High-Level Specifications: Lessons from
Industry

Brannon Batson Leslie Lamport
Intel Corporation Microsoft Research

11 Mar 2003

To appear in the Proceedings of the First International Symposium
on Formal Methods for Components and Objects, held 5-8 November
2002 in Leiden, The Netherlands.

Abstract

We explain the rationale behind the design of the TLA™T specification lan-
guage, and we describe our experience using it and the TLC model checker in
industrial applications—including the verification of multiprocessor memory
designs at Intel. Based on this experience, we challenge some conventional
wisdom about high-level specifications.

Contents
1 Introduction

2 TLA™*
2.1 Desiderata
2.2 From Math to TLAT . .
2.3 A Brief Taste of TLAT .
2.4 The Structure of a TLAT
2.5 The Size of Specifications

Specification

3 TLC: The TLAT Model Checker

4 TLAT Use in Industry
4.1 Digital/Compaq/HP . .
4.2 Intel

4.2.1 Overview of the Problem
4.2.2 Designing with TLAT
4.2.3 Optimizing with TLC
4.2.4 TFeedback on TLAtsyntax

5 Some Common Wisdom Examined

5.1 Types
5.2 Information Hiding . . .

5.3 Object-Oriented Languages
5.4 Component-Based /Compositional Specifications
5.5 Hierarchical Description/Decomposition

5.6 Hierarchical Verification

6 Conclusions

11
11
12
12
13
16
16

17
17
18
19
19
20
21

22

1 Introduction

The first author is a computer architect with a master’s degree in electrical
engineering. His work focuses on designing, implementing, and validating
multiprocessor cache-coherence protocols. He has worked on TLA™T formal
specifications for the cache-coherence protocols of two Digital/Compaq Al-
pha multiprocessors, and he is currently using TLA™ to model protocols on
future Intel products.

The second author is a computer science researcher who began verify-
ing concurrent algorithms over 25 years ago [12]. About ten years ago, he
devised TLA, a logic for reasoning about concurrent algorithms [15]. He
later designed TLA™, a complete high-level specification language based on
TLA [17].

The two authors view formal verification and TLA™ from two different,
complementary vantage points. In this paper, we try to synthesize our two
views to explore the rationale behind TLA™, describe our experience using it
in industry, and derive some lessons from this experience. When discussing
our individual experiences, we refer to the first and second authors as BB
and LL, respectively.

We begin by describing TLA™ and TLC, the TLA™ model checker. We
then describe how TLA™ has been used at Digital/Compaq and at Intel.
We next explore how our experience contradicts some conventional wisdom
about specification, and we end with some simple conclusions.

2 TLAT

2.1 Desiderata

TLA™ is a high-level language for describing systems—especially asynchro-
nous concurrent and distributed systems. It was designed to be simple, to
be very expressive, and to permit a direct formalization of traditional asser-
tional reasoning—the style of reasoning begun by Floyd [5] and Hoare [9]
and extended to concurrent programs by Ashcroft [2], Owicki and Gries [21],
Pnueli [24], and others [3, 11, 12, 22]. Making it easy, or even possible, to
build tools was not a design criterion for the language.

The desire to formalize assertional reasoning, especially for liveness prop-
erties, led LL to base TLAT on TLA (the Temporal Logic of Actions) [15],
a simple variant of linear-time temporal logic [24]. To be practical, a tem-
poral logic must be based on an expressive language for writing elementary,
non-temporal expressions. The desire for simplicity and expressiveness led

to the use of ordinary first-order logic and set theory for this underlying
language of expressions.

2.2 From Math to TLAT

First-order logic and set theory provide a formalization of ordinary math-
ematics. TLA adds to them modalities for expressing temporal properties.
Temporal modalities are useful for describing liveness (eventuality) proper-
ties. However, temporal logic, like any modal logic, is more complicated
than ordinary math. TLA was therefore designed to put most of the com-
plexity, both in describing a system and in reasoning about it, into the realm
of ordinary math rather than into temporal logic.

LL originally assumed that first-order logic and set theory extended
with the temporal operators of TLA would provide the semantic basis
for a language, but that a practical language would require conventional
programming-language constructs such as assignment statements. However,
not wanting to introduce unnecessary constructs, he decided to begin writing
formal specifications using only mathematics, and to add other constructs
as needed. To his surprise, he discovered that he did not need those conven-
tional constructs. Instead, he added to TLA™ only the following extensions
to ordinary mathematics:

Unambiguous Syntax A formal language must be unambiguous, meaning
that it must be possible for a program to parse it. This led to elim-
inating from TLA™ two common practices of mathematicians: using
juxtaposition as an operator and the overloading of operators. Math-
ematicians write the product of z and y as zy; in TLAT it is written
z % y. (One could require a space between z and y to distinguish
this product from the single variable zy, but that would make parsing
difficult.) Mathematicians frequently overload operators—for exam-
ple, f~! could mean either the inverse of f or f raised to the power
—1. There is no overloading of operators in TLA™. (The use of types
can make some instances of overloading unambiguous; but for reasons
explained below, TLA™T is untyped.)

New Constructs TLAT borrows a few useful constructs from computer
science—for example, allowing IF/THEN expressions like

if 2 #0 then 1/z else 0

Also, mathematicians have no notation for explicitly describing a
function—for example, the function whose domain is the set of reals

and that maps every number to its negative. In TLA™, this function
is written

[z € Real — —x]
(A computer scientist might write this as a A expression, but TLA™
avoids the keyword LAMBDA because of its potentially confusing con-
notations.)

Definitions Mathematicians have no standard convention for defining op-
erators. They typically write something like “let o be defined by letting
aobequal ..., for any a and b.” In TLA™, one writes:

A
aob =

Support for Large Specifications Mathematicians typically introduce
new variables informally as needed. This casual introduction of vari-
ables could lead to errors in large specifications, so TLA T requires that
variables be declared before they are used. Moreover, mathematicians
will write “let z be an element of §” even though two pages earlier
they had defined x to have some other meaning. Formalizing this re-
quires some method of restricting the scope of a declaration. TLA™
does this through the use of modules, which provide a mechanism for
structuring large specifications. The mathematical operation of substi-
tuting expressions for variables is expressed in TLA™ by instantiating
a module with expressions substituted for its declared variables.

Support for Large Formulas For a mathematician, a 20-line formula is
large. In a specification, a 200-line formula is not unusual. To aid in
writing long formulas, TLAT allows bulleted lists of conjuncts and dis-
juncts, using indentation to eliminate parentheses [14]. For example,

A reqQ[p][i].type # “MB”
AV DirOpInProgress(p, reqQ[p][i].adr)

vV reqQ[plljl-adr # reqQp][i].adr

(req@[p][i].type # “MB”)
A ((DirOpInProgress(p, reqQ[p][i].adr))
Vv (reqQlpllj].adr # reqQlp][i].adr))

TLA™ also has a LET/IN construct for making definitions local to an
expression. This permits structuring an expression for easier reading
as well as combining multiple instances of the same subexpression.

TLA TLAT extends ordinary math by adding the modal operators of TLA.
The most important of these is prime ('), where priming an expression
makes it refer to the value of the expression in the next state. For
example, ' = z + 1 is an action, a predicate on a pair of states (called
the current and next state), that is true iff the value of z in the next
state is one greater than its value in the current state. Although
formally a modal operator, expressions with primes obey the rules of
ordinary mathematics, where 2’ is treated like a new variable unrelated
to the variable z. TLA also has a few simple temporal operators,
used mostly for expressing liveness properties. As we will see, these
operators appear in only a small part of a specification.

We have listed the ways in which TLA™ differs from math as used by or-
dinary mathematicians. Where practical, TLA™ maintains the richness and
economy of ordinary mathematical notation. For example, while a textbook
on first-order logic typically defines only a simple quantified formula such
as dx : exp, mathematicians typically write formulas like:

dz,ye S, (z,w) e T : exp

TLAT allows this kind of richer syntax. On the other hand, mathematicians
do not use extraneous keywords or punctuation. TLA™ maintains this sim-
plicity of syntax; for example, successive statements are not separated by
punctuation. This syntactic economy makes TLA™ specifications easy for
people to read, but surprisingly hard for a program to parse.

2.3 A Brief Taste of TLAT

To provide a sense of how a specification written in TLA™ compares to one
written in a typical specification language used in industry, Figures 1 and 2
give small parts of two versions of a toy specification. The first version
is written in Promela, the input language of the Spin model checker [10].
(It was written by Gerard Holzmann, the designer of the language.) The
second is written in TLAT. The figures contain corresponding parts of the
two specifications, although those parts are not completely equivalent. (One
significant difference is mentioned in Section 3 below.)

Figure 3 shows a small part of a TLA™T specification of a real cache-
coherence protocol for a multiprocessor computer. Observe that it looks very
much like the piece of toy specification of Figure 2; it is just a little more
complicated. In both examples, the TLA™ specification uses only simple
mathematics.

inline AppendNum(n)

{1i=0;
do :: i < MaxSeqlLen
&& seql[i]l != 0
&& seql[i] '= n -> i++
:: else -> break
od;
if :: i >= MaxSeqlen
|| seqlil !'= 0
:: else -> seqli] = n
fi %

Figure 1: Part of a toy specification written in Promela.

AppendNum(n) =
AYiel.. Len(seq) : n # seq[i]
A seq’ = Append(seq,n)

A num' = num

Figure 2: The TLA™T version of the piece of specification in Figure 1.

A req.type = “MB”
AViel.. (ids—1)
A req@Q[p]li]-type # “MB”
A DirOpInProgress(p, reqQ[p][i].adr)
AYjeLl..(i—1): reqQIp]lj]-adr # reqQ[p][i].adr
A = 3Im € msgsinTransit :

A m.type € {“Comsig”, “GetShared”, “GetExclusive”,
“ChangeToExclusive” }

A m.cmdr =p

Figure 3: A small piece of a real TLA™ specification.

Crucial to the simplicity of TLAT is that it is based on the ordinary
mathematics used by ordinary mathematicians. Computer scientists have
devised many forms of weird mathematics. They have introduced bizarre
concepts such as “nondeterministic functions”, leading to strange formalisms
in which the formula A = A is not necessarily true. Ordinary mathematics
was formalized about a century ago in terms of first-order logic and (un-
typed) set theory. This is the formal mathematics on which TLA™ is based.
The use of ordinary mathematics in TLAT led BB to remark: if I want to
find out what an expression in a TLA™ specification means, I can just look
it up in a math book.

Computer scientists and engineers, accustomed to computer languages,
are likely to be surprised by the expressiveness of TLAT. BB describes the
power of TLAT in this way:

A single line of TLAT can do powerful manipulations of complex
data structures. This allows me to focus on the algorithm with-
out getting lost in bookkeeping tasks. TLAT tops even perl in
this regard. Unlike perl, however, TLA™T is unambiguous.

The simplicity and expressiveness of TLAT is not the result of any cleverness
in the design of the language; it comes from two thousand years of math-
ematical development, as formalized by great mathematicians like Hilbert.
TLA" is described in a recent book by LL, which is available on the Web [17].

2.4 The Structure of a TLA™ Specification

TLA™T does not enforce any particular way of structuring a specification,
allowing declarations and definitions to appear in any order as long as every
identifier is declared or defined before it is used. Moreover, by partitioning
it into separate modules, one can structure a specification to allow reading
higher-level definitions before reading the lower-level definitions on which
they depend.

Logically, most TLA™T specifications consist of the following sections:

Declarations The declarations of the constant parameters and the vari-
ables that describe the system. There are typically a dozen or so
declared identifiers.

Definitions of Operations on Data Structures These define mathe-
matical operators used to describe operations specific to the particular
system. For example, a specification of a system that can perform a

masked store to a register might define
MaskedStoreResult(curr, val, msk)

to be the new value of a register, whose current value is curr, after
storing to it a value wal through a mask msk. A specification usually
has only a few such operator definitions, each just a few lines long.
The operator MaskedStoreResult is more likely to be used only in the
definition that describes the masked store action, in which case it
would probably be defined locally in a LET/IN expression.

The Initial Predicate The definition of a formula that describes the pos-
sible initial values of the variables. It is a conjunction of formulas
x =...or z € ... for each variable z, where the “...” is usually a
simple constant expression.

The Next-State Action The definition of a formula containing primed
and unprimed variables that describes the system’s possible next state
as a function of its current state. It is generally defined as a disjunc-
tion of subactions, each describing one type of system step. For ex-
ample, in the specification of a mutual-exclusion algorithm, the next-
state action might have a disjunct 3 p € Proc : EnterCS(p), where
EnterCS(p) describes a step in which a process p enters its critical
section. The definition of the next-state action comprises the bulk of
the specification.

Liveness The definition of a temporal formula specifying the liveness prop-
erties of the system, usually in terms of fairness conditions on subac-
tions of the next-state action. It typically consists of about a dozen
lines.

The Specification This is the one-line definition
Spec = Init A O[Next], A Liveness

that defines Spec to be the actual specification, where Init is the ini-
tial predicate, Next is the next-state action, Liveness is the liveness
formula, and v is the tuple of all variables.

For a high-level specification that describes a system’s correctness
properties, Spec is the inner specification in which internal variables
are visible. The true specification would be obtained by hiding those
internal variables. If h is the tuple of all internal variables, then

Spec with those variables hidden is represented by the TLA formula
37 : Spec. For technical reasons, TLA™ requires that this formula be
defined in a separate module from the one defining Spec. However,
hiding the internal variables is done for philosophical correctness only.
The TLC model checker cannot handle the TLA hiding operator 3,
and in practice, one uses the inner specification Spec.

The only temporal operators that appear in the entire specification are the
ones in the liveness formula and the single O in the final specification. The
rest of the specification—usually about 99% of it—consists entirely of or-
dinary math, with no temporal operators. Moreover, engineers generally
do not use the liveness property. The complexity of model checking liveness
properties is inherently much greater than that of checking safety properties,
which means that liveness can be checked only for extremely small models
of real systems. Engineers therefore usually do not even write the liveness
property; instead their specification is

Spec = Init A O[Neat],

The only temporal operator in this specification is the single O.

2.5 The Size of Specifications

In principle, one could write specifications of any size, from tiny toy ex-
amples to million-line monsters. But tiny toys are of no practical interest,
and the module structure of TLA™ is probably inadequate for handling the
complexity of specifications longer than ten or twenty thousand lines. We
have identified the following three classes of applications for which TLA™T is
useful, each with a surprisingly narrow range of specification sizes:

Abstract Algorithms These are the types of concurrent algorithms that
are published in journals—for example, the Disk Paxos algorithm [6].
Their specifications seem to require a few hundred lines of TLA™. In-
teresting algorithms simple enough to have much shorter specifications
seem to be rare, while an algorithm with a much longer specification
is probably not abstract enough for journal publication.

Correctness Properties These are descriptions of the properties that pro-
tocols or systems should satisfy. One example is a description of the
memory model that a cache-coherence protocol is supposed to imple-
ment [20]. Their specifications also seem to require a few hundred lines
of TLA™. The requirements of a real system are seldom simple enough

to have a shorter specification, while a statement of correctness requir-
ing a much longer specification would probably be too complicated to
be useful.

High-Level Protocol or System Designs These describe the high-level
designs of actual systems or protocols. We know of no published ex-
ample; such designs are usually proprietary. We have found that these
specifications are about two thousand lines of TLAT. Any such spec-
ification is an abstraction of the actual lower-level implementation.
Engineers want to describe their design in as much detail as they can.
However, if the specification takes much more than two thousand lines,
then the design is too complicated to understand in its entirety, and a
higher-level abstraction is needed.

3 TLC: The TLA"T Model Checker

TLA™ was not designed with tools in mind; LL believed that a practical
model checker for it was impossible and advised against trying to write one.
Fortunately, Yuan Yu ignored him and wrote TLC, an explicit-state model
checker for TLAT programmed in Java [26].

TLA™Tis an extremely expressive language—for example, it can easily be
used to specify a program that accepts an arbitrary Turing machine as input
and tells whether or not it will halt. No model checker can handle all TLA™
specifications. TLC handles a subset of TLA™ that seems to include most
specifications of algorithms and correctness properties, as well as all the
specifications of protocol and system designs that engineers actually write.
Those few specifications arising in practice that TLC does not handle can be
easily modified, usually by changing only a few lines, so they can be checked
by TLC.

Explicit-state model checking is possible only for bounded-state speci-
fications. Most high-level specifications are not bounded-state because the
state contains data structures such as unbounded queues. We want engi-
neers to use the TLA™ specification as the official high-level specification of
their system, and a major goal of TLC is that the specification should not
have to be changed to allow it to be checked. So TLC accepts as input a
TLA™ specification and a configuration file that defines a finite model. The
configuration file instantiates the constant parameters of the specification—
for example, instructing TLC to replace the parameter Proc that represents
the set of processors with a set containing three elements. The configura-
tion file can also specify a constraint on the state space, instructing TLC to

explore only states satisfying the constraint.

As an example, we return to the toy specification, part of which is spec-
ified in Figures 1 and 2. In that specification, the variable seq represents
a queue that can grow arbitrarily large. To model check it with TLC, we
write a simple module that imports the original specification, declares a
constant MaxSeqLen, and defines a constraint asserting that the length of
seq is at most MaxSeqLen. We then instruct TLC to check the specification
using that constraint, substituting a specific value for MaxSeqLen. We do
this for increasing values of MaxzSeqLen until we are confident enough that
the specification is correct, or until the space of reachable states becomes so
large that it takes TLC too long to explore it. In contrast, note in Figure 1
that, to model check the specification with Spin, the parameter MaxSeqLen
had to be made part of the actual Promela specification.

Operations on many common data types are not built into TLAT, but
are instead defined in standard modules. For example, the natural numbers
are defined in the Naturals module to be an arbitrary set satisfying Peano’s
axioms, and arithmetic operation are defined in the usual way in terms of the
next-number function. A specification that uses operators like + on natural
numbers imports the Naturals module. It would be rather difficult for TLC
to compute 2 + 2 from the definition of + in that module. Instead, such
arithmetic operations are programmed in Java using TLC’s general module
overriding mechanism. When a specification imports a module named M,
TLC looks for a Java class file named M. class. If it finds one, it replaces op-
erators defined in M with their Java implementations in M. class. There are
Java implementations for common operators on numbers, sequences (lists),
finite sets, and bags (multisets) that are defined in the standard modules.
Ordinary users can also write their own Java class files to provide more
efficient implementations of the operators that they define. However, we
know of no case where this was necessary, and we know of only one user (a
researcher) who has done it.

TLC has a primitive command-line interface. Debugging is done by
adding print statements to the specification. Although this violates the
principle of not having to modify the specification to check it, the print
statements are usually removed as soon as initial debugging is completed
and simple “coding” errors corrected. Design errors are generally found by
examining error traces. We hope eventually to add a graphical user interface.

TLC is coded in Java. It is a multithreaded program and there is a
version that can use multiple machines. For checking safety properties, it
obtains close to an n-fold speedup with n processors when run on Alphas
using a high quality Java runtime. However, we have found that the poor

10

implementation of multithreading in many Java runtimes can significantly
reduce the speedup. The largest case we know of was one with 900 million
reachable states that took about two weeks on a four-processor machine.

The expressiveness of TLAT makes it essentially impossible to compile
TLA T specifications into efficient code. Therefore, TLC must interpret spec-
ifications. We guess that this makes TLC about ten times slower than
explicit-state model checkers that require specifications to be written in a
low-level, compilable language. Because TLC maintains its data structures
on disk, it has essentially no space limitations for checking safety properties.

The goal of TLC is to help engineers find bugs in their designs. Experi-
ence tells an engineer what kind of bugs a particular finite model is and is
not likely to find. For example, if a cache-coherence protocol handles differ-
ent addresses independently, then it may suffice to check models with only
a single memory address. A specification is an abstraction, and checking
it can find only errors that are present in that abstraction. Lower levels of
detail introduce many other sources of error not reflected in the specifica-
tion. In most industrial applications, engineers need cost-effective methods
of finding bugs; they are not seeking perfection.

4 TLAT Use in Industry

4.1 Digital/Compaq/HP

TLA" and TLC were conceived at the Digital (later Compaq) Systems Re-
search Center. The first serious industrial use of TLAT was for specifying
and writing part of a hand proof of the cache-coherence protocol of a mul-
tiprocessor code-named Wildfire, based on the Alpha EV6 processor [7].

The Wildfire experience inspired Yuan Yu to write TLC. It also per-
suaded the verification team to write a TLA™T specification of the cache-
coherence protocol of the next generation Alpha, the EV7. The initial spec-
ification viewed an entire processor chip as a single component; the level
of abstraction was later lowered to model protocol interactions between on-
chip components as well. TLC checked important properties of the protocol
and helped find several bugs. TLC and the EV7 protocol specification were
also used as the basis of a project to improve test coverage for hardware
simulation [25].

The processor design team for the next Alpha processor, the EV8, began
using TLA™ to write the official specification of its cache-coherence protocol.
However, development of that processor was cancelled.

11

TLA™ and TLC were also applied by Compaq engineers to the cache-
coherence protocols of two [tanium-based processors. Researchers used TLC
to debug a bus protocol proposal and to help develop database recovery
and cache management protocols. TLC is now used routinely by some re-
searchers to check the concurrent algorithms that they develop.

The use of TLAT and TLC at Digital and Compaq, some of which con-
tinued at HP, is described in [18].

4.2 Intel

We now describe the use of TLAT and TLC by BB and his colleagues at
Intel. The actual specifications are proprietary and have not been viewed
by anyone outside Intel.

4.2.1 Overview of the Problem

Designing a complex system starts with a problem statement and an ap-
propriate set of boundary conditions. A component of a computer system
is initially represented abstractly as a black box, with assertions about its
functionality and with some guidelines on performance, cost, and complex-
ity. The engineering process involves iteratively refining this abstract model
into lower-level models. Each lower-level model is a representation of the
design at a certain level of abstraction, and it has a specific purpose. Some
models are meant to evaluate tradeoffs between scope, performance, cost,
and complexity. Others carry the design down to the low level of detail
needed to manufacture the component.

The engineering process therefore creates multiple representations of a
design. Validation entails checking these multiple representations against
one another. Designers of digital systems have good tools and methods for
validating mid-level functional models, written in a hardware description
language (HDL) like VHDL or RTL, against lower-level models such as cir-
cuit net-lists. However, they have not had as much success checking the
higher-level functional representations of the design against one another,
and against the initial problem statement and functional assertions.

For some components, there is an intuitive correlation between the high-
level notions of correctness and the HDL model; such components tend not
to be difficult to validate. Other components, like multiprocessor cache-
coherence protocols, are sufficiently complex that checking the HDL model
against the problem statement is quite challenging. We need formal tech-
niques from the world of mathematics to perform this high-level validation.

12

Although formal methods are based on mathematics, engineers view
them differently from the way mathematicians do. To engineers, formal
verification is simply another imperfect validation tool (albeit a powerful
one). A TLA™ specification is only an abstraction of the actual system,
and model checking can usually validate the specification only for a highly
restricted set of system parameters. Validating the specification therefore
cannot guarantee that there are no errors in the system. For engineers,
formal verification is a way of finding bugs, not of proving correctness.

The main benefit of applying TLA™ to engineering problems comes from
the efficiency of the TLC model checker in reaching high levels of coverage
and finding bugs. A secondary benefit we have encountered is the ability
of TLA' and TLC to provide good metrics for the complexity of a design.
Complexity is a major consideration in evaluating design tradeoffs. However,
unlike performance or cost, engineers have not historically had a good way
to quantify algorithmic complexity before attempting to validate a design.
TLA™ encourages designers to specify the design abstractly, suppressing
lower-level details, so the length of the specification provides a measure of
a design’s complexity. TLC reports the size of the reachable state space,
providing another measure of complexity. Experience and intuition will
always have a place in evaluating complexity, but TLAT and TLC provide
robust and impartial input to the evaluation. Having this input early in the
design process is of considerable value.

4.2.2 Designing with TLA™

The core group at Intel started using TLAT at Compaq while working on the
Alpha EV7 and EV8 multiprocessor projects described above. From that
experience, the Alpha engineers learned that multiprocessor cache-coherence
protocols are an ideal candidate for formal methods because most of the
protocol bugs can be found at a high level of abstraction. They also learned
that the true value of TLA' and TLC would be realized when (a) they were
applied early enough in the design to provide implementation feedback, and
(b) the implementation was based directly on the specification that had been
verified. On the EVS8 project, the TLA™T specification was completed before
the design was stable, and it provided important feedback to the designers.

When the engineers from the Alpha group joined Intel, they began ap-
plying their experience in writing TLA™T specifications when collaborating
with other Intel engineers on cache-coherence protocols for future Intel prod-
ucts. Intel engineers are now using TLAT as an integral part of the design
process for the protocols that are under study.

13

Whiteboard Phase Designing one cache-coherence protocol from scratch
provided the engineers with the opportunity to evaluate TLAT as a proto-
typing platform for complex algorithms. Work on this protocol started by
exploring the design space on a whiteboard for about two months. In this
phase, basic message sequencing was determined, as were some coarse no-
tions of what state had to be recorded at the protocol endpoints. A basic
direction was set, based on the guidelines for functionality, performance, and
cost.

Because of their background, engineers tend to visualize an algorithm
in terms of a particular implementation. They are better at gauging im-
plementation complexity than at measuring algorithmic complexity. One
benefit of having engineers write formal specifications is that it helps them
learn how to think about a protocol abstractly, independent of implementa-
tion details. We found that, even in the whiteboard phase of the protocol
design, the Intel engineers were able to make some judgments on complexity
by asking themselves, “How would I code this in TLAT?”.

The whiteboard phase produced a general understanding of the protocol
philosophy, an understanding of the constraints placed on the communi-
cation medium, the basic message flows, and coarse ideas on what state
needed to be maintained. The next step was to introduce the rigor of a
formal specification.

TLA™T Scratchpad Phase The TLA™ scratchpad phase of the project
involved formally describing the abstract system, with appropriate state
variables representing high-level components. This phase took about two
months, starting with the initial design of the protocol. The difficulty
lay not in the use of TLA*™— engineers frequently learn new programming
languages—but rather in (a) determining the layer of abstraction and (b) ex-
ploring the protocol’s corner cases. Task (a) is where TLA™ forces engineers
to think about the protocol abstractly, which they often find unnatural.
Their ability to think abstractly improves with experience writing TLAT
specifications. Task (b) is inevitable when documenting a protocol formally,
as it forces the designers to explore the corner cases. During the scratchpad
phase, the designers had to return to the whiteboard a few times when they
encountered new race cases while writing the specification.

The actions that formed the major blocks of the specification were cho-
sen early; very few changes were made later. The Intel engineers adopted
a methodology used in the earlier Alpha specifications, in which the de-
composition of high-level named actions is based on classifying the protocol

14

messages that they process. This methodology has led to fairly readable
specifications, since it means that each action changes only a few local state
variables. It encouraged the protocol specifications to be designed in a mod-
ular way, which also enabled the inter-module interfaces in the specification
to be similar to their low-level counterparts in the implementation.

Running TLC The initial week or so of running TLC was spent finding
and fixing typographical errors and type mismatch problems. This time
could probably have been shortened by doing more syntax checking when
writing the specification, which is what one often does when programming.

The next four weeks saw a continuous process of running TLC, finding
bugs, fixing them, and re-running TLC. During this phase of the project,
many assumptions and assertions about the protocol were brought into ques-
tion. This had the effect of educating the engineers about the protocol they
had designed. We have found that TLC can be a useful learning tool if we
use in-line assertions and global invariants to check everything we think is
true. The Intel engineers were able to develop an intuitive understanding of
the correctness of the protocol by developing meaningful global invariants
and having TLC check them. If an assertion or invariant fails, TLC gen-
erates a counterexample that is useful for visualizing a difficult race case.
These counterexamples are such a powerful teaching aid that the Intel engi-
neers have developed tools to translate the TLC output into nicely formatted
protocol flow diagrams that are easier to read.

Another useful feature of the TLC model checker is its coverage checking.
TLC can print the number of times each action was “executed”. This pro-
vides a simple way to identify holes in coverage. Much of the effort expended
by the engineers in debugging the specification was spent eliminating each
of these holes, or convincing themselves that it represented an action that
could never happen.

The performance of the model checker was sufficient to debug a large
protocol specification. The engineers determined a base configuration that
would “execute” all the actions and that displayed all interesting known
cases. This configuration could be run on a four-processor machine in about
a day, enabling fast turn-around on bug fixes. Larger configurations were
periodically run as sanity checks on the smaller ones. The engineers would
also run TLC in simulation mode, which randomly and non-exhaustively
explores the state space, allowing them to check much larger configurations.
Such random simulations are similar to the ones engineers typically perform
on lower-level models, but it has the advantage of being several orders of

15

magnitude faster because it is based on the abstract TLAT model, and it
provides a robust metric for coverage.

4.2.3 Optimizing with TLC

Once the initial protocol specification was successfully checked by TLC, the
Intel engineers were able to use it as a test bed for exploring optimizations.
TLAT is an ideal language to explore changes because its expressiveness
usually allows the new version to be written quickly. Model checking the
modified specification with TLC not only checks functional correctness, but
it also measures any increase in the state space. Such an increase implies
additional algorithmic complexity. The engineers spent several months ex-
ploring additions to the protocol, testing them with TLC. As a general rule,
they would consider adopting only those optimizations that did not appre-
ciably expand the state space. The insight that TLAT and TLC gave into
the complexity of modifications to the protocol was invaluable in iterating
towards an optimal solution that adequately weighed algorithmic complexity
along with factors like cost and performance.

A significant optimization was later made to the protocol. This opti-
mization followed the normal design cycle described above, though on a
compressed schedule. With the original design yielding a good starting
point, the entire cycle (whiteboard phase, TLA™ coding, and verification
with TLC) was done within six weeks. This modification was accomplished
by a recent college graduate with an undergraduate degree in engineering.
He was able to learn TLA™ well enough within a matter of weeks to do this
work.

4.2.4 Feedback on TLA™T syntax

The feedback we have received from engineers about the TLA™T language
has been mostly positive. Engineers are usually able to pick up and under-
stand a specification within a couple of days. One mistake we made was to
present TLA™ to hardware designers as similar to a programming language.
This led to some frustration. A better approach seems to be to describe
TLA™ as being like a hardware description language. Engineers who design
digital systems are well acquainted with methods for specifying finite-state
machines, with the associated restrictions of allowing a primed variable to be
assigned a value only once within a conjunction, not allowing a primed vari-
able to appear in a conjunction before the assignment of its value, etc. To
an engineer, TLA™ looks like a language for specifying finite-state machines.

16

While writing the protocol specification at Intel, BB was impressed by
the ease of specifying complex data structures in TLAT as sets and tuples.
The part of the specification that described and manipulated data struc-
tures was a small part of the complete protocol specification. This compact
specification of “bookkeeping tasks”, along with the overall expressiveness
of TLA™T, won over the engineers who were accustomed to using more clumsy
functional languages for specifying complex algorithms.

For the algorithmic specification, TLA" naturally encourages nested dis-
junctions of conjunctions (known to engineers as sums of products of expres-
sions). This method for specifying Boolean formulas has both advantages
and disadvantages. One advantage is that it allows expressive comment
blocks and assertions to be inserted in-line with a nested conjunct. A dis-
advantage is that this tends to lead to large specifications. The engineers
are experimenting with the use of TLA™ operators to encode large blocks
of regular Boolean disjunctions as truth tables, which engineers find more
natural to work with.

5 Some Common Wisdom Examined

Based on our experience using TLA™T, we now examine the following pop-
ular concepts from the world of programming: types, information hiding,
object-oriented languages, component-based/compositional specifications,
hierarchical description/decomposition, and hierarchical verification. Most
of these concepts were mentioned in this symposium’s call for papers.

We do not question the usefulness of these concepts for writing programs.
But high-level specifications are not programs. We find that in the realm of
high-level specifications, these ideas are not as wonderful as they appear.

5.1 Types

Very simple type systems are very restrictive. Anyone who has programmed
in Pascal has written programs that were obviously type-correct, but which
were not allowed by Pascal’s simple type system.

Moderately complicated type systems are moderately restrictive. A pop-
ular type system is that of higher-order logic [8]. However, it does not allow
subtyping. With such a type system, an integer cannot be a real num-
ber. When writing Fortran programs, one gets used to 1.0 being unequal
to 1. One should not have to put up with that kind of complication in a
specification language.

17

Subtyping is provided by predicate subtyping, perhaps best known
through its use in the PVS verification system [23]. We will see below a
problem with PVS’s predicate subtyping. Moreover, predicate subtyping is
not simple. It has led to several bugs that caused PVS to be unsound.

For a typed language to be as expressive as TLA™T, it will need an ex-
tremely complicated type system, such as that of Nuprl [4]. Engineers have
a hard enough task dealing with the complexity of the systems that they
design; they don’t want to have to master a complicated type system too.

A specification consists of a large number of definitions, including many
local ones in LET/IN expressions. Although an operator may have a simple
type, it is often hard or impossible to declare the types of the operators
defined locally within its definition. Even when those type declarations are
possible, LL has found that they clutter a specification and make it harder
to read. (Early precursors of TLAT did include type declarations.) Any
information contained in a type declaration that is helpful to the reader can
be put in a comment.

The main virtue of types, which makes us happy to bear the inconve-
nience they cause when writing programs, is that they catch errors automati-
cally. (That advantage disappears in type systems with predicate subtyping,
in which type checking can require manually guided theorem proving.) How-
ever, we have found that the errors in a TLAT specification that could have
been found by type checking are generally caught quite quickly by running
TLC with very small models.

The problems with types are discussed at length in [19]. We want to
emphasize that we do not dispute the usefulness of types in programming
languages. We prefer to program in strongly typed languages. We are
questioning the use of types only in a high-level specification language.

5.2 Information Hiding

We have learned that programmers should hide irrelevant implementation
details. However, a high-level specification should not contain implemen-
tation details. Such details will appear in a well-written specification only
if an inexpressive language requires high-level concepts to be described by
low-level implementations. TLAT provides users with powerful mathemati-
cal objects like sets and functions; they don’t have to encode them in arrays
of bits and bytes. Such “bookkeeping details” do not occur in specifications
written in a truly high-level language like TLA™, so there is no need to hide
them.

18

5.3 Object-Oriented Languages

The mathematical concept underlying object oriented programming lan-
guages can be described as follows. A program maintains identifiers of (ref-
erences to) objects. There is a function Obj that maps the set Objectld of
object identifiers to a set Object of objects. An object-oriented language
simply hides the function Obj, allowing the programmer to write o.field
instead of Obj|o].field, where o is an object identifier.

Eliminating explicit mention of Obj can make a specification look a little
simpler. But it can also make it hard to express some things. For example,
suppose we want to assert that a property P(obj) holds for every object obj.
(Usually, P(obj) will assert that, if 0bj is a non-null object of a certain type,
then it satisfies some property.) This is naturally expressed by the formula

Vo € Objectld : P(Obj[o])

It can be difficult or impossible to express in a language that hides Obj.

Object-orientation introduces complexity. It raises the problem of alias-
ing. It leads to the confusing difference between equality of object identifiers
and equality of objects—the difference between o1 =02 and o1.equals(02).
You can’t find out what ol.equals(02) means by looking it up in a math
book.

Object-oriented programming languages were developed for writing large
programs. They are not helpful for two-thousand-line programs. Object
orientation is not helpful for two-thousand-line specifications.

5.4 Component-Based/Compositional Specifications

A high-level specification describes how the entire system works. In a TLAT
specification, a component is represented by a subexpression of the next-
state relation—usually by a disjunct. We can’t understand a formula by
studying its subexpressions in isolation. And we can’t understand a system
by studying its components in isolation. We have known for 20 years that
the way to reason about a distributed system is in terms of a global invariant,
not by analyzing each component separately [13].

Many tools have been developed for debugging the low-level designs of
individual hardware components. Engineers need a high-level specification
to catch bugs that can’t be found by looking at individual components.

19

5.5 Hierarchical Description/Decomposition

Hierarchical description or decomposition means specifying a system in
terms of its pieces, specifying each of those pieces in terms of lower-level
pieces, and so on. Mathematics provides a very simple, powerful mechanism
for doing this: the definition. For example, one might define A by

A 2 BVvCOvVD

and then define B, C, and D. (TLA™ requires that the definitions appear
in the opposite order, but one can present them in a top-down order by
splitting the specification into modules.)

Building up a specification by a hierarchy of definitions seems simple
enough. But a specification language can make it difficult in at least two
ways:

e It can restrict the kinds of pieces into which a definition can be bro-
ken. For example, it might require the pieces to be separate processes.
There is no reason to expect that splitting the system into separate
processes will be the best way to describe it.

e It can use a strict type system. For example, suppose z is a variable
of type real number, and we want to define an expression A by

A £ ifz+#0 then B else C

where B is defined by
B = 1/z

This is a perfectly reasonable definition, but PVS’s type system for-
bids it. PVS allows the expression 1/z only in a context in which z
is different from 0. This particular example is contrived, but TLA™
specifications often contain local definitions in LET/IN expressions that
are type-correct only in the context in which they are used, not in the
context in which they are defined.

How Intel engineers use and don’t use hierarchical decomposition is some-
what surprising. As we observed above, the major part of a TLA™ speci-
fication is the definition of the next-state action. Intel engineers use the
common approach of decomposing this definition as a disjunction such as

A

Next dp € Proc : Ai(p) V...V Au(p)

20

where each A4;(p) describes a particular operation performed by process p.
They also use local definitions to make a definition easier to read. For
example, an action A;(p) might be defined to equal

LET newV = ...
newW = ...
IN ...
AV = newV
Aw' = newW

This allows a reader to scan the IN clause to see what variables the action
changes, and then read the complex definitions of newV and newW to see
what the new values of v and w are.

What the Intel engineers do not do is use hierarchical decomposition to
hide complexity. For example, they would not eliminate common subexpres-
sions by writing

SubAction(p) =

A

Ai(p) = ... N SubAction(p) A ...
As(p) = ... A SubAction(p) A ...

if the two instances of SubAction(p) represent physically distinct compo-
nents.

The Intel engineers rely on the TLA™ specification to gauge the com-
plexity of their designs, using the number of lines in the specification as a
measure of a design’s complexity. This is possible because TLAT does not
introduce the extraneous details needed by lower-level languages to encode
higher-level concepts.

5.6 Hierarchical Verification

Hierarchical verification works as follows: To show that a system described
by the specification Sys implements the correctness properties Spec, we write
an intermediate-level spec Mid and show that Sys implements Mid and Mid
implements Spec. In TLA™, implementation is implication. To show that a
specification 3z : F implements a specification Jy : G, we must show

(Fz : F)= 3y : G)

21

Here, and y are tuples of variables, which we assume for simplicity to be
distinct. By simple logic, we show this by showing

F = (G with y « exp)

for some tuple of expressions ezp, where with denotes substitution (which
is expressed in TLA™ by module instantiation). The tuple ezp is called a
refinement mapping [1].

To show that Sys implies Spec, we must show

Sys = (ISpec with h «— exp)

where [Spec is the inner specification, with internal variables h visible. To
use hierarchical verification, we find an intermediate-level inner specification
IMid, with internal variables m visible, and show:

Sys = (IMid with m «— expl)
IMid = (ISpec with h «— exp2)

When the verification is done by TLC, there is no reason for such a
decomposition; TLC can verify directly that Sys implements ISpec under
the refinement mapping. When the verification is done by mathematical
proof, this decomposition seems reasonable. However, as LL has argued
elsewhere [16], it is just one way to decompose the proof; it is not necessarily
the best way.

Unfortunately, the whole problem of verifying that a high-level design
meets its specification is not yet one that is being addressed in the hardware
community. Thus far, engineers are checking only that their TLA™ design
specifications satisfy an incomplete set of invariants. Checking that they
satisfy a complete specification is the next step. Engineers want to do it,
but they have to learn how—which means learning how to find a correct
refinement mapping. TLC has the requisite functionality to do the checking,
but only doing it for real systems will tell if it works in practice. The reader
can get a feeling for the nature of the task by trying to solve the Wildfire
Challenge Problem [20].

6 Conclusions

Our industrial experience with TLA™ has led us to some simple, common-
sense conclusions:

22

Buzzwords like hierarchical and object-oriented are to be viewed with
suspicion.

A language for writing high-level specifications should be simple and
have effective debugging tools.

Only proofs and model checking can catch concurrency bugs in sys-
tems. For the vast majority of applications, proofs are not a practical
option; engineers have neither the training nor the time to write them.

A specification method cannot be deemed a success until engineers are
using it by themselves.

TLAT and TLC are practical tools for catching errors in concurrent systems.
They can be used very early in the design phase to catch bugs when it is
relatively easy and cheap to fix them. Writing a formal specification of a
design also catches conceptual errors and omissions that might otherwise
not become evident until the implementation phase.

TLAT is not just for industrial use. Anyone who writes concurrent or

distributed algorithms can use it. We invite the reader to give it a try.

References

1]

2]

Martin Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253-284, May 1991.

E. A. Ashcroft and Z. Manna. Formalization of properties of parallel
programs. In Machine Intelligence, volume 6. Edinburgh University
Press, 1970.

K. Mani Chandy and Jayadev Misra. Parallel Program Design.
Addison-Wesley, Reading, Massachusetts, 1988.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panagaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat-
ics with the Nuprl Proof Development System. Prentice-Hall, 1986.

R. W. Floyd. Assigning meanings to programs. In Proceedings of the
Symposium on Applied Math., Vol. 19, pages 19-32. American Mathe-
matical Society, 1967.

23

[6]

7]

Eli Gafni and Leslie Lamport. Disk paxos. To appear in Distributed
Computing., 2002.

Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van
Doren. Architecture and design of AlphaServer GS320. In Anoop
Gupta, editor, Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS IX), pages 13-24, November 2000.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University
Press, 1993.

C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-583, October 1969.

Gerard Holzmann. The model checker spin. IEFE Transactions on
Software Engineering, 23(5):279-295, May 1997.

Simon S. Lam and A. Udaya Shankar. Protocol verification via projec-
tions. IEEE Transactions on Software Engineering, SE-10(4):325-342,
July 1984.

Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125-143, March
1977.

Leslie Lamport. An assertional correctness proof of a distributed al-
gorithm. Science of Computer Programming, 2(3):175-206, December
1982.

Leslie Lamport. How to write a long formula. Formal Aspects of Com-
puting, 6:580-584, 1994. First appeared as Research Report 119, Digital
Equipment Corporation, Systems Research Center.

Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

Leslie Lamport. Composition: A way to make proofs harder. In Willem-
Paul de Roever, Hans Langmaack, and Amir Pnueli, editors, Composi-
tionality: The Significant Difference (Proceedings of the COMPOS’97
Symposium), volume 1536 of Lecture Notes in Computer Science, pages
402-423. Springer-Verlag, 1998.

24

[17]

[18]

[21]

[22]

23]

Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2002. A
link to an electronic copy can be found at http://lamport.org.

Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying
and verifying systems with TLA™. In Proceedings of the Tenth ACM
SIGOPS FEuropean Workshop, pages 45-48, Saint-Emilion, France,
September 2002. INRIA (Institut National de Recherche en Informa-
tique et en Automatique).

Leslie Lamport and Lawrence C. Paulson. Should your specification
language be typed? ACM Transactions on Programming Languages

and Systems, 21(3):502-526, May 1999.

Leslie Lamport, Madhu Sharma, Mark Tuttle, and Yuan Yu. The
wildfire verification challenge problem. At URL http://research.
microsoft.com/users/lamport/tla/wildfire-, challenge.html on
the World Wide Web. It can also be found by searching the Web for
the 24-letter string wildfirechallengeproblem.

Susan Owicki and David Gries. Verifying properties of parallel
programs: An axiomatic approach. Communications of the ACM,
19(5):279-284, May 1976.

Susan Owicki and Leslie Lamport. Proving liveness properties of con-
current programs. ACM Transactions on Programming Languages and
Systems, 4(3):455-495, July 1982.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the
design of PVS. IEEE Transactions on Software Engineering, 21(2):107—
125, February 1995.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on the Foundations of Computer Science, pages 46—
57. IEEE, November 1977.

Serdar Tasiran, Yuan Yu, Brannot Batson, and Scott Kreider. Using
formal specifications to monitor and guide simulation: Verifying the
cache coherence engine of the Alpha 21364 microprocessor. In In Pro-
ceedings of the 8rd IEEE Workshop on Microprocessor Test and Veri-
fication, Common Challenges and Solutions. IEEE Computer Society,
2002.

25

[26] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking
TLA™T specifications. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, volume 1703 of Lec-
ture Notes in Computer Science, pages 54-66, Berlin, Heidelberg, New
York, September 1999. Springer-Verlag. 10th IFIP wg 10.5 Advanced
Research Working Conference, CHARME ’99.

26

