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Abstract

We introduce the concept of a Rapidly-exploring Ran-
dom Tree (RRT) as a randomized data structure that
is designed for a broad class of path planning problems.
While they share many of the beneficial properties of ex-
isting randomized planning techniques, RRTs are specif-
ically designed to handle nonholonomic constraints (in-
cluding dynamics) and high degrees of freedom. An RRT
is iteratively expanded by applying control inputs that
drive the system slightly toward randomly-selected points,
as opposed to requiring point-to-point convergence, as
in the probabilistic roadmap approach. Several desir-
able properties and a basic implementation of RRTs are
discussed. To date, we have successfully applied RRTs
to holonomic, nonholonomic, and kinodynamic planning
problems of up to twelve degrees of freedom.

1 Introduction

Over the past decade, several randomized approaches
have been proposed and successfully applied to the gen-
eral problem of path planning in a high-dimensional con-
figuration space. Two of the more popular approaches
include the randomized potential field algorithm (e.g.,
[2]) and the probabilistic roadmap algorithm (e.g., [1, 4]).
Given these successes, and the fact that there is little
hope of ever obtaining an efficient, general path plan-
ning algorithm, it is natural to ask: Why do we need
another randomized path planning technique?

The primary difficulty with existing techniques is
that, although powerful for standard path planning, they
do not naturally extend to general nonholonomic plan-
ning problems. Using state-space representations, this
class of problems includes kinodynamic planning [3],
which is an extremely general and important area in
robotics, virtual prototyping, and many other applica-
tions. The randomized potential field method depends
heavily on the choice of a good heuristic potential func-
tion, which becomes a daunting task when confronted
with obstacles, kinematic differential constraints, and
dynamical constraints. In the probabilistic roadmap
approach, a graph is constructed in the configuration
space by generating random configurations and attempt-
ing to connect pairs of nearby configurations with a

Figure 1: A 2D projection of a 5D RRT for a kinody-
namic car.

local planner that will connect pairs of configurations.
For planning of holonomic systems or steerable nonholo-
nomic systems (see [6] and references therein), the lo-
cal planning step might be efficient; however, in general
the connection problem can be as difficult as design-
ing a nonlinear controller, particularly for complicated
nonholonomic and dynamical systems. The probabilis-
tic roadmap technique might require the connections of
thousands of configurations or states to find a solution,
and if each connection is akin to a nonlinear control prob-
lem, it seems impractical for many nonholonomic (and
kinodynamic) problems that arise in robotics and related
areas.

In this paper, we introduce a randomized data struc-
ture for path planning that is designed for problems that
have nonholonomic constraints. This leads to the in-
troduction of a Rapidly-exploring Random Tree (RRT),
which is defined in Section 2. An RRT includes some of
the same desirable properties as a probabilistic roadmap.
Both are designed with as few heuristics and arbitrary



parameters as possible. This tends to lead to better per-
formance analysis and consistency of behavior. It also
facilitates the adaptation of the methods to related ap-
plications. The unique advantage of RRTs is that they
can be directly applied to nonholonomic and kinody-
namic planning. This advantage stems from the fact
that RRTs do not require any connections to be made
between pairs of configurations (or states), while proba-
bilistic roadmaps typically require tens of thousands of
connections. As discussed shortly, RRTs might be more
efficient than a basic probabilistic roadmap for holo-
nomic path planning.

2 Rapidly-Exploring Random Trees

Path planning will generally be viewed as a search in
a metric space, X, for a continuous path from an ini-
tial state, ;i to a goal region X ., C X or goal state
Zgoal- We use the term state space to indicate a greater
generality than is usually considered in path planning.
For a standard problem, X = C, which is the configura-
tion space of a rigid body or system of bodies in a 2D
or 3D world [5]. For a kinodynamic planning problem,
X = T(C), which is the tangent bundle of the configu-
ration space [7] (a state encodes both configuration and
velocity). Many other interpretations of X are possible.

It is assumed that a fixed obstacle region, X,ps C X
must be avoided, and that an explicit representation of
Xo,ps is not available. One can only check whether a given
state lies in X,p5. States in X,;5 could correspond to ve-
locity bounds, configurations at which a robot is in col-
lision with an obstacle in the world, or several other in-
terpretations, depending on the application. A Rapidly-
exploring Random Tree (RRT) will be constructed so
that all of its vertices are states in Xyf,q., the comple-
ment of X,ps. Furthermore, each edge of the RRT will
correspond to a path that lies entirely in X,...

A state transition equation of the form & = f(z,u)
is defined to express the nonholonomic constraints. The
vector u is selected from a set, U, of inputs. The vec-
tor © denotes the derivative of state with respect to
time. This control-theoretic representation is powerful
enough to encode virtually any kinematic and dynamical
model. By integrating f over a fixed time interval, At,
the next state, ¢, can be determined for a given ini-
tial state, =, and input u € U. Using Euler integration,
Tnew = T+ f(x,u)At; however, it is usually preferable to
use a higher-order integration technique, such as Runge-
Kutta. Let NEW_STATE(z, u, At) denote an algorithm
that returns ¢ -

For holonomic planning, one can define f(z,u) = u,
and ||u|| < 1, which implies that any bounded velocity
can be achieved. After integrating f over At, a new state
can be obtained that moves the system in any direction

relative to x. For a nonholonomic problem, the next
state is constrained due to the choice of f.

For a given initial state, z;,;, an RRT, 7, with K
vertices is constructed as shown below:

GENERATE_RRT (zinit, K, At)
1 T.init(zina);
2 fork=1to K do
3 %rand — RANDOM_STATE();
4 Tnear < NEAREST_NEIGHBOR(Zrand, T);
5 u < SELECT_INPUT(%rand, Tnear);
6 ZTnew — NEW_STATE(Zpeqr, u, At);
7 T .add_vertex(Tpew);
8 T .add_edge(Tnear; Tnew, u);
9 Return 7

Let p denote a distance metric on the state space.
The first vertex of T is it € Xfree. In each iteration,
a random state, Zqnq, is selected from X (it is assumed
that X is bounded). Step 4 finds the closest vertex to
Zrand 0 terms of p. Step 5 selects an input, u, that mini-
mizes the distance from Z,eqr O Trang, and ensures that
the state remains in Xy.... Collision detection can be
performed by an incremental method such as Mirtich’s
V-Clip. NEW_STATE is called on each input to eval-
uate a potential new state (if U is not finite, it can be
discretized, or an alternative optimization procedure can
be used). The new state, Tneq, which is obtained by ap-
plying u, is added as a vertex to 7. An edge from Z,cqr
to Z,eqw 18 also added, and the input u is recorded with
the edge (because this input must be applied to reach
Tnew TOM Tpeor).

3 Nice Properties of RRT's

This section presents several properties of RRTs,
which make them ideally suited for a wide variety of
practical planning problems. The key advantages of
RRTs are: 1) the expansion of an RRT is heavily biased
toward unexplored portions of the state space; 2) the dis-
tribution of vertices in an RRT approaches the sampling
distribution, leading to consistent behavior; 3) an RRT
is probabilistically complete under very general condi-
tions; 4) the RRT algorithm is relatively simple, which
facilitates performance analysis (this is also a preferred
feature of probabilistic roadmaps); 5) an RRT always
remains connected, even though the number of edges is
minimal; 6) an RRT can be considered as a path plan-
ning module, which can be adapted and incorporated
into a wide variety of planning systems; 7) entire path
planning algorithms can be constructed without requir-
ing the ability to steer the system between two prescribed
states, which greatly broadens the applicability of RRTs.

To gain a better understanding of RRTs, consider the
special case in which X is a bounded, convex region in



the plane. Assume that a holonomoic model is used,
implying that f = w and U = {u € R? | ||u|| < 1}.
Let p represent the Euclidean metric. The frames below
show the construction of an RRT for the case of X =
[0,100] x [0,100], At =1, and z;,ix = (50, 50):

The RRT quickly expands in a few directions to quickly
explore the four corners of the square. Although the con-
struction method is simple, it is no easy task to find a
method that yields such desirable behavior. Consider,
for example, a naive random tree that is constructed in-
crementally by selecting a vertex at random, an input
at random, and then applying the input to generate a
new vertex. Although one might intuitively expect the
tree to “randomly” explore the space, there is actually
a very strong bias toward places already explored (our
simulation experiments yielded an extremely high den-
sity of vertices near z;n;, with little other exploration).
A random walk also suffers from a bias toward places
already visited. An RRT works in the opposite manner
by being biased toward places not yet visited. This can
be seen by considering the Voronoi diagram of the RRT
vertices. Larger Voronoi regions occur on the “frontier”
of the tree. Since vertex selection is based on nearest
neighbors, this implies that vertices with large Voronoi
regions are more likely to be selected for expansion. On
average, an RRT is constructed by iteratively breaking
large Voronoi regions into smaller ones.

Based on simulation experiments, such as the one
shown above, we have concluded that the generated
paths are not far from optimal and that the vertices will
eventually become uniformly distributed. Even though
the paths appear jagged, note that no spiraling occurs.
Based on several experiments in 2D, convex spaces, the
optimal path to the root in comparison to the path in
the RRT, differ on average by a factor of 1.3 to 2.0. Uni-
formity of the RRT vertices was repeatedly confirmed by
the passing of several Chi-square tests, which are typi-
cally used to evaluate random number generators.

Tt is not difficult to prove that the vertices will become
uniformly distributed. As the RRT initially expands, the
vertices are clearly not uniformly distributed; however,
the probability that a randomly-chosen point lies within
At of a vertex of the tree eventually approaches one. In
this case, the random sample will be added as a vertex
to the tree. If the samples are generated uniformly, the
vertices in the tree will become uniform. This result is

independent of the initial vertex location (also confirmed
by our experiments)! In general, if the points %,q,4 are
sampled from any smooth probability density function,
p(x), the vertices of the RRT will distributed according
to p(x). This property is very useful for generating bi-
asing schemes. A crucial piece of analysis that remains
open is the rate of convergence.

For interesting planning problems, X will be noncon-
vex. In this case, the RRT vertices will still become uni-
formly distributed; however, one would expect the rate
of convergence to be slower. This leads to a probabilisti-
cally complete [4] holonomic planner. Ideal performance
could be obtained by defining a metric, p, that yields the
length of the shortest path between two states, but deter-
mining this metric is as difficult as solving the path plan-
ning problem. All randomized path planning methods
suffer from the difficulty of determining or estimating the
ideal metric. In the case of nonholonomic systems, the
resulting RRT remains probabilistically complete under
fairly general conditions; however, convergence issues be-
come even more important. For kinodynamic planning,
the ideal metric (or pseudometric, due to asymmetry)
would be one that gives the cost of the optimal trajec-
tory between any two states. Once again, determining
this metric is as hard as solving the original problem.
Thus, we (and others) are forced to use simple metrics,
hoping that convergence will be fast in practice.

Based on our preliminary experiments, it appears
that RRTs might be faster than the basic probabilis-
tic roadmap approach for holonomic planning problems.
An RRT is minimal in the sense that it is always able to
maintain a connected structure with the fewest edges. A
probabilistic roadmap often suffers in performance be-
cause many extra edges are generated in attempts to
form a connected roadmap. RRTSs also require single
nearest-neighbor queries, while probabilistic roadmaps
require more-expensive k-nearest neighbor queries. Col-
lision detection is a key bottleneck in path planning, and
an RRT is completely suited for incremental collision de-
tection. This allows the fastest-avaliable collision detec-
tion algorithms to be applied for every collision check.
For these reasons and our preliminary observations from
experimentation, it appears that an RRT-based planner
may generally yield better performance than a proba-
bilistic roadmap-based planner; however, it is difficult to
make a conclusive experimental comparison.

4 Examples

Several illustrative examples of RRTs are presented
here. In a related paper [7], we presented an RRT-based
planner that computes collision-free kinodynamic trajec-
tories that fire thrusters for hovercrafts and satellites in
cluttered 2D and 3D environments. Several complicated



problems were solved, including uncontrollable systems

and a 3D rigid body with dynamics (a 12D state space).

Each example above shows a 2D rigid body that moves
in a 2D environment. The projection of the RRT into
the plane is shown, along with a computed path for

the robot. In the upper left, a solution to a tightly-
constrained 3D holonomic planning problem is shown.
In the upper right, an RRT is shown for car that is only
allowed to move forward and turn right in varying de-
grees. The lower left shows a computed solution for an
uncontrollable car in a cluttered environment. The car is
only capable of moving forward and turning left in three
different increments (it cannot even move straight). Fig-
ure 1 shows an RRT and a computed trajectory for a
5DOF dynamical model of a car. A solution path for this
same model in a cluttered environment is shown above
in the lower right. The current implementation neglects
many efficiency issues; nevertheless, the computational
performance is encouraging so far.

5 Research Issues

Although our experiments with RRTs have been
successful, many challenging issues remain. Efficient
nearest-neighbor techniques are needed, which has been
a topic of active interest in computational geometry.
There are a variety of ways to embed an RRT into a
planner. Efficient planners can be designed by gener-
ating multiple RRTs (for example, one rooted at
and another rooted at z400:). An RRT could replace the
random walk stage in a randomized potential field ap-
proach. For some problems, it might be preferable to
obtain multiple, homotopically-distinct paths. In this

case, an RRT could be converted into a cyclic graph.
Within a homotopy class, the solution quality can be
generally improved by employing variational techniques.
Also, there are many issues involved in biasing the sam-
ples, x,.4,q. For example, a bias can be given that slightly
prefers a goal state (if the artificial bias is too strong, the
RRT could suffer the same pitfalls as a potential field
method). Significant theoretical analysis of RRTs also
remains. It would be particularly valuable to determine
bounds on the convergence rate and on solution quality
with respect to the optimal solution.

At the present time, we believe we have barely
scratched the surface of potential applications of RRTs.
By allowing dynamics to be considered directly, robot
planning problems for numerous navigation, manipula-
tion, and locomotion tasks can be approached. Auto-
motive engineers can evaluate virtual prototypes to de-
termine whether a proposed vehicle is likely to roll over
sideways, or can perform high-speed lane changes. Simi-
lar problems can be imagined in the design of spacecraft,
aircraft, and underwater vehicles. Researchers in com-
putational fluid dynamics can study the effects of flow
fields on movable bodies. In computer graphics, dynami-
cal motions of simulated machines and digital actors can
be automated.
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