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Abstract. We present a new class of Byzantine-tolerant State Machine
Replication protocols for asynchronous environments that we term Byzan-
tine Chain Replication. We demonstrate two implementations that present
different trade-offs between performance and security, and compare these
with related work. Leveraging an external reconfiguration service, these
protocols are not based on Byzantine consensus, do not require majority-
based quorums during normal operation, and the set of replicas is easy
to reconfigure.

One of the implementations is instantiated with t+ 1 replicas to tolerate
t failures and is useful in situations where perimeter security makes ma-
licious attacks unlikely. Applied to in-memory BerkeleyDB replication,
it supports 20,000 transactions per second while a fully Byzantine imple-
mentation supports 12,000 transactions per second—about 70% of the
throughput of a non-replicated database.

1 Introduction

Byzantine-tolerant State Machine Replication (BSMR) is the only known generic
approach to making applications (servers, routing daemons, and so on) tolerate
arbitrary faults beyond crash failures in an asynchronous environment [1]. Var-
ious studies in complex systems have shown that crash failures constitute a
minority of failures [2, 3], while trends in hardware increase the probability of
transient hardware errors such as bit flips [4–6]. Worse yet, most replication pro-
tocols deployed in cloud centers provide weak consistency guarantees, meaning
that they introduce inconsistencies even if there are no faults [7, 8]. Protocols
such as Primary-Backup [9] and Chain Replication [10] make strong assump-
tions about failure detection that are easily violated in datacenter settings while
conservative timeouts result in long recovery times.

While BSMR addresses all these problems, to the best of our knowledge there
is no deployment of BSMR in today’s datacenters. There are good reasons for
this:
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– Traditional BSMR require 3t + 1 replicas in order to tolerate t faults [11],
whereas primary-backup replication protocols require only t+ 1 replicas [9].
Also, the protocols may require expensive cryptographic operations and sig-
nificant network bandwidth, further increasing cost;

– Significant progress has been made at reducing the cost of BSMR [12–14].
However, these protocols are complex [15]. Even basic (crash-tolerant) Paxos
replication is difficult to implement and debug [16]. Multi-purpose Paxos and
BSMR libraries have not proved successful, and few support basic operations
such as reconfiguring the locations of the protocol participants, important
to practical deployment.

Much of the difficulty stems from replicated services being designed to be stand-
alone, but in practice the configuration of replicated services is usually managed
by an external scalable configuration service. The configuration service is used
only in the face of failures. Exploiting this, we can build replication protocols
that do not use quorums in the steady-state when there are no failures. This
reduces the number of replicas necessary, not only increasing efficiency but also
robustness in the face of limited sources of diversity.

Our protocols are based on Chain Replication [10], which is increasingly being
used in scalable fault tolerant systems [17–20]. Chain Replication also uses an
external configuration service, but cannot tolerate even general crash failures as
the protocol depends on accurate failure detection, an overly strong requirement
in today’s datacenters. In the face of a mistaken failure detection, a chain may
split and inconsistent results may be returned to clients. To reduce the likelihood
of such problems, timeouts used for failure detection have to be set conservatively
(values that exceed one minute are not uncommon in practice), meaning that
in the face of an actual crash it takes a long time before remedial action can be
taken.

In this paper we make the following contributions:

– We present a new class of highly reconfigurable Chain Replication protocols
that are easily reconfigurable, do not require accurate failure detection, and
are able to tolerate Byzantine failures.

– We prove the correctness of this class of protocols;
– We present a Byzantine Chain Replication protocol called Shuttle;
– We briefly describe two simple implementations of Shuttle: one that can

tolerate Byzantine failures in their full generality, and one that tolerates
“accidental failures” such as crashes, bit flips, concurrency bugs, and so on;

– We present a performance evaluation of Byzantine Chain Replication applied
to the popular BerkeleyDB database service [21];

– We compare the complexity with that of related protocols.

The Shuttle implementation that can tolerate arbitrary failures uses, in steady
state, 2t + 1 replicas, HMAC signatures, and has a message overhead of 2t + 2
messages per operation. The implementation that is designed to deal with crash
failures as well as bit flips and Heisenbugs uses only t+1 replicas, and its overhead
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is essentially the same as Chain Replication for update operations (using CRC
checksums and t + 2 messages per operation). However, read-only operations
are as expensive as update operations, whereas in Chain Replication read-only
operations are only 2 messages.

Section 2 presents Byzantine Chain Replication, and Section 3 shows the
Shuttle protocol. Implementation details are the topic of Section 4. Section 5
evaluates performance characteristics. A comparison with related work is de-
scribed in Section 6. Section 7 concludes.

2 Byzantine Chain Replication

This section presents a class of replication protocols, rather than a specific pro-
tocol. The class is characterized by the state that correct replicas keep and how
they order and persist operations. For simplicity, we consider a single object. We
model the state of the object as a finite history H of operations, which is a set
of 〈s, o〉 pairs, where s is a slot number and o an operation. It has the following
property:

∀s, o, o′ : 〈s, o〉 ∈ H ∧ 〈s, o′〉 ∈ H⇒ o = o′ (1)

That is, each slot can have at most one operation assigned to it.
Initially, H is empty. The only allowed transition on the object is to add an

operation to the history at a particular slot (transitions are atomic):

specification Object:
transition apply(s, o):

precondition: 6 ∃o′ : 〈s, o′〉 ∈ H

action: H := H ∪ {〈s, o〉}

Note that the history does not have to be filled sequentially, and thus “holes”
in the history are allowed. However, if a running state is maintained, operations
should be applied in the order of their slot number in the history.

To make the object highly available, we will replicate it and dynamically
change the configuration in order to deal with failures. Similar approaches have
been proposed for crash failures only [22, 23]. For now suppose there is an un-
bounded sequence of configurations C = C1 :: C2 :: C3 :: .... The boolean function
succ(C,C ′) evaluates to true if and only if C ′ follows C directly in C. Each con-
figuration Ci is an ordered chain of replicas (see Chain Replication [10]), and we
assume that the replicas of any two different configurations are disjoint. Given
two replicas ρ and ρ′ in the same configuration, we write ρ ≺ ρ′ if ρ precedes ρ′

in the chain.
Any replica ρ can create statements of the form 〈d〉ρ where d is arbitrary data.

For now, assume that d is data signed by ρ using public key cryptography; more
efficient schemes will be described later. If ρ is correct, only ρ can create those
statements. We say that ρ says d. A global state variable statements contains all
statements of correct replicas, but may also contain statements of faulty replicas.

A correct replica ρ in configuration C has the following local state:
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specification Chain:
transition orderCommand(ρ,C, s, o):

precondition:
ρ ∈ C ∧ ρ.mode = ACTIVE ∧
∀ρ′ ∈ C : ρ′ ≺ ρ⇒ 〈order, s, o〉ρ′ ∈ statements ∧
6 ∃o′, v′, ρ′ : 〈s, o′, ρ′, C, v′〉 ∈ ρ.history

action:

ρ.history := ρ.history ∪
{〈
s, o, ρ, C, {〈order, s, o〉ρ′ | ρ

′ ∈ C ∧ ρ′ � ρ}
〉}

statements := statements ∪ {〈order, s, o〉ρ}

transition becomeImmutable(ρ):
precondition:

ρ.mode = ACTIVE

action:
ρ.mode := IMMUTABLE

statements := statements ∪ {〈wedged, ρ.history〉ρ}

transition switchConfig(C,C′, H):
precondition:

succ(C,C′) ∧ 6 ∃h : 〈inithist, C′, h〉 ∈ statements ∧
H ⊆ statements ∧
∃Q ∈ QC : |H| = |Q| ∧

∀ρ ∈ Q : ∃h : 〈wedged, h〉ρ ∈ H ∧ validHist(h, ρ, C)

action:

hist := {
〈
s, o,max(C′), C′, {〈order, s, o〉ρ′ | ρ

′ ∈ C′}
〉
|

∃h, v : h ∈ H ∧ 〈s, o, v〉 ∈ h ∧
∀h′, v′, o′ : h′ ∈ H ∧ 〈s, o′, v′〉 ∈ h′ :⇒ |v| ≥ |v′|}

statements := statements ∪ {〈inithist, C′, hist〉Ω}

transition becomeActive(ρ,C, hist):
precondition:

ρ ∈ C ∧ ρ.mode = PENDING ∧ 〈inithist, C, hist〉Ω ∈ statements
action:

ρ.history := hist
ρ.mode := ACTIVE

Fig. 1. State transitions allowed in Chain Replication.

– ρ.mode: PENDING, ACTIVE, or IMMUTABLE. Initially all replicas in C1 are AC-

TIVE, while replicas in all other configurations are PENDING;
– ρ.history: a set of order proofs. An order proof is a tuple of the following

form: 〈
s, o, ρ, C, {〈order, s, o〉ρ′ | ρ

′ ∈ C ∧ ρ′ � ρ}
〉
. (2)

Here s is a slot number, o an operation, and each 〈order, s, o〉ρ′ is an order

statement said by ρ′ ∈ C. An order proof contains order statements from
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all replicas that precede ρ in C and from ρ itself. ρ.history cannot contain
conflicting order proofs, that is, order proofs for the same slot number but
different operations.

In addition to replicas, there is an oracle Ω that can sign so-called inithist

statements. Figure 1 shows what transitions are allowed in Chain Replication
by correct replicas and by Ω:

1. orderCommand(ρ, C, s, o): Any active replica ρ in configuration C can say
〈order, s, o〉ρ if each preceding replica in C, if any, has done likewise and
there is no conflicting operation for s in its history. ρ also adds a new order
proof to its history.

2. becomeImmutable(ρ): An active replica ρ can suspend updating its history
by becoming immutable at any time. Typically it will do this only if one or
more of its peer replicas are suspected of being faulty. The replica signs a
wedged statement to notify Ω that it is immutable and what its history is.

3. switchConfig(C,C ′, H): The oracle Ω waits for a set H of valid histories
from a quorum of replicas in C. QC is the set of quorums defined for con-
figuration C. A valid history contains at most one order proof per slot. The
oracle then issues an inithist statement for configuration C ′ with the or-
der proofs of maximal size for each slot s in the histories in H. max(C ′) is
the last replica (the “tail”) on chain C ′. The oracle can issue at most one
inithist statement per configuration.

4. transition becomeActive(ρ, C, hist): A pending replica ρ in configuration
C can become active if the oracle has issued an inithist statement for C.

We require that each quorum Q ∈ QC contain at least one honest replica. An
honest replica ρ is defined as follows: if issued, 〈wedged, h〉ρ includes all or-
der proofs corresponding to all 〈order, s, o〉ρ statements that ρ issues. In other
words, an honest replica cannot truncate its history, nor can it issue new order

statements after it has become immutable and issued a wedged statement.

Clearly, correct replicas are honest, but replicas that suffer only crash fail-
ures are honest as well. Later we will argue that replicas that suffer from bit
flips and other types of non-malicious failures can be transformed into honest
replicas. Replicas that are not honest are easily identified: the combination of
an 〈order, s, r〉ρ statement and a 〈wedged, h〉ρ statement that does not contain
an order proof for 〈s, r〉 constitutes a proof of misbehavior.

The transitions specify what actions are safe, but not when or in what order
to do them.1 In other words, the system is asynchronous. For liveness, we assume
that there is always eventually a configuration in which all replicas are correct
and do not become immutable.

1 The transition specifications are not pseudo-code, and should not be confused with
implementation. For example, the code corresponding to the orderCommand tran-
sition would have to check that the order proofs of preceding replicas are signed
correctly.
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Safety

We show safety through a sketch of a refinement mapping of Specification Chain
to Specification Object. The statements that are made by the (correct and
faulty) replicas map to the state of the object as follows:

H = {〈s, o〉 | ∃C ∈ C : ∀ρ ∈ C : 〈order, s, o〉ρ ∈ statements} (3)

Thus an 〈s, o〉 pair is in the object history if all replicas of a configuration
have issued order statements for that pair. We call the 〈s, o〉 pairs in H thus
defined persistent. For this refinement mapping to be well-defined, we need to
show that Equation 1 holds. We say that 〈s, o〉 persists in C if C ∈ C and
∀ρ ∈ C : 〈order, s, o〉ρ ∈ statements.

Lemma 1. If 〈s, o〉 persists in C and the precondition of orderCommand(ρ′, s, o′)
holds, where ρ′ is a correct replica in configuration C ′ that follows C in C (not
necessarily directly), then o = o′.

Proof. (Sketch) By definition of persists, all replicas in C issue an 〈order, s, o〉
statement. First assume C ′ is the configuration that directly follows C. Because
the precondition of orderCommand(ρ′, s, o′) holds, ρ′ is active, and thus the oracle
Ω must have issued an inithist statement for C ′. Thus a quorum of replicas in
C must have issued wedged statements and Ω obtained order proofs of at least
one honest replica in C. The oracle thus obtained an order proof for 〈s, o〉 from
some honest replica ρ. It is not possible for faulty replicas to create a larger order
proof for a different 〈s, o′〉, as that would require that ρ says 〈order, s, o′〉ρ for
the larger order proof. This cannot happen because ρ is honest. So if there is a
larger order proof, it must be for 〈s, o〉.

Iteratively, all correct replicas in all configurations that follow C will have an
order proof for 〈s, o〉. As a correct replica never issues an order statement that
conflicts with an order proof in its history, the lemma holds.

Theorem 1. For all s, o, o′, C, and C ′, if 〈s, o〉 persists in C and 〈s, o′〉 persists
in C ′, then o = o′.

Proof. (Sketch) By contradiction, consider some s, o, o′, C, and C ′ such that
o 6= o′. All correct replicas in C ordered 〈s, o〉, while all correct replicas in C ′

ordered 〈s, o′〉. There are two cases:

– C = C ′: this means that all correct replicas in C ordered both 〈s, o〉 and
〈s, o′〉, which is impossible as a correct replica issues at most one order

statement per slot number.
– C 6= C ′: wlog., assume C ′ follows C in C. Because all correct replicas in C ′

ordered 〈s, o′〉, they must each have issued order statements for 〈s, o′〉 and
thus underwent orderCommand transitions for 〈s, o′〉. By Lemma 1, o = o′.

This demonstrates that Equation 1 holds under any Chain transition.
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An important question is how to enforce that each quorum in QC contains
at least one honest replica. One way is to have each quorum contain at least
t + 1 replicas and thus at least one correct replica. To guarantee liveness each
configuration would have to have at least 2t+ 1 replicas, or no sufficient number
of replicas might issue a wedged statement for the precondition of switchConfig
to become true.

Another option is to assume that all replicas are honest. Under this assump-
tion, quorums can be singletons and, for liveness, each configuration would have
to have at least t+ 1 replicas. Such an assumption could be reasonable if mali-
cious failures are unlikely and each replica maintain a checksum of its history,
reporting a failure when it detects that its history is compromised. Alterna-
tively, automated approaches that transform hardware errors into crash failures
could be used [5, 6]. There is no way to prevent malicious replicas from issuing
truncated histories. However, if they do so they expose themselves as provably
faulty.

3 Shuttle: A Byzantine Chain Replication Protocol

Shuttle is a BSMR protocol based on Byzantine Chain Replication. Each replica
maintains a running state in addition to the local history of order proofs (we will
show later how the history can be truncated periodically). A centralized config-
uration service called Olympus implements the oracle Ω and generates a series
of configurations, issuing inithist statements (signed by a private key held by
Olympus) for each such configuration. Any modern datacenter will contain a
configuration service similar to the Olympus and can maintain the configura-
tions of many objects. A configuration statement includes the sequence number
of the configuration and an ordered list of replica identifiers.

Olympus generates a new configuration upon receiving a reconfiguration-

request statement. To reduce the efficacy of trivial Denial-of-Service attacks
on the object, Olympus only accepts reconfiguration requests that are sent by
replicas in the current configuration or accompanied by a proof of misbehavior
(such as the aforementioned conflicting wedged and order statements from the
same replica, or any other set of conflicting statements from the same replica
that Olympus recognizes). Olympus does not have to allocate a fresh set of
replicas for each configuration—doing so would lead to significant overhead as
state is transfered from old replicas to new replicas—however, reused replicas
need to be made aware of their new configuration. For liveness, we assume that
the Olympus eventually creates a configuration of correct replicas that do not
issue reconfiguration requests.

3.1 Proofs

Before describing the Shuttle protocol, we generalize the notion of a proof. A
proof of d is a tuple:
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〈
d,C, ρ, {〈d〉ρ′ | ρ

′ ∈ C ∧ ρ′ � ρ}
〉
. (4)

where C ∈ C and ρ ∈ C. Typically, ρ is the issuer of the proof. An order proof
is an example of a proof, that is, a proof of ρ ordering 〈s, o〉. We will say that a
proof is complete if ρ is the tail of the chain in C, that is, all replicas in C have
signed d.

3.2 Failure-Free Case

Suppose a client wants to execute an operation o and obtain a result. The client
first obtains the current configuration from Olympus, and sends o to the head
of the chain. The head orders incoming operations by assigning increasing slot
numbers to them, and creating shuttles that are sent along the chain.

A shuttle contains two proofs: an order proof for 〈s, o〉 and a result proof
for the result of o. Suppose that the head assigns o to slot s. Each replica ρ,
including the head, does the following:

1. checks the validity of the order proof in the shuttle;
2. applies o to its running state and obtains a result r;
3. adds 〈order, s, o〉ρ to the order proof (the replica undergoes an orderCom-

mand transition);
4. adds 〈result, o, S(r)〉ρ to the result proof, where S is a cryptographic hash

function;
5. forwards the shuttle to the next replica if any.

After the tail replica adds its order statement to the shuttle, the order proof
is complete and 〈s, o〉 is persistent, and the tail forwards the result proof to
the client along with the result r itself. The client believes the result if S(r)
corresponds to all result statements in the result proof.

The tail also returns the shuttle with the completed proofs to the head along
the chain in the reverse order. We will refer to this as the result shuttle. Each
replica caches this shuttle (and the result r itself) in order to deal with potential
failures, as described next.

3.3 Dealing with Failures

In the case of a replica or a network failure, a client may not receive a valid
response. The client uses a timer to try to detect a failure. (The value of the timer
does not affect safety and can thus be set aggressively in order to detect failures
quickly—however, if set too aggressively the overhead of reconfigurations would
negatively affect performance.) When the timer expires, the client retransmits
its operation to all replicas in the chain. If a (correct) replica that receives the
request has the result shuttle cached, it returns the result along with the result
proof to the client. If the replica is immutable, it responds to the client with an
error statement, in which case the client has to retrieve the latest configuration
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from Olympus and try again. In all other cases, the replica forwards the request
to the head (if it is not the head itself), and starts a timer.

The head, if correct and upon receiving a retransmission (either directly from
the client or indirectly through one of the peer replicas), distinguishes three cases:

1. it has cached the result shuttle corresponding to the operation;
2. it has ordered the operation but is still waiting for the result shuttle to come

back;
3. it does not recognize the operation.

In the first case, it sends the cached result to the client. In the second case,
it starts a timer. In the third case, it allocates a new slot number, starts the
protocol from scratch, and starts a timer. In the latter two cases, if receiving the
result before its timer expires, the head cancels its timer and responds to the
client. Upon receipt of the result each replica does likewise, canceling its timer if
it is still outstanding, and sending the result along with the result proof to the
client. Should the timer expire at one of the replicas, then the replica sends a
reconfiguration-request statement to Olympus.

To reconfigure, Olympus executes the following steps:

1. send signed wedge requests to each of the replicas in the current configura-
tion. Correct replicas respond with wedged statements (becomeImmutable
transition);

2. await responses from a quorum of replicas, and construct a history h by
selecting the longest order proof for each slot;

3. allocate a new configuration C of replicas and seed those with h and a con-
figuration statement for C. The replicas then become active (becomeActive
transition).

3.4 Clients

After sending an operation, the client is waiting for a response that may never
arrive. For liveness, the client checks periodically with Olympus to see if there
is a new configuration, and if so retransmits its operation. Consequently, an op-
eration may be executed more than once. Although not currently implemented,
duplicate execution can be prevented if the service keeps track of which oper-
ations it has already executed (on a per-client basis) and treats duplicates as
no-ops. The results of such operations may no longer be available, as caching re-
sults for ever would present a significant storage problem. Note that the problem
and solution are the same for non-replicated servers [24].

Shuttle can tolerate Byzantine clients in that correct Shuttle replicas do not
assume that clients follow a particular specification. In particular, Byzantine
clients cannot compromise the integrity of the replicated object, for example,
by sending conflicting operations to different replicas. This is a direct result of
the head of the object making all ordering decisions within its configuration.
However, Byzantine clients can send bogus operations to the replicas2 and they

2 A faulty head of the chain can introduce bogus operations by itself.
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can mount Denial-of-Service attacks by sending lots of bogus operations. Shuttle
has no specific defense for such attacks, except that client operations are signed
and thus the source is easily identified. It is assumed that such clients are shut
down using external means.

4 Implementation

We have implemented two versions of the Shuttle protocol:

1. CRC Shuttle: A version that is intended to deal with unintentional failures
such as power failures, Heisenbugs, bit flips, and so on, but all replicas are
assumed to be honest. It uses t+ 1 replicas in each configuration, singleton
quorums, and CRC checksums for signatures.

2. HMAC Shuttle: A version that tolerates arbitrary failures, and uses 2t + 1
replicas in each configuration, quorums of size t + 1, and signatures based
on HMACs.

We do not have space to describe the entire implementations, but sketch some
aspects below. For a complete description, see [25].

4.1 HMAC Vectors

In the case of HMAC Shuttle, a replica signs a statement with a vector of HMAC
signatures, with one entry for each receiver that may need to receive the state-
ment. It is thus possible that a faulty replica provides valid signatures for some
but not for all destinations. Worse, a recipient of a statement with a valid HMAC
signature in its entry of the vector cannot necessarily convince other processes.

Each replica ρi has a secret signing key krij for each other replica ρj and a
secret signing key kcic for each client c. The inter-replica signing keys krij are
known to the Olympus as well, while the replica-to-client signing keys kcic are
created using the Diffie-Hellman [26] protocol. A wedged statement from a replica
to the Olympus is signed by an HMAC vector with an entry for each other
replica. The Olympus can check this signature as well as all order proofs as it is
in possession of all the necessary keys.

In the current implementations, Olympus is a trusted server that is not repli-
cated itself, but it could be replicated using something like PBFT [12]. Since
Olympus has the inter-replica signing keys, a Byzantine replica of the Olympus
service might try to leak these keys to Byzantine object replicas. It is thus im-
portant that outputs of the Olympus replicas go through a voting filter; only if
t + 1 of the Olympus replicas send a copy of particular message, the filter will
let it through.

4.2 Checkpointing

It would be infeasible in practice for each replica to maintain the entire history of
operations, let alone pass on this history to new replicas during reconfiguration.
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Thus each replica actually maintains a checkpoint and a suffix of the history
of operations that comes after this checkpoint. Periodically the head initiates
a checkpoint by sending a shuttle down the chain with a checkpoint proof for
a hash of its running state. Each replica ρ adds a 〈checkpoint, S(state)〉ρ to
the checkpoint proof. The tail returns the completed checkpoint proof along the
chain so each replica can remove the corresponding prefix from its history. The
latest checkpoint proof along with the corresponding state is part of a wedged

statement of a replica.

In HMAC Shuttle, it is not necessary for all 2t + 1 replicas to maintain
running state [13]. The chain is split into two parts. The first t + 1 (including
the head) maintain the running state, but the final t (including the tail) do not.
These witness replicas have to sign the order proofs in the shuttles, but they do
so without knowing the running state. Witnesses do not sign the result proof as
they cannot compute it. A client needs only t+ 1 matching copies of the result
in order to accept it, knowing that at least one correct replica signed the result.

5 Experimental Evaluation

In this section, we evaluate the performance of HMAC Shuttle experimentally
and compare it against Chain Replication [10], a protocol that tolerates only
crash failures and assumes perfect failure detection. We expect the performance
of Shuttle CRC to be close to Chain Replication: they both arrange t+1 replicas
in a chain. Computing CRC checksums, an operation only carried out in Shuttle
CRC, has negligible overhead. Both HMAC Shuttle and Chain Replication are
implemented in Java. To evaluate the overhead of these protocols, we put them
side-to-side with a non-replicated server in a failure-free scenario.

The code is deployed on a cluster of Linux machines connected by a Gigabit
switch. Replicas and clients run on dual-core 2.8 Ghz AMD Opterons. We use 2
and 3 machines for the replicas of Chain Replication and HMAC Shuttle respec-
tively (t = 1); clients run on a separate machine. All replicas maintain running
state and HMACs are generated with the SHA-256 algorithm using 256-bit keys.

Each replica runs a copy of a BerkeleyDB, a transactional key-value store.
The store consists of a list of accounts with their corresponding balances. We
consider an update-only workload where transactions deposit a random amount
of money into a randomly selected account. We configured BerkeleyDB to run
entirely in memory as disk latencies tend to largely dominate and obfuscate the
protocol overheads. In the benchmarks, each client submits 10 transactions in
parallel and waits to receive all responses before submitting the next ones. Each
client submits 30,000 transactions and the experiments comprised between 1 and
24 clients.

In Figure 2, we present the average number of committed transactions per
second (throughput) versus the average latency for Chain Replication (CR) and
HMAC Shuttle (HMAC). In the left graph of Figure 2, we include the perfor-
mance of a single BerkeleyDB instance. In both graphs, we report the standard
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Fig. 2. Throughput vs. Latency of Chain Replication (CR) and HMAC Shuttle
(HMAC).

deviation of the latency, except for the single BerkeleyDB instance. The latter
was consistently smaller than for the two other protocols.

Chain Replication has a slightly higher latency than the single BerkeleyDB
instance for a given load: with Chain Replication the transaction goes through
two servers instead of a single one. Surprisingly, Chain Replication supports
up to 20,000 transactions per second, a higher load than a single BerkeleyDB
server, which can support about 17,000 transactions per second. It turns out that
with Chain Replication the overhead of communication with clients is shared
between the head and the tail of the chain—the head receives transactions from
clients and the head sends back results. HMAC Shuttle offers good performance
for a Byzantine-resilient replication protocol: it supports loads up to 12,000
transactions per second. However, it exhibits higher latencies due to the overhead
of verifying and signing statements.

6 Comparison with Prior Work

Many papers have described how to make Byzantine fault tolerance practical.
Starting from PBFT [12], various proposals [27, 28, 14, 29, 15] aim to reduce la-
tency and increase throughput. Aardvark [30] and Zyzzyvark [31] focus on sus-
tainable performance rather than peak performance. Other proposals focus on
reducing the number of full replicas [13, 32, 33].

Table 1 compares various aspects of Shuttle with related work. PBFT is the
first Byzantine replication protocol designed for practical use. Zyzzyva [14] is
optimized for peak performance. Aliph [15] uses a chain communication pattern,
like Shuttle. Zyzzyvark is a recent protocol that tolerates client failures. We
consider ZZ [33] the state of the art in reducing replication cost.

We consider the total number of replicas, the number of full replicas, the
maximum number of HMAC operations at a replica, the number of message
rounds (aka message latencies or network latencies), and the effect that Byzan-
tine clients can have on a replicated object. As all of the approaches support
batching of multiple requests in order to amortize CPU overhead, we include
the effect of batching on the number of crypto operations. In PBFT and ZZ
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PBFT Zyzzyva Aliph Zyzzyvark ZZ HMAC CRC

Shuttle Shuttle

total #replicas 3t+ 1 3t+ 1 3t+ 1 3t+ 1 3t+ 1 2t+ 1 t+ 1

#full replicas 2t+ 1 2t+ 1 3t+ 1 2t+ 1 t+ 1 t+ 1 t+ 1

#crypto ops 2 + 8t+1
b

2 + 3t
b

1 + t+1
b

2t+ 3t
b

+ 2 2 + 10t+3
b

2 + 2t
b

2 + t
b

#message rounds 4 3 3t+ 2 4 4 2t+ 2 t+ 2

effects of

faulty clients Reconfig. Rollback Rollback None Reconfig. None None

Table 1. Properties of state-of-the-art BFT replication approaches that tolerate t
failures, avoid RSA signatures, and use a batch size b.

(based on PBFT), a faulty client can trigger reconfigurations in the replicated
object. Zyzzyva uses speculative execution, and a faulty client can trigger a roll-
back that involves multiple rounds and expensive RSA signatures. In Aliph a
faulty client can also trigger a rollback.

7 Conclusion

Byzantine fault tolerance is becoming increasingly important as we depend more
on computer systems, and as those systems have more components that may fail.
Byzantine Chain Replication is a new class of replication protocols that needs
only few sources of diversity and has modest costs while tolerating a large class
of failures. This paper has also presented Shuttle, a simple implementation of a
Byzantine Chain Replication protocol, and compared two versions with related
work. We find that Byzantine Chain Replication configured with t = 1 applied
to an in-memory database can support about 70% of the throughput of a non-
replicated database, albeit at about twice the latency due to the overhead of
checking and verifying HMAC signatures.
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