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"The way to do research is to attack the facts at 

the point of greatest astonishment." 

--Celia Green 

 
 

Abstract 
 

Modern computer hardware (multi-core, multi gigahertz processors with 

gigabytes of RAM and terabytes of disk) along with IDEs allows programmers to 

build computer programs which are bigger and more complex than they can 

understand or keep in their working memories. Additionally, the problems these 

programs are designed to model are ever more complicated. Consequently, 

programs are full of inconsistencies, mistakes, and incompleteness's. These 

problems are difficult to detect, difficult to locate, and difficult to correct. Often a 

change is made by a programmer to fix a problem for which understanding all 

the repercussions of the change is difficult. Consequently, further bugs are 

introduced into the code base. Because of the pervasiveness of software in society 

and the potential severity of the consequences of bugs, software developers need 
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ever better tools to help them understand, navigate, and follow the consequences 

of their development and maintenance activities. 

This dissertation presents a novel framework based on tree/graph 

searching and parsing, deductive retrieval, dynamic analysis, symbolic 

execution, aspect oriented programming, and an open interpreter to allow a 

software developer to navigate, locate features, find bugs, and abstract 

information in software. The system is designed to have a fast modify-test cycle 

such that the programmer can search and test the software as it is being edited 

without time consuming recompilation, reinstrumenting, or database 

repopulating each time an edit is made to the code base. The system is language 

independent, requiring only files to specify the language grammar, control flow 

graph transformation, and execution semantics. In addition, because of the 

flexibility and programmability of the system it is an excellent environment to 

perform further research on program analysis techniques such as dynamic 

analysis, symbolic execution and abstract interpretation. A prototype system has 

been built along with data files for the C programming language which 

demonstrates the feasibility of the system and its ability to scale to "modern-

sized" programs. 
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"A programmer is a machine for turning 

coffee into software." 

-- Adapted from Alfréd Rényi 
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"Research is the process of going up alleys to 

see if they are blind." 

--Marston Bates 

 

Chapter 1 

 

1. Introduction 
 

Software is more a logical product than a physical product.  This has a 

number of interesting implications. The actual production cost of software is 

negligible, all the cost and effort is concentrated on development, evolution and 

maintenance. Because of the stubborn persistence of Moore’s law, except in 

unusual cases, memory capacity and processing speed are not constraints. This 

leaves managing complexity as the principal bottleneck in software development 

[128, 137]. So while we have the hardware capacity to build bigger, faster, and 

more comprehensive systems, we have been accruing complexity, which has 

outstripped the human capacity to handle this complexity. This has caused a 
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"software crisis" [58]. Society has come to rely on these large systems because of 

their value; they have become integrated into the economic and physical 

infrastructure of our society. Because of this dependence, these systems must be 

maintained so they can evolve to meet the needs of the growth of society. 

Maintaining and evolving these software-intensive systems is expensive 

and labor-intensive. Numerous sources in the literature have reported on the 

high cost of software maintenance, ranging from 50 to 70 percent of the cost of 

the entire project [17, 101, 121, 128]. Software maintenance is largely a manual 

process, relying on human brain power to identify problems, perform analysis to 

find a solution, and finally to implement a modification. Human attention span 

and memory capacity is inadequate to handle the quantity and complexity of 

software systems [55, 131] with hundreds of thousands to millions of lines of 

computer code with a rich and detailed interconnectivity of parts [23]. 

Consequently, better software tools are needed to support software maintainers, 

so their reach does not exceed their grasp.  

This dissertation research concerns the construction of an integrated 

development environment capable of software query using open symbolic 

execution and epitaxic deductive retrieval . The name comes from the following: 1) 
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retrieval meaning the ability to access information, 2) deductive meaning the 

ability to not just access information that is directly there but also what can 

logically and structurally be deduced, and 3) epitaxic from the Greek epi + taxis 

meaning above or upon an orderly arrangement. This reflects the ability of the 

system to “grow” new information from the structure and align it to existing 

information. There are four components to this work: an integrated data 

structure for representing source code called a virtual abstract semantic graph; a 

unified language for specifying program queries on the data structure; an open 

symbolic interpreter for expanding the range of queries; and a set of built-in 

queries that includes both syntactic and semantic based queries. These are also 

the four contributions from this research. 

The system will integrate the representation and search of software on 

four levels: lexical, syntactic, semantic, and abstract. Via a Prolog-like unification 

search algorithm, source code searching, program query, and interpretation will 

be expressible using search predicates. The search predicates provide a single, 

unified language for specifying program queries and analyses. They are capable 

of expressing not just an elements lexical relationships and syntactic 

relationships, they will also be able to express the elements semantic and runtime 
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relationships because there will exist an integrated interpreter driven by a rule 

based representation of the program’s language semantics. Finally, it will also 

unify both syntactic and semantic queries into a single framework. This system is 

incremental because it is embedded within a hybrid character/structure editor. 

As a result, queries can be performed interactively, as code is written. Query is 

not limited to batch processing of a snapshot of the code, because re-parsing and 

analysis is done incrementally. 

This unified data structure is based on the following key insight into 

program analysis. Parsing of source code to construct an abstract syntax tree 

(AST) is a solved problem. It is a simple matter to specify a grammar for a LALR-

parser-generator. However, semantic level analysis is an area of active research. 

These analyses rely on abstract semantic graphs (ASG)[15], or equivalent data 

structures, which are constructed from ASTs by adding edges to represent 

semantic information and removing unnecessary syntactic details. Currently, 

different ASGs are constructed for each type of query or analysis and the tools 

must be hand built. There is no general approach to specifying the construction 

of ASGs and many, many ASGs are needed for a full range of analyses.  
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The solution is to reify virtual ASGs as they are needed using a unification 

engine, an AST parser that walks and transforms the AST according to 

prescribed rules, an open symbolic interpreter that can feed the search engine, 

and a structuring memoization system which can accumulate various pieces of 

extracted information in a structured form that can also be used as a data-base 

for further or embedded queries. The language for specifying program queries 

and analyses is based on search predicates and an open symbolic interpreter. 

They represent rules for tree traversal, syntactic and semantic software query, 

execution of code and so on. The system can be extended and configured simply 

by adding classes, rules and predicates to handle additional source languages 

and to perform additional queries. The system can also be extended by adding 

before and after methods, and by overriding methods comprising the interpreter. 

The data structure and search specification language together form the basis for 

integrating various forms of queries and analysis. This is Epitaxis. 

Evaluating this research presents challenges because it addresses an area 

that is very broad; namely, how can we help programmers deal with the 

complexities of writing software? The solution that will be presented is designing 

and implementing a declarative language in which programmers can express 
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constraints and relationships that their software must obey and then have the 

locations in their code where these do not hold pointed out to them. We select 

several such queries to demonstrate the range of effectiveness of this solution. 

These must be complex enough to be difficult to deal with manually on large 

bodies of software, specific enough to the program under development so that 

large monolithic systems have not already been build to find these problems, and 

simple (relative to the complexity of the relationships they are intended to find) 

to express declaratively so that they will be worth the effort of writing. We will 

be evaluating this solution on several specific queries. These queries will be 

selected to engage the system progressively in layers, simpler at first, and then 

eventually the full set of features. These queries must be such that it is easy to see 

that this language is expressive and powerful enough to be applied to many such 

particular problems, which arise for the programmer. They must also work on 

realistic size bodies of code and produce answers which have a “real-time” 

response and a low false positive rate. To be usable by a programmer as he is 

writing code they must be short and straight forward to write, quick to return a 

response, and give a response which precise enough to be useful.  
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The set of test queries will be graded. The first element to validate is basic 

syntactic querying on these structures. The second element to validate is the 

structuring memoization system. This will be used to build the control flow 

graph. The third element to validate will be the open interpreter. Finally, the 

overall epitaxic deductive retrieval approach will be evaluated by selecting a set of 

queries, which rely on all the machinery. These will each be described in more 

detail in Section 5.3. 

This research has an empirical quality to it. A powerful query language 

will be built and the system will be explored to see some of the range of queries 

that are possible using it. The ultimate validation will depend on how useful and 

convenient the range of possible queries are as well as the scalability of the 

system to handle hundreds of thousands lines of code and its real-time response. 

It should be straightforward to build and run queries while the software is under 

development and evolution. This body of queries should build upon itself and 

grow with the complexity of the software under development. Although the 

focus of this research is on query process and constraints it is expected that the 

final system will ultimately accommodate a range of other activities such as 

program refactoring and language translations as well. 
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Epitaxic deductive retrieval has the potential to form a new basis for 

program query in the same manner that grammars form the basis for parsing. 

With the power of this tool, more software maintenance tasks can be supported. 

The word “maintenance” is derived from the Latin manu tenere which literally 

means to hold in the hand; with this tool, understanding more complex 

structures and relationships will be within the grasp of a software maintainer.  

1.1 Contributions 

In this dissertation, we present Epitaxis, a prototype system designed to 

aid the programmer in understanding and modifying software systems. The 

features of Epitaxis are designed with the constraint that the system works 

interactively. That is, the programmer can search or test his program, make 

changes repeatedly within an interactive time scale without lengthy 

recompilations, reinstrumentations, or repopulating a database. Epitaxis is 

embedded within a structure editor, although the editing features of the system 

are not part of this dissertation. Epitaxis is also designed to be language 

independent. Language specificity is supplied by several files: a BNF type 

grammar file, a Prolog like set of rules for creating a control flow graph for the 

abstract syntax tree, and a set of rules describing how to execute the control flow 
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graph. Epitaxis currently has definitions for the C programming language.  

Specific research contributions are described below. 

1.1.1  Integration 

Epitaxis integrates search on a lexical, syntactic, and semantic level. Search 

on a semantic level is achieved through the integration of search technology and 

symbolic execution (as a means to expose the execution state to search). 

1.1.2  The Parser 

A standard LALR(1) parser generator has been enhanced for interactive 

reparsing. After an initial AST has been constructed, when a line of program text 

has been modified, only that line needs to be tokenized. The parser quickly 

reparses the program using just a few pieces of intact AST surrounding the single 

lines' token stream.  The parser accepts both lexical tokens and AST nodes when 

reparsing.    

1.1.3  Prolog Variants 

Epitaxis uses a novel object-oriented Prolog variant to perform search and 

transformations on the syntax tree and the control flow graph. These include 

dynamic scoped prolog variables, unification by reference, unification with 

gatherers and generators, hyper-edges, and self-fulfilling assertions.  
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1.1.4  Syntactic Search 

Epitaxis uses a novel syntactic search system. 

1.1.5  Semantic Search 

Epitaxis extends program query into the semantic realm using symbolic 

execution and collect points. 

1.1.6  Open Symbolic Execution  

1.1.6.1 Openness 

The symbolic execution interpreter is implemented using open program 

design [88, 89]. Functional units within the interpreter are implemented using 

generic functions allowing the user to participate in the implementation of the 

system. The generic functions encapsulate interpreter functionality that the user 

can override and redefine. This enables the system user to become a system 

implementer to get additional functionality.  

1.1.6.2 Creation of a Semantic Search Space 

Symbolic execution is used as a means to transform a control flow graph 

into a representation of the program execution state tree suitable for semantic 

query of the program. 
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1.1.6.3 Stop on Hit Counts 

The symbolic execution interpreter can be configured to track the 

conditional expressions it has seen by path so the interpreter can terminate a 

particular path execution when the path steps on itself a set number of times. 

This allows a more sensible way to deal with loop termination and control over 

how much of the program executes. 

 

1.2 Outline 

The remainder of this dissertation is organized as follows: Chapter 2 

relates the current work to the research literature. Chapter 3 presents 

background material related to understanding Epitaxis. Chapter 4 describes 

Epitaxis. Chapter 5 presents the findings. Chapter 6 presents conclusions and 

directions for future research. 
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"You should try to remember that a dedicated 

teacher is a valuable messenger from the past, 

and can be an escort to your future." 

--Albert Einstein 

 

Chapter 2 

 

2. Literature Review 
 

Program Query Systems are a type of Program Understanding Systems. 

Program Understanding Systems include a wide range of functionality. Because 

program understanding is such a large and complex area systems tend to 

specialize or at least focus on an area. One area is visualization. Another area is 

domain knowledge. These systems offer forms of program query but geared to 

their specific specialty. In the case of visualization systems the results of queries 

are clickable views. By clicking on elements of these views other queries are 
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performed. Comprehensive Software Information System (CSIS) [140] is a system 

designed to represent software highly integrated with its domain. The software 

is actually written in its domain representation, which automatically generates a 

code representation. Here the queries are geared towards the application 

domain. In this case the transformation goes in the reverse direction: from a 

semantic net representation of domain features to the source code. Another area 

where program query is embedded is within program analysis. Here the analysis 

is generally “hardwired” instead of being available in a general-purpose 

language. This is traditionally done in two areas: 1) in compilers to validate 

optimizations to code, and 2) to validate the correctness of  software. Validating 

software can be further divided into two areas: 1) model checking and 2) testing.  

There is a wide range of program analysis techniques, including control 

flow analysis, data flow analysis [78, 79, 114], disjointness analysis [84], program 

dependence graphs, slicing [64, 80, 125, 136, 138, 139], pointer alias analysis [47, 

81, 113, 128, 129], type inference [19, 73], abstract interpretation [40, 85], symbolic 

execution [11, 38, 42, 43, 91, 92, 94] among others. This technology is beginning to 

migrate into program query systems themselves since much of this information 

is also useful to the programmer to understand software. Program Query 
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Systems tend to have a more generic query mechanism designed to help a 

programmer interactively “discover” facts about their code. 

The complexity of program query systems has grown along with the 

complexity of the programs they query. There are two reasons for this. They both 

can be traced back to the availability of more memory and more processing 

speed. As software has become bigger, it generally becomes more complex with 

more non-locality. This dictates the need for more powerful tools to understand 

it, hence more powerful query machinery. The same release from memory 

confines also allows the program query systems themselves to become more 

complex. This allows for the possibility of a source transformation and a more 

robust program representation to query. The evolution of program query 

systems somewhat reflects this. 

2.1 Program Query Systems 

One of the first and probably still one of the most widely used program 

query systems is GREP [126]. It has the advantages of working directly on the 

textual representation of the program hence no transform is needed. This makes 

it fast and very tolerant to any irregularities within the source code (i.e. there can 

be syntax errors, incomplete lines of code, the code can be in any partial state of 
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development, etc). It also requires no understanding of any subtly of the syntax 

of the language it is querying. This lightens the cognitive burden on the tool user. 

The user only needs to understand the language of regular expressions. The 

down side of GREP systems is the limited range of possible queries. They admit 

no context and cannot take advantage of saving any state in the search. It is not 

easy for GREP to tell if what it is finding is embedded within a comment or 

within a piece of code. Because of its lack of context sensitivity GREP results tend 

to have low precision. There are various dialects of GREP, one is AWK [3]. AWK 

uses regular expressions to match pieces of source code but in addition allows 

pieces of C-like code to be executed when regular expressions match allowing 

AWK to perform transformations or extended queries. 

The limits of regular expression (lexically) based searches were addressed 

with syntactic versions of these tools. Semantic GREP [25] adds a small amount 

of syntactic understanding to GREP. It knows what some program constructs are 

such as functions and can limit its lexical search to within these categories. It also 

has a simple understanding of relationships between these categories, such as 

being able to find all functions that call some function. The other useful addition 
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is queries with transitive closure. Semantic GREP is basically lexical search with a 

mild amount of ad hoc syntactic awareness.  

Lightweight Source Model Extraction (LSME) [116] fills an interesting 

“sweet spot”. LSME allows patterns to be expressed with a hierarchical regular 

expression. The system is basically a lexical scanner with a touch of syntactic 

contextability supplied by the ability to nest the regular expressions. This way no 

syntactic constraints are placed on the patterns. Attached actions may be 

executed when a pattern is matched. The system is optimized for flexibility, 

speed and tolerance over precision. 

The next stage of advancement in query languages came when the source 

code was transformed into an abstract syntax tree (AST). This allows much more 

syntactic context to be used to constrain search. Of course, this required more 

powerful processors to do the transform in a timely manner and more memory 

to hold the transformation. One of the difficulties of syntactic search is that it 

requires a more complicated language to express. This adds to the cognitive 

burden of using these systems. SCRUPLE [119, 120] and TAWK [72] are 

examples of this approach. 
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SCRUPLE transforms the source code into an AST and converts the query 

into a finite state machine (FSM). The states of the FSM represent walking the 

AST and matching pieces of the query to it. SCRUPLE uses the source language 

augmented with syntactic wildcards to express queries. Using concrete syntax 

somewhat eases the burden of learning the query language since the 

programmer is already familiar with it. The wildcards can be given names so 

what they match can later be referenced. The concrete syntax also causes 

problems. Queries have to be syntactically correct so often extra patterns have to 

be inserted between the patterns of interest to glue them together or to deal with 

finding patterns that can either follow or be nested within another pattern. 

Because patterns are syntactically based generalizing patterns such as looping 

constructs which are conceptually similar but syntactically different can be 

difficult. In order to enable patterns that are order independent the designers 

introduced sets. This has the possibility of combinatorial explosion in the number 

of matching possibility. SCRUPLE keeps the entire AST in memory and queries 

always search the entire tree. 

Another AST based example is TAWK [72]. The idea of TAWK is to 

combine the precision of syntactic matching with the speed and generality of 
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lexical matching. In addition, allowing limits to the units being searched instead 

of the entire program increases speed of search. The query language is made 

more expressive by using abstract instead of concrete syntax. This also helps 

make the query language more language independent. Like AWK, TAWK also 

has C as its action language, which gets triggered when patterns match. TAWK 

also allows pattern abstractions using a macro-like facility. Backtracking is 

performed to explore all possible alternatives until the entire pattern is matched 

or exhausted. Like SCRUPLE, a TAWK pattern is parsed and converted into a 

FSM that walks over the AST. To reduce its memory footprint TAWK throws out 

its AST after each search. They trade amortizing parsing costs over multiple 

queries for a smaller memory footprint. 

A* [98] is similar to TAWK. It also is a syntactic generalization of AWK. It 

converts the input source text into an abstract syntax tree. A* programs are 

interpreted and have the usual AWK pattern-action syntax. The pattern language 

allows for control in the traversal of the AST. It however it does not support 

wildcards or pattern variables. 

REFINE [26, 96] is a software development system, which includes a 

parser generator, an object-oriented database, and a query/transformation 
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system. Software is transformed into the database as an annotated AST by the 

parser. The query language uses templates with wild cards and variables to 

match pieces of code. Rules allow the matched pieces to be output to the user or 

transformed for re-engineering. In all cases there is a distance between the source 

code and the transformed database. The transformation is a batch process. 

GENOA [57] is a framework for generating tools, which process the AST. 

Tools such as GEN++ and Aria have been built from this framework. The system 

has to be integrated with a front-end that does the parsing. GENOA reads the 

AST representation of a source program and using a scripting language can 

perform a range of traversals, tests, and iterations eventually generating output. 

The scripting language has constructs for walking the AST and print statements 

for outputting information once it is found. GENOA is designed to be 

independent of the structure of the AST. 

CodeSurfer™ [7, 8] is a tool designed to provide “fine-grained” inspection 

to software. It uses static analysis to build a complex representation of the 

program, which includes a call graph, points-to graph, and dependence graph. 

Vertices of the graph represent program constructs such as assignment 

statements, call sites, conditional branches, etc. An edge in the dependence graph 
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represents either data dependence or control dependence. Queries are 

implemented as primitive operations on the dependence graph. This graph is 

stored entirely in memory. One this structure is constructed CodeSurfer™ 

provides a system of windows with clickable links for viewing and navigating 

the dependence graph.  

ASTLOG [44] is a prolog based query language that allows for a very 

flexible but structured search control methodology. It eliminates a lot of the ad 

hoc quality in many query languages because of its general declarative prolog 

like language. Predicates are used to traverse the program’s AST, but instead of 

importing the AST as prolog like facts, in ASTLOG the interpretation of the 

predicates and queries are modified to be applicable to external objects. A C/C++ 

front end provides the accessability to the nodes of the AST. Rather than the 

usual prolog database ASTLOG has a current object. Every query and term being 

evaluated as a predicate is interpreted as a pattern that may or may not match 

the current object (instead of the usual prolog system of looking for matches in 

the database of facts and rules). It’s as if every predicate takes on another hidden 

term, which is the current object. Of all the query systems surveyed ASTLOG 

comes closest in spirit to the functioning of the query engine in Epitaxis. One of 
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the main differences is that Epitaxis has a more intimate awareness of the 

structure of the AST nodes as well as the node being object-oriented and admits 

the use of inheritance in matching. ASTLOG uses an op predicate to match the 

“opcode” (meaning type) of the node and a kid predicate to select the child node. 

There is no hierarchical structure to the nodes relating different types of 

expression operators or different types of iteration constructs. Also, in Epitaxis, 

the current object is explicitly mentioned in the rules. This gives more direct 

control over the movement around the parse tree as well as allowing multiple 

uses so there in essence can be multiple current objects, which can be compared 

or related in some way. ASTLOG has an interesting reflection mechanism, which 

allows queries themselves to be used as objects to search. While this is a 

fascinating mechanism it is used as a way to create aggregates of items found in 

searches. Epitaxis does this much more directly. 

Smalltalk Open Unification Language (SOUL) [142, 143] is another 

program query language, which shares a similar spirit with Epitaxis. Whereas 

Epitaxis is a hybrid combination of Prolog and LISP, SOUL is a hybrid 

combination of Prolog and Smalltalk. The prolog based query system of SOUL is 

designed to work directly with Smalltalk objects, so to use the system with 
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another language such as Java some sort of interoperability library is needed to 

make a connection between the elements of the other language and Smalltalk. In 

the case of Java, JavaConnect is used as a library to allow a Smalltalk application 

to reference any Java object, via a proxy in Smalltalk. It is not clear how available 

this technique is for other languages, especially ones that are not object-oriented 

such as C. Epitaxis creates the connection more directly. In Epitaxis there is a 

parser generator that can be used to create an AST using CLOS objects, so once 

you have the grammar for the parser, the AST can be built in a form that the 

query language can work with directly. SOUL has an open [22, 88] unification 

system. This means that some of the inner workings of the unification algorithm 

are user programmable. This allows for user definable additions to unification, 

which is used to create a level of abstraction in how objects are declared equal 

with respect to unification. In Epitaxis the ability of more abstract or complex 

matching is done within the systems' rules (or by direct modification of the 

unification code base). This extra complexity of matching can be packaged up 

into functions also creating abstractions. In the case of SOUL the complexity is 

pushed into the unification algorithm, in Epitaxis, the complexity is packaged up 

into the rule system. Epitaxis has a rule-based interpreter to enable queries on 

running code. This system is open and allows user level modification by 
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overriding and/or augmenting sub-systems within the interpreter in a manner 

similar to how SOUL allows the user to augment the unification algorithm. 

SOUL gets the open interpreter for free by using Smalltalk’s meta-object 

protocol, but it is not clear that this functionality will carry over with other 

languages. 

The ram based AST systems allowed for fast processing but ran up against 

limits on the size of programs they can query. As relational database 

management systems  (RDBMS) became more efficient it became practical to 

transform the program into a collection of entity-relation (ER) tuples [34]. While 

this slows down the access it allows for enough memory to handle any size 

program. One of the earlier systems to use this approach is OMEGA [104]. 

Another is C Information Abstraction (CIA) [36].  

JQuery [50, 83] is another system that uses a RDBMS. JQuery uses TyRuBa 

[49], which was originally used to create a Parametric Type System for Java. 

JQuery is a Java browser implemented as an Eclipse plug-in. JQuery is generic 

and can be configured by writing TyRuBa include files for rendering many 

different types of views. JQuery passes queries to TyRuBa, which executes them 

over its source model, a database containing facts about the browsed program’s 
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structure. The results of the query are passed back to JQuery, which creates 

navigatable views of them. 

Java Tools Language (JTL) [39] is a language for querying Java. It is a 

declarative language based on logic programming which uses a simply typed 

relational database for program representation. JTL is designed as a “tool for 

making tools”. JTL is currently intimately related to Java since it queries the 

binary representation within the Java environment. Because of its program 

representation JTL is limited in its ability to query dynamic control flow 

questions. It has a set of ad hoc built in predicates to extract this information in a 

Java environment dependant way. Given these limitations, JTL still has a fairly 

expressive query language. Its underlying semantics is first order predicate logic 

augmented with transitive closure. 

There are a number of program query systems based on Datalog [31].  

Datalog is a database query system based on the logic-programming paradigm. 

Syntactically Datalog is a subset of Prolog, however this subset differs 

semantically. Datalog semantics are purely declarative, whereas in Prolog there 

is an operational semantic (e.g. the order of clauses can effect whether or not a 

Prolog queries terminates whereas all Datalog queries terminate). Datalog 



 

25 

queries are translated into relational algebra (RA). Each clause of a Datalog 

program is translated into an inclusion relationship of RA. Datalog is at least as 

powerful as positive relational algebra but not as powerful as full relational 

algebra as there is no Datalog rule defining set difference. These expressions can 

be captured by extended versions of Datalog that use logical negation. Datalog is 

full of clever optimizations and has numerous implementations. 

CodeQuest [74, 75] is a source code querying system based on Datalog. It 

has two main components. The first is Datalog and the second is an Eclipse plug-

in responsible for parsing Java. The use of a disk based RDBMS makes 

CodeQuest scalable to large-size software systems. The use of an Eclipse plug-in 

leverages its automatic system for recompiling appropriate modules as source 

code changes. This way the entire project does not need to be processed to 

reconstitute the database after a small source change. Datalog queries are 

translated into a version of SQL that handles recursion, then passed to the 

RDBMS. 

Another system, called Program Query Language (PQL) [99, 107], allows 

queries to be made on an executing program. It uses static analysis to minimize 

the number of instrumentation points needed. The queries can also be fixed with 
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actions to be performed when the query matches. This way potential errors or 

security flaws can be handled “on the fly” as they happen. The query language is 

designed to match sequences of events. Lower level actions such as variable 

accesses are abstracted away. The events tracked are field accesses, array 

accesses, method calls and returns, object creations and the end of program (to 

know that something has not happened). PQL essentially looks to find a set of 

heap objects to parameterize a context sensitive pattern of events of a program 

execution trace. The system performs flow-insensitive points-to analysis. The 

points-to information is stored in bddbddb, a Datalog deductive database 

implemented using binary decisions diagrams. Queries can be nested and can be 

recursive. A key feature of PQL is its ability to do object-based parametric 

matching across time in a running instrumented program. Currently PQL works 

only on Java. 

2.1.1  Summary of Systems 

There are three components to source code analysis [16]. They are the 

transformation, the representation, and the actual analysis. Software in its most 

usual form is a text file organized as a flow of instructions. Because of the 

multiplicity of elements, representations, relationships, and layers of abstraction 
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in software most of the information content is implicit. Because it is temporal, 

information may not become obvious until all the predecessorary actions have 

been executed and successor states are extant. It is therefore expedient to extract 

into an explicit form the information of interest before attempting to analyze it. 

The transformation usually involves some form of parsing. There is a wide range 

of structures that the source code may be parsed into. These include the abstract 

syntax tree, the control flow graph, the call graph, the value dependence graph, 

single static assignment form, ER tuples, the trace flow graph, etc. Often one 

transformation is used as an intermediate step to a further transformation, as it 

may be too complex to go directly into the final form. Finally, some form of 

analysis is performed on the transformation. This may be done to prove some 

fact to validate an optimization, or simply to extract a highly embedded piece of 

information. In the case of compiler optimizations the analysis is formalized and 

scripted towards a specific goal. In the case of query a more interactive generic 

system is used to try to maximize the exposure of information. 

The systems described above show a progressive range of software 

representations. At the simplest is simply the source code text. The next level is a 

list of lexical tokens. The next level is an AST. Some systems allow various 
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annotations to the AST in essence constructing an ASG. Some systems instead of 

keeping a memory based AST, decompose the AST into ER tuples into a data 

base. These tuples can also contain the equivalent of AST annotations. Some of 

the systems are fixed with respect to the AST they build and some allow the user 

to add arbitrary annotations and edges. These systems also range in the degree to 

which they can handle non-syntactical elements such as comments, white space, 

line position, macros, and conditional compilation directives. 

There is also a progression of analysis/search techniques. These range 

from regular expressions to path walking, to path walking with wild cards and 

variables to full first order logic. With this is a corresponding variance in the 

ability over the order of search. Of course lexical search only has one search path, 

however searching through tree requires a search methodology such as preorder, 

postorder, depth first, breath first, or some form of general arbitrary control. 

The literature shows a progression from text based to memory based AST 

to disk based RDBMS. Most of the systems (except PQL) cannot handle queries 

over control flow graphs. Most of the examples of queries in the literature are 

relatively simple. Some of the systems are software engineering systems. That is 

they handle higher-level aspects such as domain knowledge and software 
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architecture. Epitaxis specifically aims at the act of programming. It is designed to 

have an extremely fast query-modify cycle and to address queries at all levels of 

code, including not just syntax or control flow queries, but also awareness of 

runtime values and states. It is designed to push software query into the realm of 

program analysis. 

2.1.2  ER-tuple representation versus AST representation 

Tuple representations of class hierarchies, methods, member elements are 

easy and natural. They are essentially sets. So all the systems above which use 

RDBMS to represent programs are very good at this sort of query (e.g. “What 

methods does this class have?” “Is there a methods that returns this type?”, etc.) 

They easily “capture” set-membership based non-local aspects. These systems 

have difficulty when representing the imperative (or local) aspects of programs. 

Imperative aspects cannot easily be represented by sets. You would need an 

enormous number of follows relations, and other relations, which describe all the 

complexities of control flow. This is best represented by a CFG. Epitaxis has the 

expressive power to query the AST and derive the CFG, which can then be used 

for further queries. The RDBMS systems, which get around this problem, do so 

by partial ad hoc measures. PQL answers control flow questions using dynamic 
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analysis. They instrument the code and answer queries on the trace. This has all 

the normal pros and cons of dynamic analysis versus static analysis, but it is 

nonetheless a limitation. Some amount of static analysis is done, but this is 

implemented internally and not expressible using their query language. JTL 

slightly gets around this problem by “hard-coding” some primitive queries 

which analyze the Java byte code to answer dynamic program questions. These 

types of queries are not generally representable in their query language and so 

their language is limited by what they have prebuilt. These queries pertain to 

accessing, reading, writing, and calling, but are unordered within the method 

body and are therefore flow insensitive.  

The query languages which use an AST or graph based representations 

also have limitations. In ASTLOG the AST is imported and queries are made on 

it. There is no way within the query language itself to transcend this structure. 

Given a semantically complete AST representation, the query rules can deduce 

control flow information, but this can become quite cumbersome and inefficient. 

It is also a further step away to actually deduce runtime state to perform any 

kind of dynamic analysis. CodeSurfer gets around this by building a very 

extensive graph to represent the program. This is done internally and not 
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expressible in their query language. In fact, their query language is actually not 

deductive, but simply walks the graph representation. It relies on the 

information already being represented on the precomputed graph.  

A key insight of Epitaxis is that representation matters. Epitaxis not only 

has a source complete [103] representation of the program, but also has a 

powerful enough query language to extract other abstracted representations as 

needed to allow search on a higher level of abstraction. Also, the expressiveness 

of its query language and its database of a source complete AST allows Epitaxis 

to be more easily extendable to other programming languages. It does not rely on 

client language features such as its byte code representation or features of the 

client language’s environment such as reflection to access things. Epitaxis only 

needs a grammar for the language and class definitions for the nodes of the AST; 

its query language is powerful enough to do the rest. 

The important question for Epitaxis relative to the RDBMS based systems 

is how well does it scale to large programs. Speed wise it scales very well as it 

has a memory based representation. The question that remains is how large of a 

program can its representation fit within the limits of RAM? The one thing in 

Epitaxis’ favor is time. Systems with 4Gb of RAM are common, and with the 
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advent of 64 bit systems, this will continue to grow. Memory size grows 

exponentia lly with time, whereas, program code size probably grows linearly 

with time. I suspect we are very close to the transition where memory size 

overtakes program size. I currently estimate that Epitaxis can represent 1 million 

lines of C code in just over 3 GB of RAM. 

 

2.2 Symbolic Execution 

Validating software is a complex and difficult task. There are two 

approaches to ensure the correctness of software. One approach is program 

proving using techniques from static analysis and model checking. While 

theoretically this approach is very appealing, powerful and accurate, practically  

this approach does not scale well to realistic size programs, tends to be restricted 

to simple properties, and is prone to a large number of false positives [144]. The 

other approach is program testing. Testing is expensive, tedious and tends not to 

find most errors. To remedy this there has been research toward automating the 

creation of tests. The main method for this is through symbolic execution. 

Symbolic execution is a technique to determine a set of input vectors that 

when input to a program will cause all of its paths to be executed. The most basic 
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approach to symbolic execution is to first create a control flow graph (CFG) from 

the program source code. This identifies all the decision points in the program 

and all the variables which control those decisions. This CFG is then traversed 

from the entry point along a particular path. A list of all the input variables, 

variable assignments and branch predicates are then collected. The input 

variables represent symbolic values. The variable assignment expressions and 

conditional predicates (constraints) along the path represent the path conditions. 

The values of the output variables will then be represented by expressions in 

terms of the symbolic input values, assignment expressions, and conditional 

predicate constraints. This is then solved for the input values. If there is no 

solution then the path is infeasible and control flow cannot reach that point. If any 

solution is found, the path is feasible; the values of the input variables determine a 

vector of test input values to cover that path in the code. The system will then 

negate the last conditional (to follow the other path), follow that path then solve 

the new path condition to generate an input vector to reach this new end point. 

The system will continue to backtrack, negating the new last conditional, and 

continuing until all the paths are covered. There are now a set of test input 

vectors which can be used to exercise the code base.  Mathematically, symbolic 
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execution divides the input space of a program into a set of equivalence classes, 

each defined by a path through the program. 

The goal of the approach is to generate a set of input vectors that will 

cover all the execution paths through the program. There are two serious limits 

to the above technique. One is path explosion and the other is that solving the 

constraint equations may be extremely difficult. In practice, this both limits the 

coverage produced and covers many infeasible paths. Often the same region of 

code can be reached via many different paths. In order to help reduce the 

number of paths followed, the systems keep track of where they have been and 

stops the system from producing redundant coverage. 

One of the earliest systems using symbolic execution is EFFIGY [92]. It 

worked on a "simple" version of PL/1. Another is SELECT [20] working on a 

subset of LISP, and one by Clarke [37] working on ANSI Fortran. All of these 

systems were very limited research systems. In addition to the limited processing 

power of their day, these systems were also limited by their ability to only 

handle primitive data types, e.g. integer, Boolean.  An increase in practicality and 

power came with the ability to handle dynamically allocated data structures (e.g. 

lists and trees) allowing use on modern programming languages such as Java 

and C++ [86]. This approach is called generalized symbolic execution by Kurshid. In 
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addition to generalizing the system to handle dynamically allocated data, their 

system also used a source to source translation to instrument the code. This 

allowed their system to perform symbolic execution using a standard model 

checker (for the underlying language) instead of having to build a dedicated tool. 

It uses lazy initialization to defer the actual allocation of heap objects until a field 

in the object is first referenced. This way only the portion of the heap that is 

referenced along the current execution path is materialized. There are three 

possibilities in initializing the referenced field: 1) a null value, 2) a new object of 

the field’s type, and 3) an existing object of the field’s type. This creates 2 or more 

branches in the execution tree. The third case can create 0 or more branches 

depending on the number objects of the field’s type the path had already created. 

However, their system was still not practical for real world applications. 

2.2.1  Concolic Execution 

Another variant to symbolic execution is concolic execution. Concolic 

execution is a combination of concrete and symbolic execution. By instrumenting 

the source code with all the functions needed to carry out the symbolic 

execution, the program itself ran the symbolic execution along with a concrete 

run. This avoided a whole level of separate machinery to do the symbolic 

execution. The system also had concrete values available when the constraint 
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solver got stuck. This allowed symbolic execution systems to reach a real level of 

practicality. Part of the efficiency of this method is that the test runs are 

happening simultaneously with the symbolic execution, not in a separate run 

after the symbolic execution has determined the input values. Here if the 

concrete execution throws an exception a bug has been found. Of course the 

exception may occur arbitrarily far after the cause. Bugs can also be missed if 

they are only caused by a subset of the values in the equivalence class 

represented by the path.  As an example if there is a condition if (abs(x) < 

10) then a = y / x; In this case x having concrete value of 3 is in the 

equivalence class of values that may have gotten execution into this path, but it 

will not trigger the error. 

DART (Directed Automated Random Testing) [71] uses this approach. 

DART executes the instrumented program repeatedly, the first time with a set of 

random input values. If the input variable is a pointer DART will randomly 

initialize it to NULL (with a 0.5 probability) or with the address of a newly 

allocated memory location, whose value is in turn initialized using the same rule 

recursively. Constraints on pointer data are thereby avoided in favor the 

randomly generated data. Each additional run uses a record of the conditional 

statements executed in the previous run. The conjuncts in the path conditions are 
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systematically negated. This is used to generate the next set of input values 

needed to follow the next path. Thus DART attempts to follow all feasible paths. 

If the constraint solver is unable to solve a conditional the symbolic condition is 

replaced by the concrete value, then both the concrete and symbolic execution 

resume with it. By picking the branch determined by the concrete value (derived 

from the initial random values) instead of choosing both (which may result in 

unsound behavior if the other path is infeasible), bugs found along the path are 

sound. A traditional symbolic execution system which cannot solve a constraint 

will not know how to generate a value to take either path and will either stop, 

possibly missing a feasible path (producing incomplete coverage) or choose both, 

possibly taking an infeasible path (possibly producing an unsound result).  The 

difficulty in the DART approach is to provide the methods which extract and 

solve the constraints generated by the program [124]. 

Another system using concolic execution is CUTE (Concolic Unit Testing 

Engine) [124]. CUTE allows constraints on pointer based structures by separating 

pointer based constraints from integer constraints and simplifying them. This 

allows them to represent and solve approximate pointer constraints to generate 

test inputs.  CUTE represents pointer input values logically. That is they don't 

have physical memory addresses. When a pointer input value is referenced 
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CUTE first explores the path where the value is NULL. When this constraint is 

negated, CUTE must make the pointer point to a structure of the appropriate 

type. To populate this structure CUTE will randomly generate numbers for 

numeric fields and follow the NULL and non-NULL logical pointer paths when 

the inner pointer fields are referenced. These pointer values are represented in a 

logical input map; they are not part of the physical address system. Constraints in 

the logical addresses are represented by constraints on the integers that represent 

them. Each logical address also has a type associated with it. The logical address 

system of CUTE is a much simplified version of the proxy-value system that 

Epitaxis uses. 

One of the main problems with both the symbolic and concolic execution 

systems described above is that due to the possibly enormous number of paths 

that must be explored symbolically, the testing tends to be wide but not deep. That 

is they explore many of the paths from the initial starting point, but because 

there are so many they never explore them very deeply. This problem is 

particularly prevalent on programs with complicated input or even programs 

which input a text string. The systems explore the input parsing code (mostly 

exploring paths detecting malformed input as even a text input string of only 10 

characters long has 7210 possible values (assuming 72 valid text characters), most 
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of which are probably illegal) but never make it to the input processing section of 

the code. To address this problem hybrid concolic testing was developed [106]. 

This system interleaves random testing with concolic execution to explore the 

program state space both deep and wide. It uses CUTE to do concolic execution. 

Hybrid concolic testing starts by testing random paths. This allows the algorithm 

to explore deeply quickly. When the random testing saturates (finds all the paths 

with large equivalence classes and does not produce any new coverage after a set 

number of steps) the algorithm switches to concolic mode (from the current set of 

program states) to find the improbable paths (those with small equivalence 

classes that take a precise set of input values to find) thereby achieving wide 

coverage from a set of deep points.  Hybrid concolic testing is most suitable for 

testing programs that periodically get input (reactive programs) and not suitable 

for programs which get fixed initial input and then process the data 

(transformational programs). Figure 1 shows their motivating example. It is an 

abstraction of a state machine taking both a character and string input iteratively 

within an infinite loop. The problem is to cover the execution space to find the 

ERROR at the bottom. The authors  state that both pure random testing and pure 

concolic testing (presumably using CUTE) were unable to hit the ERROR after 
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one day of testing while their hybrid system hit the ERROR in a couple of 

minutes. 

void testme() 
{ 
     char *s; 
     char  c; 
     int    state = 0; 
 
     while (1) 
     { 
          c = input(); 
          s = input(); 
 
         /* a simple state machine */ 
         if (c == '[' && state == 0) state = 1; 
         if (c == '(' && state == 1) state = 2; 
         if (c == '{' && state == 2) state = 3; 
         if (c == '~' && state == 3) state = 4; 
         if (c == 'a' && state == 4) state = 5; 
         if (c == 'x' && state == 5) state = 6; 
         if (c == '}' && state == 6) state = 7; 
         if (c == ')' && state == 7) state = 8; 
         if (c == ']' && state == 8) state = 9; 
 
         if (s[0] == 'r' && s[1] == 'e' && s[2] == 's' && s[3] == 'e' && s[4] == 't' && state == 9) 
             ERROR; 
     } 
} 

Figure 1: A Simple Test Function 

 

The concolic execution systems described above use a depth first 

exploration (DFS) strategy by repeatedly exploring a new depth with each 

iteration. EXE (EXecution generated Executions) [29] works using DFS by forking 

at each decision point instead of keeping information in an external file and 

rerunning the program. This way the number of children is linear in the depth of 
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the process chain. EXE works by using a source to source translation to 

instrument the program with the routines necessary for the symbolic execution. 

In addition the user must manually insert calls to mark areas of memory as 

symbolic. This presumably limits the scope of what is executed symbolically so 

the program can run without overflowing memory tracking. Whereas CUTE and 

DART tightly interleave symbolic and concrete execution, EXE merges them. If 

the operands are concrete, normal concrete operations are performed. If any 

operands are symbolic then symbolic operations are performed. EXE uses a 

UNIX fork() system call at each unresolved decision point. When taking the true 

path it assumes the condition true and when taking the false path it assumes the 

condition false. The fork() points constitute a DFS chain of the execution tree.  In 

this manner EXE (ideally) will follow all paths. EXE's instrumentation includes 

universal checks for integer division and modulus by zero, that a dereferenced 

pointer is never NULL, and that a dereferenced pointer lies within a valid object. 

In addition programmer supplied assertions are also turned into a universal check. 

A universal check is more general than a concrete check. The universal check tests 

that the error condition or assert condition are not possible for any possible 

solution to the symbolic value tested. So whereas with concolic execution a 

program fault will occur only if the concrete value standing in for the symbolic 
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value triggers the fault, universal checks will detect the error if any possible 

feasible value triggers the fault. This way, one path traversal represents the 

whole equivalence class of values, not just one concrete vector of values in its 

error detecting ability. Of course this error detecting is limited to the small set of 

universal checks that are instrumented into the code. EXE will create a concrete 

value(s) to continue execution if its constraint solver fails.  

KLEE [28] is a system that works using a custom built virtual machine. 

The KLEE virtual machine directly interprets the assembly language output by 

the LLVM compiler [100]. The virtual machine operators handle both concrete 

values and symbolic values. Potentially dangerous operators (such as division or 

pointer dereference) generate branches that check if any input values could cause 

an error. If one is detected, KLEE generates a test case and terminates the 

execution state.  On conditional branches, KLEE queries the constraint solver to 

determine if the conditional is either provably true or false. If not KLEE clones 

the state so that both paths are explored. When a dereferenced pointer can refer 

to N objects, KLEE clones the current state N times. KLEE has been designed to 

handle the two following problems with symbolic execution: 1) handling the 

exponential number of paths through code and 2) the challenges in handling 

code that interacts with its surrounding environment, such as the operating 
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system, the network, or the user (colloquially referred to as "the environment 

problem"). KLEE is a robust system that has been tested on a wide range of real 

programs. During its testing it reached a maximum of 95,982 concurrent 

execution states. The average of the maximums across programs tested was 

51,385. KLEE implements various state compaction optimizations as well as 

query optimizations to achieve these results. Like Epitaxis, KLEE maintains the 

entire execution tree and uses a memory management system that shares values 

across states. KLEE models about 40 systems calls (e.g. open, read, write, 

lseek, etc). This allows it to write symbolic values to a file and later read them 

back in. KLEE can also be set to simulate environmental failures by failing 

systems calls in a controlled manner. 

KLEE gets more power by virtue of implementing their own virtual 

machine to directly handle the symbolic execution instead of having to 

instrument the source code. Epitaxis takes this further and has its own "source" 

level interpreter. This allows access to the source level constructs, declarations, 

and type definitions. Much of this information is compiled away and is not 

available to an assembly level virtual machine. Epitaxis uses this information to 

know what types are being referenced, when members are being referenced, and 
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about casting. This allows a much wider range of information to be queried or 

checked. 

There are two main thrusts to the work of symbolic execution. The first is 

effective execution tree coverage. This means that the SE system should traverse 

all the feasible execution paths (completeness) efficiently and without 

redundancy, and without traversing any infeasible paths (causing unsound 

results). The second is either producing the input vectors to test programs or 

directly testing the code during the coverage. Currently the types of bugs found 

are "crash" bugs. (The one exception to this is the systems which track object size 

and catch when pointers are dereferenced to locations outside the defined 

boundary). These are bugs that are "easy to spot" once you are at their point of 

execution in the running code. The CPU itself will point them out to you (by 

throwing an exception). Although it is good to know about these really what is 

wanted is not this symptom, but the cause i.e. where the code goes wrong in the 

first place.  

Because of the typically exponential growth of execution paths and loops 

whose termination depend on symbolic values, symbolic execution systems have 

to enforce alternative termination strategies. They cannot wait for all their paths 

to reach an exit or error state; some never will. To ensure termination within a 
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reasonable amount of time they either impose a depth limit to the execution tree 

or a run timeout limit. Epitaxis adds a third alternative to these; it can track how 

many times a path steps on itself. After a path traverses the body of a loop and 

tests the loop exit condition, assuming a symbolic value, it will split into two. 

One leaves the loop and the other repeats the loop stepping on itself. Epitaxis can 

be set to allow this to happen a set number of times after which the path will 

terminate. This is useful if the system is looking for type anomalies in 

assignments. Except in contrived cases these are likely to be found the first time 

through the loop and a second iteration is unnecessary. 

This research aims to expand this second thrust in two ways. First is to 

spot these errors sooner, that is closer to their cause and the second is to use this 

powerful execution space coverage technique to find more "sophisticated" and 

"conceptual" bugs. For this prototype version this involves both the interpreter 

tracking more semantic level information that can be used to locate bugs on the 

spot and gathering information from throughout the execution tree about type 

usage and member access and analyzing it for problems as a collection. We 

expect that further research can expand this class of analysis. Part of the reason 

for the open design of the symbolic execution is to facilitate exactly this line of 

research.  
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Additionally, this research leverages symbolic execution's ability to 

traverse the execution space in order to bring program query into the semantic 

realm. Because of the open architecture of the symbolic interpreter it is possible to 

attach assertions and collectors to semantic points in the execution space. This 

will be described in Section 4.4.7 below. 

 

2.3 Aspect Oriented Programming 

Aspect oriented programming (AOP) is a kind of meta-programming 

system for addressing crosscutting concerns [130]. Crosscutting concerns are parts of 

a software system that would logically belong to one module (called an aspect) 

but implementation-wise needs to be distributed throughout the software. AOP 

and Epitaxis share a common concern of how to label and find (or select) a related 

set of points, called join points, within software. In the case of AOP these join 

points specify where pieces of code need to go. Some AOP systems can recognize 

both static and dynamic join points. A static join point can be defined by a location 

in the programs source code or syntax tree without need of runtime information. 

A dynamic join point in addition specifies runtime information such as memory 

state or call sequences. AOP languages which allow static join points are called 

specification based join point languages. One which also allows memory state to 
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specify locations are called state-based join point languages, and one which also 

allow call stack information are called program based join point languages. 

Whereas AOP languages specify join points to define where to effectively insert 

code Epitaxis specifies collect points to locate where to extract information. 

2.4 Object-oriented Logic Programming Systems 

A related area of research is in object-oriented logic programming 

systems. Although this is not a main thrust of the current research, an object-

oriented logic programming language forms the backbone of the analysis engine. 

This system has some interesting features related to those, which show up in the 

literature. Object-oriented logic programming systems are prolific in the 

literature. An annotated bibliography from 1993 [5] states that there are about 

180 references and at least 50 different mergers and/or object-oriented plus logic 

programming languages. They can be divided into three groups based on 1) an 

object-oriented language with logic added, 2) a logic language with objects 

and/or inheritance added on, and 3) languages designed from the ground up to 

have a somewhat equal expression of both. The system described in this thesis is 

in the second category. Typically these systems use object-oriented ideas to 

implement some form of inheritance or as a way to create different name spaces 
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for rules and facts to help organize the database. The other synthesis is to 

augment the structure of facts.  Logic languages often have a “purest” [30] 

quality where the only data structure they admit is lists. By incorporating facts as 

objects the facts can have a little more structure. This can go to the point of full 

frame based systems or semantic nets with logic programming on them. Epitaxis 

uses the class structure of facts to help organize its database of rules and their 

range of applicability. Epitaxis also uses the object structure to organize its 

database of facts, however because this database is generated by a parser or by 

rule application, it tends to have a much more regular structure than a frame 

based or semantic net system. 
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"If you don't know where you are going, you 

will wind up somewhere else." 

--Yogi Berra 

 

Chapter 3 

 
3. Background 

 

Software is an entity that has meaning on different levels: 1) character; 2) 

lexical; 3) syntactic; and 4) semantic. Information must be lifted and integrated 

through these levels in order to gain an understanding of what a program does. 

A software developer must gain this knowledge and understanding in order to 

locate problems and make changes to a software system, so that the system can 

stay current with user and business needs. This process relies heavily on human 

reasoning to analyze and integrate information, but as software increases in 
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quantity, size, and complexity, tools that are capable of taking over more of the 

work are needed.  

In order to support this process of information integration, an 

environment is needed where software developers can interact with information 

about source code from the four levels. Each of the different levels of meaning 

and abstraction for source code has their uses, and different levels are inherently 

more efficient for different types of queries or analysis. Epitaxis forms the basis 

for such an environment. This approach builds on research in five areas: source 

code searching; parsing and interpreting; unification and deductive retrieval; 

program query; and symbolic execution [76, 99, 108, 109, 117, 122, 123, 132, 134, 

135, 141]. Search is a technique to identify things; it is a way to name an 

unknown entity such that it can be found and processed. The more expressive 

the search language, the wider the range of things that can be identified, and 

consequently the more that can be dealt with computationally. Parsing is 

essentially a technique to transform representations. Different representations 

determine how easy it is to access content. Unification and deductive retrieval is 

a way to reason over some representation. Symbolic execution is used as a 

technique to expose the execution state space to search. Finally, program query 
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can be thought of as search on a transformed representation which permits 

search at a higher level of abstraction, that is, for function and relationships 

instead of a search on parts. Much of the labor in program analysis is the 

construction of a representation that admits the desired results and must be 

tailored for each new analysis. This is a key insight of this research: a robust and 

flexible unified representation allows analyses to be performed using a 

declarative and constructive query language to identify a variety of results, 

ranging from character-based search to value-based search, including syntactic 

and semantic query. 

3.1 Source Code Searching 

Software developers have needed tools to search through source code 

since the beginning of interactive programming environments. It started with 

simple keyword search. This was extremely limited as it only allowed you to find 

fixed sequences of characters without regard to context. When regular 

expressions were added, it became possible to find search patterns and context 

using the search language. An important advance was made when search 

techniques started using concepts of program structure, such as identifiers of 

variables and functions, directly in expressing search patterns. Syntactic search is 
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more difficult than lexical, due to language specificity and implementation 

challenges. There is more possible variation in the order and direction of search 

in a tree structure than a linked list. Syntactic search is usually limited in its 

ability to reason about its choice of search direction. This is largely a limitation 

caused by the expressiveness of search languages. Often search direction is fixed 

such as in preorder traversal, or by only being able direct movement based on 

immediate neighbors. One example of such a search language is syntactic regular 

expressions [4, 12, 119, 120]. They are limited by the limited expressive power of 

regular expressions. In addition, they have no dynamic representation. The usual 

solution is to build another data structure in which the search direction decisions 

are easier to make.  

Another approach to search at the syntactic level involves pre-processing 

the program and storing facts in a database file of entity-relations [34]. The CIA 

System [36] uses this approach, as do others [6, 32, 75, 104]. Alternatively, the 

parse tree can be transformed into other representations such as data flow graphs 

or control flow graphs [7, 59, 77, 97, 105, 116].  

The various methods above each address part of the problem. Because 

they are based on a fixed data structure or a limited search language they are 
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each limited in what semantic information they can access. Also, the set of 

relations is fixed at build time so if the needed relationship was not anticipated in 

advance there is no way to search based on it. These analyses are run in batch 

mode on a snapshot of the code, which limits their applicability in today’s 

integrated development environments.   

Searching at the semantic level is a problem in need of original research. 

While information from semantic analysis can be stored in a database and 

queried in the same manner as syntactic information, this approach is limited to 

those relations and keywords that have been stored. There is no general 

mechanism for specifying patterns and relations at the semantic level.  

This research seeks to provide a mechanism for specifying arbitrary 

queries and relations in source at all four levels of program structure. This 

mechanism is based on Prolog-like predicates, consisting of facts and rules that 

can be used to specify software entities including individual characters, classes, 

dependencies, abstractions, and even execution patterns or relationships. The 

desired search target is represented as predicates that the Epitaxis system uses to 

traverse, i.e. search, a unified data structure that includes the lexical 
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representation, an abstract syntax tree, a control flow graph, execution states and 

virtual abstract semantic graphs.  

Typically, Prolog systems search a collection of facts and use rules for 

combining or inferring facts [18]. Object-oriented versions of Prolog [66, 82, 115] 

allow the list of facts to be grouped and to inherit from other groups of facts, but 

their object-orientation exists primarily to create name spaces for groups of facts. 

Various relationships between parts of facts can be found through unification, 

but the search path is linear except when rules are followed. The Epitaxis 

approach differs in that the facts are stored as a tree or graph of objects or can 

exist virtually, as well as being formed on the fly, rather than as a simple 

unstructured collection of facts and rules. Whereas Prolog finds logical 

relationships between facts, Epitaxis finds structural and semantic relationships 

between objects and execution states. Consequently, the search paths and targets 

can be more contextually related, more creative, and much more expressive.  

 

3.2 Parsing 

Parsing came about as a means to bridge the gap between how humans 

interact with source code and how machines interact with source code. Parsing 
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takes a sequence of tokens and converts it into a tree, such that the software’s 

syntactic structure is directly represented. This process is so important that early 

in the history of electronic computation, it was studied and vastly improved; 

parsers became much more efficient in both time and space [52-54, 95]. Parser 

generators were created that allowed a parser to be built from a language 

specification [2, 33, 93]. 

Once parsing became commonplace, ASTs became a standard data 

platform for further transformation of representation. Like lists of characters, or 

lexemes, trees of syntactic entities are limited in what relationships they can 

directly express. (However, they are good at expressing context or scope.) 

Indicative of the chasm between syntactic and semantic structure, parsers and 

parser generators are unable to go directly to a general semantic structure. 

Analyzers are needed to create decorated ASTs, or abstract semantic graphs [15]; 

these, or equivalent data structures, were created to directly expose more 

complex relationships within software such as data flow, control flow, and 

dominance [21, 45, 46, 102].  

Like the tip of an iceberg, this diversity of data structures and techniques 

hints at an underlying difficulty. The problem is that these techniques are trying 
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to squeeze out semantic information from a static structure. This works well 

enough in individual cases, but precludes easy integration of these analyses. 

Every algorithm uses a different static structure to capture the behavioral 

information that it needs. 

The gap between syntactic and semantic representation is not just 

quantitatively greater than the gap between lexical and syntactic representation 

but is also qualitatively different. Semantic relationships are not just spatial but 

also temporal. They are not fixed; they depend not only on where in the code, but 

also on when in the code. In some cases, an abstract summary of information is 

needed to enable the system to be efficient. This means that any fixed data 

structure can capture only a small subset of the content.  

The solution to bridge this gap between syntactic and semantic 

representations lies not in a fixed data structure, but in a dynamic representation, 

specifically, the virtual abstract semantic graphs. Rather than constructing 

abstract semantic graphs as needed by each analysis, the Epitaxis approach 

declaratively reifies the required ASG while traversing a representation of the 

source code to provide the equivalent information. This approach has the 

advantage of being able to represent an arbitrary set of abstract semantic graphs 
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simultaneously in a single data structure. The set of graphs is limited only by 

traversal rules stored in the system and this collection of patterns, templates, and 

functions is completely extensible.  

3.3 Unification and Deductive Retrieval 

First-order logic and logic programming is used across a wide range of 

domains. One of the first suggestions of its use in computers dates back to 

McCarthy [110] in 1959 for representation and reasoning in AI. Logic 

programming also had an early start in mathematical theorem proving [68]. It 

eventually found its way into a general-purpose standalone programming 

language know as Prolog [51]. Prolog and its descendants have evolved and 

there are now many systems with non-standard versions of logic, including 

modal logic, temporal logic, many valued logic, default and non-monotonic 

logic, fuzzy logic, etc. It has also been used in areas of program analysis such as 

model checking. One of its benefits stems from the fact that it is declarative 

instead of procedural. This makes writing Prolog like programs easier (at least 

once you understand the paradigm). A drawback of Prolog type programming is 

efficiency, completeness and termination issues. Some of this has been mitigated 

using tabled or memoized systems [35, 133]. 
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Typically, Prolog systems operate with an unstructured database of facts 

and rules. In practice, there is a simple ordering structure imposed on the 

database by the order in which the facts were entered and consequently, the 

order in which the facts are searched. The facts represent what is known and the 

rules express what can in addition be logically deduced. Prolog systems use 

backward chaining to deduce if some assertion is true or not. It also uses 

unification to bind the facts and terms that will make some assertion true. In this 

way it performs a search. One of the difficulties of Prolog systems is that they are 

"timeless" and "contextless". Like its Platonic ideal (logic), Prolog tends to see 

truth independent of time or context. Since many man-made systems don’t meet 

this ideal, Prolog variants have been created, such as, object oriented versions 

[14, 65, 89, 90, 115], and non-monotonic versions [69] to help organize context or 

time dependence.  

In this research, an alternate form of unification and deductive retrieval is 

explored. Instead of operating on a "flat" set of facts the Epitaxis system operates 

on structured data. For program query and analysis this includes the AST and 

CFG of the program. Here each fact is a node in a tree or graph. The node’s class 

corresponds to the predicate indicator and the values in the slots of the node 
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correspond the terms. The slot names supply the term ordering. In this system, 

unification binds variables to positions in the tree or graph, and rules express 

movement through the tree or graph. In addition, rules can mandate the creation 

of new nodes, which can have their slots filled through unification. With the 

additional feature of unification by reference, where variables can bind to locations 

within objects, the system can, by using rules to walk structures, build epitaxic 

structures linked to the original structure bi-directionally. This mechanism is 

used to create a CFG from the AST. In addition, the current research adds two 

features to address the lack of context sensitivity in Prolog. The first is a 

predicate that declares dynamically scoped variables. The variables in a Prolog 

rule are statically scoped. By introducing a predicate that declares some variables 

special they can capture the dynamic context that is expressed within many AST 

structures1. For example, the semantics of an AST node for a while loop dictates 

the scope of break and continue statements. Any rule fired within the body of a 

rule processing while statements will want a dynamically declared target for any 

processed break and continue statements. The second feature to address context 

is that the rules are "methodized". Each rule is specialized based on the class of 

                                                 

1 A similar idea has been incorporated into the LALR(1) parser productions to create dynamic symbol tables 
to handle the dynamic and messy way that C identifiers can be types or variables and shadow each other. 
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the first term in the head predicate. The signature can be generalized to honor 

the class of all the terms, but this extra feature has not been needed for the 

current application. Other non-standard mechanisms are used to structurally 

memoize nodes as they bind to variables within certain contexts. Gatherers collect 

the nodes the variable binds to and generators emit the nodes that have been 

collected. The final enhancement to the system is the ability of the search routine 

to call upon the symbolic interpreter to present execution states to be searched. 

The idea here is that the system can "deduce" or find things not by just searching 

what already exists in the database (the AST), but can also find things in 

structures that it builds by virtue of searching other structures, or by searching 

states in an executing program. 

3.4 Program Queries and Analysis 

There is a spectrum of program analysis techniques, including control 

flow analysis, data flow analysis [78, 79, 114], program dependence graphs, 

slicing [64, 80, 125, 136, 138, 139], pointer alias analysis [47, 81, 113, 128, 129], type 

inference [19, 73], abstract interpretation [40, 85], symbolic execution [11, 38, 42, 

43, 91, 92, 94] among others. They are often broadly divided into two classes: 

static analysis and dynamic analysis [9, 60], although other taxonomies have 
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been suggested [145]. Static analysis techniques work on some fixed data 

structure representing some aspect of the software [27, 56, 61-63]. Often 

constructing this data structure is the bulk of the work, because it determines the 

kinds of analyses that can be done easily. In some sense static analysis builds a 

model of program state, which is an abstraction of the runtime states. The system 

then reasons over the abstracted model. The nature of the abstraction determines 

the type of static analysis performed and its properties. By being willing to throw 

away information (creating the abstraction) the analysis trades precision for 

soundness. The result is more accuracy (soundness) on a simpler (conservative) 

problem. Static analysis can be said to focus on a subset of data structures. 

Dynamic analysis is used to provide information about the program behavior at 

run time. There are a variety of approaches, including producing an 

instrumented version of the executable, and augmenting virtual machines [10, 13, 

24, 112]. In dynamic analysis the program is executed and facts are collected. 

Here the information is completely precise, but specific to the particular run (the 

set of inputs). The results will not usually generalize. Here the analysis trades for 

precision at the expense of generality (incomplete). The quality of the input and 

number of different runs the data is gathered over determines the degree of 
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generality of the conclusions. Dynamic analysis can be sa id to focus on a subset 

of executions. 

Program analysis systems tend to be procedurally based, monolithic, and 

complex. Typically, they are designed to be part of a compiler, used to determine 

the appropriateness of various optimizations. On the other end of the spectrum, 

there are program query systems. These systems tend to be more declaratively 

based and interactive. A detailed description of some program query systems is 

given in Section 2.1. They tend to transform the program to be queried into an 

AST, a set of entity-relations in a database, or some form of crystallized execution 

trace and lookup information in the transformed version. 

There are a number of features that characterize the expressiveness of 

program query languages: population, dimensionality, direction, grip, reach, 

container, points of origin, and language. 1) Population is an expression of the 

entities that make up the search space. It can be characters, lexemes, pieces of an 

AST or CFG, some transformed version of these, a set of ER-tuples, or some 

aspect of an execution trace or execution state. 2) Dimensionality refers to the 

number of orthogonal directions that can be considered when moving through 

the search space. This describes the structure of the search space, i.e. are we 
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searching down links of some node, are we searching up or down an inheritance 

hierarchy, are we searching amongst logical relationships between items, are we 

searching computed values, are we searching along an execution path, etc. 3) 

Direction refers to the structure and number of different paths in which a search 

can proceed within a given dimension at a given point. If we were searching 

through links in nodes there would be one direction for each allowable field. If 

we were searching inheritance relationships search can go either along sub-

classes or super-classes. If we are searching an execution path can it go either 

forward or backward. If we are searching a logical space, we may only look 

along true facts, or may also look along may-be-true facts, or even some more 

general lattice [48] or bilattice [70] of states. 4) Grip refers to the quality of what 

defines a match between the search description and a member of the population. 

This can be a thing such as the objects identity, value range, class membership, 

slot values, structural relationships, statistics, etc. 5) Given some reference point 

or landmark reach refers to the range of possible search space between it and the 

next point of consideration. Some methodologies can only look at the next point 

along a path, some can also look backward, and others may be able to skip over a 

large block of the search space to find what they are trying to match. This also 

refers to the level of control in selecting or avoiding various dimensions or 
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directions. 6) Container refers to the shape or structure of results found. This can 

be a single item, a set, a stack, a queue, a tree or a graph. 7) Points of origin 

express the variety of possible starting points for the search. Do all searches start 

at the beginning or root or can a search be started from any point in the search 

space? 8) The final feature is the nature of the search language itself. Is it concise 

or verbose? Is it procedural or declarative? Is it simple or complicated? Does it 

admit recursion? Are their looping or other control constructs? In what forms can 

it hold state or is it stateless? Is it sound? Is it complete? Is it precise? Is it 

extensible? 

From the point of view of information integration to support human 

reasoning, the overhead cost of many queries and analyses are too high to be run 

interactively. Typically, each time the code is changed, a new program or 

executable needs to be analyzed from scratch. A more serious problem is the 

discontinuity between syntactic and semantic information, because the latter 

needs to incorporate information about behavior, temporal relations, states, and 

data values. The two operate on different representations of the source code and 

the premises underlying the analyses are radically different. There is no 

mechanism that can be used to specify both types of query. The Epitaxis 
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approach will make use of a data representation and search engine that will 

allow syntactic and semantic queries to co-occur naturally. Also the data 

structure representing the program must have a very close structural 

relationship to the program so the representations are intuitive, are very fast to 

incrementally update, and allow for high bandwidth interaction. Although one 

has to contend with learning a very expressive search language, this one 

framework is capable of expressing queries over lexical, syntactic, semantic, and 

abstracted views of the program. The current research project intends to push the 

expressive power of program query near or into the zone of program analysis 

while maintaining as much of the declarative nature as possible. 

3.5 Symbolic Execution 

Modern symbolic (and concolic) execution systems are an interesting 

extension of dynamic analysis technology. The systems either instrument a 

virtual machine (if the language uses one e.g. Java), write an instrumented 

virtual machine for the assembly produced by the language's compiler or add 

instrumentation to the source code. The instrumentation then allows the code to 

execute with symbolic values in addition to the normal concrete execution. The 

instrumentation collects the path condition, controls backtracking when 
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exploring alternative paths, and allows the use of concrete values when the 

constraint solver fails. Framed in this dissertations' terminology symbolic 

execution systems can be considered as a transformation from the program’s 

static structure (the CFG) to the program’s dynamic structure (execution states). 

Traditional symbolic execution systems search for input values to force execution 

down specific paths. These values can then be used to drive testing to search for 

bugs. Newer symbolic execution systems include specific bug tests with the 

instrumentation and can find bugs such as division by zero, NULL dereferences, 

and pointer dereferences lying outside a valid object. 

In this research, the separate testing phase is completely done away with. 

Instead of instrumenting the code or the virtual machine, a source level virtual 

machine is created which detects violations of the language’s semantics and the 

bugs are reported during the search of the control flow graph. What is detectable 

is not limited by the specific instrumentation. 

In addition, this research uses symbolic execution as a means to search the 

semantic execution space of the program. This represents the execution tree of 

the program. By building the symbolic interpreter (SI) to work on the ASG 

directly instead of assembly code, and because the ASG contains syntactic and 
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type information, the SI has a more complete representation of the execution 

state at each point in the execution tree. When the SI goes to write a value it is 

not just pushing a number to an address, but it knows the type of the object 

being written and it knows the type of the memory location, and even the 

member name of the place. These can be tested to trigger an assertion or a 

collector. 

3.5.1  Constraint Solving 

One of the key elements in a symbolic execution system is the constraint 

solver (CS). By definition a symbolic execution system has symbolic values. This 

really means that the system has to be able to compute with unknown or 

partially determined (constrained) values. This becomes important when a 

conditional which depends on symbolic values is being executed. This bears on 

the system behavior in two ways. The first is in deciding which branch of the 

conditional to take. There are three possibilities and one impossibility.  The 

second is being able to deduce the values of some of the unknowns in the 

conditional. 

The first possibility is when the CS can decide the conditional in spite of 

unknown values. This is of two kinds: generally solvable and specifically 
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solvable. An example of the first case is if (x * x >= 0). This is always true 

whatever the value of x (assuming real x) and represents a poor coding style. A 

more subtle variation is with nested conditionals where the outer conditional 

forces values on the inner conditional that then can be resolved only one way. An 

example of this is if (!x) { if (x * y > 10) }. The second kind is where the solvability 

depends on the particular run. An example of this is if (x * y >= 0) where during 

a particular run both x and y are constrained to be positive by prior conditionals 

but this is not always the case for all possible runs. The system must only follow 

the "one true path".  

The second possibility is when both values of the conditional are possible. 

In this case there is simply not enough information to decide. The system must 

follow both paths under their new respective constraints.  

The third possibility is that the CS is not powerful enough to decide which 

value(s) of the conditional is possible. Often constraint solvers only work on 

linear constraints, quadratic constraints will be unsolvable. The problem here is 

what to do? There are three choices: 1) take both paths, 2) take neither path, or 3) 

randomly choose. This can create two problems: 1) taking a path that is really not 

possible and 2) not taking a path that is possible. In the first case unsound results 

can follow. The system will think it found a bug that is really not possible. In the 
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second case results can be incomplete. A path that may contain a problem will 

not be explored.  

The impossibility is when the CS thinks that neither condition is feasible. 

This represents a bug in the CS. 

In addition to deciding conditionals, the CS can also deduce values, or 

further constrain values for the unknowns. Most systems just collect constraints 

on the unknowns. So as the symbolic values make their way through code there 

is an ever growing list of constraints attached to them. Systems often work to 

simplify this list of constraints or recognize when the constraints have become 

infeasible. There are also systems where sub-constraints (constraints that are 

shared) are cached. Epitaxis does not explicitly represent constraint lists. Instead 

it uses a weaker but faster system. The values themselves represent the 

constraints. There is a symbol UNSPECIF IED-VALUE for a completely 

unconstrained value. If a value is known to be greater than zero (i.e. it is inside a 

conditional if (x > 0) instead of carrying around the constraint (x > 0) the value is 

represented by an interval tree containing only the open interval (0, inf). If later 

we cross if (x != 3) the value is represented by the interval tree with two intervals 

(0, 3) and (3, inf). Epitaxis knows how to do math on a combination of concrete 

values and interval-tree values. The simplification and weakening of the CS 
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system comes from how UNSPECIFIED-VALUE is handled. If x is 

UNSPECIFIED-VALUE and y = x + 1 then y will have the value UNSPECIFIED-

VALUE. So later if the system executes if (y > x)  Epitaxis will not know that this 

has to be true and the system is stuck with the dilemma of choosing between 

incomplete and unsound when it shouldn't have to. The nature and the power of 

the CS largely determine the quality of the symbolic execution system. 
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"You think you know when you can learn, are 

more sure when you can write, even more 

when you can teach, but certain when you can 

program." 

--Alan Perlis  

 

"What I cannot build I cannot understand" 

--Richard Feynman 

Chapter 4 

 

4. Methodology: Epitaxis 
 

More powerful program comprehension tools are needed to help software 

developers understand and maintain increasingly complex legacy systems that 

businesses and citizens rely on. Current program comprehension tools are 

hampered by a number of limitations: they lack an appropriate data structure for 

integrating information about a program from the character, lexical, syntactic, 

and semantic levels; they lack a mechanism for specifying searches on all these 

levels of abstraction; they perform syntactic and semantic program queries 
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separately; they tend to have limited expressiveness of search targets; and finally, 

they tend to operate in batch mode, separately from interactive development 

environments.  

The solution is to build a software development tool, which can represent 

software on character, lexical, syntactic, and semantic levels and search through 

these representations, even interleaving them, to access arbitrary patterns. This 

will allow software developers to integrate information from the widest range of 

program queries, including lexical, syntactic, and static and dynamic semantic 

queries. In addition, the system is embedded within a hybrid character/structure 

editor enabling high bandwidth interaction and visualization.  

The solution has four main parts: a data structure for representing 

information about the source code at all levels of abstraction, a transformation 

system to produce these representations and create new ones, a language for 

specifying searches, and powerful search engine to process them. 

The data structure is the Virtual Abstract Semantic Graph. While most 

software query tools use a fixed data structure to represent semantic information, 

such as a control flow graph or a data flow graph, this system has a set of 
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language-specific Prolog-like rules that reify arbitrary ASGs by traversing the 

source complete AST. This way, as software is modified, and the memorizations 

become stale, the semantic rules can recompute them whenever the data 

structure is queried. The semantic rule base will describe how to walk the data 

structures semantically, thereby allowing the information to be obtained 

dynamically and interactively. The rules need only describe the relationships 

between the data elements, the order of execution and the computation and flow 

of data values. 

A powerful search engine (with multi-pathed control flow) can extract any 

semantic information expressible in its search language by walking the parse tree 

or the control flow graph using the semantic rules; Semantic patterns can be 

extracted via unification with variables in search templates. The semantic rules 

can be tagged with side effects, which will allow the code to be executed 

concretely, abstractly, and symbolically, or in any mix of the three. These 

semantic rules with their attached method calls along with a symbolic multi-

pathed memory system constitute an open symbolic interpreter. All of these 

components are built into a flexible, extensible interactive editor. 
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In the remainder of this chapter, these parts, and an initial prototype are 

described. 

4.1 Virtual Abstract Semantic Graphs 

In order to make searching source code efficient and robust, the source 

must be converted from its character-based representation into a representation 

that more closely maps to its content. Since a program’s content exists on four 

levels, lexical, syntactic, semantic, and via abstraction, the data structure needs to 

be represented and must integrate information from all these levels. Each 

representation is structured to map isomorphically to its content. The data 

structure consists of a doubly linked list to represent information from the 

character and lexical level that is intertwined with an AST and a CFG. Virtual 

abstract semantic graphs are reified by traversing this data structure to yield the 

information needed for queries. In addition the four levels have links between 

them to allow easy transfer from one level to another.  

 



 

75 

Compound-Statement

:CONTEXT

:START

:END

:DECLARATIONS

:STATEMENTS

:CODE

If-Statement

:CONTEXT

:START

:END

:COND

:FALSE

:TRUE

:CODE

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

NOOP-Instruction

:SOURCE

:PREVIOUS

:NEXT

Null-Statement

:CONTEXT

:START

:END

:CODE

If-Conditional

:CONTEXT

:START

:END

:COND

If-Instruction

:SOURCE

:COND

:TRUE

:FALSE

Expression-Instruction

:SOURCE

:PREVIOUS

:NEXT

:ROOT

:LEAVES

a

{

Display Template

R 2 C 1 L 1

}

Display Template

R 2 C 21 L 1

;

Display Template

R 2 C 20 L 1

;

Display Template

R 2 C 18 L 1

else

Display Template

R 2 C 13 L 4

;

Display Template

R 2 C 11 L 1

i f

Display Template

R 2 C 3 L 2

(

Display Template

R 2 C 6 L 1

a

Display Template

R 2 C7 L 1

)

Display Template

R 2 C 9  L 1

Null-Statement

:CONTEXT

:START

:END

:CODE

Null-Statement

:CONTEXT

:START

:END

:CODE

  

Figure 2: Representation of fixed data structure of    {    if (a) ; else ; ;   } 

 

4.1.1  Character and Lexical Level: Linked List 

The first level is simply a doubly linked list representing the sequence of 

language tokens comprising the program. This sequence of tokens is a complete 

lexical representation of the program. It includes tokens for blank lines, line 

continuation characters, comments, pre-processing directives, and all the tokens 

comprising the program code. Each lexical token not only contains the sequence 

of characters determining how the token will display on the screen, but inherits 
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Semantic 
Level 

Syntactic 
Level 

Lexical 
Level 
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routines from its class describing how to display the token, what colors to use, 

etc. In addition formatting information is stored in this level, that is, each tokens 

source line and column information. This level is the entry point for the user 

interface.  

4.1.2  Syntactic Level: Tree 

The second level is the source code syntax tree. Each node in the tree is 

typed and bears an inheritance relationship. The tree is also doubly linked. Each 

node has a link to its parent as well as all its child nodes. This way we can freely 

move around the tree no matter where in the tree we may start. The user 

interface can directly access any node. Each node in the lexical chain has an up-

link to the lowest level syntactic structure in which the token participates. 

Because each lexical token also has screen-positioning information the code looks 

like it has a text based editor user interface. One hop up and the syntactic 

structure is available.  
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4.1.3  Semantic Level 

4.1.3.1 Static Semantic Level: Graph 

The third level is an executable control flow graph. Nodes in the AST are 

of two types. The first comprise control flow structures. The second comprise 

executable expressions. Each control flow structure will be traversed by the tree 

parser to construct interconnecting links between the executable expressions. 

Conditional expression processing nodes will be added to the execution graph as 

determined by the control flow structures. This will form an executable 

representation of the program. Each node in the graph will be linked both in the 

forward and backward direction. In addition each node in the AST will have a bi-

directional link with the corresponding node in the CFG. This will allow 

complete movement starting from any point in the program to any other point 

via lexical, syntactic, and semantic orderings. This level can be traversed as a 

static structure. Nodes can be visited forward or backward along static execution 

paths. Here no accessibility of program values is available. This represents the 

static execution connectivity. Not all these paths may be feasible under actual 

execution. The feasibility of execution paths is determined by the solvability of 

the accumulated constraints along the conditionals on the path. 
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4.1.3.2 Dynamic Semantic Level: Symbolic Execution 

This level represents all the information that only comes into expression 

during program execution. This part of the third level is accessed via an open 

symbolic interpreter (described in Section 4.4). The interpretation is performed 

symbolically so the entire execution space (within memory limits) is represented 

instead of a particular or small set of individual execution states. This allows 

more comprehensive questions to be asked. The level is reified by traversing the 

CFG with a symbolic interpreter that can process navigation whether the 

conditionals are resolved or not. This is one of the bridges to the abstract level. 

4.1.4  Abstract Level: Virtual Graphs and Structuring 
Memoization 

The fourth level is virtual. The three levels above represent the entire fixed 

information content of the program. However, because of the need for efficiency 

and abstraction this is not sufficient. This fourth level allows data structures to be 

built virtually and possibly reified via memoization. It is reified by Prolog-like 

rules that specify how to move through the AST or the CFG. In the case of virtual 

data, the data is never actually extant, but exist as parts gathered logically 

through deduction or through interpretation. This abstract gathering can occur 

over the AST, the CFG, elements exposed through the interpretation of the 
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program or some combination thereof. This is done by rules controlling traversal 

of the data structure. The particular nodes of the AST or CFG inherit, through 

their class membership, sets of rules describing how to walk the node or how to 

execute the node. This way the nodes or results of executing the nodes can be 

visited by the search routine binding to the pieces it is looking to find or relate.  

In the case of structuring memoization, these bits of data will be captured in a 

data structure. Depending on the usage, this data structure can be a set, stack, 

queue, tree, or graph. It can be persistent or temporary. This structure can also be 

passive or active. Active data structures are used to directly guide search paths 

whereas passive data structures are just searched. An example of an active data 

structure would be to stack nodes discovered during search then in a later phase 

popping the nodes off and using them to direct the course of search. In Section 

4.3.1 below an example of rule use also illustrates an example of memorizing 

persistent, passive graph. This is the case of creating a control flow graph from 

querying the AST. Another instance would be creating a static call graph. In this 

case the graph is kept around and used as for memorized lookup. The rules can 

also express execution at different levels. The simplest is concrete execution. This 

mode acts as an interpreter, which directs execution of the code as the compiled 

version would. The rules also will contain information on the computation of 
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values. This is implemented as a set of generic functions to produce and compute 

on values that the reduction of rules will cause to execute. This set of functions 

can easily be altered to work with not only concrete values, but also symbolic 

values [38, 92], lattices and domains [41]. This way the interpreter can be scaled 

up to perform symbolic execution or abstract interpretation. 

The rules can describe hopping from one syntactic element to another 

with functions to carry out the passing of values. Any point in execution is 

immediately related to a position in source code along with values and program 

conditions. This will allow for a natural user interface as the elements are in 

terms of entities that the programmer directly relates to. 

This entire three level structure can be “unzipped” at some lexical point 

and new text entered. The text will be automatically tokenized and the parser 

will parse the new tokens integrating the new sub-parse tree into the structured 

program and “zip” it back up. This allows all the search machinery to be used 

interactively during development, and invariants, style, and correctness can be 

enforced at composition time.  
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4.2 Reparsing 

A standard LALR(1) parser generator has been enhanced to accept a 

grammar where the grammar rules specify a class based constructor to use to 

create the AST node when the production reduces. The parser generator uses this 

information to augment the exit arcs for the pushdown automata such that in 

addition to the parser accepting the normal sequence of tokens to trigger a 

reduction to create a node in the AST, AST nodes can be interspaced within the 

token stream to also be matched. This way if a line of source code is modified, 

only that line of text needs to be tokenized; the AST is spliced, creating a small 

list of AST node objects that surround the tokenized text. This much smaller 

sequence of objects (representing large parts of already parsed source code) and 

tokens can then be parsed to quickly recreate the modified parse tree. 

 

4.3 Epitaxic Deductive Retrieval 

Epitaxic deductive retrieval is based on the concept of using a single 

integrated data structure for all levels of source code representation, building 

searchable data structures on the fly through deduction, a single language for 

specifying program queries, and a single processing engine for all source code 

queries. The data structure is the virtual abstract semantic graph described in the 
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Section 4.1. The language is Epitaxis using Prolog-like predicates. This processing 

engine is a unification-based search routine in which queries are specified as 

predicates.  

The search engine operates by traversing the virtual ASG trying to unify 

with nodes in that structure. The order and path of search, and the exact pattern 

to be unified with are all under programmatic control. These can be pre-

determined or modified by what has already been found during an ongoing 

search. The search successfully terminates when the search structure is fully 

resolved, at which point the search goal is returned. If no such final resolution is 

possible, the search fails and a NIL value is returned. Using the search patterns 

and the unification variables the search can find parts by looking out in all 

directions along all four levels relating the pieces in arbitrary ways. Some of the 

pieces to be search upon or searched for may be constructed by the search 

process itself. Epitaxis can query a program’s AST and retrieve its CFG. 

4.3.1  Search Specifications 

For a search to take place two things are needed, a structure to search and 

a search specification, which can be a search template, a search predicate, a 

search function, or a search rule. Search predicates and search functions are used 
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to compose search templates enforcing a control structure on when, where and 

how the search patterns are sought. All searches are assumed to have a starting 

position in the AST or CFG. This concept is similar to the this parameter in object-

oriented programming. Successful searches update this position. Table 1 shows 

examples of elements of the search language and these are explained below. 
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Table 1: Elements of the Search Language 

1) Unification Variable ?label 

2) Unification By 
Indirection Variable 

?&variable 

3) Compound 
Unification Variable 

?(identifier function-name :NAME ?”API_.*”) 

4) Search Template $(:UP ?(iter iteration-conditional) (:SLOT :COND)) 

5) Search Predicates 
and Function 

(DEFINE-SEARCH find-undeclared-vars (?name) 
   (PROG1 $((:IN $(function-declarator FAIL))   
            ?(var variable :NAME ?name)) 
           (NOT (var-declaration ? ?var ?name))))  

6) Rule Based Search (--->(COMPILE-STATEMENT  
            ?(if-stat C:if-statement 
                        :COND  ?(if-c  C:if-conditional :COND ?cond) 
                        :TRUE  ?(true  C:statement   :CODE ?&t-first) 
                        :FALSE ?(false C:statement   :CODE ?&f-first) 
                        :CODE  ?&c-first) 
            ?prev 
            #H(?t-last ?f-last) 
            ?next) 
      (AND (COMPILE-EXPRESSION 
               ?cond  ?prev ?c-first ?c-last ?if-instruction) 
           (COMPILE-STATEMENT  ?true  ?if-instruction ?t-last ?next) 
           (COMPILE-STATEMENT  ?false ?if-instruction ?f-last ?next) 
           (IS ?(if-instruction C:if-instruction 
                               :COND  ?&c-last 
                                   :TRUE  ?&t-first 
                                   :FALSE ?&f-first) 
                (MAKE-INSTANCE C:IF-INSTRUCTION :SOURCE ?is)) )) 

7) Execution Based 
Search 

(===> (EXECUTE-EXPRESSION #I(CLASSES-C::conditional-expression  
                                        :COND  ?cond  
                                        :TRUE  ?true 
                                        :FALSE ?false) 
                          ?value) 
      (IF (EXECUTE-EXPRESSION ?cond  ?c-value)  
          (EXECUTE-EXPRESSION ?true  ?t-value)  
          (EXECUTE-EXPRESSION ?false ?f-value)) 
      :VALUE (EXECUTE::QUESTION-MARK ?c-value ?t-value ?f-value)) 

 

A basic building block of searches is unification variables, which are not 

searches by themselves, but are used within search patterns. A simple unification 
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variable is the ? symbol immediately followed by the variables’ name, as shown 

in the first example. Compound unification variables allow for restriction on the 

class of the object that can unify with it. It is also possible to specify constraints 

on the slots within the object. The third example above is a complex unification 

variable to find all function names matching the regular expression, “API_*”. The 

unification variable is named identifier. It can only unify with an object of 

class FUNCTION-NAME and the :NAME field must match the regular expression 

“API_*”. A search template has three parts: a direction(s) of search; a target to 

match; and an action to perform if the search is successful. The first specifies 

which branches of the tree to look along given a starting point, for example, up 

the tree to the parent node or down a sub-tree, or nodes of a specific type, etc. 

The second part specifies what to look for. It can be some specific object, an 

object that is an instance of some class, or an object that has certain specific 

properties amongst its slots. The last part specifies something to do if the search 

pattern is successful in finding an instance of the pattern. This usually specifies 

movement in the search tree relative to the matched node, such as down one of 

its slots. The fourth example in Table 1 shows a search template. Given any point 

within the body of any type of ITERATION-CONDITIONAL, this search template 

will find the corresponding conditional clause. Starting from some position in the 
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AST, it will look :UP the parent links trying to unify with a compound 

unification variable to find an object of type ITERATION-CONDITIONAL. (Note 

that via inheritance this will match a FOR-CONDITIONAL, a DO-CONDITIONAL or 

a WHILE-CONDITIONAL, but not an IF or SWITCH-CONDITIONAL which inherit 

from the class CONDITIONAL but not ITERATION-CONDITIONAL). If one is 

found, the current context pointer moves to the conditional field of the matched 

object.  

Search predicates are the built-in primitive operations of the search 

language, and are based on the built-in predicates available in Prolog. They 

allow the search patterns to be composed, and include simple directives such as 

simple sequencing of search patterns, a wide range of controlling search based 

on whether other searches are successful or not, selection of search alternatives 

based on the returned type of a previous search. The complexity of the search 

predicates and consequently power of the searches go beyond Prolog because the 

search is performed on a syntax tree, and not just a list of facts. Furthermore, the 

search can use information about a node’s behavior and semantics, not just its 

identity. Finally, search functions allow user-definable search predicates. A 

sequence of search patterns, search predicates, and search functions can be 
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arbitrarily composed to create sophisticated searching control structures. Search 

functions can call other search functions, so recursion is also possible. 

The fifth example presents a search function that searches for variables 

with no declaration. The built-in search predicate, PROG1, indicates that sub-

searches should be sequential, meaning it starts the next search where the 

previous one completes, but ultimately returns the value of the first sub-search 

(hence the 1 of PROG1). The first sub-search looks inside current context for a 

variable, but will fail if it tries to look inside a declarator. Once this variable is 

found, the second sub-search is initiated by calling a search function to find the 

variable’s declaration. But since that search is embedded within a NOT predicate, 

the search declaration has to fail for the NOT predicate to succeed. This will cause 

the PROG1 predicate to succeed returning what was found by the first sub-clause 

of the PROG1, i.e. the variable that has no declaration. The function is defined 

with a parameter. If this parameter is bound at call time then the search will only 

look for undefined variables with the given name. If this parameter is unbound 

at call time then the parameter will become bound to the name of the variable 

that was found. The search saves its context, so it can be called repeatedly to find 

all the undefined variables. 
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The sixth example shows a rule used in rule based search. It also uses 

unification by reference. This rule builds the CFG of an if statement from the C 

language. By convention, the first argument supplied to the predicate is the 

current node in the structure being searched, in this case the AST. This argument 

and the other three are bound by the rule that triggered this one. Typically 

?prev will be bound by the "compilation" of the previous statement and ?next 

will be unbound but will be used as a holder for the last instruction created in 

this rule "promising" to tell where to link to for the next instruction. The #H(?t-

last ?f-last) represents a hyper-edge and will eventually be bound to the 

next instructions previous field. It is a hyper-edge because the previous 

instruction to the next instruction could have come from either the last 

instruction in the true clause or the last instruction of the false clause. If either of 

these contains a branching instruction then the corresponding ?t-last or ?f-

last will be unbound and the hyper-edge machinery will remove it. The body 

of the rule is responsible for building the instructions composing the if 

statement. There are four predicates within an AND clause. These all have to 

resolve or all the bindings made so far will be undone and the system will try 

another rule. This might also happen if the head fails to unify. It will happen if 

the particular if statement does not have a false statement. The rule will fail 
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because the compound variable ?(false C:statement :CODE ?&f-first) 

will not unify with NIL. Assuming the head (LHS) does unify with the AST 

node, the retriever will try to resolve the four sub-assertions. The first one will 

process the conditional expression; the second one will process the true clause 

statement; and the third one will process the false clause statement. The last is 

the built-in IS predicate. As in Prolog, this predicate evaluates its second 

argument and tries to unify it with its first argument. In this case an if-

instruction node is created, binding the :SOURCE slot with the value of the 

?if-stat variable which was obtained when the head of the rule was unified. 

The IS predicate mandated unification will cause bindings between the variables 

and the slot locations within the if instruction node. When these variables bind 

to values these slot locations will also take on the value because of unification by 

reference. Note also that when the head of the rule is matched, it does 

destructuring, binding the variables to the corresponding AST node structures 

within the if statement. These variables are passed to the body (RHS) predicates 

used to "compile" these corresponding parts of the if statement. The ?&t-

first and ?&f-first variables create bindings to the slots within the :CODE 

fields of the statements within the if statement. This way when the COMPILE-

STATEMENT predicates for the statements eventually build instructions for 
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these statements, the first one will get stored in the :CODE slot for the source 

AST node. In a similar manner, the retriever will call rules walking the entire 

AST and in the process of this "search" instruction nodes will be created and the 

variable bindings will insure that all the nodes links are properly linked up 

creating the CFG of the AST. This CFG can later be queried/executed to find 

additional facts about the AST that spawned it. This is described next. 

Another kind of search specification indicated in Table 1 is execution-

based search. This type of search allows the search engine to visit nodes in the 

order in which they will be executed. Here the search engine walks the CFG 

instead of the AST. This search is aided by an open interpreter (described in 

Section 4.4). This type of search is necessary to perform dynamic analysis and 

symbolic execution. This search specification can express execution at different 

levels of abstraction. The simplest is concrete execution. This mode acts as an 

interpreter, which directs executing the code as the compiled version would 

execute. The interpreter, in addition to following the CFG, is comprised of 

methods, which implement the runtime system. These methods are called to 

implement data creation and operator evaluation for the language being 

interpreted. This set of methods already works with concrete values and 
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symbolic values and can easily be overridden to work with abstract values such 

as lattices and domains [41]. This way the interpreter can be scaled up to perform 

abstract interpretation. Because of the inter-level linking, any point in execution 

is immediately related to a position in source code along with values and 

program conditions. This will allow for a natural user interface as the elements 

are in terms of entities that the programmer directly relates to. 

4.3.2  Search Engine 

In epitaxic deductive retrieval , the search engine uses the same concepts and 

principles as Prolog, but applied to a tree or graph data structure rather than a 

list of facts. Matching occurs through unification of variables to nodes in the 

graph. Data values are bound to unification variables or AST node slots for 

output. When sub-parts of the search fail, variables become unbound, so that 

other matches can be found. Backtracking is used to unbind variables when sub-

searches fail or the tree needs to be searched exhaustively. These concepts as they 

apply to epitaxic deductive retrieval will be described in more detail below. 

The search specifications and the virtual ASG become linked via 

unification variables. Unification variables are allowed within the elements of the 

search specifications. An unbound unification variable will become bound to a 
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part of the tree that matches the search target. A bound unification variable must 

be equal (EQL in LISP parlance) to a corresponding part of the tree structure or 

else the search fails. When branches of the search fail, all unification variables 

that were bound during that search are automatically unbound. Then as the 

search tries other paths through the tree, new bindings are made. These 

unification bindings can be passed as parameters to search predicates and search 

functions allowing what is found during one sub-search to be consulted during 

another sub-search. These, too, are unbound automatically if sub-searches 

happen to fail. Ultimately, if a search succeeds the final node of the AST that is 

matched is returned from the search. In addition, any unbound unification 

variables passed as parameters to the initial search may now have bound values 

corresponding to parts of the search tree located along the way to the final result. 

As in Prolog, passed unification variable parameters are bi-directional. If they are 

bound when calling the search function, they hold values input. If they are 

unbound when calling the search function, they may become bound and hold 

values for output. The bindings may be indirect, that is, a unification variable 

may become bound to several unbound unification variables until one of them 

finally becomes bound to some part of the search tree. Any restrictions on each of 

those unification variables are all enforced.  
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Each pattern within a search form specifies its search field and any 

restrictions within that search field. The search field defines what part of the tree 

or graph will be searched. Each search field type also has an implicit search order 

within that field. Restrictions can limit which class of nodes will be searched 

from a given point in the search field. Also, for a given class, which slot or slots 

should be searched next can also be specified. It is also possible to indicate a 

search failure if a particular class is encountered. These restrictions can be 

specified to occur at arbitrary depth of link traversal.  

Search functions define relations between their parameters. If the search is 

successful, then the relation specified by the function exists, otherwise it does 

not. Because some or all of the parameter can be left unbound when the function 

is invoked, the search function effectively goes looking for objects that will 

satisfy the relation specified by the function. Run singly the search will find the 

first instance that satisfies the function. But, since the search state is saved, and 

the algorithm admits backtracking, the same search can be run until the entire 

tree is exhausted to find all instances that satisfy the function. Using the search 

engine, the search tree (e.g. the AST) becomes a database upon which arbitrary 

logical relationships can be also found, verified, and/or extracted. 
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There are six possible levels of search. These correspond to the levels 

within the data structure representing the program. They are 1) along the token 

linked list, 2) along the AST, 3) along the CFG, 4) “logically” by following Prolog 

deductive retrieval like rules, 5) dynamically by following the interpreter, and 6) 

abstractly by creating structures via memoization and following pathways in 

there. Since all the data structure representations of the program are 

interconnected, the search engine can switch levels of search as needed. Brief 

descriptions of these six levels of search are given below. 

4.3.2.1 Lexical Search 

In lexical search, the search engine simply walks the liked list of tokens, 

either forward or backward, looking to match either on the class of the token, 

and/or the name of the token using regular expressions. 

4.3.2.2 Syntactic Search 

In syntactic search, the search engine walks the AST. Here, nodes are 

matched by class membership and structural relationships. This form of search is 

complicated by the need to express which direction(s) through the tree to search. 
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4.3.2.3 Control Flow Graph Search 

In static semantic search, the search engine walks the control flow graph. 

The search can be configured to look down only true branches, only false 

branches, all branches, or randomly chosen branches. 

4.3.2.4 Logical Search 

In logical search, the search engine "deduces" the search order via 

predicate calculus like rules. Given some point in the program, using the nodes’ 

class, the search engine looks for a rule with a matching left hand side (LHS). If 

one is found, the right hand side (RHS) contains specifications for the 

continuation. This process continues as the RHS typically contains further rules.  

Logical search is the foundation of the search methods listed below. 

4.3.2.5 Symbolic Execution Search 

In execution search, the search engine consults the symbolic interpreter as 

a co-routine to determine where to go next. As the interpreter can process 

symbolic values and consequently conditionals may not be resolvable, the search 

path is a multi-pathed execution tree moving breath first. This is described in 

more detail below in section 4.4. 
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4.3.2.6 Abstract Search 

In abstract search, the search engine will search along a data structure 

build by another search via memoization. 

4.4 Symbolic Interpreter 

The search engine makes use of an open symbolic interpreter. Sometimes 

in the implementation of a compiler, the parser and the lexer are organized as co-

routines. Each run with their own internal state. Every time the parser needs 

another lexeme it suspends itself and calls the lexer, who then resumes, finds 

another lexeme, suspends itself, and gives the lexeme to the parser, which then 

continues with the new lexeme. In a similar manner the interpreter and the 

search engine are organized as co-routines. Every time the search engine needs 

another node to search it suspends itself and calls the interpreter. The interpreter 

then resumes its state, advances the state of execution, suspends itself, and 

returns control back to the search engine. The search engine now has access to 

the next state in the running program’s execution, including the current position 

in the control flown graph, the corresponding syntactic structure that produced 

the node in the CFG, and any value(s) that were input and are output by the 

executing node in the CFG. All of these are available as targets of the search.  
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The interpreter operates on a control flow graph. In other words, a CFG is 

an input (a program) to the interpreter which executes it. The symbolic 

interpreter is comprised of six components. These components are 1) a set of 

rules that walk the CFG and trigger the methods, 2) a collection of methods, 3) a 

set of typed values, 4) a symbolic memory management system, 5) a propagation 

of constraint system, and 6) a symbolic execution tree and the control system 

which grows the tree. 

4.4.1  Set of Rules 

For each language that the system can work on a set of rules needs to be 

written which describe how to walk the CFG and what to do as the nodes are 

traversed. These rules are interpreted by the search engine. Instead of doing 

logical deduction with the rules the engine does structural deduction. The engine 

tries to match a rule head to a node in the control flow graph. If the rule head 

and the CFG node unify, then the body of the rule is executed. This typically 

causes an advancement through the CFG. Rules matching expression nodes have 

clauses causing methods to be invoked on the return values of the rules which 

traversed the expressions arguments, thereby executing the expression. The rules 

for C are detailed in Appendix A.  
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4.4.2  Collection of Methods 

The body of the interpreter is a collection of generic functions. For the 

initial prototype they comprise all the operators of the C programming language 

and a set of system functions such as malloc, free, setjmp, longjmp, etc. The 

generic functions have predefined methods for standard data types of C such as 

numbers, characters, and addresses. In addition there are predefined methods for 

two forms of symbolic values (proxy values and interval sets) and error values. It 

is also possible to define additional classes of values and to define methods that 

operate on instances of those classes. The generic functions select on all 

arguments so you can define different methods for the + operator which takes an 

integer and a float versus an integer and an address versus two integers. You can 

also define abstract classes such as PARITY with instances EVEN and ODD and 

define methods for + which operate on type PARITY. The constant load operator 

can be overridden to convert integers to their proper PARITY value. 

4.4.3  Set of Values 

There are several different types of values that the methods described 

above and hence the interpreter can process. These are expandable using the 

object system. The staple of the system are concrete values which are the 
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standard data types of C. These include different size and types of numbers, 

characters, and addresses. In addition, the system recognizes symbols which 

represent special values such as "UNINITIALIZED-VALUE", "UNSPECIFIED-

VALUE", "ILLEGAL-VALUE", "NULL-DEREFERENCED-VALUE", etc. These are 

used in part to make the operators closed. That is all operations will return a 

processable value no matter what input. Although, beyond indicating an error 

these values are not very useful. Passing "ILLEGAL-VALUE" as an argument to 

any operator will result in "ILLEGAL-VALUE" being produced. The one big 

exception to this is "UNSPECIFIED-VALUE". This triggers symbolic values. The 

system handles three types of symbolic values. The simplest are interval sets. 

These represent arbitrary collections of intervals of numbers. Arithmetic can be 

performed on them returning modified collections of intervals. There are also 

proxy values and proxy addresses. Proxy values represent unknown values 

which can later become concrete or an interval set. Proxy addresses represent 

logical segments of memory. The content may or may not be known; what they 

really represent is that the location of the segment of memory is unknown and its 

size may also be unknown. A proxy value is created whenever a variable is read 

whose value is not known. This happens whenever execution starts after the 

point in which the variable was given a value such as executing a function 



 

100 

without a calling context. The function arguments will be unknown. Proxy 

values are created as stand-ins for accessed but unknown concrete scalar values. 

Proxy addresses are created for accessed but unknown pointer or compound 

values. If a proxy address is dereferenced, proxy memory is created for it to point 

to. Proxy values or addresses may become concrete. This can happen when 

conditionals are assumed as described below in Section 4.4.5. 

4.4.4  Symbolic Memory Management System 

The memory management system is responsible for accessing and storing 

values for all variables, heap memory, and proxy memory. In addition, it must 

keep track of the different values they may have under different program paths. 

Values which are set in ancestor paths are shared by all sibling paths unless one 

overwrites it. That path and all its siblings will share the new value, while the 

other paths still share the old value.  

The system is implemented using a compound interval tree. The outer tree 

is keyed by the address segment. The inner tree is keyed by the path the value is 

current in. Paths are represented by intervals. The root path is the largest 

interval, sibling paths by sub-intervals of their ancestors. 
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4.4.5  Propagation of Constraint System 

The propagation of constraint (POC) system is used when determining the 

consequences of assuming conditionals to be true or false or assuming switch 

case selection. This system is modeled after that described in [1]. Whenever a 

conditional is executed and it is not possible to determine its value because it 

contains symbolic value(s) a POC system is built for the conditional and it is 

processed for both possible truth values or all possible case values. The addition 

of the assumed conditional value can be enough to determine the value of some 

or all of the symbolic values. For each equivalence class of values which 

determine a possible conditional value another program path is spawned. As an 

example, assume that x and y are variables with symbolic value in the 

conditional if (x == 0 && y != 1)... Since the values of x and y are 

unknown the condition cannot be resolved so the POC system will assume (x 

== 0 && y != 1) to be both true and false. Under the assumption that it is 

true x will have the value 0 and y will have an interval set value of {(-inf, 1), (1, 

inf)}. These values will be set in memory for the true program path. Under the 

assumption it is false two different possibilities exist: 1) x =  {-inf, 0), (0, inf)} and 

y is still an unknown symbolic value 2) x is still an unknown symbolic value and 

y = 1. In this case two different false paths will be spawned with their memory 
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set accordingly. This if-conditional will spawn three paths total with the 

corresponding modifications to memory. If the POC system can prove that no 

solution exists for an assumed conditional value, the path is infeasible and is 

terminated.  

The system also remembers which variables have had a proxy-value 

assigned to it so if the POC system assigns a value to it, all the other variables 

that were assigned the proxy-value will also get the assumed value. As an 

example assume the following code exists with y a symbolic value: 

 x = y; 

if (y == 0) ... 

...code involving x... 

The if statement will spawn two paths. y will be 0 on one and not 0 on the 

other. However, the system will also know that x will be 0 on the path where y is 

zero and vice versa. 

4.4.6  Symbolic Execution Tree 

The interpreter can execute multiple paths of an executing program. 

Because the interpreter can operate on symbolic values, conditional statements 
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may not be resolvable. In this case the interpreter forks another path and 

continues with both executions, one assuming the condition is true and one 

assuming the condition is false. This creates an execution tree. The leaves are all 

the currently active program paths and the internal nodes are all the decision 

points. The tree is not necessarily binary. Switch statements generate a branch for 

every possible (feasible) case including default. In addition if-statements can also 

generate more than two possible branches. If the condition includes an AND 

operator with both symbolic arguments then in addition to both arguments 

being non-zero to generate the true branch, there are two possible false branches, 

one for each argument independently being false. For the OR operator there is 

one possible false branch, all arguments being false and two possible true 

branches, one for each argument independently being true. If ORs and ANDs are 

combined then it is possible to have multiple true and multiple false branches for 

one if-conditional. 

The nodes of the execution tree are used as an indexing scheme to 

remember what CFG nodes have been executed under what path. This allows 

tracking of how many times a particular path has stepped on (executed) a 

particular node in the CFG. This can be used to determine how many times 
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statements within a loop get executed and stop paths at a predetermined 

number. 

4.4.7  Collecting Semantic Information 

Using menus attached to items in the AST, the user can select collect points 

where dynamically produced information will be collected from. The interpreter 

currently supports collecting information from three types of locations. These 

are: 1) collecting information about values written into struct and union 

members, 2) collecting information about function return values, and 3) 

collecting information about function parameter values. In addition to collecting 

information at these points, the user can attach assertions to be executed at these 

points to verify values. Finally, function return values and function formal 

parameter values can have tracers attached to them. When a function returns a 

value, or an actual gets bound to a formal parameter, these values are marked by 

the function name or the formal name respectively by the tracer. This enables 

collect points to know where the value reaching it came from. This can be useful 

to determine if a value being stored into a struct member has been processed 

by some particular function. 
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The collectors can be set to collect information derived from the value as it 

passes through the collect points. The value itself can be collected (useful for 

members that get assigned enums), assuming a struct value, a value within a 

member of the value can be collected, the type of the value can be collected, a 

label attached to the value by a tracer can be collected, or a value produced by an 

arbitrary filter function on the value can be collected. 

The information is collected as a structured map of objects to attributes. 

The actual struct data constitute the objects and the set of members and data 

values written constitute the attributes. These maps are processed using formal 

concept analysis [67] to create a partial order on the equivalence classes of 

information collected. The resulting concept lattice can be very revealing about 

how the program uses data. Examples of this are how union member access is 

related to a type field within the struct or the structure of function call 

signatures. This type of information can be used to help understand how to 

restructure a program to be more object oriented. 

 

4.5 Prototype 

A prototype of Epitaxis has been implemented to conduct this research. 

Epitaxis is embedded within an augmented LISP [127] environment. It has a large 
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complement of standard LISP features such as a subset of the Common Lisp 

Object System (CLOS) [118], a package system, hash tables, generators, gatherers, 

etc. In addition there are many non-standard LISP features such as support for 

advanced data structures such as b-trees, interval trees, union-find-deunion, 

tries, and suffix trees. There is an embedded Prolog system, an L system, 

sequence and tree alignment algorithms, various machine learning algorithms, a 

lexical analyzer generator and an LALR(1) parser generator. These have been 

combined to form a platform upon which this research was conducted.  

LISP was chosen as a foundation for this research for the following 

reasons. First, the LISP environment is very robust. It is the second oldest 

programming language and has been under evolution for over fifty years by 

very bright people evolving it to solve very difficult programming problems. The 

environment is interactive and reflexive, designed for exploratory evolution of 

complex systems. LISP also has a very robust object-oriented system called 

CLOS. CLOS has a meta-object protocol [87], which makes it reflexive, flexible and 

very powerful. There is a synergy of parts based on its hybrid structure. The 

system is implemented in C, which makes it efficient. All the heavy pieces of 

machinery are directly implemented in C and given an outer wrapper to be 
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callable from LISP. The C code can directly call modules within the interpreter in 

C for efficiency, but all the pieces have LISP interfaces so they can be called 

interactively. In essence, LISP supplies the structure of the environment, a large 

library of subsystems, and a very sophisticated scripting language, which can be 

used for interactive unit testing. 
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Figure 3: Architecture and Processing Pipeline for the Epitaxis Framework 
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Figure 3 shows the basic architecture and processing pipeline of the 

system. The user interface allows the loading of an ASCII source file. If this 

language has not been previously seen a lexical analyzer and parser are built 

using its database of language specifications. The ASCII source code is then 

converted into its AST and ASG. The user interface now has access to the 

semantics of the program through menus associated with the lexical and 

syntactic items in the AST. These can trigger the predefined searches associated 

with the objects in the AST. It is also possible to build additional search routines 

through the user interface and trigger those queries as well. The results of 

searches are expressed by highlighting parts of the AST or by building other 

views, which are “hot” clickable allowing navigation to the corresponding part 

of the AST. The user interface also allows direct typing of characters to alter the 

source code, which reparses the appropriate parts of the AST once the current 

line is exited. In addition structure based alterations of the AST are possible by 

dragging and dropping syntactic items.  Having an editor type interface to the 

query system and interpreter allow a high bandwidth interaction with the 

program. 
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"In theory there is no difference between 

theory and practice, in practice there is." 

--Yogi Berra 

 

Chapter 5 

 

5. Findings 
 

Epitaxis gives the programmer a language in which to ask questions of 

software and supplies answers. In this chapter we will look at some of the  kinds 

of questions Epitaxis can answer and how well it can answer them. The first issue 

is how expressive and relevant are the questions that Epitaxis can answer. Some 

of the kinds of questions that Epitaxis is designed to answer are questions that 

came up while implementing Epitaxis. There is also the issue of efficiency, that is, 

was the answer returned in a timely manner. Lastly there is the issue of query 

range. Some of the questions answered by Epitaxis can be answered by existing 
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query systems and some of them cannot. No system that we know of can answer 

as wide a range of questions.  

5.1 Representation 

Before Epitaxis can answer any question about software it must first build 

a transformation of the program text. This is the first factor affecting scalability. 

How much memory does it take to represent a realistic size program and how 

long does it take to build it. We let Epitaxis compile (build the AST and the CFG) 

its entire code base to see how much memory it consumes and how long it takes 

to load.  The LISP system in which Epitaxis is embedded is 392,690 lines of C code 

representing 12,180 functions in 205 .c files and 120 .h files. All of this needs to be 

in memory for Epitaxis to perform syntactic search on the entire code base. 

However, semantic search (or syntactic search for that matter) really only needs 

the files being searched in memory, not the entire code base. Epitaxis took 88 

seconds to scan and parse the system and consumed 1.3Gb bytes of memory. It 

took an additional 86 seconds to produce the CFG (only needed for semantic 

search) consuming an additional 97 Mb of memory. The memory figure includes 

both the memory needed to hold the representation and the memory consumed 

in the process (which would be recycled if the garbage collector was turned on). 
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Visual Studio 2005 took about 60 seconds to compile the same code. Averaging 

out these numbers on a per file basis gives 7.1 Mb of memory to hold  a 1915 

lines of C code file, compiling in 0.85 seconds. 

5.2 Syntactic Search 

Syntactic questions involve the relationships between parts of the syntax 

tree. These types of questions pertain to navigating code, that is, finding some 

static location in the code base: some point in the AST. They also pertain to 

finding structural abnormalities in the AST such as finding all variables that do 

not have a declaration or finding all loop structures that do not modify at least 

one of their loop conditional variables: something that is not in the AST but 

should be there. The syntactic search language of Epitaxis is expressive enough to 

answer any syntactic question. Although it is possible to give precise answers to 

syntactic questions, in practice there are two difficulties with this. The first is that 

it may be difficult to express the exact syntactic relationship that will answer 

your question. You will get what you asked for, but it may not be what you 

wanted. The second is that the question is really a semantic question and the 

syntactic version of it is only an approximation of what the programmer rea lly 

wants to ask. You will get what you want but not all of it. Assuming no bugs and 
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that you are asking the question you really want, Epitaxis has perfect precision 

and recall on syntactic questions. 

Epitaxis advances syntactic search in two ways beyond what currently 

exists. The first is that the syntactic search engine is not just a finite state machine 

but is a pushdown automata. This increases its expressive power (at the cost of a 

more complex query language). An example of a search involving needing a 

pushdown automata and not just a finite state machine is finding all places 

where a struct member is referenced. It is not sufficient to find all the member 

access expressions with the same name because they can belong to different 

structs. You have to know the type of expression that the member applies to. 

The difficulty is that this can be nested such as x->a->b->c. To know what 

struct member c  applies to you first have to climb down the expression tree 

to x, stacking the member names as you go since these will be needed later. Once 

at x you find the declaration of x, then find the actual struct definition (which 

may involve looking through several typdefs). Now search the struct 

definition for the declaration of a (we popped a off the stack of the member 

names we collected as we walked down the expression tree). Now lookup for the 

struct definition of the type that a points to, search its declarations for one 
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with member b (again popped off the stack). This continues until the stack is 

exhausted and we found the declaration of member c. All other member 

references to c have to be checked this way to find the actual declaration within 

the struct definition to compare if it matches the original. So the search is not 

just walking the syntax tree as a finite state machine can but requires stacking 

states to refer to later to guide the search. This type of search is very common. If 

a programmer is trying to understand code to enable him to modify a struct 

definition he often needs to know all places that some members of that struct 

are referenced. It is helpful to not have to weed through all the false positives a 

simple match on the member name will make, especially for a very large 

software system with many struct definitions. 

The second advance that Epitaxis makes over other syntactic software 

query systems is that it can not only find a single point in the syntax tree related 

to another, or tell you that a point within the tree does not exist, it can extract an 

entire structure related to the syntax tree (or some part of it). An example of this 

is querying the syntax tree and retrieving the control flow graph. Not only is the 

graph retrieved, but it can also be bidirectionally linked to the nodes in the 

syntax tree related to the nodes in the control flow graph. This area of search has 
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not been further pursued, however it may be possible to use Epitaxis to retrieve a 

dominance tree or some other structure related to the syntax tree. 

Several syntactic searches were performed on the entire LISP code base. 

The results are summarized in Table 2. Epitaxis can find syntactic information on 

a large body of code in a an interactive time scale. 

Table 2: Syntactic Search Performance on LISP System 

Search 
Number 
Found 

Time 
(Seconds)  

All Function Definitions 12,180 0.124 
All Function Calls 88,581 1.235 
All Variable Definitions 31,494 2.357 
All Global Definitions 9150 0.2 
All Unused Locals 1076 11.468 

Unmodified Loop Conditionals 2 171 0.216 

 

5.3 Semantic Search 

Semantic questions involves relationships between data values produced 

by executing code. Epitaxis can answer two different categories of questions 

pertaining to executing code. The simplest is about runtime singularities or bugs. 

These are found almost for free. As Epitaxis executes code it has to recognize 

                                                 

2 This is an example of a syntactic search that should really be semantic. Because of function calls and 
pointers, loop variables can be modified without it being syntactically obvious. However, this search is 
useful because programmers often forget to update the loop variable . 
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problems such as NULL dereference or indexing out of bounds if for no other 

reason than to protect itself from crashing. These are reported to the user. There 

are a whole set  of these kinds of problems that Epitaxis finds; null dereference, 

accessing memory out of bounds, reading uninitialized memory, etc... 

The second category of questions is much more semantic in nature. Here 

you direct Epitaxis what to look for. These questions have answers that are 

collected over the execution space of the program. Because the system uses 

symbolic execution and not just dynamic analysis to search the execution space 

the answers have much higher recall. These are questions like: "What is the 

collection of values or value types that a function returns? "What is the 

collections of calling signatures that exist for a function?" "Did the value stored in 

some member location come from some particular function?" "What is the set of 

functions that can give a value to a member field of some struct?" "Has the value 

been process by function x?" "Given some struct object what is the range or 

structure of the relationship between values of members within the same struct?" 

One of the difficulties of asking these kinds of questions is that you have 

to know enough about the code to ask the question, or that the questions is 

sensible to ask. It doesn't make sense to ask these types of questions on any piece 
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of code like it does to ask if a NULL pointer is ever dereferenced. These questions 

presuppose some knowledge about the code that you are asking about.  

5.3.1  Basic Semantic Search - Finding Bugs 

We ran Epitaxis in its basic bug search mode to verify that it can find bugs 

and to determine its scalability. Detecting bugs at their point of failure is easy if 

the symbolic interpreter can reach that point in the code. The important question 

is how efficiently can Epitaxis reach a high enough percent of code coverage to 

find bugs? Or to put it in other terms, does it scale to real world examples. With 

current technology, there is no way that symbolic execution can reach a 

significant percent of code coverage on an entire application. The execution space 

is simply too large. Unlike the symbolic execution systems which instrument 

code and have to start from the beginning (or set up drivers for particular 

functions), the user of Epitaxis can select any piece of code or function body  

interactively and start executing from there (missing context is simply proxied). 

This allows code to be searched/tested in manageable size pieces. We present 

results of running Epitaxis on three different examples: 1) a toy program, 2) a 

small (169 LOC) utility program, and 3) a large function (1294 LOC with 82 

embedded function calls) within a large application. These examples 
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demonstrate the bug finding ability and the time and memory scalability of 

Epitaxis. All examples were run on a 2.62 GHz AMD Athlon™ 64 FX-60 Dual 

Core Processor with 2.50 GB of RAM. 

We first ran Epitaxis on the testme() example of Figure 1. This example is 

reported on in [106] as taking about two minutes to find the ERROR statement 

using hybrid concolic testing with a 2 GHz Pentium M laptop with 1GB of RAM. 

Epitaxis found the error in 0.312 seconds. It explored 528 paths of length 11, 

consumed 19 MB of memory and executed 2,557 expressions and 9,374 

conditionals. This is a toy example that is conditional heavy, designed to test 

symbolic string input.  

A second test was run on tr.c, a GNU core utility to translate characters. 

This code is array pointer and array indexing intensive. The code has many loops 

accessing elements of strings and character arrays. The particular version used 

here comes from MINIX and can be found at [111]. Epitaxis was run on tr.c until it 

ran out of memory. Epitaxis found 7 errors within 2 seconds, 6 pertaining to 

accessing uninitialized memory and one index out of bounds, and ran for an 

additional 48 seconds until it ran out of memory. It had about 85% code coverage 

at that point. Six of the errors were all tracked down to the fact that Epitaxis 

doesn't understand the structure of the argv input parameter to main(int 



 

118 

argc, char **argv). These are an array of input strings. Epitaxis assumes the 

general case where they can possibly be null strings which is not possible in 

argv pointers. Given the possibility of the strings being null, the errors are valid. 

The other error is genuine caused by a malformed input string. It is the same 

error reported in [28]. This error was found in 1.06 seconds. Code coverage 

grows very quickly, then tapers off growing very slowly. The problem is that 

once the interpreter advances far enough it is executing hundreds of thousands 

of paths, so the movement through code slows down to a crawl. Currently, 

Epitaxis runs breath first through the execution tree. By the time Epitaxis ran out 

of memory it was executing 336,316 concurrent execution paths. Since Epitaxis 

can keep track of how many times it has stepped on a piece of code, it should not  

be difficult to add a heuristic to explore paths that have not been stepped on or 

stepped on less times first, and use breath first when step counts are equal. This 

should vastly improve coverage rates and is left for future research. Graphs of 

code coverage and path growth are shown below. 
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Figure 4 Code Coverage for tr.c 
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Figure 5 Path Growth for tr.c 
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A third test was run on the deductive retrieval function of a prolog 

interpreter. It is a large unwieldy function converted from assembly language to 

C code. The main retrieval loop function is 1294 lines of C code. There are an 

additional 15 small auxiliary functions included and 67 functions not included 

which were called by proxy (they return a proxy value of their return type). This 

example contains messy code, and three large switch statements which switch on 

the predefined prolog predicates. The code is also "pointer-to-structure" 

intensive.  

The test was run in four stop modes: 1) stopping when a path steps on 

itself the first time, 2) stopping when a path steps on itself the second time, 3) 

stopping when a path steps on itself the third time, and 4) executing all paths 

without stopping. All cases were run until the system ran out of memory. The 

results are summarized in Table 3 and the figures below.   

Table 3: Symbolic Execution Statistics executing 5 million rules on retrieve() 

 

Mode 
Running 

Rate 
% Code 

Coverage 
Total 
Paths 

Active 
Paths 

Avg.  
Length 

Running 
Time 

# Exprs. 
Exec. 

Errors 
Found 

1)One Step 8,933 53.57 138,474 80,154 31.19 561.48 s 810,245 2 
2)Two Steps 9,110 91.41 183,926 129,807 25.82 551.47 s 816,081 16 
3)Three Steps 5,126 88.66 187,727 123,466 25.45 975.84 s 896,333 15 
4)All 94,006 68.78 265,777 258,028 31.27 54.13 s 1,093,615 10 
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The code contains two primary types of looping constructs. The first is 

looping to walk lists. This structure hurts coverage. The system goes around 

forever without covering new code unless the step count mode is turned on to 

terminate the looping. The second is the main interpreter loop. The prolog 

interpreter loops as it processes predicates. Some of these (such as AND, OR, NOT, 

IF) are predicates on predicates and create complex stack structures. Because of 

the predicate nesting, a large percentage of code will not be executed unless the 

main loop runs at least twice. This is why the code coverage gets stuck at such a 

low value when the paths are not allowed to step on themselves (loop bodies 

execute only once (mode 1). The combination of these two looping constructs 

make mode 2 have the best performance; it loops only enough to get coverage. 

Mode 4 runs much faster since it doesn't have the overhead of checking step 

counts.  

Memory usage increases linearly per Epitaxis interpreter step (see Figure 

7). The slope is steepest for mode 4 since it has tight loops where it keeps 

growing lists. Mode 2, the most appropriate for this example, will run through 

about 2 GB of RAM in 961 seconds. In this time it has explored 240,333 paths to 

an average depth of 23.8 conditionals. It has executed 1,070,507 C expressions 

and conditionals. 16 bugs were found, all NULL pointer dereferences. 
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In interesting effect is that the running rate of Epitaxis' interpreter 

decreases over time (see Figure 6). This is due to increasing size of the data 

structure that represents memory, and the data structure for the execution tree 

used to detect paths stepping on themselves. Although memory is held in an 

interval tree with log2 read and write times, the tree gets large. It may be worth 

removing older values from the tree if they are completely covered by newer 

values. Further research needs to be done to determine if older values get 

completely covered by sibling paths enough to be worth the overhead of finding 

them and removing them. As the execution tree grows, the algorithm which 

records code step counts gets slower; it has a deeper tree to search. This 

additional factor exists in the step count stop modes. 
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Figure 6 Interpreter Running Rate for retrieve() 

 

0

500

1,000

1,500

2,000

2,500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Interpreter Steps (Millions)

M
em

or
y 

(M
B

)

1 step - total

1 step - rate

2 steps - total

2 steps - rate

3 steps - total

3 steps -rate

all steps - total

all steps - rate

 

Figure 7 Interpreter Memory Usage for retrieve() 
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5.3.2  Advanced Semantic Search - Collecting 
Information 

The acme of Epitaxis' search is its ability to answer questions through 

collecting information from throughout the execution space of a program. We 

present a couple of examples where Epitaxis analyzes the use of the struct that 

comprise the elements of the stack from the retrieve() example above. The 

structure of a stack element is shown in Figure 8.  
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struct P_STACK 
{ 
    unsigned is_special   : 1; // special processing on failure 
    unsigned is_junction  : 1; // junction point 
    unsigned sub_clause   : 1; // Indicates a clause in a junction 
    unsigned if_clause    : 1; // Indicates the IF conditional  
    unsigned pred_num     : 8; // Built in predicate number  
 
    P_STACK      *prev_stack;   // Link to prior entry 
    CONS_CELL    *this_request; // Predicate being RETRIEVEd 
    PC_BINDING   *answer;       // Bindings after unification 
    PC_BINDING   *bindings;     // Bindings before unification  
    P_STACK      *junction;     // previous junction 
                                // Points to the junction 
                                // Points to the subclause  
    union  
    { 
    CONS_CELL    *back_bindings;    // Undo if fail  
    P_STACK      *prev_sub_clause;  // previous sub-clause  
    } x; 
 
    union  
    { 
    FACT         *next_assertion;   // Next predicate to RETRIEVE 
    GENERATOR    *next_object; // Next object to RETRIEVE 
    CONS_CELL    *recover_clause; // Recover on CATCH or HANDLER 
    CONS_CELL    *findall_list; // Accumulated list 
    S_EXPRESSION *saved_value; // Generated value 
    } y; 
}; 
 

Figure 8 struct definition for stack element 

The pred_num member field indicates the type of built-in prolog 

predicate and determines which union fields are appropriate. Also the bit fields 

is_special, is_junction, sub_clause, if_clause are set for various 

types of predicates. These indicators are necessary since C does not support 

polymorphism and has to be implemented manually. The problem is to 

determine if all these member fields are being used consistently. In the first 
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example Epitaxis is set to gather all the writes to these five member fields. This 

information is passed to a formal concept analysis algorithm to produce a concept 

lattice representing the equivalence classes of writes to the struct elements. The 

resulting concept lattice is shown in Figure 9. 

 

Figure 9: Concept lattice for writes to type fields within a struct 

The lattice shows that there is no overlap of predicates between 

is_special and is_junction. It also shows that some entries marked 

sub_clause can also be marked if_clause and that these are not built-in 

predicates (as they have no pred_num written). Finally it shows that pred_num 

T 

⊥  

pred_num =  
1,2,3,4,5,20,22,26,37,38 

  is_special = 1   sub_clause = 1   is_junction = 1 

   pred_num = 50 

pred_num =  
19, 25, 32, 34 

  if_clause = 1 
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50 is neither is_special, is_junction, a sub_clause nor within an 

if_clause. 

As another example, we use the feature where Epitaxis can also look at a 

member field within a member field. Certain predicates such as AND, OR, NOT, 

etc. take other predicates as parameters. The junction field of the sub clause's 

P_STACK entry (which should have member sub_clause = 1) is supposed to 

point to the containing AND, OR, NOT, etc. predicate. We can test for this by 

analyzing the pred_num member field of the struct in the junction field. It 

should contain only predicate numbers of junction type predicates. Figure 10 

shows the resulting concept lattice. We also check for correct use of union x. 

When a stack element is a junction the x.prev_sub_clause member field 

should be used, otherwise x.back_bindings member field should be used.  
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Figure 10 Concept lattice for nested member access and union use 

The resulting concept lattice shows that all elements marked sub_clause 

(meaning they are a clause within a junction) have a value in their junction 

member field and lists the corresponding pred_num of that stack element. All 

the listed pred_num are junction predicates. The other chain shows stack entries 

that have no value in the junction member field (these are not sub-clauses). A 

subset of these are marked as junction elements, and have had their 

prev_sub_clause member field initialized to NULL. The test was not run far 

enough for there to be previous sub clauses so only an initialization value is 

present. Note also that all stack elements created are initialized as non-junctions 

T 

⊥  

sub_clause = 1 

junction->pred_number = 
1,2,3,4,5,20,22,26,37,38 

is_junction = 1 
prev_sub_clause = NULL 

back_bindings = CONS -CELL 
junction = NULL 
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and hence the back_bindings member field shows its CONS-CELL value. 

However, any element subsequently marked as is_junction has that same 

field (under the union name prev_sub_clause) initialized to NULL. Had the 

example run further nodes showing values of type P_STACK would be in the 

junction and prev_sub_clause member fields. 
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"Good judgment comes from experience. And 

where does experience come from? Experience 

comes from bad judgment." 

--Mark Twain 

 

"The universe is full of magical things 

patiently waiting for our wits to grow sharper." 

--Eden Phillpots  

Chapter 6 

  

6. Conclusion  
6.1 Reflections 

The goal of Epitaxis is twofold. First to implement a modeling language 

that can be used to build a model1 of software such that it faithfully represents 

and exposes those aspects of software a programmer wants to understand. 

Second to implement a query language that automates extracting that 

information. It is extremely useful to be able to automate this as a programmer’s 

memory and attention span impose severe limits on his ability to do this 

                                                 

1 Model of the software itself, not of the application domain using the software  



 

131 

unaided. Any deficiency in the programmer’s ability to follow code generally 

results in the introduction of bugs. 

This is an interesting problem for several reasons. Given that software is 

represented to the human as a string of text characters, most of the information 

content in it is implicit. Not only is the information implicit, it exists on different 

levels of abstraction. It is therefore necessary to make several transformations to 

the original source code to expose the content. Parsing, control flow graph 

generation, and even execution state space generation (using symbolic execution) 

are transformations used to generate representations of these levels. These 

different transformations require different data structures to represent the result 

as well as different methodologies to search these representations. However 

much is gained if these levels are integrated. 

One of the hallmarks of human intelligence is the ability to abstract and to 

create further abstract representations of representations to use to thereby 

leverage the reasoning process. This is one of the key design goals of the Epitaxis 

system. That is, to be able to take entities within the model of the software 

system, abstract them, represent them, and then use them for a higher (more 

leveraged) level of reasoning. The actual decision as to the when and what of these 

abstractions are currently left to the programmer. What Epitaxis is designed to do 
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is to give the programmer the ability to do this, by providing the machinery to 

create the abstractions and then query them within the modeling environment.   

6.1.1  Modeling 

One of the difficulties of finding information or bugs using symbolic 

execution systems that execute on assembly or machine code is that the 

executable code, while a transformation of the source code into a more semantic 

representation, has had a lot of information thrown out. An important thing to 

remember is that running C code is already a form of abstract interpretation. All 

addresses of the same location, even if read or written as different types are 

abstracted to the same value, i.e. the address. The type information is abstracted 

away. The key to Epitaxis' symbolic execution is to keep this information. It has a 

bearing on correct semantics. It is used to find a broader range of content. 

There are many levels of modeling going on here. There is of course what 

the program is intended to model: the application. There is the source code. 

There is also the model that the compiler produces, the CPU model, which is a 

translation of the source code into a model that the CPU understands. This 

model is designed for efficiency; anything unneeded has been removed. This 

model also has singularities, i.e. states that have no valid continuation (division 
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by zero, dereferencing of non-existent memory, dereferencing of ill-formatted 

data, etc.). It is up to the programmer to ensure that these singularities never 

occur. This is extremely difficult. Ultimately, bugs represent an inconsistency in 

the application model of the software. However, bugs can express themselves on 

different levels of the modeling hierarchy. There is a correlation between how 

soon a bug expresses itself and how low in the modeling hierarchy the bug is. 

Inconsistencies in the application domain might express as incorrect results and 

not become noticed for a long time. Some might later express as singularities in 

the CPU model. They eventually become obvious, but may not for a while. The 

moral is that the higher the modeling level of the inconsistency detected the 

better. 

There are two main ways a model can deviate from what it is modeling. 

The first way is the simple fact that the model is an abstraction, which means that 

things from reality have been removed from the model. This is done for two 

reasons: 1) the detail is irrelevant 2) having the detail is too representationally 

expensive.  The second way is that the model might remember history that the 

reality has no way to hold. This might be called adstraction rather than abstraction. 

Certain facts might only become apparent by knowing the objects history that are 



 

134 

not apparent from knowing the objects current state. (Often various histories can 

reach the same state). In Epitaxis, some semantic history is maintained that has no 

representation in current state of executing C code. An example of this is in 

conversions between integers and pointers. If something gets casted into an 

integer the fact that it is the valid address of something and what that something 

is has no representation within an integer. However this information is crucial if 

the integer is casted back to an address and dereferenced. Without this history it 

is not possible to distinguish between an integer that can be safely casted to an 

address and dereferenced and one that cannot. Until the system crashes, a lot of 

damage can happen to the structure. 

Another example of adstraction is remembering "spatial" context. In 

computing a reference to a member within some structure C only represents the 

address. The fact that the address is within some struct with various properties 

is lost. However this information can be useful because it implies information 

about the semantics of values stored nearby and conceptually related.  

What makes this interesting from the perspective of this work is that 

knowing the history of some value can allow a bug to be identified sooner than 

that bug would manifest in the CPU model. A difficulty of debugging is that 

because history is abstracted away in the CPU model, numerous CPU states are 
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compressions of various correct and non-correct states into one state. So the bug 

will not manifest until this compressed state collides with some other decision 

point that differentiates between the histories far removed from the source. 

6.1.2  Querying 

This research is driven by a real practical need. As programmers write, 

understand, refactor, and debug code they ask various kinds of questions about 

the code. This research is about automating the answering of these questions. 

These questions can broadly be characterized as lexical, syntactic, and semantic 

based. It is interesting to reflect on how the nature of search changes as the 

search goes from lexical to syntactic to semantic. 

 In lexical search there is really no choice of direction. The search starts at 

the beginning and goes until the object is found. Here the search is looking for an 

object of some type and with some name. The most sophisticated variant is wild 

carding on the name and finding a set of objects with a particular pattern to their 

name. Here the search is about identity. There is no context, which may be what 

is needed if the query is to understand naming conventions in the software. 

In syntactic search the search usually involves finding an entity or set of 

entities in contextual (or structural) relationship to another entity or set of 
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entities. It matters where you start and it matters how you choose what direction 

to take. The search is in large part determined by choosing what direct to take. 

You still have a finite search space. You are walking a tree and choosing what 

branch to take based on the type of node you are at (finite state machine)  and/or 

based also on nodes collected before and their relation to the type of node you 

are at (pushdown automata). Syntactic search is about understanding context. 

Things get much more interesting in semantic search; you need to go 

everywhere. You are searching amongst cause and effect relationships. The cause 

and effect relations unfold over time and since it is not possible to know what 

eventually effects what, you are generally forced to explore the entire search 

space. The search space is usually infinite. Structurally you are walking a graph 

(the control flow graph), but conceptually you are walking a tree (the execution 

tree). At the semantic level there is a value space that controls the relationship 

between the graph and the tree.  In general there are four kinds of things you can 

look for: 1) semantic violations, 2) cause and effect relationships, 3) value 

relationships, and 4) functional relationships.  

Semantic violations are a breakdown of the cause and effect in execution 

i.e. a point in execution does not have a valid continuation or an inconsistent 
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data state i.e. a state that system was not designed to model. These can be CPU 

model based, program model based, or application model based. CPU model 

violations are the most straight forward. These include division by zero, null 

value dereference, and array index out of bounds. They represent operators that 

have no result for the set of arguments. They are generally easy to spot since the 

CPU often throws an exception when one is reached. Program model violations 

are a little more abstract. They are often the bug that eventually leads to an CPU 

model violation. These include bugs in the implementation of a data structure, an 

improper calculation, or an unanticipated range of input value. Application model 

violations are a mistake in the model that the software implements. These are 

beyond the scope of this research. 

Questions involving cause and effect relationships are about where a 

value or effect came from. These are useful to understand semantic violations. 

Generally a programmer works backwards from a symptom (the effect) to the 

cause. 

Questions involving value relationships have to do with relationships 

between values.  (Is the type of the value in field x always y when field z == 3). 

These are useful to understand the data representations in the model. Valid data 
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representations typically mandate certain relationships between its parts. 

Knowing if and where these are violated help to find bugs and to refine the data 

model. 

Questions involving functional relations have to do with the relationship 

between a function, its arguments, and its result.   Functions are defined in code 

for a number of reasons. From mundane reasons like packaging up often 

repeated code sequences, to representing programming domain features like 

getting the value associated with a key, to modeling application domain features 

like representing the behavior of an agent. A function often models information 

extraction.  The useful idea here is that a function often is the means to 

answering a query if it could just be executed in the correct context. A future 

feature for Epitaxis is to allow functions (from the program under query) to be 

called in user specified semantic contexts to answer a question or to extract 

information to be collected. 

The usefulness of Epitaxis is in part due to the ephemeral nature of 

semantic access points. Syntactic structures are static and well defined. Locating 

features in them or instrumenting them is relatively straight forward. It is much 

harder to locate or to even find a way to name a point in semantic structures. 
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These are by nature dynamic and conceptual (as opposed to static and 

contextual). Epitaxis supplies a way to name points in semantic space and either 

ask a question there or collect information from it (which often only have 

meaning as an ensemble collected over the execution space). 
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6.2 Further Research 

 

6.2.1  Further Opening Of The Interpreter 

A long standing dichotomy in computer science is between the writer of 

software and the user of software. Typically the writer defines what the software 

can do and the user is stuck with it. He might like to change how some small 

aspect works, but is out of luck. Open program design (sometimes called metaobject 

protocol) allows the user to also become author. This is particularly suitable in the 

present application as the user of this system is a programmer. The idea behind 

open program design is to structure the implementation as an object oriented 

program so that various aspects of the implementation can be modified by 

overriding methods that define the behavior of the system.  

Epitaxis' symbolic interpreter is open. All the operators of the interpreter 

are defined as methods selected by the types of the arguments. Other functions 

of the interpreter such as signaling errors, detecting if and how to collect 

information, binding function parameters, and allocating memory are also 

implemented as overridable methods. Improvement is needed to make this 

system much more systematic and complete. Not all the execution points that 
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should be open have been identified and methodized; these need to be increased.  

Some of the overridable methods need to be broken down into sub-methods so it 

is possible to keep most of the functionality and change only part of it. These 

improvements will make Epitaxis more flexible in practice, not just in theory. 

6.2.2  Automated Refactoring 

Since Epitaxis is very good at locating structural relationships and Epitaxis 

has a search methodology that can build and attach structures based on that 

search, it should be possible to make Epitaxis find and change code in a 

systematic way. A whole library of refactoring searches can be implemented. It 

will be an interesting research challenge to see how far this refactoring can be 

pushed into code writing. 

 

6.2.3 Multi-Threaded Support 

Epitaxis' symbolic interpreter already has multi-path support. It can run 

multiple paths of the program in “parallel”. This support is used internally. It is 

just a hair's breath away to externalize this machinery such that the software 

under symbolic execution can be multi-threaded. Interpreter operators for fork, 

join, wait, sleep, resume, etc, need to be added. These would be straight forward 
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to add; the interpreter would then be able to symbolically execute multi-threaded 

code.  The real work would be to add the query ability to ask questions of the 

multi-threaded code.  

6.2.4  Object Oriented Language Support 

Epitaxis currently supports querying programs in C. Adding the grammar, 

CFG generation rules, and execution rules for an object oriented language such 

as C++ would be straight forward. In addition, execution support would have to 

be added to the interpreter. It needs to be determined what additional query 

support would need to be added to handle the types of questions that could be 

asked of object oriented code. 

6.2.5  Improving The Constraint Solver 

As in every symbolic execution system, the constraint solver is never 

powerful enough. Improving this is a research field in itself. A more contained 

improvement would be to add "constrained" proxy-values. This would allow for 

relationships between different proxy-values such as x is 3 greater than y. This 

would allow for more accurate determination of feasible paths. 
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6.2.6  Understand The External Environment 

Currently, Epitaxis has no awareness of the external environment. It has 

no way to represent an external state that a program might store in the file 

system. Reading these values back in may constrain execution behavior and 

reduce false positives. Epitaxis also has only a very limited knowledge of 

standard C library routines. It currently only has representations for malloc, free, 

longjmp, and setjmp. At a minimum the various string access functions such as 

memcpy, memset, memchr, etc. functions should have representation since many 

bugs manifest in these calls. One could always include the library code source 

but this is cumbersome and many of these routines are in assembly. Epitaxis has 

no ability to handle embedded assembly code. Epitaxis also does not understand 

the semantics of argc and argv. 

6.2.7  Further Forms Of Analysis 

The semantic level query of Epitaxis is only a starting point. Much more 

intelligence can be built into where and how to collect information. There needs 

to be a wider choice of collect points, a wider range of filters, and more ways to 

collect or relate or pieces of linked data structures. It would be useful if functions 

within the application were also available to be used for assertions or filters. In 
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addition, other forms of processing the information collected (besides FCA) can 

be developed. 
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Appendix A 
 
Rules for the execution of C code: 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;; Instructions ;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::noop-instruction :NEXT ?next)) 
      (EXECUTE-INSTRUCTION ?next)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::break-instruction :NEXT ?next)) 
      (EXECUTE-INSTRUCTION ?next)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::continue-instruction :NEXT ?next)) 
      (EXECUTE-INSTRUCTION ?next)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::goto-instruction :NEXT ?next)) 
      (EXECUTE-INSTRUCTION ?next)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::expression-instruction  
                                        :ROOT ?root  
                                        :LEAVES ?leaves  
                                        :NEXT ?next)) 
      (SEQUENCE (EXECUTE-EXPRESSION ?root ?e-value) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(di CLASSES-C::declaration-instruction  
                                          :TYPE ?type  
                                          :NEXT ?next)) 
      (SEQUENCE (DECLARE             ?di ?type) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(sdi CLASSES-C::scalar-declaration-instruction 
                                           :NEXT ?next)) 
      (SEQUENCE (DECLARE-SCALAR      ?sdi) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(pdi CLASSES-C::pointer-declaration-instruction 
                                            :NEXT ?next)) 
      (SEQUENCE (DECLARE-POINTER     ?pdi) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(adi CLASSES-C::array-declaration-instruction  
                                           :NEXT ?next)) 
      (SEQUENCE (DECLARE-ARRAY       ?adi) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(fdi CLASSES-C::function-declaration-instruction 
                                           :NEXT ?next)) 
      (SEQUENCE (DECLARE-FUNCTION    ?fdi) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(rdi CLASSES-C::reference-declaration-instruction 
                                           :NEXT ?next)) 
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      (SEQUENCE (DECLARE-REFERENCE   ?rdi) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION ?(bi CLASSES-C::bind-instruction  
                                          :SOURCE ?fdo  
                                          :NEXT   ?next)) 
      (SEQUENCE (BIND                ?fdo) 
                (EXECUTE-INSTRUCTION ?next))) 
(===> (EXECUTE-INSTRUCTION ?(ui CLASSES-C::unbind-instruction  
                                          :SOURCE ?fdo  
                                          :NEXT   ?next)) 
      (SEQUENCE (UNBIND              ?fdo) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::return-value-instruction :NEXT ?next)) 
      (SEQUENCE (RETURN T) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::allocate-instruction  
                                        :LABEL ?label  
                                        :NEXT  ?next)) 
      (SEQUENCE (ALLOCATE            ?label) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::deallocate-instruction  
                                        :LABEL ?label  
                                        :NEXT  ?next)) 
      (SEQUENCE (DEALLOCATE          ?label) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::catch-instruction  
                                        :LABEL ?label  
                                        :NEXT  ?next)) 
      (CATCH ?label ?next)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::initialize-variable-instructio 
                                        :LVALUE ?lvalue  
                                        :NEXT ?next)) 
      (SEQUENCE (EXECUTE::INITIALIZE-VARIABLE ?lvalue $0) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::set-variable-instruction  
                                        :LVALUE ?lvalue  
                                        :VALUE  ?value  
                                        :NEXT   ?next)) 
      (SEQUENCE (EXECUTE::SET-VALUE ?lvalue ?value) 
                (EXECUTE-INSTRUCTION ?next))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::if-instruction  
                                        :TRUE  ?true  
                                        :FALSE ?false)) 
      (TEST (EXECUTE-INSTRUCTION ?true) (EXECUTE-INSTRUCTION ?false))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::switch-instruction  
                                        :CASES   ?cases  
                                        :DEFAULT ?default)) 
      (SELECT (EXECUTE-INSTRUCTION ?cases) (EXECUTE-INSTRUCTION ?default))) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::fork-instruction :CLAUSES ?clauses)) 
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      (FORK ?clauses)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::halt-instruction )) 
      (HALT)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::error-instruction :ERROR ?error)) 
      (ERROR ?error)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::throw-instruction  
                                        :LABEL ?label  
                                        :VALUE ?value)) 
      (THROW ?label ?value)) 
 
(===> (EXECUTE-INSTRUCTION #I(CLASSES-C::return-instruction)) 
      (RETURN)) 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;; Expressions ;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(===> (EXECUTE-EXPRESSION-LIST (?expr) ?gather) 
      (EXECUTE-EXPRESSION ?expr ?gather)) 
 
(===> (EXECUTE-EXPRESSION-LIST (?expr . ?next-expr) ?gather) 
      (SEQUENCE (EXECUTE-EXPRESSION ?expr ?gather) 
                (EXECUTE-EXPRESSION-LIST ?next-expr ?gather))) 
 
 
(===> (BIND-PARAMETER-LIST (?formal) (?actual . ?)) 
      (BIND-PARAMETER ?formal ?actual)) 
 
(===> (BIND-PARAMETER-LIST (?formal . ?next-formal) (?actual . ?next-actual)) 
      (SEQUENCE (BIND-PARAMETER ?formal ?actual) 
                (BIND-PARAMETER-LIST ?next-formal ?next-actual))) 
 
(===> (BIND-PARAMETER-LIST (?formal . ?next-formal) NIL))         
(===> (BIND-PARAMETER ?(pd CLASSES-C::parameter-declaration  
                                     :SPECIFIER ?(ds declaration-specifier 
                                                     :TYPE ?type)  
                                     :DECLARATOR ?decl) ?a-value) 
      (EXECUTE-DECLARATOR ?decl ?type ?var) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?var ?a-value)) 
 
(===> (BIND-PARAMETER ?(var CLASSES-C::variable) ?a-value) 
      :SIDE-EFFECT (EXECUTE::SET-VARIABLE-VALUE ?var ?a-value)) 
 
 
(===> (EXECUTE-EXPRESSION ?(il CLASSES-C::initializer-list) ?value) 
      :VALUE ?il) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::if-conditional :COND ?cond-1) 
                          ?value-1) 
      (EXECUTE-EXPRESSION ?cond-1 ?c-value-1) 
      :VALUE ?c-value-1) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::comma-expression  
                                       :LEFT  ?left-2  
                                       :RIGHT ?right-2)  
                          ?value-2) 
      (SEQUENCE (EXECUTE-EXPRESSION ?left-2 ?l-value-2) 
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                (EXECUTE-EXPRESSION ?right-2 ?r-value-2)) 
      :VALUE ?l-value-2) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::conditional-expression  
                                       :COND  ?cond-3  
                                       :TRUE  ?true-3  
                                       :FALSE ?false-3)  
                          ?value-3) 
      (IF (EXECUTE-EXPRESSION ?cond-3  ?c-value-3)  
          (EXECUTE-EXPRESSION ?true-3  ?t-value-3)  
          (EXECUTE-EXPRESSION ?false-3 ?f-value-3)) 
      :VALUE (EXECUTE::QUESTION-MARK ?c-value-3 ?t-value-3 ?f-value-3)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::assignment  
                                       :LVALUE     ?lhs-4  
                                       :EXPRESSION ?expr-4)  
                          ?value-4) 
      (SET (EXECUTE-REFERENCE ?lhs-4   ?location-4)  
           (EXECUTE-EXPRESSION ?expr-4 ?e-value-4)) 
      :VALUE       ?e-value-4 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location-4 ?e-value-4)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::add-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|+| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sub-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|-| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mul-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr) ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|*| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::div-assignment  
                                       :LVALUE     ?lhs 
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|/| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
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(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mod-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr) 
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|%| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lsh-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|<<| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::rsh-assignment  
                                       :LVALUE     ?lhs 
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|>>| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::and-assignment  
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr) 
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|&| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::eor-assignment 
                                       :LVALUE     ?lhs  
                                       :EXPRESSION ?expr) 
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location)  
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::|^| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::or-assignment 
                                       :LVALUE     ?lhs 
                                       :EXPRESSION ?expr)  
                          ?value) 
      (SET (EXECUTE-REFERENCE  ?lhs  ?location) 
           (EXECUTE-EXPRESSION ?expr ?e-value)) 
      :VALUE       (EXECUTE::\| (EXECUTE::GET-VALUE ?location) ?e-value) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::logical-or-expression 
                                       :LEFT  ?left  
                                       :RIGHT ?right)  
                           ?value) 
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      (AND (EXECUTE-EXPRESSION ?left ?l-value)  
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::\|\| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::logical-and-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|&&| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-or-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right)  
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::\| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-eor-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|^| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::bit-and-expression 
                                       :LEFT  ?left  
                                       :RIGHT ?right)  
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|&| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::eq-expression 
                                      :LEFT  ?left  
                                      :RIGHT ?right) 
                           ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value) 
      :VALUE (EXECUTE::|==| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::neq-expression  
                                       :LEFT ? left  
                                       :RIGHT ?right)  
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|!=| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lt-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|<| ?l-value ?r-value)) 
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(===> (EXECUTE-EXPRESSION #I(CLASSES-C::le-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right)  
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|<=| ?l-value ?r-value) ) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::gt-expression  
                                       :LEFT  ?left 
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|>| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::ge-expression 
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|>=| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::rsh-expression 
                                       :LEFT  ?left 
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|>>| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::lsh-expression 
                                       :LEFT  ?left 
                                       :RIGHT ?right)  
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|<<| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::add-expression 
                                       :LEFT  ?left 
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|+| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sub-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value)  
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|-| ?l-value ?r-value)) 
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(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mul-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|*| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::div-expression 
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|/| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::mod-expression  
                                       :LEFT  ?left  
                                       :RIGHT ?right) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?left  ?l-value) 
           (EXECUTE-EXPRESSION ?right ?r-value)) 
      :VALUE (EXECUTE::|%| ?l-value ?r-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::not-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE (EXECUTE::|!| ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::complement-expression :ARG ?arg) 
                          ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE (EXECUTE::|~| ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::negate-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE (EXECUTE::NEGATE ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::plus-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE ?a-value) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pre-incr-expression :ARG ?lhs) ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)) 
      :VALUE       (EXECUTE::|+| (EXECUTE::GET-VALUE ?location) 1) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pre-decr-expression :ARG ?lhs) ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)) 
      :VALUE       (EXECUTE::|-| (EXECUTE::GET-VALUE ?location) 1) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location ?value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::post-incr-expression :ARG ?lhs) ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)) 
      :VALUE       (EXECUTE::GET-VALUE ?location) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location (EXECUTE::|+| ?value 1))) 
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(===> (EXECUTE-EXPRESSION #I(CLASSES-C::post-decr-expression :ARG ?lhs) ?value) 
      (SET (EXECUTE-REFERENCE ?lhs ?location)) 
      :VALUE       (EXECUTE::GET-VALUE ?location) 
      :SIDE-EFFECT (EXECUTE::SET-VALUE ?location (EXECUTE::|-| ?value 1))) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::sizeof-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE (EXECUTE::SIZEOF ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::cast-expression  
                                       :CAST       ?cast  
                                       :EXPRESSION ?expr)  
                          ?value) 
      (EXECUTE-EXPRESSION ?expr ?e-value) 
      :VALUE (EXECUTE::CAST ?e-value ?cast)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::addr-of-expression 
                                       :ARG ?(fn CLASSES-C::function-name)) 
                          ?value) 
      :VALUE (EXECUTE::GET-FUNCTION-ADDRESS ?fn)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::addr-of-expression :ARG ?arg) ?value) 
      (EXECUTE-REFERENCE ?arg ?a-value) 
      :VALUE (EXECUTE:ADDRESS-OF ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pointer-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value) 
      :VALUE (EXECUTE::INDIRECT ?a-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::pointer-access-expression  
                                       :TAG    ?tag  
                                       :MEMBER ?member)  
                          ?value) 
      (EXECUTE-EXPRESSION ?tag ?t-value) 
      :VALUE (EXECUTE::GET-MEMBER-INDIRECT-VALUE ?t-value ?member)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::direct-access-expression 
                                       :TAG    ?tag  
                                       :MEMBER ?member) 
                          ?value) 
      (EXECUTE-EXPRESSION ?tag ?t-value) 
      :VALUE (EXECUTE::GET-MEMBER-VALUE ?t-value ?member)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::array-expression 
                                       :ARRAY ?array 
                                       :INDEX ?index) 
                          ?value) 
      (AND (EXECUTE-EXPRESSION ?array ?a-value) 
           (EXECUTE-EXPRESSION ?index ?i-value)) 
      :VALUE (EXECUTE::GET-ARRAY-VALUE ?a-value ?i-value)) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::paren-expression :EXPRESSION ?expr) 
                          ?value) 
      (EXECUTE-EXPRESSION ?expr ?e-value) 
      :VALUE ?e-value) 
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(===> (EXECUTE-EXPRESSION #I(CLASSES-C::function-expression  
                                       :FUN  ?fun  
                                       :ARGS NIL) 
                          ?value) 
      (SEQUENCE (EXECUTE-EXPRESSION ?fun ?f-value) 
                (CALL ?c-value ?f-value)) 
      :VALUE ?c-value) 
 
(===> (EXECUTE-EXPRESSION #I(CLASSES-C::function-expression 
                                       :FUN  ?fun  
                                       :ARGS ?actuals) 
                          ?value) 
      (SEQUENCE (EXECUTE-EXPRESSION ?fun ?f-value) 
                (COLLECT ?a-value :DIRECTION :QUEUE) 
                (EXECUTE-EXPRESSION-LIST ?actuals ?a-value) 
                (IS ?a-values (RESULT-OF ?a-value)) 
                (CALL ?c-value ?f-value ?a-values)) 
      :VALUE ?c-value) 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Primarys ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(===> (EXECUTE-EXPRESSION ?(var variable) ?value) 
      :VALUE (EXECUTE::GET-VARIABLE-VALUE ?var)) 
 
(===> (EXECUTE-EXPRESSION ?(fp CLASSES-C::formal-parameter) ?value) 
      :VALUE (EXECUTE::GET-VARIABLE-VALUE ?fp)) 
 
(===> (EXECUTE-EXPRESSION ?(uv CLASSES-C::undeclared-variable) ?value) 
      :VALUE (make-instance CLASSES-C::unspecified-value)) 
 
(===> (EXECUTE-EXPRESSION ?(mn CLASSES-C::member-name) ?value) 
      :VALUE ?mn) 
 
(===> (EXECUTE-EXPRESSION ?(fn CLASSES-C::function-name) ?value) 
      :VALUE (EXECUTE::GET-FUNCTION-ADDRESS ?fn)) 
 
(===> (EXECUTE-EXPRESSION ?(ufn CLASSES-C::undeclared-function-name) ?value) 
      :VALUE (make-instance CLASSES-C::unspecified-value)) 
 
(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::tag-name) ?value) 
      :VALUE ?tn) 
 
(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::type-name) ?value) 
      :VALUE ?tn) 
 
(===> (EXECUTE-EXPRESSION ?(tn CLASSES-C::typedef-name) ?value) 
      :VALUE ?tn) 
 
(===> (EXECUTE-EXPRESSION ?(ec CLASSES-C::enum-constant) ?value) 
      :VALUE (EXECUTE::ENUM-CONSTANT ?ec)) 
 
(===> (EXECUTE-EXPRESSION ?(fc CLASSES-C::float-constant :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(dc CLASSES-C::double-constant :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
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(===> (EXECUTE-EXPRESSION ?(ldc CLASSES-C::long-double-constant  
                                          :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(ic CLASSES-C::integer-constant :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(uic CLASSES-C::unsigned-integer-constant  
                                          :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(lic CLASSES-C::long-integer-constant 
                                          :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(ulic CLASSES-C::unsigned-long-integer-constant 
                                           :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(cc CLASSES-C::character-constant :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(lcc CLASSES-C::long-character-constant 
                                          :VALUE ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(sc CLASSES-C::string-constant :NAME ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
(===> (EXECUTE-EXPRESSION ?(lsc CLASSES-C::long-string-constant :NAME ?c-value) 
                          ?value) 
      :VALUE (EXECUTE::CONSTANT ?c-value)) 
 
 
;;;;;;;;;;;;;;;;;;;;;;; References for LHS writes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
(===> (EXECUTE-REFERENCE ?(var CLASSES-C::variable) ?value) 
      :VALUE (EXECUTE::GET-VARIABLE-ADDRESS ?var)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::array-expression 
                                      :ARRAY ?array 
                                      :INDEX ?index) 
                         ?value) 
      (SEQUENCE (EXECUTE-EXPRESSION ?array ?a-value) 
                (EXECUTE-EXPRESSION ?index ?i-value)) 
      :VALUE (EXECUTE::GET-ARRAY-ADDRESS ?a-value ?i-value) ) 
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(===> (EXECUTE-REFERENCE #I(CLASSES-C::direct-access-expression 
                                      :TAG    ?tag  
                                      :MEMBER ?member) 
                         ?value) 
      (EXECUTE-EXPRESSION ?tag ?t-value) 
      :VALUE (EXECUTE::GET-MEMBER-ADDRESS ?t-value ?member)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::pointer-access-expression 
                                      :TAG    ?tag 
                                      :MEMBER ?member) 
                         ?value) 
      (EXECUTE-EXPRESSION ?tag ?t-value) 
      :VALUE (EXECUTE::GET-MEMBER-INDIRECT-ADDRESS ?t-value ?member)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C:pointer-expression :ARG ?arg) ?value) 
      (EXECUTE-EXPRESSION ?arg ?a-value)  
      :VALUE (EXECUTE::GET-INDIRECT-ADDRESS ?a-value)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::cast-expression  
                                      :CAST       ?cast 
                                      :EXPRESSION ?expr) 
                         ?value) 
      (EXECUTE-REFERENCE ?expr ?e-value) 
      :VALUE (EXECUTE::CAST ?e-value ?cast)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::add-expression 
                                      :LEFT  ?left  
                                      :RIGHT ?right) 
                         ?value) 
      (AND (EXECUTE-REFERENCE ?left  ?l-value) 
           (EXECUTE-REFERENCE ?right ?r-value)) 
      :VALUE (EXECUTE::|+| ?l-value ?r-value)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::sub-expression 
                                      :LEFT  ?left 
                                      :RIGHT ?right) 
                         ?value) 
      (AND (EXECUTE-REFERENCE ?left  ?l-value) 
           (EXECUTE-REFERENCE ?right ?r-value)) 
      :VALUE (EXECUTE::|-| ?l-value ?r-value)) 
 
(===> (EXECUTE-REFERENCE #I(CLASSES-C::paren-expression :EXPRESSION ?expr) 
                         ?value) 
      (EXECUTE-REFERENCE ?expr ?e-value) 
      :VALUE       ?e-value) 
 
(===> (EXECUTE-REFERENCE ?(expr CLASSES-C::expression) ?value) 
      (EXECUTE-EXPRESSION ?expr ?value) 
      :VALUE ?value) 
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"A couple of months in the laboratory can 

frequently save a couple of hours in the 

library." 

--Frank Westheimer 
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