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tWe introdu
e the 
on
ept of a Rapidly-exploring Ran-dom Tree (RRT) as a randomized data stru
ture thatis designed for a broad 
lass of path planning problems.While they share many of the bene�
ial properties of ex-isting randomized planning te
hniques, RRTs are spe
if-i
ally designed to handle nonholonomi
 
onstraints (in-
luding dynami
s) and high degrees of freedom. An RRTis iteratively expanded by applying 
ontrol inputs thatdrive the system slightly toward randomly-sele
ted points,as opposed to requiring point-to-point 
onvergen
e, asin the probabilisti
 roadmap approa
h. Several desir-able properties and a basi
 implementation of RRTs aredis
ussed. To date, we have su

essfully applied RRTsto holonomi
, nonholonomi
, and kinodynami
 planningproblems of up to twelve degrees of freedom.1 Introdu
tionOver the past de
ade, several randomized approa
heshave been proposed and su

essfully applied to the gen-eral problem of path planning in a high-dimensional 
on-�guration spa
e. Two of the more popular approa
hesin
lude the randomized potential �eld algorithm (e.g.,[2℄) and the probabilisti
 roadmap algorithm (e.g., [1, 4℄).Given these su

esses, and the fa
t that there is littlehope of ever obtaining an eÆ
ient, general path plan-ning algorithm, it is natural to ask: Why do we needanother randomized path planning te
hnique?The primary diÆ
ulty with existing te
hniques isthat, although powerful for standard path planning, theydo not naturally extend to general nonholonomi
 plan-ning problems. Using state-spa
e representations, this
lass of problems in
ludes kinodynami
 planning [3℄,whi
h is an extremely general and important area inroboti
s, virtual prototyping, and many other appli
a-tions. The randomized potential �eld method dependsheavily on the 
hoi
e of a good heuristi
 potential fun
-tion, whi
h be
omes a daunting task when 
onfrontedwith obsta
les, kinemati
 di�erential 
onstraints, anddynami
al 
onstraints. In the probabilisti
 roadmapapproa
h, a graph is 
onstru
ted in the 
on�gurationspa
e by generating random 
on�gurations and attempt-ing to 
onne
t pairs of nearby 
on�gurations with a

Figure 1: A 2D proje
tion of a 5D RRT for a kinody-nami
 
ar.lo
al planner that will 
onne
t pairs of 
on�gurations.For planning of holonomi
 systems or steerable nonholo-nomi
 systems (see [6℄ and referen
es therein), the lo-
al planning step might be eÆ
ient; however, in generalthe 
onne
tion problem 
an be as diÆ
ult as design-ing a nonlinear 
ontroller, parti
ularly for 
ompli
atednonholonomi
 and dynami
al systems. The probabilis-ti
 roadmap te
hnique might require the 
onne
tions ofthousands of 
on�gurations or states to �nd a solution,and if ea
h 
onne
tion is akin to a nonlinear 
ontrol prob-lem, it seems impra
ti
al for many nonholonomi
 (andkinodynami
) problems that arise in roboti
s and relatedareas.In this paper, we introdu
e a randomized data stru
-ture for path planning that is designed for problems thathave nonholonomi
 
onstraints. This leads to the in-trodu
tion of a Rapidly-exploring Random Tree (RRT),whi
h is de�ned in Se
tion 2. An RRT in
ludes some ofthe same desirable properties as a probabilisti
 roadmap.Both are designed with as few heuristi
s and arbitrary1



parameters as possible. This tends to lead to better per-forman
e analysis and 
onsisten
y of behavior. It alsofa
ilitates the adaptation of the methods to related ap-pli
ations. The unique advantage of RRTs is that they
an be dire
tly applied to nonholonomi
 and kinody-nami
 planning. This advantage stems from the fa
tthat RRTs do not require any 
onne
tions to be madebetween pairs of 
on�gurations (or states), while proba-bilisti
 roadmaps typi
ally require tens of thousands of
onne
tions. As dis
ussed shortly, RRTs might be moreeÆ
ient than a basi
 probabilisti
 roadmap for holo-nomi
 path planning.2 Rapidly-Exploring Random TreesPath planning will generally be viewed as a sear
h ina metri
 spa
e, X , for a 
ontinuous path from an ini-tial state, xinit to a goal region Xgoal � X or goal statexgoal. We use the term state spa
e to indi
ate a greatergenerality than is usually 
onsidered in path planning.For a standard problem, X = C, whi
h is the 
on�gura-tion spa
e of a rigid body or system of bodies in a 2Dor 3D world [5℄. For a kinodynami
 planning problem,X = T (C), whi
h is the tangent bundle of the 
on�gu-ration spa
e [7℄ (a state en
odes both 
on�guration andvelo
ity). Many other interpretations of X are possible.It is assumed that a �xed obsta
le region, Xobs � Xmust be avoided, and that an expli
it representation ofXobs is not available. One 
an only 
he
k whether a givenstate lies in Xobs. States in Xobs 
ould 
orrespond to ve-lo
ity bounds, 
on�gurations at whi
h a robot is in 
ol-lision with an obsta
le in the world, or several other in-terpretations, depending on the appli
ation. A Rapidly-exploring Random Tree (RRT) will be 
onstru
ted sothat all of its verti
es are states in Xfree, the 
omple-ment of Xobs. Furthermore, ea
h edge of the RRT will
orrespond to a path that lies entirely in Xfree.A state transition equation of the form _x = f(x; u)is de�ned to express the nonholonomi
 
onstraints. Theve
tor u is sele
ted from a set, U , of inputs. The ve
-tor _x denotes the derivative of state with respe
t totime. This 
ontrol-theoreti
 representation is powerfulenough to en
ode virtually any kinemati
 and dynami
almodel. By integrating f over a �xed time interval, �t,the next state, xnew 
an be determined for a given ini-tial state, x, and input u 2 U . Using Euler integration,xnew � x+f(x; u)�t; however, it is usually preferable touse a higher-order integration te
hnique, su
h as Runge-Kutta. Let NEW STATE(x; u;�t) denote an algorithmthat returns xnew .For holonomi
 planning, one 
an de�ne f(x; u) = u,and kuk � 1, whi
h implies that any bounded velo
ity
an be a
hieved. After integrating f over �t, a new state
an be obtained that moves the system in any dire
tion

relative to x. For a nonholonomi
 problem, the nextstate is 
onstrained due to the 
hoi
e of f .For a given initial state, xinit, an RRT, T , with Kverti
es is 
onstru
ted as shown below:GENERATE RRT(xinit ;K;�t)1 T .init(xinit);2 for k = 1 to K do3 xrand  RANDOM STATE();4 xnear  NEAREST NEIGHBOR(xrand; T );5 u SELECT INPUT(xrand; xnear);6 xnew  NEW STATE(xnear ; u;�t);7 T .add vertex(xnew);8 T .add edge(xnear ; xnew; u);9 Return TLet � denote a distan
e metri
 on the state spa
e.The �rst vertex of T is xinit 2 Xfree. In ea
h iteration,a random state, xrand, is sele
ted from X (it is assumedthat X is bounded). Step 4 �nds the 
losest vertex toxrand in terms of �. Step 5 sele
ts an input, u, that mini-mizes the distan
e from xnear to xrand, and ensures thatthe state remains in Xfree. Collision dete
tion 
an beperformed by an in
remental method su
h as Mirti
h'sV-Clip. NEW STATE is 
alled on ea
h input to eval-uate a potential new state (if U is not �nite, it 
an bedis
retized, or an alternative optimization pro
edure 
anbe used). The new state, xnew, whi
h is obtained by ap-plying u, is added as a vertex to T . An edge from xnearto xnew is also added, and the input u is re
orded withthe edge (be
ause this input must be applied to rea
hxnew from xnear).3 Ni
e Properties of RRTsThis se
tion presents several properties of RRTs,whi
h make them ideally suited for a wide variety ofpra
ti
al planning problems. The key advantages ofRRTs are: 1) the expansion of an RRT is heavily biasedtoward unexplored portions of the state spa
e; 2) the dis-tribution of verti
es in an RRT approa
hes the samplingdistribution, leading to 
onsistent behavior; 3) an RRTis probabilisti
ally 
omplete under very general 
ondi-tions; 4) the RRT algorithm is relatively simple, whi
hfa
ilitates performan
e analysis (this is also a preferredfeature of probabilisti
 roadmaps); 5) an RRT alwaysremains 
onne
ted, even though the number of edges isminimal; 6) an RRT 
an be 
onsidered as a path plan-ning module, whi
h 
an be adapted and in
orporatedinto a wide variety of planning systems; 7) entire pathplanning algorithms 
an be 
onstru
ted without requir-ing the ability to steer the system between two pres
ribedstates, whi
h greatly broadens the appli
ability of RRTs.To gain a better understanding of RRTs, 
onsider thespe
ial 
ase in whi
h X is a bounded, 
onvex region in2



the plane. Assume that a holonomoi
 model is used,implying that f = u and U = fu 2 <2 j kuk � 1g.Let � represent the Eu
lidean metri
. The frames belowshow the 
onstru
tion of an RRT for the 
ase of X =[0; 100℄� [0; 100℄, �t = 1, and xinit = (50; 50):
The RRT qui
kly expands in a few dire
tions to qui
klyexplore the four 
orners of the square. Although the 
on-stru
tion method is simple, it is no easy task to �nd amethod that yields su
h desirable behavior. Consider,for example, a naive random tree that is 
onstru
ted in-
rementally by sele
ting a vertex at random, an inputat random, and then applying the input to generate anew vertex. Although one might intuitively expe
t thetree to \randomly" explore the spa
e, there is a
tuallya very strong bias toward pla
es already explored (oursimulation experiments yielded an extremely high den-sity of verti
es near xinit, with little other exploration).A random walk also su�ers from a bias toward pla
esalready visited. An RRT works in the opposite mannerby being biased toward pla
es not yet visited. This 
anbe seen by 
onsidering the Voronoi diagram of the RRTverti
es. Larger Voronoi regions o

ur on the \frontier"of the tree. Sin
e vertex sele
tion is based on nearestneighbors, this implies that verti
es with large Voronoiregions are more likely to be sele
ted for expansion. Onaverage, an RRT is 
onstru
ted by iteratively breakinglarge Voronoi regions into smaller ones.Based on simulation experiments, su
h as the oneshown above, we have 
on
luded that the generatedpaths are not far from optimal and that the verti
es willeventually be
ome uniformly distributed. Even thoughthe paths appear jagged, note that no spiraling o

urs.Based on several experiments in 2D, 
onvex spa
es, theoptimal path to the root in 
omparison to the path inthe RRT, di�er on average by a fa
tor of 1.3 to 2.0. Uni-formity of the RRT verti
es was repeatedly 
on�rmed bythe passing of several Chi-square tests, whi
h are typi-
ally used to evaluate random number generators.It is not diÆ
ult to prove that the verti
es will be
omeuniformly distributed. As the RRT initially expands, theverti
es are 
learly not uniformly distributed; however,the probability that a randomly-
hosen point lies within�t of a vertex of the tree eventually approa
hes one. Inthis 
ase, the random sample will be added as a vertexto the tree. If the samples are generated uniformly, theverti
es in the tree will be
ome uniform. This result is

independent of the initial vertex lo
ation (also 
on�rmedby our experiments)! In general, if the points xrand aresampled from any smooth probability density fun
tion,p(x), the verti
es of the RRT will distributed a

ordingto p(x). This property is very useful for generating bi-asing s
hemes. A 
ru
ial pie
e of analysis that remainsopen is the rate of 
onvergen
e.For interesting planning problems, X will be non
on-vex. In this 
ase, the RRT verti
es will still be
ome uni-formly distributed; however, one would expe
t the rateof 
onvergen
e to be slower. This leads to a probabilisti-
ally 
omplete [4℄ holonomi
 planner. Ideal performan
e
ould be obtained by de�ning a metri
, �, that yields thelength of the shortest path between two states, but deter-mining this metri
 is as diÆ
ult as solving the path plan-ning problem. All randomized path planning methodssu�er from the diÆ
ulty of determining or estimating theideal metri
. In the 
ase of nonholonomi
 systems, theresulting RRT remains probabilisti
ally 
omplete underfairly general 
onditions; however, 
onvergen
e issues be-
ome even more important. For kinodynami
 planning,the ideal metri
 (or pseudometri
, due to asymmetry)would be one that gives the 
ost of the optimal traje
-tory between any two states. On
e again, determiningthis metri
 is as hard as solving the original problem.Thus, we (and others) are for
ed to use simple metri
s,hoping that 
onvergen
e will be fast in pra
ti
e.Based on our preliminary experiments, it appearsthat RRTs might be faster than the basi
 probabilis-ti
 roadmap approa
h for holonomi
 planning problems.An RRT is minimal in the sense that it is always able tomaintain a 
onne
ted stru
ture with the fewest edges. Aprobabilisti
 roadmap often su�ers in performan
e be-
ause many extra edges are generated in attempts toform a 
onne
ted roadmap. RRTs also require singlenearest-neighbor queries, while probabilisti
 roadmapsrequire more-expensive k-nearest neighbor queries. Col-lision dete
tion is a key bottlene
k in path planning, andan RRT is 
ompletely suited for in
remental 
ollision de-te
tion. This allows the fastest-avaliable 
ollision dete
-tion algorithms to be applied for every 
ollision 
he
k.For these reasons and our preliminary observations fromexperimentation, it appears that an RRT-based plannermay generally yield better performan
e than a proba-bilisti
 roadmap-based planner; however, it is diÆ
ult tomake a 
on
lusive experimental 
omparison.4 ExamplesSeveral illustrative examples of RRTs are presentedhere. In a related paper [7℄, we presented an RRT-basedplanner that 
omputes 
ollision-free kinodynami
 traje
-tories that �re thrusters for hover
rafts and satellites in
luttered 2D and 3D environments. Several 
ompli
ated3



problems were solved, in
luding un
ontrollable systemsand a 3D rigid body with dynami
s (a 12D state spa
e).

Ea
h example above shows a 2D rigid body that movesin a 2D environment. The proje
tion of the RRT intothe plane is shown, along with a 
omputed path forthe robot. In the upper left, a solution to a tightly-
onstrained 3D holonomi
 planning problem is shown.In the upper right, an RRT is shown for 
ar that is onlyallowed to move forward and turn right in varying de-grees. The lower left shows a 
omputed solution for anun
ontrollable 
ar in a 
luttered environment. The 
ar isonly 
apable of moving forward and turning left in threedi�erent in
rements (it 
annot even move straight). Fig-ure 1 shows an RRT and a 
omputed traje
tory for a5DOF dynami
al model of a 
ar. A solution path for thissame model in a 
luttered environment is shown abovein the lower right. The 
urrent implementation negle
tsmany eÆ
ien
y issues; nevertheless, the 
omputationalperforman
e is en
ouraging so far.5 Resear
h IssuesAlthough our experiments with RRTs have beensu

essful, many 
hallenging issues remain. EÆ
ientnearest-neighbor te
hniques are needed, whi
h has beena topi
 of a
tive interest in 
omputational geometry.There are a variety of ways to embed an RRT into aplanner. EÆ
ient planners 
an be designed by gener-ating multiple RRTs (for example, one rooted at xinitand another rooted at xgoal). An RRT 
ould repla
e therandom walk stage in a randomized potential �eld ap-proa
h. For some problems, it might be preferable toobtain multiple, homotopi
ally-distin
t paths. In this


ase, an RRT 
ould be 
onverted into a 
y
li
 graph.Within a homotopy 
lass, the solution quality 
an begenerally improved by employing variational te
hniques.Also, there are many issues involved in biasing the sam-ples, xrand. For example, a bias 
an be given that slightlyprefers a goal state (if the arti�
ial bias is too strong, theRRT 
ould su�er the same pitfalls as a potential �eldmethod). Signi�
ant theoreti
al analysis of RRTs alsoremains. It would be parti
ularly valuable to determinebounds on the 
onvergen
e rate and on solution qualitywith respe
t to the optimal solution.At the present time, we believe we have barelys
rat
hed the surfa
e of potential appli
ations of RRTs.By allowing dynami
s to be 
onsidered dire
tly, robotplanning problems for numerous navigation, manipula-tion, and lo
omotion tasks 
an be approa
hed. Auto-motive engineers 
an evaluate virtual prototypes to de-termine whether a proposed vehi
le is likely to roll oversideways, or 
an perform high-speed lane 
hanges. Simi-lar problems 
an be imagined in the design of spa
e
raft,air
raft, and underwater vehi
les. Resear
hers in 
om-putational 
uid dynami
s 
an study the e�e
ts of 
ow�elds on movable bodies. In 
omputer graphi
s, dynami-
al motions of simulated ma
hines and digital a
tors 
anbe automated.A
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