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ABSTRACT

Server consolidation, which allows multiple workloads to run on the same system, has
become increasingly important as a way to improve the utilization of computing resources and
reduce costs. Consolidation is common in mainframe environments, where technology to support
running multiple workloads and even multiple operating systems on the same hardware has been
evolving since the late 1960°s. This technology is now becoming an important differentiator in the
UNIX and Linux server market as well, both at the low end (virtual web hosting) and high end
(traditional data center server consolidation).

This paper introduces Solaris Zones (zones), a fully realized solution for server consolidation
projects in a commercial UNIX operating system. By creating virtualized application execution
environments within a single instance of the operating system, the facility strikes a unique balance
between competing requirements. On the one hand, a system with multiple workloads needs to run
those workloads in isolation, to ensure that applications can neither observe data from other
applications nor affect their operation. It must also prevent applications from over-consuming
system resources. On the other hand, the system as a whole has to be flexible, manageable, and
observable, in order to reduce administrative costs and increase efficiency. By focusing on the
support of multiple application environments rather than multiple operating system instances,

zones meets isolation requirements without sacrificing manageability.

Introduction

Within many IT organizations, driving up system
utilization (and saving money in the process) has
become a priority. In the lean economic times follow-
ing the post dot-com downturn, many IT managers are
electing to adopt server consolidation as a way of life.
They are trying to improve on typical data center
server utilizations of 15-30% [1] while migrating to
increasingly commoditized hardware. But the cost
savings promised are not always realized [12]. Con-
solidation can drive down initial equipment cost, but it
can also increase complexity and recurring costs in
several ways. In our experience, this has made many
system administrators reluctant to embrace consolida-
tion projects. We believe that when implemented
effectively, consolidation can free system administra-
tors and IT architects to pursue higher service levels,
better overall performance, and other long term
projects. With an appropriate solution, greater special-
ization (and in turn, higher expertise) can be achieved;
some administrators can focus on the maintenance of
the physical platforms, and others can concentrate on
the deployment of applications.

Administrators currently lack an all-in-one solution
for server consolidation, as existing solutions require
administrators to purchase, author, or deploy additional
software. This paper explains how a server consolidation
facility tightly integrated with the core operating system
can provide answers to these problems.

Barriers to Consolidation

Consolidation projects face a variety of technical
problems. First and foremost, applications can be
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mutually incompatible when run on the same server.
In one real-world example, two poorly written appli-
cations at a customer site both wanted to bind a net-
work socket to port 80. While neither application was
a substantial resource user, the customer resolved the
conflict by buying two servers! Applications can also
be uncooperative when administrators wish to run
multiple instances of the same application on the same
node. For example, dependencies on running as a par-
ticular user ID can make it difficult to distinguish one
running instance from another. Hard-coded log file
locations or other pathnames can make it difficult to
deploy two distinct versions of a particular application
on the same node. At the highest level, solving this
problem requires some form of namespace isolation,
allowing administrators to make applications unaware
of the presence of others. In the customer’s example,
deploying to two separate OS instances running on
two separate systems provides complete namespace
isolation, but the cost is very high.

A second technical problem faced by consolida-
tors is security isolation. If multiple applications are to
be deployed on a single host, what if there is a security
bug in one of the applications? Even if each applica-
tion is running under a different user ID (except for the
applications that demand to run as root!), a wily intruder
may be able to embark on a privilege escalation, in
which the successively achieves higher levels of privi-
lege until the entire system is compromised. If adminis-
trators are unable to assess the extent of the damage,
the consolidated system might require a rebuild. Ideally,
one should be able to create namespaces that are at
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fundamentally reduced levels of privilege: root in such
an environment should be less powerful than the tradi-
tional UNIX root.

If a particular workload is compromised, a pro-
tective mechanism that wards off denial of service and
resource exhaustion attacks against the rest of the sys-
tem should be in place. Similarly, consolidation
projects must address quality of service guarantees
and must often be able to account for resource utiliza-
tion for billing or capacity planning purposes. Existing
resource management solutions address many of these
requirements by providing resource partitioning,
advanced schedulers, and an assortment of resource
caps, reservations, and controls. However, these facili-
ties do not typically offer security and namespace iso-
lation and in cases where both are available, they have
not been closely integrated.

A Comprehensive Solution

While a range of solutions exists to each of the
problems described above, we discovered that no
comprehensive consolidation facility was available as
a core component of a commonly available operating
system. We determined that deeper integration and a
more ‘“‘baked in” facility for consolidation would
allow administrators to approach consolidation
projects without the burden of designing the infra-
structure to do so from component pieces. As a design
goal, we established that administrators should need
only a few minutes and a very few configuration
choices to instantiate and start up a new application
container, which we dubbed a zone. We also wanted
our project to be a pure software solution that would
work on a variety of hardware platforms, with the
least possible performance tax.

At the highest level, zones are lightweight
“sandboxes” within an operating system instance, in
which one or more applications may be installed and
run without affecting or interacting with the rest of the
system. They are available on every platform on
which Solaris 10 runs: AMD64, SPARC64, Ultra-
SPARC, and x86. Applications can be run within
zones with no changes, and with no significant perfor-
mance impact for either the performance of the appli-
cation or the base operating system.

Outline

This paper introduces zones and explains how
we built a server consolidation facility directly into a
production operating system, Solaris 10. The next sec-
tions describe related work, an overview of the facil-
ity, our design principles, and the architectural compo-
nents of the project. The paper then explores specific
aspects of the zones implementation, including
resource management, observability and performance.
We also discuss experiences to date with the facility.

Related Work

Much of the previous work on support for server
consolidation has involved running multiple operating
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system instances on a single system. This can be done
either by partitioning the physical hardware compo-
nents into disjoint, isolated subsets of the overall sys-
tem [5, 8], or by using virtual machine technologies to
create abstracted versions of the underlying hardware
[2, 7, 14]. Hardware partitioning, while providing a
very high degree of application isolation, is costly to
implement and is generally limited to high-end sys-
tems. In addition, the granularity of resource alloca-
tion is often poor, particularly in the area of CPU
assignment. Virtual machine implementations can be
much more granular in how resources are allocated
(even time-sharing multiple virtual machines on a sin-
gle CPU), but suffer significant performance over-
heads. With either of these approaches, the cost of
administering multiple operating system instances can
be substantial.

More recently, a number of projects have
explored the idea of virtualizing the operating sys-
tem’s application execution environment, rather than
the physical hardware. Examples include the Jails
facility in FreeBSD [9] and the VServer project avail-
able for Linux systems [13]. These efforts differ from
virtual machine implementations in that there is only
one underlying operating system kernel, which is
enhanced to provide increased isolation between
groups of processes. The result is the ability to run
multiple applications in isolation from each other
within a single operating system instance. This should
result in reduced administration costs, since there is
only one operating system instance to administer
(patch, backup, etc.); in addition, the performance
overhead is generally minimal. Such technologies can
also be used to create novel system architectures, such
as the distributed network testbed provided by the
PlanetLab project [3].

These technologies can be used as “toolkits™ to
assemble point solutions to virtualization problems,
but at present they lack the comprehensive support
required for supporting commercial workloads. The
barrier to entry for administrators is also high due to
the lack of tools and integration with the rest of the
operating system.

Zones Overview

Zones provides a solution which virtualizes the
operating system’s application environment, and lever-
ages the performance and sharing possible. At the
same time, we have provided deeper and more com-
plete system integration than is typical of such
projects. We have been gratified when casual users
mistake the technology for a virtual machine. This
section provides a broad overview of the zones archi-
tecture and operation.

Figure 1 provides a block diagram of a system
with four zones, representing a hypothetical consolida-
tion. Zones red, neutral and lisa are non-global zones
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running disjoint workloads. This example demon-
strates that different versions of the same application
may be run without negative consequences in different
zones to match the consolidation requirements. Each
zone can provide a rich (and different) set of cus-
tomized services, and to the outside world, it appears
that four distinct systems are available. Each zone has
a distinct root password and its own administrator.

Basic process isolation is also demonstrated; a
process in one non-global zone cannot locate, exam-
ine, or signal a process in another zone. Each zone is
given access to at least one logical network interface;
applications running in distinct zones cannot observe
the network traffic of the other zones even though
their respective streams of packets travel through the
same physical interface. Finally, each zone is provided
a disjoint portion of the file system hierarchy, to which
it is confined.

The global zone encloses the three non-global
zones and has visibility into and control over them.
Practically speaking, the global zone is not different
from a traditional UNIX system; root generally
remains omnipotent and omniscient. The global zone
always exists, and acts as the “‘default” zone in which
all processes are run if no non-global zones have been
created by the administrator.

We use the term global administrator to denote a
user with administrative privileges in the global zone.

Solaris Zones: Operating System Support for Consolidating Commercial Workloads

This user is assumed to have complete control of the
physical hardware comprising the system and the
operating system instance. The term zone administra-
tor is used to denote a user with administrative privi-
leges who is confined to the sandbox provided by a
particular non-global zone.

Managing zones is not complicated. Figure 2
shows how to create a simple, non-networked zone
called /lisa with a file system hierarchy rooted at
fauxOflisa, install the zone, and boot it. Booting a zone
causes the init daemon for the zone to be launched. At
that point, the standard system services such as cron,
sendmail, and inetd are launched.

Design Principles

This section and the next examine the zones
architecture in greater depth; before doing so it helps
to examine the design principles we applied. First and
foremost, our solution must solve consolidation prob-
lems such as those highlighted in the first section. The
solution must provide namespace isolation and
abstraction, security isolation, and resource allocation
and management.

Second, the facility must support commercial
applications: these are often scalable, threaded, highly
connected to the network via TCP/IP, NFS, LDAP, etc.
These applications come with installers and usually
interoperate with the packaging subsystem on the host.
More importantly, because these applications are often
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Figure 1: Zones block diagram.
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opaque in operation, they should work ‘“out of the
box” within a zone whenever possible. Software
developers should not need to modify applications,
and administrators should not need to develop script-
ing wrappers or have a deep understanding of UNIX
internals to deploy these applications. Similarly,
administrators interacting with this facility should be
pilots, not mechanics. As much as possible, system
administrators should be able to view the application
environment as a vehicle for deploying applications,
not as a collection of parts to assemble. Setup should
be simple and the entire system should look and feel
as much like a normal host as possible. In addition, the
solution should enable delegation wherever possible.
The administrator of the global zone should be able to
configure the overall system and delegate further con-
trol to zone administrators.

By exploiting sharing and semantics inside a sin-
gle operating system instance, we can support a large
number of application environments with relatively few
resources. Operating in a shared environment means
that monitoring application environments can be per-
formed transparently. For example, from the pilot’s seat,
we should immediately be able to tell which process on
the system (regardless of the application environment in
which it runs) is using the most CPU cycles.

The solution must scale and perform with with
the underlying platform. A 64-CPU application envi-
ronment should “just work,” as should the deploy-
ment of 20 environments on a 1-CPU system.
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Additionally, the solution should levy little or no per-
formance tax on applications run inside it. Finally,
minimal performance impact should be present on a
system with no application environments.

To address these design principles, we divided
the zones architecture into five principal components.

¢ A state model that describes the lifecycle of the
zone, and the actions that comprise the transi-
tions.

® A configuration engine, used by administrators
to describe the future zone to the system. This
allows the administrator to describe the “plat-
form,” or those parameters of the zone that are
controlled by the global administrator, in a per-
sistent fashion.

¢ Installation support, which allows the files that
make up the zone installation to be deployed
into the zone path. This subsystem also enables
patch deployment and upgrades from one oper-
ating system release to another.

® The application environment, the “sandbox’ in
which processes run. For example, in Figure 3
each zone’s application environment is repre-
sented by the large shaded box.

¢ The virtual platform, comprised of the set of
platform resources dedicated to the zone.

We’ll explore these subsystems in more depth in
subsequent sections.
Zones State Model

A well-formed, observable state model that
describes the zone lifecycle is an important part of the

## zonecfg -z lisa ’create; set zonepath=/aux0/lisa’

# zoneadm list -vc
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ID NAME STATUS PATH
0 global running /
- lisa configured /aux0/1lisa

# zoneadm -z lisa install

Constructing zone at /aux0/lisa/root

Copying packages and creating contents file

# zoneadm list -vc

ID NAME STATUS PATH
0 global running /
- lisa installed /aux0/lisa

#f zoneadm -z lisa boot
# zoneadm list -vc

ID NAME STATUS PATH
0 global running /
7 lisa running /aux0/1lisa

Ela zlogin lisa

[Connected to zone ’lisa’ pts/7]
zone: lisa

# ptree

1716 /sbin/init

1769 /usr/sbin/cron

1775 /usr/1lib/sendmail -Ac -ql5m
1802 /usr/1lib/ssh/sshd

Figure 2: Zones administration.
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pilot model design principle; it makes it easier for

administrators to manage the zones present on the sys-

tem. Figure 3 illustrates the zone state model. While
this is of interest to the global administrator, zone

administrators need not be aware of these states. A

zone can be in one of four primary states, or in one of

several secondary, or transitional, states:

CONFIGURED: A zone’s configuration has been com-
pletely specified and committed to stable storage.

INSTALLED: Based on the zone’s configuration, a
unique root file system for the zone has been
instantiated on the system.

READY: At this stage, the virtual platform for the zone
has been established: the kernel has created the
zsched process, network interfaces have been
plumbed, file systems mounted, and devices con-
figured. At this point, there are no user processes
associated with the zone (zsched is a system
process, and lacks a user address space).

RUNNING: The init daemon has been created and
appears to be running. init will in turn start the
rest of the processes that comprise the applica-
tion environment.

SHUTTING DOWN: The zone is transitioned into this
state when either the global or non-global zone
administrator elects to reboot or halt the zone.
The zone remains in this state until all user pro-
cesses associated with the zone have been
destroyed.

DOWN: The zone remains in this state until the virtual
platform has been completely destroyed: filesys-
tems and NFS shares are unmounted, IPC objects
destroyed, network interfaces unplumbed, etc. At
that point the zone returns to the INSTALLED state.

uninstall
Configured —= Installed
install
A
halt || ready
reboot
hal
A
Running ~2%t Ready

Figure 3: Zones state model.

Configuration Engine

Zones present a simple and concise configuration
experience for system administrators. A command
shell, zonecfg, is used by the global administrator to
configure the zone’s properties and describe the zone
to the system. The tool can be used in interactive
mode or scripted to create a new zone or edit existing
zones. The configuration includes information about
the location of the zone in the file system, IP
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addresses, file systems, devices, and resource limits.
The zone configuration is retained by the system in a
private repository (presently, an XML file), and keyed
by zone name.

The design of zonecfg was challenging: Zone
configurations can be complex, but we wanted to
instantiate a new zone with a minimum number of
commands and without having to navigate through a
complex configuration file. Ultimately, the only
mandatory parameter is the zonepath — the location in
the file system where the zone should be created.

Installation Support

The zones installer is an extension to the Solaris
install and packaging tools. An important goal was to
be able to create a zone on an existing system, without
needing to consult installation media. Binary files
such as /usr/bin/ls can simply be copied from the global
zone, or imported to the zone using a loopback mount
to save disk space.

Files which are customizable by an administra-
tor, such as /etc/passwd, must not be copied from the
global zone into the zone being installed. Such files
must be restored to their “factory default” condition.
In order to accomplish this, the installer archives pri-
vate, pristine copies of such volatile and editable sys-
tem files when the global zone itself is installed or
upgraded. The zones installer uses these archived ver-
sions when populating zones.

Because the zone installer is package-aware, the
end result of zone installation is a virtual environment
with an appropriately populated package database.
This means that packaging utilities such as pkgadd can
be used by the zone administrator to add or patch
unbundled or third-party software inside the zone
while also allowing the global administrator to the cor-
rectly upgrade and patch the system as a whole.

Application Environment

The application environment forms the core of
the zones implementation. Using the facilities it pro-
vides, other subsystems such as NFS, TCP/IP, file sys-
tems, etc. have been ‘“virtualized,” that is, rearchi-
tected to be compatible with the zones design.

At the most basic level, the kernel identifies spe-
cific zones in the same fashion as it does processes, by
using a numeric ID. The zone ID is reflected in the
cred and proc structures associated with each process.
The kernel can thus easily and cheaply determine the
zone membership of a particular process. This map-
ping is at the heart of the implementation. We have
also found that virtualizing kernel subsystems (for
example, process accounting) is often not terribly dif-
ficult if the subsystem’s global variables are lifted up
into a per-zone data structure (in other cases, such as
TCP/IP, the virtualization required is more pervasive).

The process of booting the application environ-
ment is similar to the late stages of booting the operat-
ing system itself. In the kernel, a special process,
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zsched, is created. This mimics the traditional UNIX
process 0, sched. When seen from inside a zone,
zsched is at the root of the process tree. zsched also
acts as a container for a variety of per-zone data that is
hard to express in other ways. RPC thread pools and
other per-zone kernel threads, as well as resource con-
trols and resource pool bindings, are handled in this
fashion. Next, the init daemon is formed, associated
with the zone, and exec’d to set it running in
userspace; init then initiates the process of starting up
other services that make the zone behave like a stand-
alone computer system.

Zones are also assigned unique identities. The
zone name, which is used to label and identify the
zone, is assigned by the global administrator. Control
of the node name, RPC domain name, Kerberos con-
figuration, locale, time zone, root password and name
service configuration is entirely delegated to the zone
administrator. When a zone is first booted, the zone
administrator is stepped through the process of setting
up this configuration via an interactive tool.

Security concerns are central to the design of the
application environment. Fundamentally, a zone is less
powerful than the global environment, because zones
take advantage of the fine-grained privilege mecha-
nism available in Solaris 10 [11]. This mechanism
changes the traditional all-or-nothing ‘super-user”
privilege model into one with distinct privileges that
can be individually assigned to processes or users.! A
zone runs with a reduced set of privileges, and this
helps to ensure that even if a process could find a way
to escape namespace isolation enforced by the zone, it
would still be constrained from escalating to higher
privilege. For example, writing to /devikmem requires
all privileges. All non-global zone processes and their
descendants have fewer than all privileges, and are
constrained from ever achieving all privileges, so the
kernel will never allow such a process to write to
Idevikmem. The namespace isolation facilities provided

1This is similar to the capability feature available in Linux.
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by zones coupled with privilege containment provide a
sound double-hulled architecture for secure operation.
Although the set of privileges available in a zone is
currently fixed, we plan to make this configurable in
the future; this will allow administrators to create spe-
cial-purpose zones with only the minimal set of privi-
leges needed to run a particular service.

One significant design challenge the project
faced was: how can we cross the boundary between
global and non-global zones in a safe fashion? We
authored the zlogin utility to allow global administra-
tors to descend into specific zones; this command is
modeled after familiar utilities such as rlogin. The
process of transferring a running process from one
zone to another is complex, and was a challenging
aspect of the implementation. We took care to prevent
any data from “leaking” from the global zone into
non-global zones; this required sanitization of parent
process IDs, process group IDs, session IDs, creden-
tials, fine-grained privileges, core file settings, and
other process model-related attributes. Processes
whose parent process lies outside the zone (as is the
case with zlogin to a zone) are faked within the zone to
have zsched’s PID as their parent process ID. Simi-
larly, signals sent from the global zone to non-global
zone processes appear to originate from zsched.

Virtual Platform

The virtual platform is the “bottom half” of a
zone. Conceptually, it is comprised of the physical
resources that have been made available to the zone.
The virtual platform is also responsible for boot, reboot
and halt, and is managed by the zoneadmd daemon.

The virtual platform takes a snapshot of the zone
configuration from the configuration engine and fol-
lows the plan it provides to bring the zone into the
READY state. This involves directing the kernel to cre-
ate the central zone_t data structure and the zsched ker-
nel process, setting up virtual network interfaces, pop-
ulating devices, creating the zone console, and direct-
ing any other pre-boot housekeeping.

3 zlogin -C lisa

[Connected to zone ’lisa’ console]
lisa console login: root

Password:

#f reboot

Aug 13 14:44:07 lisa reboot:
[NOTICE: Zone rebooting]

rebooted by root

SunOS Release 5.10 Version sl10_65 64-bit

Copyright 1983-2004 Sun Microsystems,
Use is subject to license terms.
Hostname: lisa

NIS domain name is usenix.org

lisa console login:
[Connection to zone

i

*lisa’

Inc. All rights reserved.

console closed]

Figure 4: Zones console.
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Uniquely, the zone console can exist even before
the zone is in the ready state. This mimics a serial con-
sole to a physical host, which can be connected even
when a machine is halted, and it provides a familiar
experience for administrators. The console itself is a
STREAMS driver instance that is dynamically instantiated
as needed. It shuttles console I/O back and forth from
the zone (via /deviconsole) to the global zone (via
Idev/zcons/<zonename>/masterconsole). zoneadmd then
acts as a console server to the zlogin -C command. Fig-
ure 4 shows a typical console session. We found that
the zone pseudo-console was a key to helping users see
that a zone is a substantially complete environment,
and perhaps more importantly, a familiar environment.

Virtualization of Specific Subsystems

One of the principal challenges of the zones
project was making decisions about the “virtualization
strategy” for each kernel subsystem. Generally, we
sought to allow the global administrator to observe and
control the entire system. But this was not always pos-
sible due to API restrictions (for example, APIs dictated
by a particular standard), implementation constraints, or
other factors. The next sections detail the virtualization
that was required for each primary kernel subsystem.

Process Model

One of the basic principles of zones is that pro-
cesses in non-global zones should not be able to affect
the activity of processes running within another zone.
This also extends to visibility; processes within one
(non-global) zone should not even be able to see pro-
cesses outside that zone, and by extension should not
be able to observe the activity of such processes. This
is enforced by restricting the process ID space
exposed through the /proc file system and process-spe-
cific system calls such as kill, priocntl, and signal. If the
calling process is running within a non-global zone, it
will only be able to see or affect processes running
within the same zone; applying the operations to
process IDs in any other zone will return an error. The
error code is the same as the one returned when the
specified process does not exist, to avoid revealing the
fact that the selected process ID exists in another zone.
This policy also ensures that an application running in
a zone sees a consistent view of system objects; there
aren’t any objects that are visible through some means
(e.g., when probing the process ID space using kill) but
not others (e.g., /proc).

The dual role of the global zone, acting as both
the default zone for the system and as the nexus of sys-
tem-wide administrative control, raises some interest-
ing issues. Since applications within the zone have
access to processes and other system objects in other
zones, the effect of administrative actions may be wider
than expected. For example, service shutdown scripts
often use pkill to signal processes of a given name to
exit. When run from the global zone, all such processes
in the system, regardless of zone, will be signaled.
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On the other hand, the system-wide scope is
often desired. For example, an administrator monitor-
ing system-wide resource usage would want to look at
process statistics for the whole system. A view of just
global zone activity would miss relevant information
from other zones in the system that may be sharing
some or all of the system’s resources. Such a view is
particularly important when the use of relevant system
resources such as CPU, memory, swap, and I/O is not
strictly partitioned between zones using resource man-
agement facilities.

We chose to allow any processes in the global
zone to observe processes and other objects in non-
global zones. This allows such processes to have sys-
tem-wide observability. The ability to control or send
signals to processes in other zones, however, is
restricted by a fine-grained privilege, PRIV_PROC_
ZONE. By default, only the root user in the global zone
is given this privilege. This ensures, for example, that
user tucker, whose user ID in the global zone is 1234,
cannot kill processes belonging to user dp, whose user
ID in the lisa zone is also 1234. Because different
zones on the same system can have completely differ-
ent name service configurations, this is entirely possi-
ble. The root user can also drop this privilege, restrict-
ing activity in the global zone to affect only processes
in that zone.

Accounting and Auditing

Process and workload accounting provide an
excellent example of both the challenges and opportu-
nities for retrofitting virtualization into an existing
subsystem. Accounting outputs a record of each
process to a file upon its termination. The record typi-
cally includes the process name, user ID, exit status,
statistics about CPU usage, and other billing-related
items. The UNIX System V accounting subsystem,
which remains in wide usage, employs fixed size
records that cannot be extended with new fields. Thus,
we modified the system so that accounting records
generated in any zone (including the global zone) only
contain records pertinent to the zone in which the
process executed. System V accounting can be
enabled or disabled independently for each zone.

In addition, since Solaris 8, the system has pro-
vided a modernized “extended accounting” facility,
with flexible record sizes. We modified this so that
records are now tagged with the zone name in which
the process executed, and are written both to that
zone’s accounting stream and to the global zone; this
provides an important facility for consolidation, and,
uniquely, the ability to account in detail for the activ-
ity of the application environment. The set of data col-
lected, the location of the accounting record files, and
other accounting controls may all be configured inde-
pendently per-zone.

The Solaris security auditing facility has been
similarly updated with the addition of a zonename
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token. An audit record describes an event, such as
writing to a file, and the stream of audit records is
written to disk and may be processed later. Each zone
can access the appropriate subset of the audit trail, and
the global zone can see all audit records for all zones.
Because the global zone can track audit events by zone
name, a complete record of auditable events can be
generated per-zone. We think this represents an excit-
ing possibility for intrusion detection and analysis.

IPC Mechanisms

Local inter-process communication (IPC) repre-
sents a particular problem for zones, since processes in
different (non-global) zones should normally only be
able to communicate via network APIs, as would be
the case with processes running on separate machines.
It might be possible for a process in the global zone to
construct a way for processes in other zones to com-
municate, but this should not be possible without the
participation of the global administrator.

IPC mechanisms that use the file system as a ren-
dezvous, such as pipes, STREAMS, UNIX domain
sockets, doors, and POSIX IPC objects, fit naturally
into the zone model without modification since pro-
cesses in one zone will not have access to file system
locations associated with other zones. Because the file
system hierarchy is partitioned, there is no way for
processes in a non-global zone to achieve rendezvous
with another zone without the involvement of the
global zone (which has access to the entire hierarchy).

The System V IPC interfaces allow applications
to create persistent objects (shared memory segments,
semaphores, and message queues) for communication
and synchronization between processes on the same
system. The objects are dynamically assigned numeric
identifiers that can be associated with user-defined
keys, allowing usage of a single object in unrelated
processes. Objects are also associated with an owner
(based on the effective user ID of the creating process
unless explicitly changed) and permission flags that
can be set to restrict access when desired. In order to
prevent sharing (intentional or unintentional) between
processes in different zones, a zone ID is associated
with each object, based on the zone in which the creat-
ing process was running at time of creation. Non-
global zone processes are only able to access or con-
trol objects associated with the same zone. An admin-
istrator in the global zone can still manage IPC objects
throughout the system without having to enter each
zone. The key namespace is also virtualized to be per-
zone, which avoids the possibility of key collisions
between zones.

Networking

As discussed earlier, each zone is configured
with one or more IP addresses. For each address
assigned, a logical network interface is created in the
global zone when the zone is readied. This address is
then assigned to the zone. The system as a whole
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looks like a traditional multi-home server, but inter-
nally the IP stack partitions the networking between
zones in much the same way as it would be partitioned
between separate servers. From the perspective of an
external network observer, a system with booted zones
appears to be set of separate servers.

Each IP address and its associated logical inter-
face are dedicated for use by the assigned zone. Only
processes within the zone can send packets from that
address or receive packets sent to that address. Logical
interfaces can share a physical network interface,
however, so depending on how the zones are config-
ured, different zones may wind up sharing network
bandwidth on a single physical interface. The isolation
of network traffic means that services such as send-
mail, Apache, etc., can be run in different zones without
worrying about IP port conflicts.

Applications in different zones on the same sys-
tem can communicate using conventional networking,
just as applications on different systems can communi-
cate. This traffic is “short-circuited”” within the IP stack
rather than sending data over the wire, minimizing the
communication overhead. One drawback is that exist-
ing firewalling products are not able to filter or other-
wise act on cross-zone traffic, as it is handled entirely
within [P and is not visible to any underlying fire-
walling products. We hope to remedy this in the future.

Sending and receiving broadcast and multicast
packets is supported within any zone. Inter-zone
broadcast and multicast is implemented by replicating
outgoing and incoming packets as necessary, so that
each zone that should receive a broadcast packet or
each zone that has joined a particular multicast group
receives the appropriate data.

Access to the network by non-global zones is
restricted. The standard TCP and UDP transport inter-
faces are available, but some lower level interfaces,
such as raw socket access (which allows the creation
of IP packets with arbitrary contents) and DLPI are
not. These restrictions are in place to ensure that a
zone cannot gain uncontrolled access to the network,
where it might be able to behave in undesirable ways.
For example, a zone cannot masquerade as a different
zone or host on the network. Access to ICMP is also
supported, allowing popular utilities such as traceroute
and ping to work properly.

The zones facility also provides support for man-
ual configuration of IPv6 addresses, with support for
automatic addressing planned for the future. Because
much of the TCP/IP infrastructure is shared between
all zones, some functionality is automatically sup-
ported and can be configured on behalf of a zone by
the global administrator. For example, if IP Multi-
pathing is configured within the global zone, the logi-
cal interfaces associated with a failed physical inter-
face are automatically moved to a configured alternate
interface. The individual zones do not need any
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configuration to support this, and are not even aware
of the failure.

IPsec and IPQoS facilities can be configured on
behalf of a zone by the global administrator; in the
future we hope to allow global administrators to dele-
gate some of this configuration to non-global zones. It
would also be convenient to provide DHCP client sup-
port so that the global zone could request IP addresses
for non-global zones from a DHCP server, and work
to incorporate this support is underway.

File Systems

We have seen that zones are rooted at a particular
point in the file system. This is implemented in a fash-
ion similar to the chroot system call, although that
call’s well known security limitations [6] are avoided
and the zone is not escapable. Because a different
mechanism is used, use of chroot is even possible
within a zone.

When the zone boots, the configuration engine is
consulted for a list of file systems to mount on behalf
of the zone. These can include storage-backed file sys-
tems as well as pseudo-file systems. In particular, lofs,
the Solaris loopback file system, provides a useful tool
for constructing a file system namespace for a zone. It
can be used to mount segments of a file system in
multiple places within the namespace. For example,
the /usr file system is typically loopback mounted
read-only beneath the zone root. This results in a high
degree of sharing of storage, and a freshly installed
zone requires only about 60 MB of disk space. The
use of loopback mounts also results in the sharing of
process text pages in the buffer cache, further decreas-
ing the impact of running large numbers of zones.
However, this approach adds substantial complexity to
the design and implementation of the packaging tools.
For example, the zone installation software must be
aware that a particular file system object such as
lusr/bin/ls will be available, but it will not have to be
copied to the zone’s /usr file system.

Mounts require special handling as well. In
Solaris /etc/mnttab is itself a mounted file system that,
when mounted, exports the typical /etc/mnttab file. The
mnttab handling code was modified so that each zone
sees only the mounts accessible by it. As usual, the
global zone can see everything.

A key security principle is that the global zone
users should not be able to traverse the file system
hierarchy of non-global zones. Allowing this would
enable unprivileged users in the global zone to collabo-
rate with root users in non-global zones. For example, a
zone’s root user might mark a binary in a zone setuid
root, and collaborate with a non-root user in the global
zone, who could then run the binary and gain superuser
privileges. As such, the the zones infrastructure
enforces that the zone root’s parent directory be owned,
readable, writable, and executable by root only. We
were also careful to prevent zones components such as
Zlogin and zoneadmd from ever accessing files residing
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within zones, in order to avoid “traps” that might have
been placed by privileged software within the zone.

Devices

A limited set of devices, accessible via the /dev
hierarchy, are available to zones by default. Addition-
ally, some devices required additional virtualization to
support zones. The syslog device is a good example:
each zone has a distinct /dev/log device with a separate
message stream, so that syslog(3C) messages are deliv-
ered to the syslogd in the zone that generated them.

Administrators can use the configuration engine
to add additional devices to the zone as needed. This
carries additional security risk because device inter-
faces are relatively unconstrained. A single device
driver can form its own subsystem of APIs and seman-
tics. For example, writing to a disk, writing to /dev/null,
and writing to /dev/kmem all have completely different
effects and security implications. As a general princi-
ple, we discourage the placement of physical devices
into zones, as there is wide opportunity for mischief.
For example, disks or disk partitions can be assigned
to a zone, but the preferred method is for the global
administrator to assign only file systems, which pro-
vide more uniform, auditable semantics.

A driver bug or improperly guarded feature could
allow a hacker to attack the kernel. As a result, all of
the devices included in a zone by default were audited
and tested for security problems. We also addressed
more systemic security problems; for example, an
imported device node may allow a hacker to attack the
system. For this reason, zones lack the privilege to call
mknod(2) to create device nodes. However, this prob-
lem is more pervasive. If a hacker caused an NFS
server to export a device node that matched the major
and minor number of /dev/ikmem and caused the zone
to mount this share, then the system could be compro-
mised. To defend against this attack, all mounts initi-
ated from within a zone are guarded by the nodevices
mount option, which prevents the opening of device
nodes present on the mount. Note that even without
nodevices, such an attack would remain difficult, as the
reduced privilege allotted to the zone does not allow
writing to the kmem device under any circumstances.

A final category of attacks could be carried out
against the software managing the /dev hierarchy that
runs in the global zone as part of the virtual platform.
In this case, both global and non-global zones require
access to the /dev hierarchy. The solution is to build
and manage /dev for the zone outside of the zone’s file
system hierarchy, and then use the lofs file system to
loopback mount /dev into the zone. Additionally, the
kernel prohibits the zone from making all but the most
basic modifications to its /dev hierarchy. Permission,
group, and ownership changes are permitted; other file
system operations are not.

NFS

Virtualizing client-side NFS support presents a
somewhat unique challenge. NFS is not only a file
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system: It also has semantics that are dependent on the
network identity (hostname, RPC domain, etc.) of the
client. For example, an NFS share may be exported
solely to a client with a specific host name. Since each
zone has a separate network identity, NFS mounts in
different zones on the same system must be handled
separately. In particular, operations to file system
mounts associated with a zone must have matching
credentials. This allows lower-level code (such as the
RPC transport code) to keep track of the zone associ-
ated with a specific operation, even if that operation is
being performed asynchronously. As a consequence,
NFS mounts in a non-global zone cannot be accessed
from the global zone.

Another complication is the use of kernel
threads. The Solaris NFS implementation maintains a
pool of in-kernel threads to asynchronously read-
ahead data before it is needed, which improves perfor-
mance when large files are read sequentially. When
multiple zones can be using NFS, the thread pools
need to be maintained on a per-zone basis. This allows
the number of threads in each pool to be managed
independently (since different zones may have differ-
ent requirements with respect to concurrency) and
means that threads can be assigned credentials associ-
ated with the appropriate zone.

Resource Management

Most of the prior discussion has described the
ways in which zones can be used to isolate applica-
tions in terms of configuration, namespace, security,
and administration. Another important aspect of isola-
tion is ensuring that each application receives an
appropriate proportion of the system resources: CPU,
memory, and swap space. Without such a capability,
one application can either intentionally or unintention-
ally starve other applications of resources. In addition,
there may be reasons to prioritize some applications
over others, or adjust resources depending on dynamic
conditions. For example, a financial company might
wish to give a stock trading application high priority
while the trading floor is open, even if it means taking
resources away from an application analyzing overall
market trends.

The zones facility is tightly integrated with exist-
ing resource management controls available in Solaris
[10]. These controls come in three flavors: entitle-
ments, which ensure a minimum level of service; lim-
its, which bound resource consumption; and parti-
tions, which allow physical resources to be exclu-
sively dedicated to specific consumers. Each of these
types of controls can be applied to zones. For exam-
ple, a fair-share CPU scheduler can be configured to
guarantee a certain share of CPU capacity for a zone.
In addition, an administrator within a zone can config-
ure CPU shares for individual applications running
within that zone; these shares are used to determine
how to carve up the portion of CPU allocated to the
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zone. Likewise, resource limits can be established on
either a per-zone basis (limiting the consumption of
the entire zone) or a more granular basis (individual
applications or users within the zone). In each case,
the global zone administrator is responsible for config-
uring per-zone resource controls and limits, while the
administrator of a particular non-global zone can con-
figure resource controls within that zone.

-

w
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lisa Zone Administrator
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Figure 5: Zones and the fair-share scheduler.

Figure 5 shows how the fair-share CPU sched-
uler can be used to divide CPU resources between
zones. In the figure, the system is divided into four
zones, each of which is assigned a certain number of
CPU shares. If all four zones contain processes that
are actively using the CPU, then the CPU will be
divided according to the shares; that is, the red zone
will receive 1/7 of the CPU (since there are a total of
seven shares outstanding), the neutral zone will receive
2/7, etc.. In addition, the lisa zone has been further
subdivided into five projects, each of which represent
a workload running within that zone. The 2/7 of the
CPU assigned to the lisa zone (based on the per-zone
shares) will be further subdivided among the projects
within that zone according to the specified shares.

Resource partitioning is supported through a
mechanism called resource pools, which allows an
administrator to specify a collection of resources that
will be exclusively used by some set of processes.
Although the only resources initially supported are
CPUs, this is planned to later encompass other system
resources such as physical memory and swap space. A
zone can be ““bound” to a resource pool, which means
that the zone will run only on the resources associated
with the pool. Unlike the resource entitlements and
limits described above, this allows applications in dif-
ferent zones to be completely isolated in terms of
resource usage; the activity within one zone will have
no effect on other zones. This isolation is furthered by
restricting the resource visibility. Applications or users
running within a zone bound to a pool will see only
resources associated with that pool. For example, a
command that lists the processors on the system will
list only the ones belonging to the pool to which the
zone is bound. Note that the mapping of zones to
pools can be one-to-one, or many-to-one; in the latter
case, multiple zones share the resources of the pool,
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and features like the fair-share scheduler can be used
to control the manner in which they are shared.

Figure 6 shows the use of the resource pool facil-
ity to partition CPUs among zones. Note that pro-
cesses in the global zone can actually be bound to
more than one pool; this is a special case, and allows
the use of resource pools to partition workloads even
without zones. Non-global zones, however, can be
bound to only one pool (that is, all processes within a
non-global zone must be bound to the same pool).

Performance and Observability

As noted in the realted work section, one of the
advantages of technologies like zones that virtualize
the operating system environment over a traditional
virtual machine implementation is the minimal perfor-
mance overhead. In order to substantiate this, we have
measured the performance of a variety of workloads
when running in a non-global zone, when compared to
the same workloads running without zones (or in the
global zone). This data is shown in Figure 7 (in each
case, higher numbers represent a faster run). The final
column shows the percentage degradation (or
improvement) of the zone run versus the run in the
global zone. As can be seen, the impact of running an
application in a zone is minimal. The 4% degradation
in the time-sharing workload is primarily due to the
overhead associated with accessing commands and
libraries through the lofs file system.

Workload Base Zone Diff (%)
Java 38.45 38.29 99.6
Time-sharing  23332.58  22406.51 96.0
Networking 283.30 284.24 100.3
Database 38767.62  37928.70 97.8

Figure 7: Performance impact of running in a zone.

We also measured the performance of running multi-
ple applications on the system at the same time in dif-
ferent zones, partitioning CPUs either with resource
pools or the fair share scheduler. In each case, the per-
formance when using zones was equivalent, and in
some cases better, than the performance when running
each application on separate systems.

Since all zones on a system are part of the same
operating system instance, processes in different zones
can actually share virtual memory pages. This is partic-
ularly true for text pages, which are rarely modified.
For example, although each zone has its own init
process, each of those processes can share a single copy
of the text for the executable, libraries, etc.. This can
result in substantial memory savings for commonly
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used executables and libraries such as libc. Similarly,
other parts of the operating system infrastructure, such
as the directory name lookup cache (or DNLC), can be
shared between zones in order to minimize overheads.

Observability Tools and Debugging

Because of the transparent nature of zones, all of
the traditional Solaris /proc tools may be applied to
processes running inside of zones, both from inside
the non-global zone, and from the global zone. Addi-
tionally, numerous utilities such as ps, priocntl, ipcs,
and prstat (shown in Figure 9) have been enhanced for
zone-awareness.

In addition, we were able to enhance the DTrace
[4] facility to provide zone context. In the following
example, we can easily discover which zone is causing
the most page faults to occur; see Figure 11.

We were pleasantly surprised when a customer
pointed out to us that he could employ zones and
DTrace together to better understand and debug a
three-tiered architecture by deploying the tiers
together on a single host in separate zones in the test
environment, and making specific queries using
DTrace.

Experience

Zones is an integrated part of the Solaris 10 oper-
ating system, which is still under development.
Through pre-release programs, Zones has seen adop-
tion both within Sun and by a variety of customers.

In one “pilot” deployment, Sun’s IT organization
has consolidated a variety of business applications. A
four-CPU server with six non-global zones is hosting:
e Zone 1 The web front-end (Java System Web
Server version 6.1) to Sun’s host database.
® Zone 2 The web front-end (Java System Web
Server version 6.0) to the ‘orgtool’ website,
providing Sun’s online organization chart.
® Zone 3 The Oracle database that provides the
backend for Sun’s online organization chart.
® Zone 4 A database reporting tool, which inter-
faces with Peoplesoft and corporate tax data-
bases; this is monitored by software from
TeamQuest.
® Zone 5 A security hardened CVS server, using
LDAP and DNS name services (the other zones
use NIS).
® Zone 6 A Sun-internal application that utilizes
Apache and MySQL.

This consolidation is probably typical of both
large and small IT organizations; a wide variety of
heterogeneous software (including different versions

# dtrace -n ’vminfo:::as_fault{@[zonename]=count ()}’
dtrace: description ’vminfo:::as_fault’ matched 1 probe
~C

global 4303

lisa 29867

Figure 8: Enhanced DTrace facility with zone context.
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of the same application) is in play. In order to provide
more predictable quality of service, the deployment
team assigned different amounts of CPU shares to the
various zones, to represent the relative importance of
each workload.

global

lisa

neutral

red

] vt o

whirl

o od | (o] s

tide default
Figure 6: Zones and resource pools.

Security Experience

Any new systems architecture is rightfully viewed
with suspicion by security conscious administrators;
this was true during the project’s development inside
Sun. In order to better understand the security environ-
ment in which zones would need to operate, we created
a non-global zone on an otherwise locked-down sys-
tem. We then created a /SECRET file in the global zone
and distributed the root password to the non-global
zone far and wide within Sun, creating a “zones hack-
ing” contest. This was extremely successful both for
the contestants and the zones development team.

The system was compromised in the first few
hours, using an exploit that we knew existed, but had
considered very obscure. We realized that we had
underestimated our adversaries. As we corrected the
security problems our hackers found, we learned a lot
about the sorts of attack techniques and vectors to
expect. A positive result was that the reduced
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privileges associated with zone processes meant that
attackers who managed to read the /SECRET file were
usually unable to perform other sorts of mischief such
as writing to /dev/kmem. We responded to the attacks
by adding new system-level protections that prevent
all of the exploits found. For example, mounts per-
formed by a zone transparently have the nodevices
mount option applied. This prevents using imported
device files (for example, from an NFS share) as an
attack vector.

Other Applications and Future Directions

In the course of developing this facility we con-
sidered the many other situations in which technolo-
gies such as Jails have been deployed. While the pri-
mary focus of the design is server consolidation, zones
are well-suited for application developers, and may
help organizations with large internal software devel-
opment efforts to provide a multitude of “test sys-
tems.” Many customers we have encountered spend
substantial sums buying servers solely for this purpose.

Zones are also a useful solution for web hosting
and other Internet-facing applications, in which creat-
ing a large number of application environments (per-
haps administered by different departments) on modest
hardware is important. We are also hopeful that
advanced networking architectures such as PlanetLab
will eventually include support for zones. At Sun,
work is underway to prototype a version of Trusted
Solaris based on the isolation provided by zones. We
expect other novel uses for zones will emerge as
researchers, developers, and administrators adopt them.

Moving forward, we know that networking poses
key challenges to zones; groups of zones will cooper-
ate in multi-tier architectures, and administrators will
expect to be able to cluster, migrate, and failover zones
from one host to another. Today these technologies are
the unique domain of virtual machine solutions.

$ prstat -Z 10

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
12008 60028 191IM 167M cpul8 1 0 0:00:31 1.1% ns-httpd/75
28163 root 17M 10M sleep 59 0 4:40:37 0.5% ns-httpd/2
12047 70002 296M 270M sleep 59 0 0:00:06 0.4% oracle/1l
10485 101 190M 101M sleep 59 0 1:37:20 0.2% webservd/82
14058 root 6928K 5072K sleep 59 0 0:00:00 0.2% sshd/1

1098 root 1736K 856K sleep 59 0 0:33:00 0.0% tqrtap.v9/1

994 root 6848K 5512K sleep 59 0 0:23:08 0.0% tqwarp.ext/1
12049 70002 296M 270M sleep 1 0 0:00:03 0.0% oracle/1

804 root 4096K 3616K sleep 59 0 0:00:25 0.0% nscd/51

ZONEID NPROC SIZE RSS MEMORY TIME CPU ZONE
2 39 374M 272M 1.6% 4:45:01 2.1% lisa
1 55 8025M 7217M 45% 0:05:20 0.9% red
0 56 212M 130M 0.7% 2:28:18 0.2% global
3 36 463M 211M 1.3% 1:48:55 0.2% neutral
6 47 940M 372M 2.2% 0:24:52 0.0% euro
5 38 330M 246M 1.5% 0:10:47 0.0% end
Total: 261 processes, 1356 lwps, load averages: 0.12, 0.13, 0.14

Figure 9: Monitoring Zones Using prstat. The top half of this split view shows the individual processes consuming
the most CPU cycles. The bottom half shows a view of CPU usage aggregated by zone.
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One of the strengths of zones is its integration
with the base operating system. To provide a compre-
hensive solution, pervasive integration with the wider
systems management software stack is necessary, and
will be a major part of our future work.

Availability

Solaris Zones, which has been productized under
the name NI Grid Containers, is an integrated part of
the Solaris 10 Operating System. Pre-release versions
are available as part of the Software Express for Solaris
Program at hitp://www.sun.com/solaris/10. A clearing-
house of information about Solaris Zones is available at
http://www.sun.com/bigadmin/content/zones. Documentation
is available at http://docs.sun.com.

Conclusions

A successful server consolidation must drive
down both initial and recurring costs and day-to-day
complexity for all involved. Having less hardware to
manage is an important goal. However, the ability to
maintain less software — fewer operating system
instances — can have an even greater impact on the
long-term cost reduction realized. The savings in oper-
ating system licenses and service contracts alone can
be substantial. The best consolidations also allow a
site to split the platform administration and application
administration tasks. This capability allows the IT
organization to delegate certain work responsibilities
while maintaining control over the server itself, so
areas of specialization can be exploited.

Solutions that create a hierarchy of control on a
single host without sacrificing observability allow 1T
organizations to act as infrastructure providers who
can provide compute resources, not just networks and
SANs. Simultaneously, application expertise can
remain with the department deploying or developing
the application.

Solaris Zones offer the first fully realized facility
for server consolidation built directly into a commod-
ity operating system. Zones provides the namespace,
security and resource isolation needed to drive effec-
tive consolidation in the real world.
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