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Abstract

Dynamic programming languages often abandon the advantages of static type
checking in favour of their characteristic convenience and flexibility. Static type
checking eliminates many common user errors at compile-time that are otherwise
unnoticed, or are caught later in languages without static type checking. A recent
trend is to aim to combine the advantages of both kinds of languages by adding
optional static type systems to languages without static type checking, while
preserving the idioms and style of the language.

This dissertation describes my work on designing an optional static type sys-
tem for the Clojure programming language, a dynamically typed dialect of Lisp,
based on the lessons learnt from several projects, primarily Typed Racket. This
work includes designing and building a type checker for Clojure running on the
Java Virtual Machine. Several experiments are conducted using this prototype,
particularly involving existing Clojure code that is sufficiently complicated that
type checking increases confidence that the code is correct. For example, nearly
all of algo.monads, a Clojure Contrib library for monadic programming, is able
to be type checked. Most monad, monad transformer, and monadic function
definitions can be type checked, usually by adding type annotations in natural
places like function definitions.

There is significant future work to fully type check all Clojure features and
idioms. For example, multimethod definitions and functions with particular con-
straints on the number of variable arguments they accept (particularly functions
taking only an even number of variable arguments) are troublesome. Also, there
are desirable features from the Typed Racket project that are missing, such as
automatic runtime contract generation and a sophisticated blame system, both
which are designed to improve error messages when mixing typed and untyped
code in similar systems.

Overall, the work described in this dissertation leads to the conclusion that
it appears to be both practical and useful to design and implement an optional
static type system for the Clojure programming language.
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CHAPTER 1

Introduction

1.1 Thesis

It is practical and useful to design and implement an optional typing system for
the Clojure programming language using bidirectional checking that allows Clojure
programmers to continue using idioms and style found in current Clojure code.

1.2 Motivation

In the last decade it has become increasingly common to enhance dynamically
typed languages with static type systems. This idea is not new (see work by Fa-
gan, Cartwright, Aiken and Murphy [Fag91; CF91; AM91]), but recent attempts
are noteworthy for their broad success in matching many of the advantages of
statically typed languages (see work by Tobin-Hochstadt [TH10]), notably due
to the use of bidirectional checking (like work by Pierce and Turner [PT00]).
Instead of always attempting to infer types, this algorithm relies on programmer
annotations appearing in some natural places such as giving the type of each
top-level function.

The Clojure programming language is a dynamically typed dialect of Lisp
invented by Hickey [Hic08], designed to run on popular platforms. It emphasises
functional programming with immutable data structures and provides direct in-
teroperability with its host platform. Notable implementations of Clojure exist
for the Java Virtual Machine (JVM), the Common Language Runtime, and for
Javascript virtual machines. At the current time, Clojure on the JVM is the
most mature implementation, and therefore this project focuses on the JVM
implementation.

Clojure has attracted wide-spread users in part by concentrating on prag-
matism. Performance is a key feature, for example the JVM implementation
of Clojure offers ways to access Java-like speed for certain operations. Also,
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Clojure’s extensive host interoperability offers Clojure programmers access to
existing libraries for their platform, such as the vast Java library ecosystem. By
coupling pragmatic necessities with elegant features like Lisp-style macros, func-
tional programming, and immutability by default, Clojure is a compelling general
purpose programming language.

Recently a number of languages have been created or modified to support
aspects of both static and dynamic typing. Dart [Goo12a] (created by Google) is
dynamically typed but offers a simple form of optional static typing that specifi-
cally do not affect runtime semantics. Typescript [Mic12] (created by Microsoft)
adds an optional type system to Javascript, a well-known dynamic language.
Typed Racket [THF08; TH10] (by Tobin-Hochstadt et al.) goes further by of-
fering safe interoperability between typed and untyped modules by generating
appropriate runtime assertions based on expected static types.

When a static type checker is not available, which describes the situation for
most dynamic languages, other techniques are used for checking type invariants.
For example, “design by contract” is often used, introduced by Meyer for the Eiffel
language [Mey92], in which the programmer defines contracts that are enforced
at runtime. Unit testing is also a popular verification technique in dynamic
languages. Clojure adopts these approaches, providing easy syntax for defining
Eiffel-inspired pre- and post-conditions and a library for writing unit tests.

Static type systems, however, are still desirable for many situations. Powerful
type systems like ML’s [Mil+97] and Haskell’s [Sim10] have proved particularly
useful when complicated programming styles are required. For example, Haskell’s
advanced static type system helps the programmer write correct monadic code
(as detailed by Wadler [Wad95]) especially in more complicated situations like
combining monads via monad transformers.

1.2.1 Why implement an optional type system for Clojure?

Better error messages

Dynamically typed languages like Clojure often sacrifice some of the advantages
of static typing. In particular, statically typed languages generally offer compile-
time type errors where dynamically typed languages either give runtime type
errors, or none at all.

This is distinction is easily demonstrated by comparing Clojure and Haskell’s
behaviour at their interactive prompts. Listing 1.1 shows how Clojure happily
compiles a nonsensical function that performs addition on a string. It is only
until we invoke it that we get a type error.

2



Listing 1.1: Runtime type errors in Clojure

user=> (fn [x] (+ "string" x))

#<user$eval128376$fn__128377 user$eval128376$fn__128377@183ab4e>

user=> ((fn [x] (+ "string" x)) 1)

#<ClassCastException java.lang.ClassCastException: java.lang.String

cannot be cast to java.lang.Number>

The error provided by Clojure is unsatisfying:

• The error message does little to help the programmer identify the source of
the error.

• It requires at least some knowledge of Clojure’s internals to debug.

• We would rather receive the error at the earliest time possible: compile-
time.

Listing 1.2 shows how Haskell, a statically typed language, handles this inter-
action. Haskell detects our programming error at compile-time, disallowing our
function to compile.

Listing 1.2: Compile-time type errors in Haskell

Prelude> (\x -> "string" + x)

<interactive>:1:17:

No instance for (Num [Char])

arising from a use of ‘+’

Possible fix: add an instance declaration for (Num [Char])

In the expression: "string" + x

In the expression: (\ x -> "string" + x)

In an equation for ‘it’: it = (\ x -> "string" + x)

Haskell’s error here is much preferred over Clojure’s:

• The exact source of the error is given in user code.

• The error is given as early as possible: compile-time.

By adding static type checking to Clojure, we can achieve errors messages that
are closer to Haskell’s. Listing 1.3 gives an idea of what kind of error messages
Typed Clojure actually provides in these situations. However, it deserves some
explanation:
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• The given source of the error may be surprising, but it is explained by
noting that Clojure “inlines” (+ "string" a) to a Java method call (.

clojure.lang.Numbers add "string" a).

• add’s type has been overridden by Typed Clojure to be more specific (see
Section 1.4.9).

• cf type checks a form.

• (fn> [[a :- Number]] ...) defines a function with its first argument of
static type Number.

Listing 1.3: Compile-time errors in Typed Clojure

user=> (cf (fn> [[a :- Number]] (+ "string" a)))

#<Exception java.lang.Exception: 5:

Static method clojure.lang.Numbers/add could not be applied to

arguments:

Domains:

typed.core/AnyInteger typed.core/AnyInteger

java.lang.Number java.lang.Number

Arguments:

(Value "string") java.lang.Number

in: (. clojure.lang.Numbers add "string" a)>

Typed Clojure lists each of the expected domain types, of which the static
method add of the Java class clojure.lang.Numbers has been assigned two, and
also lists the types of the given arguments. A line number and the source of the
error is also provided.

Most importantly: the error was caught at compile-time.

Higher order programming

The initial motivation for implementing an optional type system for Clojure
was outlined in a discussion with Jim Duey, a Clojure programmer, at Clojure
Conj 2011. In an apparently heroic effort, Duey managed to implement a Clojure
library for conduits 1, an advanced form of “pipes”, using arrows, a generalisation
of monads. Conduits also significantly surpass monads in complexity and are
usually reserved for languages with advanced type systems like Haskell.

1http://www.yesodweb.com/book/conduits
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Duey highlighted a strong desire for a type system for several reasons. Firstly,
to verify the correctness of the library. Without a static type system, it is a
significant task to verify such an implementation as correct due to heavy use of
higher-order functions. Secondly, to aid him while writing the library.

Programmers in statically typed languages take advantage of the static type
system to help verify code written in abstract programming styles, like monads.
Adding a static type system to Clojure should bring similar benefits to Clojure
programmers.

1.2.2 Why does Clojure not already feature static type checking?

Given the advantages of static type checking outlined in the previous section, it
is natural to ask: why does Clojure not already support static type checking?
The simplest answer is that Clojure was not designed to support a static type
system. Instead, features and idioms that are not necessarily compatible with
traditional type systems were favoured, like variable-arity functions, untyped
hash-maps used like objects, and dynamic extension of program behaviour.

Without specifically speaking for the designers of Clojure, at the time Clojure
was designed it was not clear how to reconcile Clojure’s feature-set with static
type checking in a satisfying way. Since then, Typed Racket, which add static
type checking to the Racket programming language, has matured and gained
acceptance. Once this occurred, it seemed only a matter of time until the ideas
developed for the Typed Racket project were tested for their applicability to
Clojure. As far as we know, this project is the first serious attempt to build an
optional static type system for Clojure.

1.2.3 What kind of type system does Typed Clojure provide?

There are many concepts associated with types and type systems in both the
literature and informal discourse. A programmer who uses dynamically-typed
languages may have a drastically different notion of what a type is than, say,
a programmer preferring languages with advanced static type systems. There
is some debate as to whether optional static type systems like Typed Clojure
can even be called a type system. We choose to follow the terminology of
Pfenning [Pfe08] and Reynolds [Rey02], where such optional type systems are
extrinsic type systems, and more traditional type systems are intrinsic type sys-
tems. This distinction has a long history, originating in work in the λ-calculus by
Church [Chu40] and Curry [Cur34], leading to intrinsic types and extrinsic types
also being called Church types and Curry types often in the literature.
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An ordinary static type system is used to check whether programs are basically
meaningful. Pfenning and Reynolds call these type systems intrinsic. A language
with an intrinsic static type system has a run-time semantics that depends on
the types associated with variables and expressions during type checking. For
example, C, Java, ML, and Haskell have intrinsic types. This means programs
written in these languages must pass the type checker before being run.

A static type system is extrinsic when runtime semantics does not depend on
a static type system. In other words, passing a static type checker is not essential
to running programs. A dynamically typed language can be viewed as having
a trivial static type system that supports exactly one type, a view advocated
by Harper [Har12] and common in the literature on static types (for example,
Pierce [Pie02]).

1.2.4 What is the community reaction to Typed Clojure?

Since I began developing Typed Clojure, the Clojure community has shown sig-
nificant interest in this work:

• I developed this project as a Google Summer of Code 2012 project, after
it was selected by the Clojure community as a Clojure Google Summer of
Code project for 2012 [Goo12b].

• I gave a talk on this project at the Clojure Conj 2012 conference, the main
international programming conference related to Clojure, in November.

1.3 Contributions

In this dissertation we develop an optional type system for Clojure. We focus on
the features needed to make a practical type system that existing Clojure pro-
grammers can use. We also develop a prototype based on Typed Racket [TH10].

The contributions of the work described in this dissertation are as follows:

• We develop a prototype type checker for Clojure running on the Java Vir-
tual Machine which is able to type check many common Clojure idioms.
We show how this type checker can be used to aid Clojure programmers
use sophisticated programming styles by porting most of an existing library
for monadic programming.
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• This prototype is extended to support several features that are not yet
present in Typed Racket. We support filtering sequences on anonymous
functions that convey only negative type information (eg. non-nil), cap-
turing a common Clojure idiom. We enable type checking of very abstract
code (like code using monads) by adding type functions (functions at the
type level).

• We support safer interoperability with Java from Clojure. We show how
techniques developed for Typed Racket, such as occurrence typing [THF10],
help detect misuses of Java’s null while still conforming to existing Clojure
idioms.

• We can type check several particularly useful Clojure idioms, like common
usages of the sequence abstraction (Clojure’s common interface to all collec-
tions) and common usages of “untyped” hash-maps, which have a similar
role to records in ML or Haskell, and objects in object-oriented languages.

• We identify the main future issues in typing Clojure code. Multimethod
definitions are problematic to type check accurately because of the interac-
tion of its dispatch mechanism and occurrence typing. Records have subtle
semantics for dissociating keys, specifically: dissociating all base keys of a
record returns a plain map.

Together these contributions support my thesis and motivate further work in
this area.

1.4 Typed Clojure through Examples

This section introduces Typed Clojure with example code. Typed Clojure is de-
veloped for the JVM implementation of Clojure, therefore the rest of this chapter
uses that implementation. An attempt is made to introduce some Clojure syntax
and semantics to those unfamiliar or needing a refresher. A basic knowledge of
Lisp syntax is handy, but a brief tutorial is given for newcomers.

1.4.1 Preliminary: Lisp Syntax

The core of understanding Lisp syntax when coming from a popular language
like Java or Javascript can be summarised by these points.

• Operators are always in prefix position.

7



• Invocations are always wrapped in a pair of balanced parenthesis.

• Parenthesis start to the left of the operator.

For example, the Java expressions (1 + 2) / 3 is written in Lisp pseudocode
(/ (+ 1 2) 3) and numberCrunch(1, 2) written (numberCrunch 1 2).

Clojure also adds other syntax:

• Prefixing : to a symbol defines a keyword, often used for map keys. eg.
:my-keyword.

• Square brackets delimit vector literals. eg. [1 2] is a 2 place vector.

• Curly brackets define map literals. eg. {:a 1 :b 2} is a map from :a to 1

and :b to 2.

• Commas are always optional and treated as whitespace, but often used to
show the intended structure.

1.4.2 Simple Examples

We begin with the obligatory Hello world example.

Listing 1.4: Typed Hello world

(ns typed.test.hello-world

(:require [typed.core :refer [check-ns]]))

(println "Hello world")

At this point, it is worth understanding Clojure’s namespacing feature. Clo-
jure code is always executed in a namespace, and each file of Clojure code should
have a ns declaration with the namespace name and its dependencies, which
switches the current namespace and executes the given dependency commands.
There is one special namespace, clojure.core which is loaded with every names-
pace, implicitly “referring” all its vars in the namespace. For example, ns refers
to the var clojure.core/ns, similarly println refers to clojure.core/println

(vars are global bindings in Clojure).

The example in listing 1.4 declares a dependency to typed.core, Typed Clo-
jure’s main namespace. It also refers the var typed.core/check-ns into scope
(check-ns is the top level function for type checking a namespace). Other than
this dependency, this is identical to the untyped Hello world.

More complex code may require extra annotations to type check:

8



Listing 1.5: Annotating vars in Typed Clojure (adapted from a Typed
Scheme/Racket example by Tobin-Hochstadt [TH10])

(ns typed.test.collatz

(:require [typed.core :refer [check-ns ann]]))

(ann collatz [Number -> Number])

(defn collatz [n]

(cond

(= 1 n)

1

(and (integer? n)

(even? n))

(collatz (/ n 2))

:else

(collatz (inc (* 3 n)))))

((defn collatz [n] ...) expands to (def collatz (fn [n] ...)), where (def
name init) defines a new var in the current namespace called name, and fn creates
a function value).

In this example, we define a new var collatz (when unambiguous, I omit
the qualifying namespace/package for the remainder of the chapter). Typed Clo-
jure type checks at the namespace granularity. All vars that occur in a “typed”
namespace must have a type annotation. Here typed.core/ann, a Typed Clojure
macro for annotating vars, annotates collatz to be a function from Number to
Number (Number refers to java.lang.Number, due to every Clojure namespace im-
plicitly importing all Classes in the java.lang package, the equivalent of Java’s
import java.lang.*;).

1.4.3 Datatypes and Protocols

As well as def and defn definitions, Clojure programmers typically include datatype
and protocol definitions. Protocols are similar to Java interfaces [Ora12] and
datatypes are similar to classes implementing interfaces. We can annotate datatype
and protocol definitions similarly.
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Listing 1.6: Annotating protocols and datatypes in Typed Clojure

(ns typed.test.deftype

(:require

[typed.core :refer [check-ns ann-datatype defprotocol>

ann-protocol AnyInteger]]))

(ann-protocol Age

age [Age -> AnyInteger])

(defprotocol> Age

(age [this]))

(ann-datatype Person

[name :- String

age :- AnyInteger])

(deftype Person [name age]

Age

(age [this] age))

(age (Person. "Lucy" 34))

defprotocol> defines a new Clojure protocol2 with a set of methods. It is
identical to the usual defprotocol, but is required when using Typed Clojure
due to its complicated macroexpansion. ann-protocol is a Typed Clojure macro
for annotating a protocol with the types of its methods. In this example, we
define a protocol Age with an age method, which is really a first-class function
taking the target object as the first parameter. The type signature provided with
ann-protocol, here [Age -> AnyInteger] which is the type of the function taking
an Age and returning an AnyInteger, is for this function.

deftype defines a new Clojure datatype3 in the current namespace with a
number of fields and methods. typed.core/ann-datatype is a Typed Clojure form
for annotating datatypes, including its field types. In this example, we create a
datatype typed.test.person.Person (datatype defintions generate a Java Class,
where the current namespace is used as a starting point for its qualifying package)
with fields name and age and extend the Age protocol by implementing the age

method.

Java constructors are invoked in Clojure by suffixing the Class we want to
instantiate with a dot. Datatypes are implemented as Java Classes with im-
mutable fields (by default) and a single constructor, taking as arguments its
fields in the order they are passed to deftype (Person. "Lucy" 34) constructs

2See http://clojure.org/protocols for a full description of protocols.
3See http://clojure.org/datatypes for a full description of datatypes.
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a new Person instance, setting the fields to their corresponding positional argu-
ments. Typed Clojure checks the datatype constructor to be the equivalent of
[String AnyInteger -> Person].

Finally, Typed Clojure checks invocations of Protocol methods. It infers
Person is an instance of Age from the datatype definition, therefore (age (Person.

"Lucy" 34)) is type-safe. Since generally we only need to annotate definitions
and not uses, the number of annotations is relatively small.

1.4.4 Polymorphism

Typed Clojure supports F-bounded polymorphism, first introduced by Canning,
Cook, Hill and Olthoff [Can+89]. F-bounded polymorphism is an extension of
bounded polymorphism, where polymorphic type variables can be restricted by
bounds. In particular, F-bounded polymorphism allows type variable bounds to
recursively refer to the variable being bounded. Typed Clojure supports upper
and lower type variable bounds. This would be required mainly for future work
involving Java Generics, like typing invocations of java.util.Collection/max 4.

For accurate type checking, Typed Clojure parameterises some of Clojure’s
data structures. For example, the interface behind Clojure’s seq abstraction for
sequences clojure.lang.Seqable has one covariant parameter5.

Listing 1.7: Polymorphism in Typed Clojure

...

(ann to-set

(All [x]

[(U nil (Seqable x)) -> (clojure.lang.PersistentHashSet x)]))

(defn to-set [a]

(set a))

...

In this example6, we define to-set, aliasing clojure.core/set. All introduces
a set of type variables to the body of a type, here x is used to define a relationship
between the input type and return type.

(U nil (Seqable x)) is a common type in Typed Clojure, read as the union of
the type nil and the type (Seqable x). The vast majority of types for collection

4http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Collections.html#

max(java.util.Collection)
5Covariant means that (Seqable Integer) is a subtype of (Seqable Number) because

Integer is a subtype of Number.
6When convenient, namespace declarations are omitted for the remainder of the chapter.
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processing functions in the Clojure core library feature it as an input type, where
passing nil either has some special behaviour or is synonymous with passing an
empty Seqable. The ability to specify types that explicitly include or exclude
nil is one of the strengths of Typed Clojure, and an aspect where it is more
expressive than standard type systems like that for Java.

1.4.5 Singleton Types

Following Typed Racket, singleton types for certain values are provided in Typed
Clojure. A singleton type is a type with a single member, like 1, :a, or "a"7.
Typed Clojure provides syntax for singleton types, either by passing the value
literal to the Value primitive, or by prefixing a quote (’).

Listing 1.8: Singleton Types

(ann k ’:my-keyword)

(def k :my-keyword)

Listing 1.8 shows a simple example of using singleton types in Typed Clojure.
Singleton types are discussed further in section 2.5.

1.4.6 Heterogeneous Maps

It is idiomatic in Clojure to use plain maps with known keyword keys as lightweight
objects. Clojure provides a hash-map literal (using curly braces), making this
idiom particularly convenient. For example, {:a 1, :b 2} is a map value with
two key-value entries: from keyword key :a to value 1, and keyword key :b to
value 2. Note that commas are always whitespace in Clojure and are included
occasionally for readability.

Typed Clojure provides heterogeneous map types which captures this com-
mon “maps as objects” pattern. A heterogeneous map type has only positive
information on the types of key-value entries. In other words, it conveys whether
a particular key is present, but not whether it is absent. The implications of
this is discussed in section 3.7. Heterogeneous maps only support keys that are
singleton Keyword types. This restriction is reflected in the syntax for defining
heterogeneous map types.

7Strings are delimited by ” in Clojure
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Listing 1.9: Heterogeneous map types in Typed Clojure

(ann config ’{:file String, :ns Symbol}))

(def config

{:file "clojure/core.clj",

:ns ’clojure.core})

This example checks config to be a heterogeneous map with :file and :ns

keys, with values of type String and Symbol respectively.

Heterogeneous vector and seq types are also provided and work similarly,
except for their lack of keys like maps, hence are just a sequence of types.

1.4.7 Variable-Arity Functions

Functions in Clojure are multi-arity (a very commonly used feature) which means
a function can be defined with several sets of function arguments and bodies (or
arities) and which arity is executed depends on the number of arguments passed
to the function. A function can have any number of arities with fixed parameters,
and at most one arity with variable-parameters. Each arity must have a unique
number of parameters and have a lower number of parameters than the “variable
arity”, if present.

Strickland, Tobin-Hochstadt, and Felleisen invented a calculus and corre-
sponding implementation in Typed Racket for variable-arity polymorphism [STHF09]
that is sufficient to handle uniform and non-uniform variable-arity functions.
Typed Clojure includes an implementation of the most immediately useful parts
of variable-arity polymorphism using algorithms, nomenclature, and implemen-
tation based on this work.

Uniform Variable-Arity Functions

A function with uniform variable parameters can treat its variable parameter as
a homogeneous list. Strickland et al. attaches a starred pre-type T * to the right
of the fixed arguments in a function type, where T is some type, and we take an
identical approach. For example, + in Clojure accepts any number of arguments
of type Number, represented by the type [Number * -> Number].
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Listing 1.10: Typing multi-arity functions

(ann not= (Fn [Any -> boolean]

[Any Any -> boolean]

[Any Any Any * -> boolean]))

(defn not=

"Same as (not (= obj1 obj2))"

([x] false)

([x y] (not (= x y)))

([x y & more]

(not (apply = x y more))))

It is common to find Clojure library functions that define seemingly redundant
function arities for performance reasons. Listing 1.10 defines the multi-arity
function not=, taken from the Clojure standard library clojure.core that uses
this pattern. not= has three arities in its definition, including one that takes
a variable number of arguments. The Fn type constructor builds an ordered
function intersection type from function types. Each arity must have at least
one matching function type associated with it. The two “fixed arities” are given
familiar function types, with one and two fixed parameters respectively. The type
given for the arity with variable arguments [Any Any Any * -> boolean] uses a
starred pre-type to signify any number of arguments of type Any can be provided
to the right of its fixed arguments.

Non-uniform Variable-Arity Functions

Where uniform variable-arity function types use starred pre-types, non-uniform
variable-arity function types use dotted pre-types. Typed Clojure supports us-
ages of non-uniform variable-arity functions, where the variable parameter is a
heterogeneous list, represented by a dotted type variable.

For example, the variable argument function clojure.core/map takes a func-
tion and one or more sequences, and returns a sequence of the results of applying
the function to each element of the sequences simultaneously. Its type is given
in listing 1.11.

Listing 1.11: Type signature for clojure.core/map

(ann clojure.core/map

(All [c a b ...]

[[a b ... b -> c] (U nil (Seqable a)) (U nil (Seqable b)) ... b

-> (LazySeq c)]))

By adding ... after the last type variable in an All binder we can introduce a
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dotted type variable into scope, which is a placeholder for a sequence of types. A
dotted pre-type T ... b over base T (a type) and bound b (a dotted type variable)
serves as a placeholder for this sequence of types. Dotted pre-types must appear
to the right of all fixed parameters in a function type, and cannot be mixed with
other kinds of variable parameters like starred pre-types. When a sequence of
types of length n is associated with a dotted pre-type, the dotted pre-type is
expanded to n copies of T. One other special property of a dotted pre-type is
that the bound b is in scope as a normal type variable in its base T.

To demonstrate dotted pre-types, we use typed.core/inst to instantiate map.
inst takes a polymorphic expression and a number of types that are satisfactory
for instantiating the polymorphic type and returns an expression of the instanti-
ated polymorphic type.

The instantiation

(inst map Number boolean String)

returns an expression of type

[[boolean String -> Number] (U (Seqable boolean) nil)

(U (Seqable String) nil) -> (LazySeq Number)]

However, if sufficient types are given, the instantiation for map can be inferred.
The invocation

(map (ann-form (fn [a b c] c)

[boolean String Number -> Number])

[true false] ["mystr" "astr"] [1 4])

uses typed.core/ann-form to assign an expected type to the first argument,
which is sufficient to infer the result type

(LazySeq Number)

1.4.8 Occurrence Typing

It is common in Clojure, like other dynamically typed languages, to encode im-
plicit type invariants in conditional tests. In listing 1.12, conditional tests are
used to refine the types of the bindings a and b. Occurrence typing [THF10] is a
technique useful for capturing these kinds of type invariants (occurrence typing
is discussed in further detail in Section 2.11).

15



Listing 1.12: Example of occurrence typing in Typed Clojure

(ann num-vec2

[(U nil Number) (U nil Number) -> (Vector* Number Number)])

(defn num-vec2 [x y]

[(if x x 0)

(if y y 0)])

To check Listing 1.12, occurrence typing infers type information based on the
results of conditional tests. A conditional in Clojure is written (if test then

else), where then is executed if test is a true value, or else is executed if test is
a false value. In Clojure, nil and false are the only false values: all other values
are true values. (if x x 0) in Listing 1.12 chooses a branch based on the truth
value of the test expression x. Before this expression, the binding x is known to
be of type (U nil Number). There are two cases to consider when checking this
conditional: when the test x is a true value, and when it is a false value. If x

is a true value, then the binding x must be of type Number. If x is a false value,
then the binding x must be of type nil. Occurrence typing understands these
invariants and applies them when checking each branch: occurrences of x in the
first branch are considered to be of type Number, and occurrences of x in the second
branch are considered to be of type nil. This infers [(if x x 0) (if y y 0)])

to be of type (Vector* Number Number) (the type for a two-place heterogeneous
vector of Numbers).

1.4.9 Java Interoperability

Typed Clojure supports integration with Java’s type system during interoper-
ability from Clojure. This offers many of the same advantages as using Java’s
type system from Java, for example it is a type error to pass arguments of the
wrong type to methods. Typed Clojure also makes different decisions to Java’s
type system, particularly in the treatment of Java’s null. Note that these de-
cisions do not change Java’s type system, but only how Typed Clojure handles
Java interoperability compared to how someone familiar with Java might expect.

From the perspective of static types in Java, null is included in all reference
types. null is represented in Clojure by the value nil. Unlike Java’s type system
Typed Clojure explicitly separates null and reference types giving Typed Clojure
more accurate types: we can directly express nullable and not nullable types. (A
type is nullable if it may also be null, which is expressed in Typed Clojure by
creating a union of the type and nil. A type is not nullable if it doesn’t include
null).
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Listing 1.13: Java interoperability with Typed Clojure

(ns typed.test.interop

(:import (java.io File))

(:require [typed.core :refer [ann non-nil-return check-ns]]))

(ann f File)

(def f (File. "a"))

(ann prt (U nil String))

(def prt (.getParent ^File f))

(non-nil-return java.io.File/getName :all)

(ann nme String)

(def nme (.getName ^File f))

Listing 1.13 shows how Typed Clojure handles null while creating and using
an instance of java.io.File.

Typed Clojure checks calls to Java constructors by requiring the provided
arguments be acceptable input to at least one constructor for that Class. In this
case, java.io.File has a constructor accepting a java.lang.String argument, so
(File. "a") is type safe. Java constructors never return null, so Typed Clojure
assigns the return type to be File. This constructor is equivalent to [String

-> File] in Typed Clojure.

Next, we see how Typed Clojure’s default behaviour treats method return
positions as nullable. By default, the java.io.File instance method getParent is
assigned the type [-> (U nil String)] in Typed Clojure. This happens to be a
valid approximation of the method as getParent returns null “if the pathname
does not name a parent directory”8. On the other hand, the java.io.File in-
stance method getName always returns an instance of java.lang.String, so we set
the return position of getName to non-nil with typed.core/non-nil-return (the
second parameter to non-nil-return specifies which arities to assume non-nil re-
turns, accepting either a set of parameter counts of the relevant arities, or :all

to override all arities of that method).

Such annotations are in a sense assumptions; should they turn out to be
wrong, Typed Clojure will infer incorrect types. This is somewhat troubling,
but type safety can be restored by using other techniques. For example, Typed
Racket generates runtime contracts based on static types to ensure that type

8See Javadoc for java.io.File: http://docs.oracle.com/javase/1.4.2/docs/api/java/io/File.html
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errors are caught at runtime, while giving good error messages which indicate (or
“blame” [WF09]) the original source of the error. A similar system for verifying
that method annotations like non-nil-return are correct is planned as future
work (see section 6.2).
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CHAPTER 2

Literature Review

In this chapter we fit the design of Typed Clojure with literature from related
fields. Forward-references are often given to link the discussed literature with
this later parts of this dissertation where there is some relevance or influence.

2.1 Dynamic Typing in Typed Languages

Typed Clojure adds static type checking to an existing untyped language. Com-
ing from the other direction, Abadi, Cardelli, Pierce and Rémy [Aba+95] extend
a static language to be more dynamic. This work centres around adding a type
Dynamic, which represents a dynamic type in a statically typed language.

Rossberg [Ros07] describes the advantages of having a type Dynamic over
other approaches to making statically typed languages more like dynamic ones
and surveys work in this area. He says that type Dynamic allows aspects of dy-
namic style to be represented in statically typed languages without compromising
the type system. However, he claims type Dynamic is rarely used in practical
languages because it is too inconvenient in real programs. He claims to have fixed
these issues, but a practical language has yet to integrate his changes.

2.2 Static Typing for Untyped Languages

This section briefly reviews work on designing static type systems for untyped
languages.

2.2.1 Soft Typing

Soft typing [CF91] is an approach for ensuring type safety in untyped languages.
A soft type system infers types for programs, distinguishing between degrees of
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potential type safety. A soft type checker uses this information to preserve type
safety by inserting appropriate checks and informs the programmer of potential
inconsistencies. For example, if the soft type system detects a portion of code
is sometimes not type safe, the soft type checker inserts a check that throws a
runtime error upon unsafe usages. Thus, soft type systems differ from traditional
type systems in that type inference never fails and an inconsistency always results
in a runtime check.

Wright and Cartwright [WC97] developed Soft Scheme, a soft type system
for Scheme. It extended earlier work by Cartwright and Fagan [CF91] and Fa-
gan [Fag91], adding support for practical features such as first-class continuations
and variable-arity functions. Soft Scheme does not require any extra type anno-
tations.

Type systems for Scheme have since moved away from soft typing. Alas, the
only reasonably complete account of this transition appears to be slides from
a talk by Felleisen [Fel09], a leader in this area of research for over 20 years.
Felleisen comments that while Soft Scheme discovered type problems, it suffers
from incomprehensible error reporting that required PhD-level expertise to deci-
pher.

2.2.2 Program Analysis

Scheme then moved to program analysis techniques like Set-Based Analysis [FF97]
(SBA). They, however, suffered from modularity issues due to the lack of de-
clared intended types. MrSpidey1 is a static type checker for Racket that uses
uses SBA. Felleisen states the main problem with these kinds of systems: “Mr
Spidey and friends infer brittle and large types; errors remain difficult to explain
and fix” [Fel09].

2.2.3 Gradual Typing

Gradual typing combines static and runtime type checking, so programmers can
choose the most appropriate one for the situation. A key feature of gradual
type systems is its use of bidirectional checking like [PT00], which requires type
annotations in natural places like functions. Type errors in gradual type systems
are often more manageable than in Soft Typing and SBA, often more comparable
to type errors in statically typed languages.

1http://www.plt-scheme.org/software/mrspidey/
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Gradually typed languages have different degrees of runtime checking. Typed
Racket was developed as a path for module-by-module porting of existing untyped
Racket modules to a typed sister language [TH10]. Once a module is ported and
type checked, it is protected from untyped modules by inserting runtime checks.
Typescript [Mic12], a gradual type system for Javascript, does not add runtime
checks to untyped interactions. Runtime checks affect performance, but give
better errors and ensure type errors result in the program failing more quickly.

2.3 Interlanguage Interoperability

This section compares several existing languages that feature interlanguage in-
teroperability.

Clojure is a dynamic functional language hosted on the Java Virtual Machine.
It provides interoperability with Java libraries. As Clojure is a dynamically typed
language, it does not give strong type guarantees at compile time that interactions
with Java are type safe.

Scala is a statically typed language on the Java Virtual Machine offering
integrated interoperability with Java, a typed language. Scala objects and classes
can “inherit from Java classes and implement Java interfaces” [Ode+06] with the
usual static type guarantees normal Scala code enjoys. Scala offers an Option
type to safely eliminate null pointers. Java Generics are also fully supported by
Scala, accounting for Scala support existential types

Typed Racket includes safe interoperability between any combination of typed
and untyped Racket modules [TH10; THF08]. Interactions with untyped modules
are protected by adding runtime checks based on expected types. Typed Racket
implements a sophisticated blame calculus, based on Wadler [WF09]. It ensures
error messages always correctly blame the source of type errors, which can be
difficult to determine in the presence of higher-order functions.

2.4 Record Types

O’Caml-style extensible record types have been the subject of extensive research
(eg. Wand [Wan89], Cardelli and Mitchell [CM91], Harper and Pierce [HP91]).
Typed Clojure’s heterogeneous map types show some resemblance to extensible
record types, but a survey of the literature did not reveal research flexible enough
to capture common usages of maps in Clojure. This most likely implies that
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designing such a system for Typed Clojure would be hard. For this reason,
heterogeneous map types are kept as simple as possible while still being useful.

2.5 Intersection, Union, and Singleton Types

Intersection and union types are interesting type constructs relevant to capturing
the complicated types common in dynamic languages. An expression of type (I

a b), an intersection type including types a and b in Typed Clojure, can be used
safely in both positions expecting type a, and positions expecting type b. An
expression of type (U a b), a union type including types a in Typed Clojure, and
expressions of this type can be used safely in positions that expect a type that is
either type a or b. For example, (U Number Integer) cannot be used in positions
expecting Integer, but (I Number Integer) can be used in positions expecting
Integer.

Intersection, union, and singleton types are best considered as extrinsic types.
Hayashi [Hay91] describes two type theories, ATT which includes intersection,
union, and singleton types, and ATTT which further extends ATT to include
refinement types, which can be classified as extrinsic types. Typed Clojure can
also be considered an extrinsic type system which supports union, intersection,
and singleton types, but in less sophisticated forms than ATT and ATTT. In
particular, singleton types in ATTT are much more advanced than in Typed
Clojure, which offers only singleton types for values like :a and nil and, unlike
ATTT, no way to parameterise over singletons.

Several interesting projects have used intersection or union types. Intersec-
tion types were originally introduced by Coppo, Dezani-Ciancaglini, and Ven-
neri [CDCV81] for the λ-calculus. The use of union types to type check dynam-
ically typed languages with soft typing systems dates back to Cartwright and
Fagan [CF91].

Forsythe, a modern ALGOL dialect by Reynolds [Rey81; Rey96] was the
first wide-spread programming language to use intersection types. Uses of in-
tersections in Forsythe include representing extensible record types and function
overloading.

Refinement types add a level of extrinsic types refining an existing intrinsic
type system in order to type check more detailed properties and invariants than
standard static type systems (described by Freeman and Pfenning [FP91]). Re-
finement types have similarities with Typed Clojure, in that Typed Clojure adds
a level of extrinsic types on top of Clojure. Intersection types are critical here to
allow more than one property or invariant to be expressed for a function. SML
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CIDRE is a refinement type checker for Standard ML by Davies [Dav05].

St-Amour, Tobin-Hochstadt, Flatt, and Felleisen describe the ordered inter-
section types used in Typed Racket [SA+12] that provide a kind of function
overloading. Typed Clojure takes a similar approach for its representation of
functions. Typed Racket uses union types which are used in Typed Clojure in
very similar ways, like for creating ML-like “datatypes”.

2.6 Java Interoperability in Statically Typed Languages

Typed Clojure features integration with Java’s static type system to help verify
interoperability with Java as correct. Section 3.2.2 presents Typed Clojure’s
treatment of Java’s null pointer. Section 3.2.1 shows how Typed Clojure deals
with shortcomings of Java’s static type system relating to primitive arrays.

Other statically typed languages have similar goals to support Java inter-
operability, like, most completely, Scala. Scala [Ode+06] is tightly integrated
with Java. It manages interactions with Java’s null pointer by using an Op-
tion type, which (if used correctly) provides strong elimination for null. null
is still not expressible as a type in Scala, however. Arrays are parameterised
by a non-variant (or invariant) parameter, which are checked using conservative
approximation [OSV08]. For example, this checks that covariant parameters are
used only in covariant positions.

2.7 Function Types

There are several different approaches to representing functions in programming
languages.

In typed languages like Haskell, functions are as simple as possible, taking a
single argument. A function with multiple arguments is represented by chaining
several single-argument function together, or by using lists, or using tuples. This
first style is characterised by direct syntactic function currying, where applying
a function to less than its maximum number of arguments results in another
function that takes the remaining arguments. Using tuples instead requires that
the same number of arguments be supplied, while using lists allows any number,
but requires that all arguments have the same type.

In untyped languages like Scheme, functions can have more complicated arity.
In this context, functions have a fixed number of required parameters, and an
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optional rest parameter, which represents the sequence of the arguments pro-
vided after the required parameters. It is an error to apply a function to fewer
arguments than the functions number of required parameters. This style features
sophisticated support for functions with variable-arity. For example, Scheme
functions can dispatch on the number of arguments provided, and support an
optional rest parameter which can accept any number of arguments.

In this regard, Clojure takes an approach identical to Scheme, and supports
all the features mentioned in the previous paragraph, and none characterised
by Haskell-style functions. For this reason, we ignore the tradeoffs associated
between the two approaches and move directly to literature applicable to typing
Scheme-style functions.

2.7.1 Variable-Arity Polymorphism

Strickland et al. invented a type system supporting variable-arity polymorphism
[STHF09] a version of which is included in the current implementation of Typed
Racket. Their main innovation centres around dotted type variables, which repre-
sent a heterogeneous sequence of types. Dotted type variables allow non-uniform
variable-arity function types, which are used to check definitions and usages of
functions with non-trivial rest parameters

For example in Clojure, the function map takes a function and at least one
sequence, and returns a sequence of the results of applying the function to each
subsequent element of the sequences simultaneously.

Listing 2.1: An application of the non-uniform variable-arity function map

(map + [1 2] [2.1 3.2])

;=> (3.1 5.2)

(Line comments in Clojure begin with ; and comments to the end of the line.
We use ;=> to mean evaluates to).

To statically check calls to map, we must enforce the provided function argu-
ment can accept as many arguments as there are sequence arguments to map, and
the parameter types of the provided function can accept the pair-wise applica-
tion of the elements in each sequence. This is a complex relationship between
the variable parameters and the rest of the function. Listing 2.1 requires the
first argument to map to be a function of 2 parameters because there are two
sequence parameters. + takes any number of Number parameters, and applying
pair-wise arguments of (Vector Long) and (Vector Double) results in types Long
and Double being applied to +. These are subtypes of Number, so the expression
is well typed.
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2.8 Type Inference

2.8.1 Local Type Inference

Typed Racket uses Local Type Inference [PT00] as an inference and checking
tool. Pierce and Turner [PT00] divide Local Type Inference into two comple-
mentary algorithms. Local type argument synthesis synthesises type arguments
to polymorphic applications, and bidirectional propagation propagates type in-
formation both down and up the source tree, known as checking and synthesis
mode respectively.

Listing 2.2: Bidirectional checking algorithm with Typed Clojure pseudocode

(map (fn [[a :- Long] [b :- Float]]

(+ a b))

[1 2]

[2.1 3.2])

;=> (3.1 5.2)

The pseudocode in Listing 2.2 show both algorithms in action. Local type
argument synthesis is able to infer the type arguments to map by observing the
argument types of the first argument to map and the types of subsequent sequence
arguments. Bidirectional checking then synthesises the resulting type of the
expression by checking each element of [1 2] is a subtype of a, and each element
of [2.1 3.2] is a subtype of b. The result of the anonymous function argument is
synthesised from the type of (+ a b) as Float. We now have sufficient information
to synthesise the type of Listing 2.2 to be (LazySeq Float).

Pierce and Turner split local type argument synthesis into two further algo-
rithms: bounded, and unbounded quantification [PT00]. Typed Racket supports
unbounded polymorphism [TH10], implementing the latter algorithm by Pierce
and Turner. Scala supports bounded quantification with F-bounded polymor-
phism [Can+89], basing its type argument synthesis on the bounded quantifica-
tion algorithm.

Pierce and Turner explicitly forbid [PT00] attempting to synthesise type vari-
ables with interdependent bounds, including F-bounds, having failed to devise an
algorithm to infer these cases. Scala’s type argument synthesis implementation
deviates from Pierce and Turner and supports these features. I am not aware of
papers specifically describing Scala’s modifications, but they are at least inspired
by Scala’s spiritual ancestors Generic Java [Bra+98] and Pizza [OW97].

Hosoya and Pierce [HP99] reiterate two common problems with Local Type
Inference: “hard-to-synthesise arguments” and “no best type argument”. The
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first problem occurs because both local type argument synthesis and bidirectional
propagation cannot perform synthesis simultaneously.

Listing 2.3: Hard-to-synthesise expression

(map (fn [a b]

(+ a b))

[1 2]

[2.1 3.2])

Listing 2.3 shows an example of this limitation, here caused by both not
providing type arguments to map and not providing the parameter types of (fn
[a b] (+ a b)). Cases where both algorithms can simultaneously recover new
type information are usually “hard-to-synthesise”. “No best type argument”
describes the situation where the results of local type argument synthesis yield
more than one type, and no type is better than the other. Sometimes we cannot
recover and synthesis fails.

2.8.2 Colored Local Type Inference

Scala’s type checking uses Colored Local Type Inference [OZZ01], a variant of Lo-
cal Type Inference [PT00] specifically designed to improve inference with certain
kinds of Scala pattern matching expressions. It allows partial type information to
propagate down the syntax tree, instead of only full type information as required
by Local Type Inference.

Colored types contain extra contextual information, including the propaga-
tion direction and missing parts of the type. They are generally useful for de-
scribing “information flow in polymorphic type systems with propagation-based
type inference” [OZZ01]. Colored Local Type Inference is a candidate for future
extensions to Typed Clojure’s inference.

2.9 Bounded and Unbounded Polymorphism

Local type inference by Pierce and Turner [PT00] describe two implementations
of type variables, for bounded and unbounded type variables. The bounded
implementation is presented as an optional extension to the unbounded imple-
mentation, which preserves all properties described in the Local Type Inference
algorithm.

An unbounded type variable does not have subtype constraints. Bounded
type variables can have subtype constraints, and subsume unbounded type vari-
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ables [PT00], as a unbounded variable can be represented as a variable bounded
by the Top type.

Still, unbounded type variables have an advantage: their implementations are
simpler in the presence of a Bottom type. The constraint resolution algorithm for
bounded variables is more subtle, due to “some surprising interactions between
bounded quantifiers and the Bot type” [PT00], described fully by Pierce [Pie97].

Typed Racket [THF08] supports unbounded polymorphism, while Scala [Ode+06]
supports an extended form of bounded polymorphism called F-bounded polymor-
phism [Can+89], which allows the bound variable to occur in its own bound. F-
bounded polymorphism is useful in the context of object-oriented abstractions, as
demonstrated by Odersky [Ode+06]. This is one possible explanation why Typed
Racket, which is not built on abstractions like Scala, does not support bounded
quantification. Unfortunately, no Typed Racket paper mentions bounded quan-
tification, so the rationale is not clear.

Clojure, like Scala, is built on object-oriented abstractions. Clojure protocols
and Java interfaces (interfaces are supported by Clojure) are good candidates for
bounds in bounded or F-bounded polymorphism.

2.10 Typed Racket

Typed Racket is a statically typed sister language of Racket. It attempts to
preserve existing Racket idioms and aims to type check existing Racket code by
simply adding top level type annotations [TH10].

Typed Racket fully expands all macro calls before type checking [TH10],
avoiding the complex semantics of type checking macro definitions, an ongoing
research area summarised by Herman [Her10]. Typed Clojure follows a similar
strategy; only the fully macro-expanded form will be type checked. Type checking
macro definitions are outside the scope of this project.

Along with a full static type system, Typed Racket also uses runtime con-
tracts to enforce type invariants at runtime at the interface with untyped code
[THF08]. Utilising runtime contracts to aid type checking is outside the scope of
this project, but would be considered desirable and accessible future work.

Two other Typed Racket features that will be explored are recursive types
and refinement types [TH10]. Recursive types allow a type definition to refer to
itself, enabling structurally recursive types like binary trees. Refinement types
let the programmer define new types that are subsets of existing types, such as
the type for even integers, a subset of all integers. Both these features would fit
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well in a future implementation of this project.

2.11 Occurrence Typing

Dynamically typed languages use an ad-hoc combination of type predicates, se-
lectors, and conditionals to steer execution flow and reason about runtime types
of variables. Typed Racket uses occurrence typing to capture these ad-hoc type
refinements. For example, Listing 2.4 shows occurrence typing following the im-
plications of the type predicate number? and the selector first, and utilises those
implications to refine the type of x. If the test at line 3 succeeds, occurrence
typing refines the type of (first x) to be Number, which allows (+ 1 (first x))

to be well typed. Similarly at line 4, we can be sure that (first x) is a String,
since we have ruled out the case of being a Number.

Listing 2.4: A well typed form utilising occurrence typing with Clojure syntax

(let [x (list (number-or-string))]

(cond

(number? (first x)) (+ 1 (first x))

:else (str (first x))))

Occurrence typing [THF08; THF10] extends the type system with a proposi-
tion environment that represents the information on the types of bindings down
conditional branches. These propositions are then used to update the types
associated with bindings in the type environment down branches so binding oc-
currences are given different types depending on the branches they appear in,
and the conditionals that lead to that branch. (See Section 4.1.3 for details on
how Typed Clojure uses occurrence typing).

For occurrence typing to infer propositions from type predicate usages, it
requires two extra annotations: a “then” proposition when the result is a true
value, and an “else” proposition for a false value. For example, number? has
a “then” proposition that says its argument is of type Number, and an “else”
proposition that says its argument is not of type Number.

An exciting application of occurrence typing as yet unexplored is facilitating
null-safe interoperability with Java. By declaring nil (Clojure’s value of Java’s
null) to not be a subtype of reference types, we can begin to statically disallow
potentially inconsistent usages of nil as part of the type system.

28



Listing 2.5: Observing nil-checks using occurrence typing

(let [a (ObjectFactory/getObject)]

(when a

(expects-non-nil a)))

Listing 2.5 infers from the Java signature Object getObject() that a is of
type (U nil Object). This is equivalent to Java’s Object static type, as null is a
member of all reference types. By surrounding the call (expects-non-nil a) with
(when a ...), we guarantee that a is non-nil when passed to expects-non-nil.
Occurrence typing infers this by observing nil is a false value in Clojure, therefore
a cannot be nil in the body of the when, refining a’s type to Object from (U nil

Object).

Occurrence typing is a relatively simple technique used successfully in Typed
Racket. Clojure is similar enough to Racket for occurrence typing to work without
issues, and has good potential to help programmers avoid using nil incorrectly

2.12 Statically Typed Multimethods

Clojure provides multimethods as a core language feature. This section discusses
systems that statically verify type safety for multimethods.

Millstein and Chambers [MC02] describe Dubious, a simple statically typed
core language including multimethods that dispatch on the type of its arguments.
They tackle a key challenge for statically typing multimethods: “it is possible
for two modules containing arbitrary multimethods to typecheck successfully in
isolation but generate type errors when linked together.” [MC02]

After some investigation, typing multimethods with Typed Clojure is assigned
as future work (see Section 6.3).

2.13 Higher Kinded Programming

Many advanced type systems provide support for higher kinds, which are “another
level up” from types. For example, a type Number is distinguished from a type
constructor Monad (see Section 5.3), which is a type level function (similar to the
difference between values and functions on the value level, but on the type level).

Fω is a typed λ-calculus with support for higher kinds, specifically type con-
structors (see Pierce [Pie02]). Haskell [Sim10] distinguishes between types and
type constructors, the latter of which is an essential part of its monad library
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(see Section 5.3 for a monad library ported to Typed Clojure that uses type
constructors similarly).

2.14 Conclusion

Many related components must come together in the design of a static type sys-
tem. Typed Racket achieves a satisfying balance of occurrence typing, local type
inference and variable-arity polymorphism. Scala features F-bounded polymor-
phism, a class hierarchy that is compatible with Java, and colored local type
inference. Typed Clojure takes inspiration from these, and similar, projects.

SML CIDRE [Dav05] was also a secondary influence - particularly its use of
bidirectional checking of extrinsic types including subtyping, intersection types,
and its aim to capture program invariants. However, SML CIDRE starts from
the intrinsically typed language SML which already has a rich static type sys-
tem, which leads to many different considerations compared to starting from a
dynamically typed language. Much of this influence was via a student-supervisor
relationship, making it particularly hard to pin down the specifics.
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CHAPTER 3

Design Choices

This chapter describes the design choices made for Typed Clojure. Typed Clojure
is designed to be of practical use to Clojure programmers. To this end, many of
the design choices are borrowed from other existing projects. Some of the main
design choices that specifically concern Typed Clojure are given more detailed
descriptions.

3.1 Typed Racket

The majority of the design and implementation of Typed Clojure is based on
Typed Racket [TH10]. This is a deliberate choice: the purpose of this work is to
produce a practical tool, and there is already good evidence that Typed Racket
is practical and makes good tradeoffs and design choices. Our differences are
mostly due to the differences between Clojure and Racket. This section details
some of these differences.

3.1.1 Occurrence Typing

Occurrence typing, described by Tobin-Hochstadt and Felleisen [THF10], plays
a major role in capturing many common Clojure idioms. One such idiom is Clo-
jure’s sequence abstraction, which provides a common interface to all collections.
For example, seq tests whether a collection is empty, first returns the first el-
ement of a collection, and rest returns the tail of its collection argument as a
new sequence. While these summaries describe their most common usages, they
do not tell the whole story.

seq’s description might suggest it is better named not-empty?, but seq is
perhaps surprising in two main ways: it accepts nil as an argument (returning
nil), and, rather than returning true or false, returns a non-empty sequence or
nil respectively.
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From a typing perspective, the subtlety of seq is expressing that (seq coll)

• is a true value when coll is a non-empty collection, and

• is a false value when coll is either nil or an empty collection.

Occurrence typing allows us to capture this idiom (Listing 3.1).

Listing 3.1: Type associated with clojure.core/seq

(All [x]

[(U nil (Seqable x)) -> (U nil (Seqable x))

:filters {:then (is (CountRange 1) 0)

:else (| (is nil 0)

(is (ExactCount 0) 0))}])

This function type (Listing 3.1) takes an argument of type (U nil (Seqable

x)) (the syntax (U
−→
t ) constructs a union of types t), and returns a type (U

nil (Seqable x)). Occurrence typing allows us to attach propositions to the
return type of a function. Roughly, these say if (seq coll) returns a true value,
then coll is of type (CountRange 1) (a type representing a sequence of length
1 or greater), otherwise coll is either of type nil or of type (ExactCount 0)

(a type representing an empty sequence). (See Section 4.6 for a more detailed
explanation of the filter syntax).

first is overloaded in a similar fashion to seq: (first coll) returns

• nil if coll is nil or an empty collection, and

• returns the first item of the collection if coll is a non-empty collection.

Listing 3.2 shows the type of first. The main thing to grasp from this
definition is that three function types are given: the first type handling the first
case above, the second type handling the second case above, and the third arity
acting as a base case, general enough to catch both cases.

Listing 3.2: Type associated with clojure.core/first

(All [x]

(Fn [(U nil (I (Seqable x) (ExactCount 0))) -> nil]

[(I (Seqable x) (CountRange 1)) -> x]

[(U nil (Seqable x)) -> (U nil x)])))
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seq and first interact via occurrence typing. For example, Listing 3.3 tests
(seq coll) which means occurrences of coll in the “then” branch are non-empty
and those in the “else” branch are empty. We can safely call (.method (first

coll)) in the “then” branch (assuming elements of coll have a no-argument
method called method) always avoiding a NullPointerException.

Listing 3.3: Example of using the sequence abstraction with occurrence typing

...

(let [coll (possibly-empty-coll)

(if (seq coll)

(.method (first coll))

nil))

...

3.1.2 Variable-arity Polymorphism

Strickland, Tobin-Hochstadt, and Felleisen describe variable-arity polymorphism
[STHF09], which has been implemented in Typed Racket. Typed Clojure directly
ports most of Typed Racket’s implementation of variable-arity polymorphism, as
described in Section 4.4.

Some common idiomatic Clojure functions like assoc, hash-map, and partial

cannot be typed by Strickland et al.. Instead, Typed Clojure hard-codes some
of these functions as primitives that cannot be used in a higher-order context.
Expressing the types of these functions is set as future work (Section 6.1).

3.2 Safer Host Interoperability

Clojure implementations are designed to target popular platforms, providing fast,
unrestricted access to their respective hosts. Notable implementations target the
Java Virtual Machine (via Clojure), the Common Language Runtime (via Clo-
jureCLR), and Javascript virtual machines (via ClojureScript). Host interoper-
ability is the main source of incompatibility between Clojure implementations.
Aside from syntactic matters, Clojure makes no attempt at reconciling host in-
teroperability differences: it is up to the programmer to decide how to best write
portable Clojure code.

Typed Clojure is designed for Clojure, which runs on the Java Virtual Machine
(JVM). Clojure embraces the JVM as a host by sharing its runtime type system
and providing direct interaction with libraries written in other JVM languages.
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Most commonly, Clojure programmers use libraries written in Java. Java is
a statically typed language, and it follows that any interaction with Java will
already have an annotated Java type. Typed Clojure uses Java’s static type
annotations to help statically type check interactions with Java from Clojure.

This section details where Typed Clojure attempts to improve some short-
comings of Java’s static type system.

3.2.1 Primitive Arrays

Primitive arrays in Java are covariant, which is well-known to be statically un-
sound [OW97; BK99]. This means that at compile time we cannot completely
trust the type signature of any Java method or field that involves an array.

We handle this by introducing a type (Array c t), the type of the array that
has the Java component type c and that can read and write values of type t.
Internally, Array types expand to (Array3 c w r), the type of the array that has
the Java component type c, that can write values of type w (which is contravariant
in Array3), and that can read values of type r (which is covariant in Array3).
Concretely, (Array c t) expands to (Array3 c t t).

Array3 is useful when an array is passed to/from Java or some untyped Clojure
code. As soon as an array leaves the safety of Typed Clojure, it can be considered
to have type (Array3 c Nothing t). It is illegal to write to an array of this type
in Typed Clojure without first checking its component type, but reads remain
legal.

This scheme should be considered experimental, and is not completely fleshed
out or implemented. Notably, the component type c seems redundant, and Typed
Clojure currently does not provide syntax to “cast” an unwriteable array to be
writeable.

3.2.2 Interaction with null

As of Java 7, Java does not provide a type-safe construct for eliminating oc-
currences of null. Instead, Java programmers rely on ad-hoc approaches, like
testing for the presence of null (like Listing 3.4) or prior domain knowledge. One
solution to this problem is an Option type (also known a Maybe type). Scala
provides scala.Option for this purpose. The programmer provides two branches
of code, (respectively to execute if an expression is null, and if it is not) and the
appropriate branch is chosen at runtime. There is no such construct in idiomatic
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Clojure, so this solution is inappropriate: a satisfactory solution should reuse
current Clojure idioms.

Listing 3.4: null elimination in Java

...

Object a = nextObject();

if (a != null)

parseNextObject(a);

else

throw new Exception("null Pointer Found!);

...

It is a goal of Typed Clojure to statically prevent misuses of Java’s null.
At runtime, Clojure represents null as the value nil; Typed Clojure assigns
this value the static type nil (a singleton type containing just the value nil).
This enables more expressive types that explicitly communicate where nil, and
therefore null), is allowed. Section 1.4.9 gives an example of how this could be
useful when using Java interoperability.

The crucial aspect of this approach is that misusing null results in a static
type error. This differs significantly from Java: according to Java’s static type
system, it is implicit that almost every operation could involve null ! Occurrence
typing [THF10] plays a crucial role in making this a practical design choice, by
understanding existing Clojure idioms related to null elimination (see Section
2.11). Eliminating occurrences of null in Java is the programmer’s responsibility.
Instead, Typed Clojure helps the programmer by statically proving many misuses
of null are impossible.

This decision, however, needs further work to be completely satisfying. In
particular, type inference should be improved in certain common situations. For
example, we currently do not know how to infer (filter identity coll) as re-
turning a sequence with the elements of coll that are not nil or false, for any
sequence coll (see Section 4.6). Also, Typed Clojure lets the programmer define
a set of unenforced assumptions where null is allowed in Java fields and meth-
ods (see Section 1.4.9), which is potentially brittle: there is nothing stopping
the Java code from introducing unexpected null values at runtime. Adding run-
time assertions that enforce these assumptions would allow more accurate and
earlier errors, an approach similar to that taken by Typed Racket [TH10] when
interfacing with untyped Racket code.
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3.3 Clojure type hierarchy

The Clojure type hierarchy is a set of Java classes and interfaces, mostly in the
clojure.lang package, that define Clojure’s core interfaces and data structures.
Typed Clojure parameterises some of these classes in a way that resembles Java
or Scala generics.

Clojure’s type hierarchy was accommodating to this process. For example,
clojure.lang.Seqable is the main interface behind Clojure’s sequence abstrac-
tion. Sequences are immutable collections, so it was natural to parameterise
Seqable with one covariant argument (covariant means (Seqable Integer) is a
subtype of (Seqable Number) because Integer is a subtype of Number). All “se-
qable” classes in the Clojure hierarchy implement Seqable, so updating them to
use the parameterised Seqable was a matter of searching for classes that had
Seqable as an ancestor and replacing the unparameterised Seqable with the cor-
responding parameterised version.

Defining new “parameterised” versions of existing classes and interfaces do
not affect anything outside Typed Clojure. They are only for use by Typed
Clojure.

3.4 Protocols and Datatypes

Protocols and datatypes are two of Clojure’s main means of abstraction. Proto-
cols define a set of unimplemented methods, and each must be assigned types.
Datatype definitions are type checked by ensuring the methods they implement
match the types defined by the Java interface or assigned to the protocol method
they are extending.

Common usages of datatypes are checkable, like datatype constructors, field
accesses, and protocol method invocation. These are described in Section 1.4.3.
Mutable fields in datatypes are not yet supported, but is also a rarely used
feature.

3.5 Local Type Inference

Type inference in Typed Clojure is based on Local Type Inference by Pierce and
Turner [PT00]. The main extension to Local Type Inference in Typed Clojure is
support for dotted variables for variable-arity polymorphism. This implementa-
tion is ported directly from Typed Racket.
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3.6 F-bounded Polymorphism

Typed Clojure includes support for F-bounds on type variables[Can+89], as an
extension to Local Type Inference. Type variables can have upper and lower
bounds, and F-bounds allow type variable bounds to recursively refer to the type
variable being bounded. This is similar to Java and Scala, which both support
F-bounded polymorphism.

3.7 Heterogeneous Maps

Heterogeneous map types in Typed Clojure are simple enough to avoid the com-
plications associated with concatenable records (see Section 2.4) while still sup-
porting many Clojure idioms. They support adding new entries with keyword
keys, removing entries, and lookup of keyword keys with the type associated with
each key in a map tracked separately, similar to type systems for record types
(see work by Harper and Pierce [HP91]). When using these operations with
non-keyword keys, heterogeneous maps are treated like plain hash-maps.

Heterogeneous map types do not support concatenation (merging), as they
only hold positive information on the keys with entries, not which keys are absent.
This makes concatenation unsafe, as keys to the right of a concatenation can
“overwrite” keys to the left with different types. With no information on the
absence of keys, concatenation becomes an unsound operation.

We formalised some aspects of the behaviour of heterogeneous map types in
Appendix A. This also serves as a prototype for formalising other aspects in the
future. Here we give a formal syntax, operational semantics and type system
using inference rules, as is standard in the programming language community
(see, eg., Pierce [Pie02]).
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CHAPTER 4

Implementation

This chapter discusses the implementation of the Typed Clojure prototype type
system (we refer to this implementation as Typed Clojure for the remainder of
this chapter) in some detail concentrating on significant challenges that were
identified and overcome. Many aspects of Typed Clojure’s design follow the
implementation of Typed Racket, which is reflected in this chapter. (The code
is available on Github at https://github.com/frenchy64/typed-clojure).

4.1 Type Checking Procedure

Typed Clojure and Typed Racket differ significantly in how type checking is
integrated into their programming environments. Typed Racket is implemented
as a language on the Racket platform, which provides highly sophisticated and
extensible macro facilities. Interestingly, this allows Typed Racket to be entirely
implemented with macros. Instead, Typed Clojure is implemented as a library
that utilises abstract syntax trees (AST) generated by analyze [BSc12], a library
I developed for this project. This strategy follows common practice for Clojure
projects, which favours providing modular libraries over modifying the language.

This section goes into details on the implementation of Typed Clojure. First,
a high-level overview is given on the type checking procedure. Then the interfaces
to particular high-level functions are discussed.

4.1.1 General Overview

There are several stages to type checking in Typed Clojure. Type checking
is typically initiated at the read-eval-print-loop prompt (REPL), for example
(check-ns ’my.ns) checks the namespace my.ns. Before type checking begins, all
global type definitions in the namespace are added to the global type environment
by compiling the namespace. These type definitions include
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• type alias definitions

• global variable, protocol, datatype, and Java Class annotations

• Java method annotations, such as nilable-param and non-nil-return

An AST is then generated from the code contained in the target namespace.
This AST is then recursively descended and is type checked using local type
inference. Currently only one error is reported at a time, and type checking
stops if a type error is found.

4.1.2 Bidirectional Checking

The interface to the bidirectional checking algorithm is typed.core/check, which
takes an expression, represented as an AST generated from analyze, and an op-
tional expected type for the given expression. If the expected type is present,
the bidirectional algorithm checks that the expected type matches the actual
type of the expression. If the expected type is omitted, a type is instead syn-
thesised for the expression. The algorithm is based on Pierce and Turner’s Lo-
cal Type Inference [PT00] and the implementation is similar in form to Typed
Racket’s [THF08], in that one function with an extra “expected type” argument
is preferred over two complementary functions, one for checking and one for syn-
thesis.

The main difference between Typed Clojure’s and Typed Racket’s bidirec-
tional checking algorithm is the representation for expressions. Typed Racket
relies on pre-existing Racket features like syntax objects for expression represen-
tation. Clojure instead leans towards abstract syntax tree representation, despite
its Lisp heritage. In terms of the bidirectional checking, the difference is mostly
cosmetic.

4.1.3 Occurrence typing

Typed Clojure’s implementation of occurrence typing is ported and extended
from Typed Racket. Occurrence typing plays several roles in Typed Clojure.
First, occurrence typing is used to update the type environment at every con-
ditional branch. Second, it is used to calculate whether branches are reachable.
Third, paths are used extensively in Typed Clojure. The implementation of these
features are discussed in this section.

The basic idea of occurrence typing involves keeping a separate environment
of propositions that relate bindings to types. These propositions are then used
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to update the type environment. In Typed Clojure there are several types of
propositions, referred to as filters. They are based on the theory by Tobin-
Hochstadt and Felleisen [THF10], and are ported directly from Typed Racket.

• TopFilter and BotFilter represent the trivially true and trivially false propo-
sitions respectively.

• TypeFilter and NotTypeFilter represent a positive or negative association
of a binding name to a type. The syntax (is t name) means a proposition
that the binding called name is of type t (corresponding to TypeFilter). The
syntax (! t name) means a proposition that the binding called name is not
of type t (corresponding to NotTypeFilter).

• AndFilter and OrFilter represent logical conjunction of propositions (writ-
ten (& −→p )), and logical disjunction of propositions (written (| −→p )) for
propositions p.

Propositions can optionally carry path information represented by a sequence
of path elements, which signify which part of the binding’s type to update. For
example, Typed Racket uses car and cdr path elements to track which component
of a cons type to update. Paths are particularly useful in Typed Clojure. There
are path elements for traversing heterogeneous map types (KeyPE), inferring
length information (CountPE), and first and rest paths for sequences. These
additions do not appear to introduce any major new complexities related to paths.

4.2 Polymorphic Type Inference

The polymorphic type inference algorithm is directly ported from Typed Racket
with slight extensions for bounded variables, and is directly based on Pierce and
Turner’s Local Type Inference [PT00]. A common entry point for inferring type
variables for polymorphic function invocations is typed.core/infer.

infer is invoked like (infer X Y S T R expected), where

• X is a map from type variable names to their bounds (representing the type
variables in scope),

• Y is a map from type variable names to their bounds (representing the
dotted type variables in scope),
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• S and T are sequences of types of equal length, (usually the types of the
actual arguments provided and the types of the parameters of the polymor-
phic function),

• R is a result type (usually the return type of the polymorphic function),

• expected is the expected type for R, or the value nil,

and returns a substitution that satisfies the following conditions:

• Pairwise, each S is a subtype of T,

• R is below expected, if expected is provided.

A substitution maps type variables to types. It is valid to replace all oc-
currences of the type variables named in the substitution with their associated
type. For example, substitution are often applied to R by the caller of infer to
eliminate the type variables in X and Y.

infer is almost always used when invoking polymorphic functions like, for
example, constantly, which has type (All [x y] [x -> [y * -> x]]) (read as
a function taking x and returning a function that takes any number of y’s and
returns x). For instance, ((constantly true) ’any ’number), results in the value
true.

Type checking the invocation (constantly true) calls infer roughly like

(infer {’x no-bounds ’y no-bounds}

{}

[(parse-type ’true)]

[(make-F ’x)]

(with-frees [(make-F ’x) (make-F ’y)]

(parse-type ’[y * -> x]))

nil)

where the internal Typed Clojure bindings

• no-bounds is the type variable bounds with upper bound as Any and lower
bound as Nothing,

• parse-type is a function that takes type syntax and converts it to a type
(its argument must be quoted),

• make-F is a function that takes a name symbol and returns a type variable
type of that name, and
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• with-frees is a macro that brings the type variables named in its first
argument into scope in its second argument.

This returns a substitution that replaces occurrences of x with true and y

with Any. This helps infer the type of the expression (constantly true) as [Any
* -> true] (where true is the singleton type containing just the value true).

4.3 F-Bounded Polymorphism

A feature not present in Typed Racket is bounded polymorphism. Several changes
were needed to support bounded polymorphism. In every position where a set of
type variables was required, it was replaced by a map of type variables to bounds.

Bounds consist of an upper and lower type bound, or a kind bound. Kind
bounds are experimental following the inclusion of user definable type construc-
tors (motivated in section 5.3). They are a stub for a more comprehensive treat-
ment of higher-kinded operators such as that described by Moors, Piessens, and
Odersky for Scala [MPO08]. At present, a type variable can only be instantiated
to a type between its upper and lower bounds, or, if a kind bound is defined
instead, to a kind below the kind bound.

F-bounded polymorphism allows type variables to refer to themselves in their
type bounds. Bounds are checked after a substitution is generated, guaranteeing
no substitution can violate type variable bounds. To support F-bounds, the
substitution being checked is applied to the lower and upper bounds for each
type variable, and the type associated with the type variable in the substitution
is checked to be between these bounds.

4.4 Variable-arity Polymorphism

Variable-arity polymorphism in Typed Clojure is directly ported from Typed
Racket. This was the most complicated part of the prototype. At the center of
the implementation is manipulating dotted type variables, which can represent a
sequence of types.

It also required changes to the polymorphic type inference, where each ref-
erence to a type variable required a special case for a dotted type variable. For
example, the constraint-generation algorithm for Local Type Inference features
extra kinds of constraints for dotted variables. Strickland, Tobin-Hochstadt, and
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Felleisen elaborate on the particular changes required for the Typed Racket im-
plementation [STHF09].

Porting Typed Racket’s variable-arity polymorphism implementation was te-
dious because some of the relevant internal functions interact in strange ways
with the rest of Typed Racket. My impression was that Typed Racket was
initially designed without variable-arity polymorphism and was added without
major changes to other components. Typed Clojure was developed with the
same design so full variable-arity polymorphism implementation could be ported
without change.

4.5 Portability to other Clojure Dialects

Typed Clojure was built for the Clojure programming language, whose compiler
and data structures are implemented in Java. ClojureScript is the first major
Clojure dialect to be written in Clojure, and it is likely future dialects of Clojure
will follow this example. Where Clojure uses Java Classes and Interfaces, Clo-
jureScript’s compiler and data structures are written in terms of Clojure’s two
core abstractions: protocols and datatypes. It would be desirable to port Typed
Clojure to such Clojure dialects while keeping the core of the implementation
constant.

A significant portion of Typed Clojure is theoretically platform independent
but there are challenges to targeting new dialects, including incompatible host
interoperability and non-standardised abstract syntax trees. The first issue is
predictable due to a core philosophy of Clojure dialects: host interoperability is
non-portable1. Each dialect of Clojure has a unique host interoperability story
and Typed Clojure should cater for them separately. The second issue is poten-
tially resolvable either by enforcing a standard representation for abstract syntax
trees across Clojure implementations, or developing a library that provided a
common interface to abstract syntax trees for each Clojure implementation.

4.6 Proposition Inference for Functions

A feature not yet implemented in Typed Racket is the ability to infer new propo-
sitions based on existing propositions of a function. This feature was added to
Typed Clojure to support filtering a sequence based on negative information,
such as filtering values that are not nil.

1See the complete Clojure rationale: http://clojure.org/rationale
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Listing 4.1: Type annotation for filter

(ann clojure.core/filter

(All [x y]

[[x -> Any :filters {:then (is y 0)}] (U nil (Seqable x)) ->

(Seqable y)]))

To better understand the problem, Listing 4.1 presents the type of filter,
which takes a function f and a sequence s as arguments, and returns a sequence
that contains each element in s such that applying f to the element returns a true
value. The :filters syntax requires some explanation. Function types support
an optional filter set attached to the return type, written as a map with :then

and/or :else keys (if omitted, they default to the trivially true proposition which
has no effect). The “then-proposition” and “else-proposition” are added to the
type environment when the return value is a true and false value respectively.
For example, the filter set {:then (is y 0)} is read “if the return value is a true
value, then the first argument must be of type y, otherwise if it is a false value,
nothing interesting is enforced” The type given for filter works because the
type variable y occurs in both the “then-proposition” of the first argument and
the return type (Seqable y).

Listing 4.2: Troublesome filter

(filter (fn [a] (not (nil? a))) coll)

The difficulty starts with something like Listing 4.2, where the inferred filter
set for the first argument to filter is {:then (! nil 0) :else (is nil 0)}2.
The “then-proposition” (! nil 0) does not fit with (is y 0) that filter expects.

We can sometimes get around this if we already have a predicate with a pos-
itive “then-proposition”. For example, if we are filtering out nil values from a
sequence of type (Seqable (U Number nil)), we can replace Listing 4.2 with
(filter number? coll), where number? has the filter set {:then (is Number

0) :else (! Number 0)}. This does not work, however, when filtering a sequence
of type like (Seqable (U x nil)) for some unspecified x because there is no built-
in predicate with “then-proposition” (is x 0).

Listing 4.3: Filtering with negative propositions

(filter (ann-form

#(not (nil? %))

[(U nil x) -> boolean :filters {:then (is x 0)}])

mvs)

2(! nil 0) is the proposition that the first argument is not of type nil.
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Instead, we generate new propositions using a technique suggested by Tobin-
Hochstadt [TH12], that follows from the occurrence typing calculus defined by
Tobin-Hochstadt and Felleisen [THF10]. First the filter set for functions are in-
ferred as usual. To collect new propositions, the “then-proposition” is applied to
the type environment (which maps local bindings to types). Any types associated
with bindings that are changed after this are represented as new propositions,
which are added to the “then-proposition” for this filter set. The same procedure
is followed for the “else-proposition”.

Using this technique, the anonymous function in Listing 4.33 has the filter
set {:then (& (! nil 0) (is x 0)) :else (is nil 0)} which is good enough
to infer the filtered result as (Seqable x).

Further work in this area is needed when filtering on a non-anonymous func-
tion. For example, it is not clear how to infer the common idiom (filter

identity coll) as returning a sequence of non-nil elements, for any sequence
coll. Inferring new propositions for already existing functions like identity

does not fit with Tobin-Hochstadt and Felleisen’s calculus [THF10], confirmed
by Tobin-Hochstadt [TH12] as future work in this area.

3The Clojure syntax #(not (nil? %)) is equivalent to (fn [a] (not (nil? a)))
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CHAPTER 5

Experiments

In this chapter we work through several examples of using Typed Clojure and
gauge how well the current prototype handles them. We intentionally chose
examples that could be challenging to type check, or were particularly useful to
the everyday Clojure programmer.

5.1 Java Interoperability

It is idiomatic and common in Clojure to interface with existing Java code via
Java interoperability. Typed Clojure is intended to be useful for practical pur-
poses, so it is important to understand this common feature. To test Typed
Clojure’s approach, existing code utilising Java interoperability was ported. My
porting effort attempted to follow how a real programmer might port code to
Typed Clojure; I describe this process step-by-step.

This section describes porting a function from clojure.contrib.reflect 1 2, a
Clojure library that relies heavily on Java interoperability. I chose to port
call-method for several reasons: it chains several Java calls together, it uses
primitive arrays, and null is a valid value in one place.

Before showing the implementation, there is a brief explanation of the relevant
syntax. Java methods are called using the dot operator. If o is an object, then
(. o m −→a ) calls its method named m, passing −→a as arguments. Syntactic sugar
allows the method to be named first: (.m o −→a ) is equivalent to (. o m −→a ).
Also, doto is convenient notation for chaining multiple method calls to the same
object, presumably for side effects, and returns the original object. For example,
(doto o (.m1 −→a ) (.m2

−→
b )) calls methods m1 (passing −→a as arguments) and m2

(passing
−→
b as arguments) on o in order, and returns o with any side effects

1clojure.contrib Github project: https://github.com/richhickey/clojure-contrib
2Note that while the clojure.contrib library as a whole should be considered deprecated,

useful code still exists within it which apparently has not been migrated elsewhere.
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applied to it.

Listing 5.1: call-method

;; call-method pulled from clojure.contrib.reflect, (c) 2010 Stuart

Halloway & Contributors

(defn call-method

"Calls a private or protected method.

params is a vector of classes which correspond to the arguments to

the method e

obj is nil for static methods, the instance object otherwise.

The method-name is given a symbol or a keyword (something Named)."

[^Class klass method-name params obj & args]

(let [method (doto (.getDeclaredMethod klass

(name method-name)

(into-array Class params))

(.setAccessible true))]

(.invoke method obj (into-array Object args))))

The original function is modified slightly for readability and is presented in
Listing 5.1.

Listing 5.2: call-method Type Annotation

(ann call-method

[Class Named (IPersistentVector Class) (U nil Object) (U nil

Object) * -> (U nil Object)])

Thankfully this function has up-to-date documentation, and from it we can
derive an expected type (Listing 5.2).

Before running the type checker we must convert our array constructors into
ones that Typed Clojure can understand. Array types in Typed Clojure are
represented by (Array c t), where the Java class c is the Java component type,
and the Typed Clojure type t is the Typed Clojure component type. We can
pass this array to Java methods accepting type c[], and we can read and write
type t to the array from Typed Clojure.

In particular we change two invocations of into-array.

• (into-array Class params), which creates an array of type Class[] and
populates it with the elements of params, becomes (into-array> Class

Class params), which is of type (Array Class Class).
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• (into-array Object args), which creates an array of type Object[] and
populates it with the elements of args, becomes (into-array> Object (U

nil Object) args) which is of type (Array Object (U nil Object)).

The second place in the Array type constructor allows fine grained control over
what is allowed in the array. The first point above must be type (Array Class

Class) because the getDeclaredMethod method on java.lang.Class instances
requires an array of non-null Class objects. On the other hand, the invoke

method takes an array that allows null members, so its type is (Array Object

(U nil Object)).

Now we run the type checker, which produces a type error.

#<Exception java.lang.Exception: 29: Cannot call instance method

java.lang.reflect.AccessibleObject/setAccessible on type (U nil

java.lang.reflect.Method)>

Because Typed Clojure assumes all methods return nilable Objects, the call
to getDeclaredMethod has return type (U nil java.lang.reflect.Method). It is
not type safe to call setAccessible on this type, so we get a type error.

In this case, Typed Clojure is too conservative: according to its documenta-
tion getDeclaredMethod never returns null. We add this rule with non-nil-return.

(non-nil-return java.lang.Class/getDeclaredMethod :all)

Running the type checker produces a different type error.

#<Exception java.lang.Exception: Type Error, REPL:32 - (U

java.lang.Object nil) is not a subtype of: java.lang.Object>

This concerns passing obj as the first argument to the invoke method. Typed
Clojure conservatively defaults method parameter types as non-nullable. There-
fore the first parameter of invoke is Object by default; obj is (U java.lang.Object

nil). Again, this is too conservative as the first argument can be null for static
methods, and we use nilable-param to specify the first argument of invoke may
be nil, for the arity of two parameters.

(nilable-param java.lang.reflect.Method/invoke {2 #{0}})

The final successfully type checked code is presented in Listing 5.3.
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Listing 5.3: Type Annotated code for call-method

(non-nil-return java.lang.Class/getDeclaredMethod :all)

(nilable-param java.lang.reflect.Method/invoke {2 #{0}})

(ann call-method [Class Named (IPersistentVector Class) (U nil Object)

(U nil Object) * -> (U nil Object)])

;; call-method pulled from clojure.contrib.reflect, (c) 2010 Stuart

Halloway & Contributors

(defn call-method

"Calls a private or protected method.

params is a vector of classes which correspond to the arguments to

the method e

obj is nil for static methods, the instance object otherwise.

The method-name is given a symbol or a keyword (something Named)."

[^Class klass method-name params obj & args]

(let [method (doto (.getDeclaredMethod klass

(name method-name)

(into-array> Class Class

params))

(.setAccessible true))]

(.invoke method obj (into-array> Object (U nil Object) args))))

5.2 Red-black trees

This experiment involved porting an implementation of red-black trees used as an
experiment for SML CIDRE by Davies [Dav05]. SML CIDRE is a sort-checker for
Standard ML that supports refinement types. The red-black tree implementation
was ported to work with SML CIDRE to statically check red-black tree invariants.
It is a particularly good experiment for SML CIDRE because it generates an
unusually large number of intersection types.

Intersection types in SML CIDRE are heavily optimised via memoisation.
Because of this, SML CIDRE is able to check this experiment with little trouble.
The current Typed Clojure prototype is not as successful, and appears to hang
during type checking. As this experiment was particularly ambitious, diagnosing
and fixing this issue is delegated to future work.
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One interesting point was noticed when porting the experiment. The SML
CIDRE version of the red-black tree experiment uses SML CIDRE datasorts to
represent the red-black tree invariants. The Typed Clojure version entirely uses
plain hash-maps, a common Clojure idiom. It was noticed that the heterogeneous
map types that Typed Clojure provides would be sufficient to represent the red-
black tree invariants.

5.3 Monads

Monads are an interesting control structure used in functional programming lan-
guages, as described by Wadler [Wad95]. They are most recognisable from its
inclusion in the statically-typed language Haskell [Sim10], where monads are re-
lied on for many features including global state, file output, and exceptions.

I chose to port the Clojure Contrib library algo.monads [Hc12] to Typed
Clojure. The library provides several kinds of monads, monad transformers, and
monadic functions. Macros are used to provide pleasant syntax for consumers of
the library.

5.3.1 Monad Definitions

This library represents a monad as a hash-map with four keys: :m-bind, :m-result,
:m-zero, and :m-plus. A valid monad must provide the first two, and the latter
two may optionally be mapped to the keyword ::undefined3.

Listing 5.4: Untyped definition for the identity monad

(defmonad identity-m

"Monad describing plain computations. This monad does in fact

nothing

at all. It is useful for testing, for combination with monad

transformers, and for code that is parameterized with a monad."

[m-result identity

m-bind (fn m-result-id [mv f]

(f mv))

])

A monad is defined using the macro defmonad. The macro expands to code
that binds a var to a hash-map with the aforementioned keys.

3Keywords prefixed with :: are qualified in the current namespace.
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Listing 5.5: Type for identity monad

(def-alias Undefined ’::undefined)

(ann identity-m

’{:m-bind (All [x y]

[x [x -> y] -> y])

:m-result (All [x]

[x -> x])

:m-zero Undefined

:m-plus Undefined})

A direct typing of the identity monad would look like Listing 5.5. This signa-
ture assigns the expected type for the var identity-m to be a heterogeneous map
type with the minimum entries for monads: :m-bind and :m-result. The syntax
for heterogeneous map types requires a ’ prefix, and any number of key-value
pairs are given between curly braces. Heterogeneous map keys must be keywords,
so the syntax is made more convenient by omitting the usually required ’ prefix
for keyword types.

Monad types in languages with advanced type systems are often abstracted
using type constructors. This allows reasoning about monadic code while keeping
the particular monad abstract, which is a desirable result, so Typed Clojure was
extended to support user definable type constructors.

Listing 5.6: An abstract definition of a monad.

(def-alias Monad

(TFn [[m :kind (TFn [[x :variance :covariant]] Any)]]

’{:m-bind (All [x y]

[(m x) [x -> (m y)] -> (m y)])

:m-result (All [x]

[x -> (m x)])

:m-zero Undefined

:m-plus Undefined}))

Listing 5.6 captures the abstract definition of a monad. A Monad is a type con-
structor parameterised by m, which is a type constructor taking a single argument
x (a type) and returning a type (written Any)4. The body of the type constructor
uses m abstractly. Typed Clojure ensures the correct number of arguments are
passed and recognises the declared variances for each parameter. In this case the
first argument of m is declared a covariant position. When instantiated, m must
also be a type operator of one covariant argument returning a type.

4Haskell-like syntax is helpful here, the kind (TFn [[x :variance :covariant]] Any)
is approximately * -> *. A more streamlined syntax is planned for future work.
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Listing 5.7: Identity monad using user defined type constructors

(ann identity-m (Monad (TFn [[x :variance :covariant]] x)))

We can now express the type of the identity monad more abstractly (Listing
5.7). The purpose of the monad seems more apparent just from reading its type.
In this case, the fact that identity monad has no effect is reflected by its type
constructor returning exactly its argument.

Listing 5.8: Type checked identity monad definition

(defmonad identity-m

"Monad describing plain computations. This monad does in fact

nothing

at all. It is useful for testing, for combination with monad

transformers, and for code that is parameterized with a monad."

[m-result identity

m-bind (ann-form

(fn m-result-id [mv f]

(f mv))

(All [x y]

[x [x -> y] -> y]))

])

The final type checked definition for the identity monad is given in Listing
5.8. In this case, just the monadic bind required annotation.

Listing 5.9: Several monad types

; Maybe monad

(ann maybe-m (MonadPlusZero

(TFn [[x :variance :covariant]]

(U nil x))))

; Sequence monad (called "list monad" in Haskell)

(ann sequence-m (MonadPlusZero

(TFn [[x :variance :covariant]]

(Seqable x))))

; State monad

(def-alias State

(TFn [[r :variance :covariant]

[s :variance :invariant]]

[s -> ’[r s]]))

(ann state-m (All [s]

(Monad (TFn [[x :variance :covariant]]

(State x s)))))
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Listing 5.9 shows several monad types. The alias MonadPlusZero is identical
to Monad, except both :m-zero and :m-plus are defined. The definitions were type
checked by adding type annotations in appropriate places, in a similar fashion
to the identity monad. A significant obstacle was discovered while type checking
monad definitions, related to filtering sequences with negative type information
(discussed in Section 4.6).

5.3.2 Monad Transformer Definitions

The initial motivation for adding user defined type constructors to Typed Clojure
(as discussed in Section 5.3.1) was to type check monad transformer definitions.
Monad transformers are always parameterised by a monad type constructor, and
should work for all monad type constructors. Keeping the monad type construc-
tor abstract allows us to determine whether a monad transformer works for all
monads.

Finally, Listing 5.10 shows the type assigned to the maybe monad transformer
definition. The most interesting aspect to notice here is that the monad m is kept
abstract throughout the type.

Listing 5.10: Maybe monad transformer type

(ann maybe-t

(All [[m :kind (TFn [[x :variance :covariant]] Any)]]

(Fn

[(AnyMonad m) -> (MonadPlusZero (TFn [[y :variance

:covariant]]

(m (U nil y))))]

[(AnyMonad m) nil -> (MonadPlusZero (TFn [[y :variance

:covariant]]

(m (U nil y))))]

[(AnyMonad m) nil (U ’:m-plus-default ’:m-plus-from-base)

-> (MonadPlusZero (TFn [[y :variance :covariant]]

(m (U nil y))))])))

5.4 Conduit

Conduits are an advanced form of “pipes” using arrows, a generalisation of mon-
ads [Fra12]. Conduit is a Clojure library developed by Duey and contributors 5

that supports programming with conduits.

5Github home of Conduit: https://github.com/jduey/conduit
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The library had to be modified and simplified considerably to be able to type
check. Many existing conduits had troublesome variable-parameters, reminiscent
of the issues of assigning types to assoc and partial (which is future work, see
Section 6.1). In these cases, simplified versions of the conduits were created that
took fixed arguments.

An interesting property of the types assigned to conduits (which are internally
functions of a single argument) is that they are recursive types. This is not in
itself interesting, but Typed Clojure implements conduit types as type functions
with variance, which required the variance of the conduit types to be known in
advance.

Listing 5.11 shows the type constructor for a conduit type, ==>. Notice the
body of ==> includes a reference to itself in a position where variance must be
known in advance. declare-alias-kind is used to declare the kind of an alias.
Once an alias with an already declared kind is defined with def-alias, the defined
kind must match the declared kind, otherwise a type error is thrown. (The
specifics of the types in Listing 5.11 are not relevant to the rest of this discussion,
so they are not explained).

Listing 5.11: Types for Conduits

(def-alias Result

(TFn [[x :variance :covariant]]

(U nil ;stream is closed

’[] ;abort/skip

’[x];consume/continue

)))

(def-alias Cont

(TFn [[in :variance :covariant]

[out :variance :invariant]]

[(U nil [(Result in) -> (Result out)]) -> (Result out)]))

(declare-alias-kind ==> (TFn [[in :variance :contravariant]

[out :variance :invariant]] Any))

(def-alias ==>

(TFn [[in :variance :contravariant]

[out :variance :invariant]]

[in -> ’[(U nil (==> in out)) (Cont out out)]]))

The resulting port of Conduit was unsatisfying for real world use. The sim-
plifications made in order to type check the library reversed any effort that was
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invested into Conduit to conform to common Clojure idioms. The future work
on improving variable-argument types should reveal whether this library can be
ported satisfactorily. It is desirable to port this library because implementations
and usages of conduits result in very abstract code which static type systems can
help verify as correct.
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CHAPTER 6

Future Work

6.1 Variable-Arity Polymorphism

It is not clear how to handle several key Clojure functions that accept an even
number of arguments. For example, valid usages of assoc are (assoc m k v

−→
kv),

which takes three arguments and any number of paired arguments.

Strickland, Tobin-Hochstadt, and Felleisen’s calculus [STHF09] is insufficient
to express this pattern. Devising and integrating types that can express this
pattern is set as future work.

6.2 Contracts and Blame

A key part of Typed Racket [TH10] is its contract and blame systems. They
enable safe interoperability with untyped Racket by generating runtime contracts
in key places based on static types. Typed Racket also includes a sophisticated
blame system based on Wadler[WF09] to provide more accurate error reporting
that ensures typed modules “can’t be blamed”.

There are two kinds of interoperability in Typed Clojure that could utilize
these features. First, the set of “assumptions” given by the programmer about
Java interoperability like those introduced by non-nil-return and nilable-param

(see section 5.1) could be checked by adding runtime contracts. Secondly, when
typed namespaces import untyped functions, the static type assigned to the un-
typed function could be enforced by wrapping the function in a runtime contract.
Typed Racket uses this second approach when importing untyped Racket func-
tions, and it results in better error messages.
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6.3 Multimethods

Multimethods in Clojure are an idiomatic and often used feature. It would be
essential for an optional static type system for Clojure to support multimethods
if it is to be of practical use. The major hurdle for type checking multimethod
definitions is the interaction between the multimethod dispatch mechanism and
occurrence typing.

clojure.core/isa? is the core of multimethod dispatch. It is a function that
takes two arguments and is true if the first argument is a member of the second
argument, otherwise false. It gets quite complicated quickly even with common
usages of isa?. Simple calls involving only Class objects return true if the left
class includes the right class in a Java type relationship, eg. (isa? Integer

Number) is true. For example, (isa? [Integer Double] [Number Number]) is
true because the left and right arguments are vectors of classes of the same
length that are subtypes by isa? pairwise.

It is also unclear whether it is feasible to perform comprehensiveness and
ambiguity prediction tests on multimethod usages. I predict that they will be
very difficult to pull off satisfactorily because of the “openess” of multimethods,
and we will fall back on the runtime errors that multimethods already throw.

6.4 Records

A Clojure record is a composite of datatypes and maps; it is a datatype with fields
that can be treated like a map: records support map operations like get (lookup),
assoc (add entries), and dissoc (remove entries). One interesting property from
the perspective of static typing is that if a entry corresponding to a field of the
underlying datatype is removed with dissoc, then the resulting type is a plain
map: it loses its record type. Correspondingly, a record keeps its type if any
other entry is removed.

Records are used frequently in Clojure code, so it is desirable to support them
to some degree. Future work is planned to investigate solutions to satisfactorily
capture their subtle semantics in a practical way.

6.5 Porting to other Clojure implementations

It would be desirable to port Typed Clojure to other Clojure implementations.
Each implementation would bring its own set of challenges with interoperability.
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The core of Typed Clojure would preserved with each port changing at least its
interoperability with its host platform. Section 4.5 discusses potential problems
with the porting process, and how they might be solved.

58



CHAPTER 7

Conclusion

Whether a language is dynamically typed or statically typed is not always a
dividing classification. Recent languages have managed to support the advantages
of both styles: the safety of a statically typed language while retaining the idioms
found in dynamically typed languages.

This dissertation describes an optional static typing system that attempts to
bring the advantages of static typing to the dynamically typed language Clojure,
running on the Java Virtual Machine. By reusing many of the design choices
made in similar projects like Typed Racket, we are able to design and implement
a prototype type system Typed Clojure that can statically check many Clojure
idioms.

Typed Clojure is intended to be of practical use to Clojure programmers. We
show that Typed Clojure helps verify the absence of errors in Clojure code written
in sophisticated programming styles by porting most of a wide-spread Clojure
library for monadic programming. Similarly, we show that Typed Clojure helps
verify code using Java interoperability is correct, and is a useful tool to show
misuse of Java’s null.

There is still significant future work in order to type check all Clojure idioms,
but the work already carried out suggests that an optional type system for Clojure
like Typed Clojure is both practical and useful tool.
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APPENDIX A

Heterogeous map type theory prototype

A.1 Operational Semantics

Syntax of Terms

e ::= (c−→e ) | {−→e e} Expressions
v ::= k | nil | {−→v v} Values
c ::= assoc | dissoc | get Constants

Evaluation Contexts

E ::= [] | (c −→v E −→e ) | {−→v v E e −→e e} | {−→v v v E −→e e} Evaluation Contexts
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Operational Semantics

E-Assoc
v1 = {−→v v} v4 = v1 with entry v2 to v3

(assoc v1 v2 v3) ↪→ v4

E-Dissoc
v1 = {−→v v} v3 = v1 without entry indexed by v2

(dissoc v1 v2) ↪→ v3

E-GetMapExist
v1 = {−→v v} v2 v3 in v1

(get v1 v2) ↪→ v3

E-GetMapNotExist
v1 = {−→v v} v1 has no entry with key v2 v3 = nil

(get v1 v2) ↪→ v3

Type Syntax

T ::= Any | Nothing | nil | k | {−→k T} | (IPersistentMap T T)

| (∨ −→T ) | (∧ −→T )
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Core Type Rules

T-AssocHMap
Γ ` em : Tm Γ ` ek : k Γ ` ev : Tv ` Tm <: { }

Γ ` (assoc em ek ev) : (update hmap Tm k Tv)

T-AssocPromote
Γ ` em : Tm Γ ` ek : Tk Γ ` ev : Tv

` Tm <: (IPersistentMap Any Any) T = (promote hmap Tm Tk Tv)

Γ ` (assoc em ek ev) : T

Type Metafunctions

(update hmap {−−−→Tk Tv} k1 T1) = {−−−→Tk Tv k1 T1}
(update hmap (∧ −→T ) Tk Tv) = (∧ −−−−−−−−−−−−−−−−−−→(update hmap T Tk Tv))

(update hmap (∨ −→T ) Tk Tv) = (∨ −−−−−−−−−−−−−−−−−−→(update hmap T Tk Tv))

(promote hmap {−−−→Tk Tv} Tkn Tvn) = (IPersistentMap (∨ −→Tk Tkn) (∨ −→Tv Tvn))

(promote hmap (IPersistentMap Tk Tv) Tkn Tvn) = (IPersistentMap (∨ Tk Tkn) (∨ Tv Tvn))
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APPENDIX B

Dissertation Proposal

Background

Dynamically typed languages (also known as monotyped) are designed to be
convenient for writing programs quickly, and aspire to get out of the programmer’s
way as much as possible. When programs grow large and stabilize, some features
of static languages are missed, specifically static type checking.

Tobin-Hochstadt notes that “untyped scripts are difficult to maintain over
the long run” [TH10] because types contain valuable design information. He
developed Typed Scheme [TH10] to safely and incrementally port existing Scheme
code, a dynamic language, to Typed Scheme, a static language.

Clojure is a dynamically typed, functional language with implementations for
the Java Virtual Machine and Common Language Runtime, and compiling to
Javascript. Clojure is also a Lisp, which makes it a good candidate to test the
generality of ideas developed for Typed Scheme [TH10].

Aim

My goal is to develop a prototype optional static type system for Clojure, even-
tually intended for practical use.

It will be based on the lessons learnt throught the development of Typed
Scheme, and as a response to Tobin-Hochstadt’s [TH10] suggestion to add type
systems to other existing dynamic languages.

There are several challenges to creating a satisfactory type system for Clojure.

Multimethods play a significant role in Clojure, and a satisfactory type system
for Clojure should understand them to some degree. There is some experience
statically typing multimethods [MC02], but this is a challenge and may not be
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addressed in the timeframe proposed, beyond initial consideration of how it would
fit with the rest of the system.

Clojure’s core library includes variable-arity functions which are not easily
typed with current static type systems. Providing satisfactory types for functions
like Clojure’s ’map’, ’filter’, and ’reduce’ require support for non-uniform vari-
able arity polymorphism. Strickland, Tobin-Hochstadt and Felleisen [STHF09].
describe their approach for non-uniform variable arity polymorphism, as used in
Typed Racket. At a minimum, the proposed project will include broadly iden-
tifiying what new issues arise when adapting this approach to Clojure, with a
prototype design if these issues are not too major.

Occurence typing is type checking technique developed for Typed Scheme [THF08]
and improved for Typed Racket [THF10]. It helps the type checker understand
common programming idioms with minimal type annotations. The proposed
project will include a comparison of these approaches in the context of Clojure,
and a prototype design if a satisfactory approach is designed and no major issues
are identifed.

Ensuring vigorous type safety is an important aspect of Typed Scheme [TH10],
especially when interacting between untyped and typed modules. I do not expect
to concentrate on every combination of cross-module interaction. In particular,
safely using typed code from untyped code will not be designed. Safe interac-
tion between typed modules however is needed for a practical type checker. I
will attempt to design a viable strategy or identify issues that require further
consideration.

Method

The milestones for this project are broken into release milestones for the prototype
library.

My goal is to finish all features listed in releases below and to begin work on
the challenges, listed last.

For each of these it’s not yet fully clear what novel issues may arise in adapt-
ing existing techniques to Clojure. For each item below the project will involve
either implemention or identification of the novel issues that make implementa-
tion difficult. The classification below reflects the level of uncertainity regarding
such issues.

0.1 • Union types
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• Basic Local Type Inference algorithm

• Fixed arity function types

• Typed deftype (class definitions)

• Uniform variable-arity function types

• Enough functions annotated from clojure.core for proof-of-concept

• Bounded Type variables

Challenges • Devise strategy for type inference (eg. occurence typing)

• Manage interactions between typed namespaces

• Mutable reference types

• Non-uniform variable arity polymorphism

• Typing Multimethods

• Fine Grained Hash-Map Types

Software and Hardware Requirements

Linux environment with Java, git, and maven installed. No issues are anticipated
with regards to access to these.
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