to achieve good flexibility and performance. The basic message
types that operate on locks are request, grant, revoke, and release.
The requestand releasemessage types are sent from the clerk to the
lock server, whereas the grant and revoke message types are sent
from the lock server to the clerk. Lock upgrade and downgrade
operations are also handled using these four message types.

The lock service uses a fault-tolerant, distributed failure detec-
tion mechanism to detect the crash of lock servers. This is the
same mechanism used by Petal. It is based on the timely exchange
of heartbeat messages between sets of servers. It uses majority

consensus to tolerate network partitions.
Locks consume memory at the server and at each clerk. In our

current implementation, the server allocates a block of 112 bytes
per lock, in addition to 104 bytes per clerk that has an outstanding
or granted lock request. Each client uses up 232 bytes per lock. To
avoid consuming too much memory because of sticky locks, clerks
discard locks that have not been used for a long time (1 hour).

A small amount of global state information that does not change
often is consistently replicated across all lock servers using Lam-
port’s Paxos algorithm [23]. The lock service reuses an imple-
mentation of Paxos originally written for Petal. The global state
information consists of a list of lock servers, a list of locks that each
is responsible for serving, and a list of clerks that have opened but
not yet closed each lock table. This information is used to achieve
consensus, to reassign locks across lock servers, to recover lock
state from clerks after a lock server crash, and to facilitate recovery
of Frangipani servers. For efficiency, locks are partitioned into
about one hundred distinct lock groups, and are assigned to servers
by group, not individually.

Locks are occasionally reassigned across lock servers to com-
pensate for a crashed lock server or to take advantage of a newly
recovered lock server. A similar reassignment occurs when a lock
server is permanently added to or removed from the system. In
such cases, the locks are always reassigned such that the number
of locks served by each server is balanced, the number of reassign-
ments is minimized, and each lock is served by exactly one lock
server. The reassignment occurs in two phases. In the first phase,
lock servers that lose locks discard them from their internal state.
In the second phase, lock servers that gain locks contact the clerks
that have the relevant lock tables open. The servers recover the
state of their new locks from the clerks, and the clerks are informed
of the new servers for their locks.

When a Frangipani server crashes, the locks that it owns cannot
be released until appropriate recovery actions have been performed.
Specifically, the crashed Frangipani server’s log must be processed
and any pending updates must be written to Petal. When a Frangi-
pani server’s lease expires, the lock service will ask the clerk on
another Frangipani machine to perform recovery and to then re-
lease all locks belonging to the crashed Frangipani server. This
clerk is granted a lock to ensure exclusive access to the log. This
lock is itself covered by a lease so that the lock service will start
another recovery process should this one fail.

In general, the Frangipani system tolerates network partitions,
continuing to operate when possible and otherwise shutting down
cleanly. Specifically, Petal can continue operation in the face of
network partitions, as long as a majority of the Petal servers remain
up and in communication, but parts of the Petal virtual disk will be
inaccessible if there is no replica in the majority partition. The lock
service continues operation as long as a majority of lock servers
are up and in communication. If a Frangipani server is partitioned
away from the lock service, it will be unable to renew its lease.
The lock service will declare such a Frangipani server dead and
initiate recovery from its log on Petal. If a Frangipani server is
partitioned away from Petal, it will be unable to read or write the
virtual disk. In either of these cases, the server will disallow further
user access to the affected file system until the partition heals and
the file system is remounted.

There is a small hazard when a Frangipani server’s lease expires.
If the server did not really crash, but was merely out of contact with
the lock service due to network problems, it may still try to access
Petal after its lease has expired. A Frangipani server checks that its
lease is still valid (and will still be valid for � margin seconds) before

attempting any write to Petal. Petal, however, does no checking
when a write request arrives. Thus, if there is a sufficient time delay
between Frangipani’s lease check and the arrival of the subsequent
write request at Petal, we could have a problem: The lease could
have expired and the lock been given to a different server. We use
a large enough error margin � margin (15 seconds) that under normal
circumstances this problem would never occur, but we cannot rule
it out absolutely.

In the future we would like to eliminate this hazard; one method
that would work is as follows. We add an expiration timestamp
on each write request to Petal. The timestamp is set to the current
lease expiration time at the moment the write request is generated,
minus � margin . We then have Petal ignore any write request with a
timestamp less than the current time. This method reliably rejects
writes with expired leases, provided that the clocks on Petal and
Frangipani servers are synchronized to within � margin .

Another method, which does not required synchronized clocks,
is to integrate the lock server with Petal and include the lease
identifier obtained from the lock server with every write request to
Petal. Petal would then reject any write request with an expired
lease identifier.

7 Adding and Removing Servers

As a Frangipani installation grows and changes, the system admin-
istrator will occasionally need to add or remove server machines.
Frangipani is designed to make this task easy.

Adding another Frangipani server to a running system requires
a minimal amount of administrative work. The new server need
only be told which Petal virtual disk to use and where to find the
lock service. The new server contacts the lock service to obtain a
lease, determines which portion of the log space to use from the
lease identifier, and goes into operation. The administrator does
not need to touch the other servers; they adapt to the presence of
the new one automatically.

Removing a Frangipani server is even easier. It is adequate to
simply shut the server off. It is preferable for the server to flush
all its dirty data and release its locks before halting, but this is not
strictly needed. If the server halts abruptly, recovery will run on
its log the next time one of its locks is needed, bringing the shared
disk into a consistent state. Again, the administrator does not need
to touch the other servers.

Petal servers can also be added and removed transparently, as
described in the Petal paper [24]. Lock servers are added and
removed in a similar manner.

8 Backup

Petal’s snapshot feature provides us with a convenient way to make
consistent full dumps of a Frangipani file system. Petal allows a
client to create an exact copy of a virtual disk at any point in
time. The snapshot copy appears identical to an ordinary virtual
disk, except that it cannot be modified. The implementation uses
copy-on-write techniques for efficiency. The snapshots are crash-
consistent; that is, a snapshot reflects a coherent state, one that
the Petal virtual disk could have been left in if all the Frangipani
servers were to crash.

Hence we can backup a Frangipani file system simply by taking
a Petal snapshot and copying it to tape. The snapshot will include
all the logs, so it can be restored by copying it back to a new
Petal virtual disk and running recovery on each log. Due to the

crash-consistency, restoring from a snapshot reduces to the same
problem as recovering from a system-wide power failure.

We could improve on this scheme with a minor change to Frangi-
pani, creating snapshots that are consistent at the file system level
and require no recovery. We can accomplish this by having the
backup program force all the Frangipani servers into a barrier,
implemented using an ordinary global lock supplied by the lock
service. The Frangipani servers acquire this lock in shared mode to
do any modification operation, while the backup process requests
it in exclusive mode. When a Frangipani server receives a request
to release the barrier lock, it enters the barrier by blocking all new
file system calls that modify data, cleaning all dirty data in its cache
and then releasing the lock. When all the Frangipani servers have
entered the barrier, the backup program is able to acquire the ex-
clusive lock; it then makes a Petal snapshot and releases the lock.
At this point the servers reacquire the lock in shared mode, and
normal operation resumes.

With the latter scheme, the new snapshot can be mounted as a
Frangipani volume with no need for recovery. The new volume
can be accessed on-line to retrieve individual files, or it can be
dumped to tape in a conventional backup format that does not re-
quire Frangipani for restoration. The new volume must be mounted
read-only, however, because Petal snapshots are currently read-
only. In the future we may extend Petal to support writable snap-
shots, or we may implement a thin layer on top of Petal to simulate
them.

9 Performance

Frangipani’s layered structure has made it easier to build than a
monolithic system, but one might expect the layering to exact a
cost in performance. In this section we show that Frangipani’s
performance is good in spite of the layering.

As in other file systems, latency problems in Frangipani can
be solved straightforwardly by adding a non-volatile memory
(NVRAM) buffer in front of the disks. The most effective place
to put NVRAM in our system is directly between the physical
disks and the Petal server software. Ordinary PrestoServe cards
and drivers suffice for this purpose, with no changes to Petal or
Frangipani needed. Failure of the NVRAM on a Petal server is
treated by Petal as equivalent to a server failure.

Several aspects of Frangipani and Petal combine to provide good
scaling of throughput. There is parallelism at both layers of the
system: multiple Frangipani servers, multiple Petal servers, and
multiple disk arms all working in parallel. When many clients are
using the system, this parallelism increases the aggregate through-
put. As compared with a centralized network file server,Frangipani
should have less difficulty dealing with hot spots, because file sys-
tem processing is split up and shifted to the machines that are
using the files. Both the Frangipani and Petal logs can commit up-
dates from many different clients in one log write (group commit),
providing improved log throughput under load. Individual clients
doing large writes also benefit from parallelism, due to Petal’s
striping of data across multiple disks and servers.

9.1 Experimental Setup

We are planning to build a large storage testbed with about 100 Petal
nodes attached to several hundred disks and about 50 Frangipani
servers. Petal nodes will be small array controllers attached to
off-the-shelf disks and to the network. Frangipani servers will be
typical workstations. This testbed would allow us to study the

performance of Frangipani in a large configuration. Since this is
not yet ready, we report numbers from a smaller configuration.

For the measurements reported below, we used seven 333 MHz
DEC Alpha 500 5/333 machines as Petal servers. Each machine
stores data on 9 DIGITAL RZ29 disks, which are 3.5 inch fast
SCSI drives storing 4.3 GB each, with 9 ms average seek time
and 6 MB/s sustained transfer rate. Each machine is connected to
a 24 port ATM switch by its own 155 Mbit/s point-to-point link.
PrestoServe cards containing 8 MB of NVRAM were used on these
servers where indicated below. The seven Petal servers can supply
data at an aggregate rate of 100 MB/s. With replicated virtual
disks, Petal servers can sink data at an aggregate rate of 43 MB/s.

9.2 Single Machine Performance

This subsection compares how well Frangipani’s code path com-
pares with another Unix vnode file system, namely DIGITAL’s
Advanced File System (AdvFS).

We used AdvFS for our comparison rather than the more familiar
BSD-derived UFS file system [27] because AdvFS is significantly
faster than UFS. In particular,AdvFS can stripe files across multiple
disks, thereby achieving nearly double the throughput of UFS on
our test machines. Also, unlike UFS, which synchronouslyupdates
metadata, AdvFS uses a write-ahead log like Frangipani. This
significantly reduces the latency of operations like file creation.
Both AdvFS and UFS have similar performance on reading small
files and directories.

We ran AdvFS and Frangipani file systems on two identical
machines with storage subsystems having comparable I/O perfor-
mance. Each machine has a 225 MHz DEC Alpha 3000/700 CPU
with 192 MB of RAM, which is managed by the unified buffer
cache (UBC). Each is connected to the ATM switch by its own
point-to-point link.

The Frangipani file system does not use local disks, but accesses
a replicated Petal virtual disk via the Petal device driver. When
accessed through the raw device interface using block sizes of
64 KB, the Petal driver can read and write data at about 16 MB/s,
saturating the ATM link to the Petal server. CPU utilization is
about 4%. The read latency of a Petal disk is about 11 ms.

The AdvFS file system uses a storage subsystem that has per-
formance roughly equivalent to the Petal configuration we use. It
consists of 8 DIGITAL RZ29 disks connected via two 10 MB/s fast
SCSI strings to two backplane controllers. When accessedthrough
the raw device interface, the controllers and disks can supply data
at about 17 MB/s with 4% CPU utilization. Read latency is about
10 ms. (We could have connected the AdvFS file system to a Petal
virtual disk to ensure both file systems were using identical storage
subsystems. Previous experiments [24] have shown that AdvFS
would have been about 4% slower if run on Petal. To present
AdvFS in the best light, we chose not to do this.)

It is not our intention to compare Petal’s cost/performance with
that of locally attached disks. Clearly, the hardware resources re-
quired to provide the storage subsystemsfor Frangipani and AdvFS
are vastly different. Our goal is to demonstrate that the Frangipani
code path is efficient compared to an existing, well-tuned com-
mercial file system. The hardware resources we use for Petal are
non-trivial, but these resources are amortized amongst multiple
Frangipani servers.

Tables 1 and 2 compare performance of the two systems on
standard benchmarks. Each table has four columns. In the AdvFS
Raw column, the benchmark was run with AdvFS directly access-
ing the local disks. In the AdvFS NVR column, the benchmark

was rerun with NVRAM interposed in front of the local disks. In
the Frangipani Raw column, the benchmark was run with Frangi-
pani accessing Petal via the device interface. In the Frangipani
NVR column, the Frangipani configuration was retested with the
addition of an NVRAM buffer between Petal and the disks. All
numbers are averaged over ten runs of the benchmarks. Standard
deviation is less than 12% of the mean in all cases.

AdvFS Frangipani
Phase Description Raw NVR Raw NVR

1 Create Directories 0.69 0.66 0.52 0.51
2 Copy Files 4.3 4.3 5.8 4.6
3 Directory Status 4.7 4.4 2.6 2.5
4 Scan Files 4.8 4.8 3.0 2.8
5 Compile 27.8 27.7 31.8 27.8

Table 1: Modified Andrew Benchmark with unmount opera-
tions. We compare the performance of two file system configura-
tions: local access (with and without NVRAM) to the DIGITAL
Unix Advanced File System (AdvFS), Frangipani, and Frangipani
with an NVRAM buffer added between Petal and the disks. We
unmount the file system at the end of each phase. Each table entry
is an average elapsed time in seconds; smaller numbers are better.

Table 1 gives results from the Modified Andrew Benchmark, a
widely used file system benchmark. The first phase of the bench-
mark creates a tree of directories. The second phase copies a 350
KB collection of C source files into the tree. The third phase
traverses the new tree and examines the status of each file and
directory. The fourth phase reads every file in the new tree. The
fifth phase compiles and links the files.

Unfortunately, it is difficult to make comparative measurements
using the Modified Andrew Benchmark in its standard form. This
is becausethe benchmarkdoes not account for work that is deferred
by the file system implementation. The work deferred during one
phase of the benchmark can be performed during a later phase and
thus inappropriately charged to that phase, while some work can be
deferred past the end of the benchmark and thus never accounted
for.

Like traditional Unix file systems, both AdvFS and Frangipani
defer the cost of writing dirty file data until the next sync opera-
tion, which may be explicitly requested by a user or triggered in the
background by a periodic update demon. However, unlike tradi-
tional Unix file systems, both AdvFS and Frangipani are log-based
and do not write metadata updates synchronously to disk. Instead,
metadata updates are also deferred until the next sync, or at least
until the log wraps.

In order to account properly for all sources of deferred work,
we changed the benchmark to unmount the file system after each
phase. We choseto unmount rather than to use async call because
on Digital Unix, sync queues the dirty data for writing but does
not guarantee it has reached disk before returning. The results,
shown in Table 1, indicate that Frangipani is comparable to AdvFS
in all phases.

Table 2 shows the results of running the Connectathon Bench-
mark. The Connectathon benchmark tests individual operations or
small groups of related operations, providing more insight into the
sources of the differences that are visible in the Andrew bench-
mark. Like the Andrew benchmark, this benchmark also does not
account for deferred work, so again we unmounted the file system
at the end of each phase.

Frangipani latencies with NVRAM are roughly comparable to

AdvFS Frangipani
Test Description Raw NVR Raw NVR

1 file and directory creation: 0.92 0.80 3.11 2.37
creates 155 files and
62 directories.

2 file and directory removal: 0.62 0.62 0.43 0.43
removes 155 files and 62
62 directories.

3 lookup across mount point: 0.56 0.56 0.43 0.40
500 getwd and stat calls.

4 setattr, getattr, and lookup: 0.42 0.40 1.33 0.68
1000 chmods and stats
on 10 files.

5a write: writes a 1048576 2.20 2.16 2.59 1.63
byte file 10 times.

5b read: reads a 1048576 0.54 0.45 1.81 1.83
byte file 10 times.

6 readdir: reads 20500 0.58 0.58 2.63 2.34
directory entries, 200 files.

7 link and rename: 200 0.47 0.44 0.60 0.50
renames and links
on 10 files.

8 symlink and readlink: 400 0.93 0.82 0.52 0.50
symlinks and readlinks
on 10 files.

9 statfs: 1500 statfs calls. 0.53 0.49 0.23 0.22

Table 2: Connectathon Benchmark with unmount operations.
We run the Connectathon Benchmark with a unmount operation
included at the end of each test. Each table entry is an average
elapsed time in seconds, and smaller numbers are better. Test 5b
is anomalous due to a bug in AdvFS.

that of AdvFS with four notable exceptions. Tests 1, 4, and 6
indicate that creating files,setting attributes, and reading directories
take significantly longer with Frangipani. In practice, however,
these latencies are small enough to be ignored by users, so we have
not tried very hard to optimize them.

File creation takes longer with Frangipani partly because the
128 KB log fills up several times during this test. If we double the
log size, the times reduce to 0.89 and 0.86 seconds.

Frangipani is much slower on the file read test (5b). AdvFS
does well on the file read test because of a peculiar artifact of its
implementation. On each iteration of the read test, the benchmark
makes a system call to invalidate the file from the buffer cache
before reading it in. The current AdvFS implementation appears
to ignore this invalidation directive. Thus the read test measures
the performance of AdvFS reading from the cache rather than from
disk. When we redid this test with a cold AdvFS file cache, the
performance was similar to Frangipani’s (1.80 seconds, with or
without NVRAM).

We next report on the throughput achieved by a single Frangipani
server when reading and writing large files. The file reader sits in
a loop reading a set of 10 files. Before each iteration of the loop,
it flushes the contents of the files from the buffer cache. The file
writer sits in a loop repeatedly writing a large (350 MB) private file.
The file is large enough that there is a steady stream of write traffic
to disk. Both read and write tests were run for several minutes
and we observed no significant variation in the throughput. The
time-averaged, steady state results are summarized in Table 3. The
presence or absence of NVRAM has little effect on the timing.

A single Frangipani machine can write data at about 15.3 MB/s,

Throughput (MB/s) CPU Utilization
Frangipani AdvFS Frangipani AdvFS

Write 15.3 13.3 42% 80%
Read 10.3 13.2 25% 50%

Table 3: Frangipani Throughput and CPU Utilization. We
show the performance of Frangipani in reading and writing large
files.

which is about 96% of the limit imposed by the ATM link and
UDP/IP software on our machine. Frangipani achieves good per-
formance by clustering writes to Petal into naturally aligned 64
KB blocks. It is difficult make up the last 4% because Frangipani
occasionally (e.g., during sync) must write part of the data out in
smaller blocks. Using smaller block sizes reduces the maximum
available throughput through the UDP/IP stack. The Frangipani
server CPU utilization is about 42%, and the Petal server CPUs are
not a bottleneck.

A single Frangipani machine can read data at 10.3 MB/s with
25% CPU utilization. We believe this performance can be im-
proved by changing the read-ahead algorithm used in Frangipani.
Frangipani currently uses a read-ahead algorithm borrowed from
the BSD-derived file system UFS, which is less effective than the
one used by AdvFS.

For comparison, AdvFS can write data at about 13.3 MB/s when
accessing large files that are striped over the eight RZ29 disks
connected to the two controllers. The CPU utilization is about
80%. The AdvFS read performance is about 13.2 MB/s, at a
CPU utilization of 50%. Neither the CPU nor the controllers are
bottlenecked,so we believe AdvFS performance could be improved
a bit with more tuning.

It is interesting to note that although Frangipani uses a simple
policy to lay out data, its latency and write throughput are compa-
rable to those of conventional file systems that use more elaborate
policies.

Frangipani has good write latency because the latency-critical
metadata updates are logged asynchronously rather than being per-
formed synchronously in place. File systems like UFS that syn-
chronously update metadata have to be more careful about data
placement. In separate experiments not described here, we have
found that even when Frangipani updates its logs synchronously,
performance is still quite good because the log is allocated in large
physically contiguous blocks and because the NVRAM absorbs
much of the write latency.

Frangipani achieves good write throughput because large files
are physically striped in contiguous 64 KB units over many disks
and machines, and Frangipani can exploit the parallelism inherent
in this structure. Frangipani has good read throughput for large
files for the same reason.

Recall from Section 3 that individual 4 KB blocks for files
smaller than 64 KB may not be allocated contiguously on disk.
Also, Frangipani does not do read-ahead for small files, so it can-
not always hide the disk seek access times. Thus it is possible that
Frangipani could have bad read performance on small files. To
quantify small read performance, we ran an experiment where 30
processes on a single Frangipani machine tried to read separate 8
KB files after invalidating the buffer cache. Frangipani throughput
was 6.3 MB/s, with the CPU being the bottleneck. Petal, accessed
through the raw device interface using 4 KB blocks, can deliver 8
MB/s. Thus Frangipani gets about 80% of the maximum through-
put achievable in this case.

9.3 Scaling

This section studies the scaling characteristics of Frangipani. Ide-
ally, we would like to see operational latencies that are unchanged
and throughput that scales linearly as servers are added.

 Compile
 Scan Files
 Directory Status
 Copy Files
 Create Directories

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

 Frangipani Machines

 E
la

ps
ed

 T
im

e
(s

ec
s)

Figure 5: Frangipani Scaling on Modified Andrew Benchmark.
Several Frangipani servers simultaneously run the Modified An-
drew Benchmark on independent data sets. The � -axis gives the
averageelapsed time taken by one Frangipani machine to complete
the benchmark.

Figure 5 shows the effect of scaling on Frangipani running the
Modified Andrew Benchmark. In this experiment, we measure
the average time taken by one Frangipani machine to complete
the benchmark as the number of machines is increased. This
experiment simulates the behavior of several users doing program
development on a shared data pool. We notice that there is minimal
negative impact on the latency as Frangipani machines are added.
In fact, between the single machine and six machine experiment,
the average latency increased by only 8%. This is not surprising
because the benchmark exhibits very little write sharing and we
would expect latencies to remain unaffected with increasedservers.

 Read file (Uncached)
 Linear Scaling

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

 Frangipani Machines

 T
hr

ou
gh

pu
t (

M
B

/s
)

Figure 6: Frangipani Scaling on Uncached Read. Several
Frangipani servers simultaneously read the same set of files. The
dotted line shows the linear speedup curve for comparison.

Figure 6 illustrates Frangipani’s read throughput on uncached
data. In this test, we replicate the reader from the single-server
experiment on multiple servers. The test runs for several minutes,
and we observe negligible variation in the steady-state throughput.
As indicated in the figure, Frangipani shows excellent scaling in
this test. We are in the process of installing Frangipani on more
machines, and we expect aggregate read performance to increase
until it saturates the Petal servers’ capacity.

Figure 7 illustrates Frangipani’s write throughput. Here the
writer from the single-server experiment is replicated on multiple
servers. Each server is given a distinct large file. The experiment

 Write file
 Linear Scaling

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|10

|20

|30

|40

|50

|60

 Frangipani Machines

 T
hr

ou
gh

pu
t (

M
B

/s
)

Figure 7: Frangipani Scaling on Write. Each Frangipani server
writes a large private file. The dotted line shows the linear speedup
curve for comparison. Performance tapers off early because the
ATM links to the Petal servers become saturated.

runs for several minutes, and we observe little variation in the
steady-state throughput during this interval. Since there is no lock
contention in the experiment, the performance is seen to scale well
until the ATM links to the Petal servers are saturated. Since the
virtual disk is replicated, each write from a Frangipani server turns
into two writes to the Petal servers.

9.4 Effects of Lock Contention

Since Frangipani uses coarse-grained locking on entire files, it is
important to study the effect of lock contention on performance.
We report three experiments here.

The first experiment measures the effect of read/write sharing
on files. One or more readers compete against a single writer for
the same large file. Initially, the file is not cached by the readers
or the writer. The readers read the file sequentially, while the
writer rewrites the entire file. As a result, the writer repeatedly
acquires the write lock, then gets a callback to downgrade it so that
the readers can get the read lock. This callback causes the writer
to flush data to disk. At the same time, each reader repeatedly
acquires the read lock, then gets a callback to release it so that the
writer can get the write lock. This callback causes the reader to
invalidate its cache, so its next read after reacquiring the lock must
fetch the data from disk.

 No read-ahead
 With read-ahead

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|0

|1

|2

|3

|4

|5

|6

|7
|8

 Number of Readers

 R
ea

d
T

hr
ou

gh
pu

t (
M

B
/s

)

Figure 8: Frangipani Reader/Writer Contention. One or more
Frangipani servers read a shared file while a single Frangipani
server writes the same file. We show the effect of read-ahead on
the performance.

The first results we observed in this experiment were unex-
pected. Our distributed lock manager has been designed to be

fair in granting locks, and simulations show that this is true of the
implementation. If the single writer and the � readers were to
make lock requests at a uniform rate, they would be serviced in a
round-robin fashion, so successive grants of the write lock to the
writer would be separated by � grants of the read lock to the read-
ers. During the interval between two downgrade callbacks, one
would expect the number of read requests and the aggregate read
throughput to increase as readers were added. In the limit when �

is large, the scaling would be linear. However, we did not observe
this behavior in our experiment. Instead, read throughput flattens
out at about 2 MB/s after two readers are running, as shown by the
dashed line in Figure 8. As indicated earlier in Figure 6, this is
only about 10% of what two Frangipani servers can achieve when
there is no lock contention.

We conjectured that this anomalous behavior was caused by
read-ahead, so we repeated the experiment without read-ahead to
check. Read-ahead is disadvantageous in the presence of heavy
read/write contention because when a reader is called back to re-
lease its lock, it must invalidate its cache. If there is any read-ahead
data in the cache that has not yet been delivered to the client, it
must be discarded, and the work to read it turns out to have been
wasted. Because the readers are doing extra work, they cannot
make lock requests at the same rate as the writer. Redoing the
experiment with read-ahead disabled yielded the expected scaling
result, as shown by the solid line in Figure 8.

We could make this performance improvement available to users
either by letting them explicitly disable read-ahead on specific
files, or by devising a heuristic that would recognize this case and
disable read-ahead automatically. The former would be trivial to
implement, but would affect parts of the operating system kernel
beyond Frangipani itself, making it inconvenient to support across
future releases of the kernel. The latter approach seems better, but
we have not yet devised or tested appropriate heuristics.

�
 8 KB

�
 16 KB

�
 64 KB

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Number of Readers

 R
ea

d
T

hr
ou

gh
pu

t (
M

B
/s

)

�
�

�
�

�

�
�

�
�

�

�
� �

�
�

Figure 9: Effect of Data Size on Reader/Writer Contention.
One or more Frangipani readers share varying amounts of data
with a Frangipani writer. Readahead is disabled in this experiment.

The second experiment is a variation of the first. Here, the
readers run as before, but the writer modifies different amounts of
file data. Since Frangipani locks entire files, readers will have to
invalidate their entire cache irrespective of the writer’s behavior.
However, readers will be able to acquire a lock faster when the
writer is updating fewer blocks of data because the writer must
flush only smaller amounts of data to disk. Figure 9 shows the per-
formance of Frangipani (with read-ahead disabled) when readers
and the writer concurrently share differing amounts of data. As ex-
pected, when the shared data is smaller, we get better performance.

The third experiment measures the effects of write/write sharing

on files. As the base case, a Frangipani server writes a file in
isolation. We then added Frangipani servers that wrote the same
file and measured the degradation in performance. Writers modify
file data in blocks of 64 KB. Since Frangipani does whole-file
locking, the offsets that the writers use are irrelevant for this test.
We found that the aggregate bandwidth seen by all the writers
dropped from 15 MB/s for the single-writer case to a little over 1
MB/s with two or more writers. This is not surprising, because
with multiple writers trying to modify a file, nearly every write
system call will cause a lock revocation request. This revocation
request causes the lock holder to flush its dirty data to Petal. Since
locks are being revoked on every write system call and each
call dirties only 64 KB of data, throughput is quite limited. With
smaller block sizes, throughput is even smaller.

We do not have much experience with workloads that exhibit
concurrent write sharing. If necessary, we believe it would be
straightforward to extend Frangipani to implement byte-range lock-
ing [6] or block locking instead. This would improve the perfor-
mance of workloads that read and write different parts of the same
file, making it similar to the performance of writing different files
in the current system. Workloads in which multiple machines con-
currently read and write the same blocks of the same file—where
the filesystem is being used as an interprocess communication
channel—would perform as indicated above. Frangipani is simply
not targeted for such workloads.

10 Related Work

Like Frangipani, the Cambridge (or Universal) File Server takes a
two-layered approach to building a file system [4, 28]. The split
between layers is quite different from ours, however. CFS, the
lower layer, provides its clients with two abstractions: files and
indices. File systems built above CFS can use these abstractions to
implement files and directories. A major difference between CFS
and Petal is that in CFS a single machine manages all the storage.

NFS [31, 33] is not a file system in itself, but simply a remote
file access protocol. The NFS protocol provides a weak notion
of cache coherence, and its stateless design requires clients to
access servers frequently to maintain even this level of coherence.
Frangipani provides a strongly coherent, single system view, using
a protocol that maintains more state but eliminates unnecessary
accesses to servers.

The Andrew File System (AFS) [19] and its offshoot
DCE/DFS [21] provide better cache performance and coherence
than NFS. AFS is designed for a different kind of scalability than
Frangipani. Frangipani provides a unified cluster file system that
draws from a single pool of storage, and can be scaled up to span
many disk drives across many machines under a common admin-
istration. In contrast, AFS has a global name space and security
architecture that allows one to plug in many separate file servers
and clients over a wide area. We believe the AFS and Frangipani
approaches to scaling are complementary; it would make good
sense for Frangipani servers to export the file system to wide-area
clients using the AFS or DCE/DFS name space and access protocol.

Like Frangipani, the Echo file system [5, 18, 26, 35] is log-
based, replicates data for reliability and access paths for availability,
permits volumes to span multiple disks, and provides coherent
caching. Echo does not share Frangipani’s scalability, however.
Each Echo volume can be managed by only one server at a time,
with failover to one designated backup. A volume can span only
as many disks as can be connected to a single machine. There is

an internal layering of file service atop disk service, but the Echo
implementation requires both layers to run in the same address
space on the same machine, and experience with Echo showed the
server CPU to be a bottleneck.

The VMS Cluster file system [14] offloads file system process-
ing to individual machines that are members of a cluster, much as
Frangipani does. Each cluster member runs its own instance of the
file system code on top of a shared physical disk, with synchroniza-
tion provided by a distributed lock service. The shared physical
disk is accessed either through a special-purpose cluster intercon-
nect to which a disk controller can be directly connected,or through
an ordinary network such as Ethernet and a machine acting as a
disk server. Frangipani improves upon this design in several ways:
The shared physical disk is replaced by a shared scalable virtual
disk provided by Petal, the Frangipani file system is log-based for
quick failure recovery, and Frangipani provides extensive caching
of both data and metadata for better performance.

The Spiralog file system [20] also offloads its file system pro-
cessing to individual cluster members, which run above a shared
storage system layer. The interface between layers in Spiralog
differs both from the original VMS Cluster file system and from
Petal. The lower layer is neither file-like nor simply disk-like;
instead, it provides an array of stably-stored bytes, and permits
atomic actions to update arbitrarily scattered sets of bytes within
the array. Spiralog’s split between layers simplifies the file system,
but complicates the storage system considerably. At the same time,
Spiralog’s storage system does not share Petal’s scalability or fault
tolerance; a Spiralog volume can span only the disks connected to
one machine, and becomes unavailable when that machine crashes.

Though designed as a cluster file system, Calypso [11] is similar
to Echo, not to VMS Clusters or Frangipani. Like Echo, Calypso
stores its files on multiported disks. One of the machines directly
connected to each disk acts as a file server for data stored on that
disk; if that machine fails, another takes over. Other members of the
Calypso cluster access the current server as file system clients. Like
both Frangipani and Echo, the clients have caches, kept coherent
with a multiple-reader/single-writer locking protocol.

For comparison purposes, the authors of Calypso also built a
file system in the shared-disk style, called PJFS [12]. Calypso
performed better than PJFS, leading them to abandon the shared-
disk approach. PJFS differs from Frangipani in two main respects.
First, its lower layer is a centralized disk server, not a distributed
virtual disk like Petal. Second, all file server machines in PJFS
share a common log. The shared log proved to be a performance
bottleneck. Like Frangipani, PJFS locks the shared disk at whole-
file granularity. This granularity caused performance problems
with workloads where large files were concurrently write-shared
among multiple nodes. We expect the present Frangipani imple-
mentation to have similar problems with such workloads, but as
noted in Section 9.4 above, we could adopt byte-range locking
instead.

Shillner and Felten have built a distributed file system on top
of a shared logical disk [34]. The layering in their system is
similar to ours: In the lower layer, multiple machines cooperate
to implement a single logical disk. In the upper layer, multiple
independent machines run the same file system code on top of one
logical disk, all providing access to the same files. Unlike Petal,
their logical disk layer does not provide redundancy. The system
can recover when a node fails and restarts,but it cannot dynamically
configure out failed nodes or configure in additional nodes. Their
file system uses careful ordering of metadata writes, not logging
as Frangipani does. Like logging, their technique avoids the need

for a full metadata scan (fsck) to restore consistency after a server
crash, but unlike logging, it can lose track of free blocks in a crash,
necessitating an occasional garbage collection scan to find them
again. We are unable to compare the performance of their system
with ours at present, as performance numbers for their file system
layer are not available.

The xFS file system [1, 36] comes closest in spirit to Frangipani.
In fact, the goals of the two systems are essentially the same. Both
try to distribute the management responsibility for files over mul-
tiple machines and to provide good availability and performance.
Frangipani is effectively “serverless” in the same sense as xFS—
the service is distributed over all machines, and can be configured
with both a Frangipani server and Petal server on each machine.
Frangipani’s locking is coarser-grained that xFS, which supports
block-level locking.

Our work differs from xFS in two principal ways:
First, the internal organization of our file system and its interface

to the storage system are significantly different from xFS’s. Unlike
Frangipani, xFS has a predesignated manager for each file, and its
storage server is log-structured. In contrast, Frangipani is orga-
nized as a set of cooperating machines that use Petal as a shared
store with a separate lock service for concurrency control. Ours
is a simpler model, reminiscent of multithreaded shared memory
programs that communicate via a common store and use locks for
synchronization. This model allows us to deal with file system
recovery and server addition and deletion with far less machinery
than xFS requires, which has made our system easier to implement
and test.

Second, we have addressed file system recovery and reconfigu-
ration. These issues have been left as open problems by the xFS
work to date.

We would have liked to compare Frangipani’s performance with
that of xFS, but considerable performance work remains to be
completed on the current xFS prototype [1]. A comparison between
the systems at this time would be premature and unfair to xFS.

11 Conclusions

The Frangipani file system provides all its users with coherent,
shared access to the same set of files, yet is scalable to provide
more storage space, higher performance, and load balancing as the
user community grows. It remains available in spite of component
failures. It requires little human administration, and administration
does not become more complex as more components are added to
a growing installation.

Frangipani was feasible to build because of its two-layer struc-
ture, consisting of multiple file servers running the same simple
file system code on top of a shared Petal virtual disk. Using Petal
as a lower layer provided several benefits. Petal implements data
replication for high availability, obviating the need for Frangipani
to do so. A Petal virtual disk is uniformly accessible to all Frangi-
pani servers, so that any server can serve any file, and any machine
can run recovery when a server fails. Petal’s large, sparse address
space allowed us to simplify Frangipani’s on-disk data structures.

Despite Frangipani’s simple data layout and allocation policy
and coarse-grained locking, we have been happy with its perfor-
mance. In our initial performance measurements, Frangipani is
already comparable to a production DIGITAL Unix file system,
and we expect improvement with further tuning. Frangipani has
shown good scaling properties up to the size of our testbed config-
uration (seven Petal nodes and six Frangipani nodes). The results

leave us optimistic that the system will continue to scale up to many
more nodes.

Our future plans include deploying Frangipani for our own day-
to-day use. We hope to gain further experience with the prototype
under load, to validate its scalability by testing it in larger configu-
rations, to experiment with finer-grained locking, and to complete
our work on backup. Finally, of course, we would like to see the
ideas from Frangipani make their way into commercial products.

Acknowledgments

We thank Mike Burrows, Mike Schroeder, and Puneet Kumar for
helpful advice on the Frangipani design and comments on this
paper. Fay Chang implemented an early prototype of Frangipani
as a summer project. The anonymous referees and our shepherd,
John Wilkes, suggested many improvements to the paper. Cynthia
Hibbard provided editorial assistance.

References

[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,
David A. Patterson, Drew S. Roselli, and Randolph Y. Wang.
Serverless network file systems. ACM Transactions on Com-
puter Systems, 14(1):41–79, February 1996.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley, 1987.

[3] Anupam Bhide, Elmootazbellah N. Elnozahy, and Stephen P.
Morgan. A highly available network file server. In Pro-
ceedings of the Winter USENIX Conference, pages 199–205,
January 1991.

[4] A. D. Birrell and R. M. Needham. A universal file server.
IEEE Transactions on Software Engineering, SE-6(5):450–
453, September 1980.

[5] Andrew D. Birrell, Andy Hisgen, Charles Jerian, Timothy
Mann, and Garret Swart. The Echo distributed file sys-
tem. Research Report 111, Systems Research Center, Digital
Equipment Corporation, September 1993.

[6] Michael Burrows. Efficient Data Sharing. PhD thesis, Uni-
versity of Cambridge, September 1988.

[7] C. Chao, R. English, D. Jacobson,A. Stepanov, and J. Wilkes.
Mime: A high performance parallel storage device with
strong recovery guarantees. Technical Report HPL-CSP-92-
9, Hewlett-Packard Laboratories, November 1992.

[8] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and
Edward D. Lazowska. Sharing and protection in a single-
address-spaceoperating system. ACM Transactions on Com-
puter Systems, 12(4):271–307, November 1994.

[9] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar,
Bruce W. Leverett, W. Anthony Mason, and Robert N. Side-
botham. The Episode file system. In Proceedings of the
Winter USENIX Conference, pages 43–60, January 1992.

[10] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh.
The logical disk: A new approach to improving file systems.
In Proc. 14th Symp. on Operating Systems Principles, pages
15–28, December 1989.

[11] Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Re-
covery in the Calypso file system. ACM Transactions on
Computer Systems, 14(3):287–310, August 1996.

[12] Murthy Devarakonda, Ajay Mohindra, Jill Simoneaux, and
William H. Tetzlaff. Evaluation of design alternatives for a
cluster file system. In Proceedings of the Winter USENIX
Conference, pages 35–46, January 1995.

[13] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W.
Chang, Eugene M. Feinberg, Howard Gobioff, Chen Lee,
Berend Ozceri, Erik Riedel, David Rochberg, and Jim Ze-
lenka. File server scaling with network-attached secure disks.
In Proceedings of the ACM International Conference on Mea-
surements and Modeling of Computer Systems (Sigmetrics
’97), pages 272–284, June 1997.

[14] Andrew C. Goldstein. The design and implementation of a
distributed file system. Digital Technical Journal, 1(5):45–
55, September 1987. Digital Equipment Corporation, 50
Nagog Park, AK02-3/B3, Acton, MA 01720-9843.

[15] Cary Gray and David Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proc. 12th Symp. on Operating Systems Principles, pages
202–210, December 1989.

[16] Robert Hagmann. Reimplementing the Cedar file system
using logging and group commit. In Proc. 11th Symp. on
Operating Systems Principles, pages 155–162, November
1987.

[17] John H. Hartman and John K. Ousterhout. The Zebra striped
network file system. ACM Transactions on Computer Sys-
tems, 13(3):274–310, August 1995.

[18] Andy Hisgen, Andrew Birrell, Charles Jerian, Timothy
Mann, and Garret Swart. New-value logging in the Echo
replicated file system. Research Report 104, Systems Re-
search Center, Digital Equipment Corporation, June 1993.

[19] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and performance in
a distributed file system. ACM Transactions on Computer
Systems, 6(1):51–81, February 1988.

[20] James E. Johnson and William A. Laing. Overview of the
Spiralog file system. Digital Technical Journal, 8(2):5–14,
1996. Digital Equipment Corporation, 50 Nagog Park,AK02-
3/B3, Acton, MA 01720-9843.

[21] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson,
Vasilis Apostolides, Ben A. Bottos, Sailesh Chutani, Craig F.
Everhart, W. Antony Mason, Shu-Tsui Tu, and Edward R.
Zayas. DEcorum file system architectural overview. In Pro-
ceedings of the Summer USENIX Conference,pages 151–164,
June 1990.

[22] Nancy P. Kronenberg, Henry M. Levy, and William D.
Strecker. VAXclusters: A closely-coupled distributed sys-
tem. ACM Transactions on Computer Systems,4(2):130–146,
May 1986.

[23] Leslie Lamport. The part-time parliament. Research Re-
port 49, Systems Research Center, Digital Equipment Cor-
poration, September 1989.

[24] Edward K. Lee and Chandramohan A. Thekkath. Petal: Dis-
tributed virtual disks. In Proc. 7th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pages 84–92, October 1996.

[25] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Replication
in the Harp file system. In Proc. 13th Symp. on Operating
Systems Principles, pages 226–238, October 1991.

[26] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Je-
rian, and Garret Swart. A coherent distributed file cache with
directory write-behind. ACM Transactions on Computer Sys-
tems, 12(2):123–164, May 1994.

[27] Marshal Kirk McKusick, William N. Joy, Samuel J. Leffler,
and Robert S. Fabry. A fast file system for UNIX. ACM
Transactions on Computer Systems, 2(3):181–197, August
1984.

[28] James G. Mitchell and Jeremy Dion. A comparison of two
network-based file servers. Communications of the ACM,
25(4):233–245, April 1982.

[29] Sape J. Mullender and Andrew S. Tanenbaum. Immediate
files. Software—Practice and Experience, 14(4):365–368,
April 1984.

[30] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout.
Caching in the Sprite network file system. ACM Transactions
on Computer Systems, 6(1):134–154, February 1988.

[31] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith,
Diane Lebel, and David Hitz. NFS version 3 design and
implementation. In Proceedings of the Summer USENIX
Conference, pages 137–152, June 1994.

[32] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, February
1992.

[33] Russel Sandberg, David Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and implemention of the Sun
network filesystem. In Proceedings of the Summer USENIX
Conference, pages 119–130, June 1985.

[34] Robert A. Shillner and Edward W. Felten. Simplifying dis-
tributed file systems using a shared logical disk. Technical
Report TR-524-96, Dept. of Computer Science, Princeton
University, 1996.

[35] Garret Swart, Andrew Birrell, Andy Hisgen, Charles Jerian,
and Timothy Mann. Availability in the Echo file system. Re-
search Report 112, Systems Research Center, Digital Equip-
ment Corporation, September 1993.

[36] Randy Wang, Tom Anderson, and Mike Dahlin. Experience
with a distributed file system implementation. Technical re-
port, University of California, Berkeley, Computer Science
Division, June 1997.

[37] Edward Wobber, Martin Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating system. ACM
Transactions on Computer Systems, 12(1):3–32, February
1994.

