from collections import defaultdict, namedtuple import six from six.moves import zip, xrange import column import identifiers import logger log = logger.Logger(__name__, logger.INFO) # Prefix for transform columns created during imports. _import_transform_col_prefix = 'gristHelper_Import_' def _gen_colids(transform_rule): """ For a transform_rule with colIds = None, fills in colIds generated from labels. """ dest_cols = transform_rule["destCols"] if any(dc["colId"] for dc in dest_cols): raise ValueError("transform_rule already has colIds in _gen_colids") col_labels = [dest_col["label"] for dest_col in dest_cols] col_ids = identifiers.pick_col_ident_list(col_labels, avoid={'id'}) for dest_col, col_id in zip(dest_cols, col_ids): dest_col["colId"] = col_id def _strip_prefixes(transform_rule): "If transform_rule has prefixed _col_ids, strips prefix" dest_cols = transform_rule["destCols"] for dest_col in dest_cols: colId = dest_col["colId"] if colId and colId.startswith(_import_transform_col_prefix): dest_col["colId"] = colId[len(_import_transform_col_prefix):] def _is_blank(value): "If value is blank (e.g. None, blank string), returns true." if value is None: return True elif isinstance(value, six.string_types) and value.strip() == '': return True else: return False def _build_merge_col_map(column_data, merge_cols): """ Returns a dictionary with keys that are comprised of the values from column_data for the columns in merge_cols. The values are the row ids (index) in column_data for that particular key; multiple row ids imply that duplicates exist that contain the same values for all columns in merge_cols. Used for merging into tables where fast, constant-time lookups are needed. For example, a source table can pass in its column_data into this function to build the map, and the destination table can then query the map using its own values for the columns in merge_cols to check for any matching rows that are candidates for updating. """ merge_col_map = defaultdict(list) for row_id, key in enumerate(zip(*[column_data[col] for col in merge_cols])): # If any part of the key is blank, don't include it in the map. if any(_is_blank(val) for val in key): continue try: merge_col_map[key].append(row_id + 1) except TypeError: pass # If key isn't hashable, don't include it in the map. return merge_col_map # Dictionary mapping merge strategy types from ActiveDocAPI.ts to functions # that merge source and destination column values. # # NOTE: This dictionary should be kept in sync with the types in that file. # # All functions have the same signature: (src, dest) => output, # where src and dest are column values from a source and destination # table respectively, and output is either src or destination. # # For example, a key of replace-with-nonblank-source will return a merge function # that returns the src argument if it's not blank. Otherwise it returns the # dest argument. In the context of incremental imports, this is a function # that update destination fields when the source field isn't blank, preserving # existing values in the destination field that aren't replaced. _merge_funcs = { 'replace-with-nonblank-source': lambda src, dest: dest if _is_blank(src) else src, 'replace-all-fields': lambda src, _: src, 'replace-blank-fields-only': lambda src, dest: src if _is_blank(dest) else dest } class ImportActions(object): def __init__(self, useractions, docmodel, engine): self._useractions = useractions self._docmodel = docmodel self._engine = engine ######################## ## NOTES # transform_rule is an object like this: { # destCols: [ { colId, label, type, formula }, ... ], # ..., # other params unused in sandbox # } # # colId is defined if into_new_table, otherwise is None # GenImporterView gets a hidden table with a preview of the import data (~100 rows) # It adds formula cols and viewsections to the hidden table for the user to # preview and edit import options. GenImporterView can start with a default transform_rule # from table columns, or use one that's passed in (for reimporting). # client/components/Importer.ts then puts together transform_rule, which # specifies destination column formulas, types, labels, and colIds. It only contains colIds # if importing into an existing table, and they are sometimes prefixed with # _import_transform_col_prefix (if transform_rule comes from client) # TransformAndFinishImport gets the full hidden_table (reparsed) and a transform_rule, # (or can use a default one if it's not provided). It fills in colIds if necessary and # strips colId prefixes. It also skips creating some formula columns # (ones with trivial copy formulas) as an optimization. def _MakeDefaultTransformRule(self, hidden_table_id, dest_table_id): """ Makes a basic transform_rule.dest_cols copying all the source cols hidden_table_id: table with src data dest_table_id: table data is going to If dst_table is null, copy all src columns If dst_table exists, copy all dst columns, and make copy formulas if any names match returns transform_rule with only destCols filled in """ tables = self._docmodel.tables hidden_table_rec = tables.lookupOne(tableId=hidden_table_id) # will use these to set default formulas (if column names match in src and dest table) src_cols = {c.colId for c in hidden_table_rec.columns} target_table = tables.lookupOne(tableId=dest_table_id) if dest_table_id else hidden_table_rec target_cols = target_table.columns # makes dest_cols for each column in target_cols (defaults to same columns as hidden_table) #loop through visible, non-formula target columns dest_cols = [] for c in target_cols: if column.is_visible_column(c.colId) and (not c.isFormula or c.formula == ""): dest_cols.append( { "label": c.label, "colId": c.colId if dest_table_id else None, #should be None if into new table "type": c.type, "formula": ("$" + c.colId) if (c.colId in src_cols) else '' }) return {"destCols": dest_cols} # doesnt generate other fields of transform_rule, but sandbox only used destCols # Returns def _MakeImportTransformColumns(self, hidden_table_id, transform_rule, gen_all): """ Makes prefixed columns in the grist hidden import table (hidden_table_id) hidden_table_id: id of temporary hidden table in which columns are made transform_rule: defines columns to make (colids must be filled in!) gen_all: If true, all columns will be generated If false, formulas that just copy will be skipped, and blank formulas will be skipped returns list of newly created colrefs (rowids into _grist_Tables_column) """ tables = self._docmodel.tables hidden_table_rec = tables.lookupOne(tableId=hidden_table_id) src_cols = {c.colId for c in hidden_table_rec.columns} log.debug("destCols:" + repr(transform_rule['destCols'])) #wrap dest_cols as namedtuples, to allow access like 'dest_col.param' dest_cols = [namedtuple('col', c.keys())(*c.values()) for c in transform_rule['destCols']] log.debug("_MakeImportTransformColumns: {}".format("gen_all" if gen_all else "optimize")) #create prefixed formula column for each of dest_cols #take formula from transform_rule new_cols = [] for c in dest_cols: # skip copy and blank columns (unless gen_all) formula = c.formula.strip() isCopyFormula = (formula.startswith("$") and formula[1:] in src_cols) isBlankFormula = not formula if gen_all or (not isCopyFormula and not isBlankFormula): #if colId specified, use that. Else label is fine new_col_id = _import_transform_col_prefix + (c.colId or c.label) new_col_spec = { "label": c.label, "type": c.type, "isFormula": True, "formula": c.formula} result = self._useractions.doAddColumn(hidden_table_id, new_col_id, new_col_spec) new_cols.append(result["colRef"]) return new_cols def _MergeColumnData(self, dest_table_id, column_data, merge_options): """ Merges column_data into table dest_table_id, replacing rows that match all merge_cols with values from column_data, and adding unmatched rows to the end of table dest_table_id. dest_table_id: id of destination table column_data: column data from source table to merge into destination table merge_cols: list of column ids to use as keys for merging """ dest_table = self._engine.tables[dest_table_id] merge_cols = merge_options['mergeCols'] merge_col_map = _build_merge_col_map(column_data, merge_cols) updated_row_ids = [] updated_rows = {} new_rows = {} matched_src_table_rows = set() # Initialize column data for new and updated rows. for col_id in six.iterkeys(column_data): updated_rows[col_id] = [] new_rows[col_id] = [] strategy_type = merge_options['mergeStrategy']['type'] merge = _merge_funcs[strategy_type] # Compute which source table rows should update existing records in destination table. dest_cols = [dest_table.get_column(col) for col in merge_cols] for dest_row_id in dest_table.row_ids: lookup_key = tuple(col.raw_get(dest_row_id) for col in dest_cols) try: src_row_ids = merge_col_map.get(lookup_key) except TypeError: # We can arrive here if lookup_key isn't hashable. If that's the case, skip # this row since we can't efficiently search for a match in the source table. continue if src_row_ids: matched_src_table_rows.update(src_row_ids) updated_row_ids.append(dest_row_id) for col_id, col_vals in six.iteritems(column_data): src_val = col_vals[src_row_ids[-1] - 1] dest_val = dest_table.get_column(col_id).raw_get(dest_row_id) updated_rows[col_id].append(merge(src_val, dest_val)) num_src_rows = len(column_data[merge_cols[0]]) # Compute which source table rows should be added to destination table as new records. for row_id in xrange(1, num_src_rows + 1): # If we've matched against the row before, we shouldn't add it. if row_id in matched_src_table_rows: continue for col_id, col_val in six.iteritems(column_data): new_rows[col_id].append(col_val[row_id - 1]) self._useractions.BulkUpdateRecord(dest_table_id, updated_row_ids, updated_rows) self._useractions.BulkAddRecord(dest_table_id, [None] * (num_src_rows - len(matched_src_table_rows)), new_rows) def DoGenImporterView(self, source_table_id, dest_table_id, transform_rule = None): """ Generates viewsections/formula columns for importer source_table_id: id of temporary hidden table, data parsed from data source dest_table_id: id of table to import to, or None for new table transform_rule: transform_rule to reuse (if it still applies), if None will generate new one Removes old transform viewSection and columns for source_table_id, and creates new ones that match the destination table. Returns the rowId of the newly added section or 0 if no source table (source_table_id can be None in case of importing empty file). Creates formula columns for transforms (match columns in dest table) """ tables = self._docmodel.tables src_table_rec = tables.lookupOne(tableId=source_table_id) # for new table, dest_table_id is None dst_table_rec = tables.lookupOne(tableId=dest_table_id) if dest_table_id else src_table_rec # ======== Cleanup old sections/columns # Transform sections are created without a parent View, so we delete all such sections here. old_sections = [s for s in src_table_rec.viewSections if not s.parentId] self._docmodel.remove(old_sections) # Transform columns are those that start with a special prefix. old_cols = [c for c in src_table_rec.columns if c.colId.startswith(_import_transform_col_prefix)] self._docmodel.remove(old_cols) #======== Prepare/normalize transform_rule, Create new formula columns # Defaults to duplicating dest_table columns (or src_table columns for a new table) # If transform_rule provided, use that if transform_rule is None: transform_rule = self._MakeDefaultTransformRule(source_table_id, dest_table_id) else: #ensure prefixes, colIds are correct _strip_prefixes(transform_rule) if not dest_table_id: # into new table: 'colId's are undefined _gen_colids(transform_rule) else: if None in (dc["colId"] for dc in transform_rule["destCols"]): errstr = "colIds must be defined in transform_rule for importing into existing table: " raise ValueError(errstr + repr(transform_rule)) new_cols = self._MakeImportTransformColumns(source_table_id, transform_rule, gen_all=True) # we want to generate all columns so user can see them and edit #========= Create new transform view section. new_section = self._docmodel.add(self._docmodel.view_sections, tableRef=src_table_rec.id, parentKey='record', borderWidth=1, defaultWidth=100, sortColRefs='[]')[0] self._docmodel.add(new_section.fields, colRef=new_cols) return new_section.id def DoTransformAndFinishImport(self, hidden_table_id, dest_table_id, into_new_table, transform_rule, merge_options): """ Finishes import into new or existing table depending on flag 'into_new_table' Returns destination table id. (new or existing) """ hidden_table = self._engine.tables[hidden_table_id] hidden_table_rec = self._docmodel.tables.lookupOne(tableId=hidden_table_id) src_cols = {c.colId for c in hidden_table_rec.columns} log.debug("Starting TransformAndFinishImport, dest_cols:\n " + str(transform_rule["destCols"] if transform_rule else "None")) log.debug("hidden_table_id:" + hidden_table_id) log.debug("hidden table columns: " + str([(a.colId, a.label, a.type) for a in hidden_table_rec.columns])) log.debug("dest_table_id: " + str(dest_table_id) + ('(NEW)' if into_new_table else '(Existing)')) # === fill in blank transform rule if not transform_rule: transform_dest = None if into_new_table else dest_table_id transform_rule = self._MakeDefaultTransformRule(hidden_table_id, transform_dest) dest_cols = transform_rule["destCols"] # === Normalize transform rule (gen colids) _strip_prefixes(transform_rule) #when transform_rule from client, colIds will be prefixed if into_new_table: # 'colId's are undefined if making new table _gen_colids(transform_rule) else: if None in (dc["colId"] for dc in dest_cols): errstr = "colIds must be defined in transform_rule for importing into existing table: " raise ValueError(errstr + repr(transform_rule)) log.debug("Normalized dest_cols:\n " + str(dest_cols)) # ======== Make and update formula columns # Make columns from transform_rule (now with filled-in colIds colIds), # gen_all false skips copy columns (faster) new_cols = self._MakeImportTransformColumns(hidden_table_id, transform_rule, gen_all=False) self._engine._bring_all_up_to_date() # ========= Fetch Data for each col # (either copying, blank, or from formula column) row_ids = list(hidden_table.row_ids) #fetch row_ids now, before we remove hidden_table log.debug("num rows: " + str(len(row_ids))) column_data = {} # { col:[values...], ... } for curr_col in dest_cols: formula = curr_col["formula"].strip() if formula: if (formula.startswith("$") and formula[1:] in src_cols): #copy formula src_col_id = formula[1:] else: #normal formula, fetch from prefix column src_col_id = _import_transform_col_prefix + curr_col["colId"] log.debug("Copying from: " + src_col_id) src_col = hidden_table.get_column(src_col_id) column_data[curr_col["colId"]] = [src_col.raw_get(r) for r in row_ids] # ========= Cleanup, Prepare new table (if needed), insert data self._useractions.RemoveTable(hidden_table_id) if into_new_table: col_specs = [ {'type': curr_col['type'], 'id': curr_col['colId'], 'label': curr_col['label']} for curr_col in dest_cols] log.debug("Making new table. Columns:\n " + str(col_specs)) new_table = self._useractions.AddTable(dest_table_id, col_specs) dest_table_id = new_table['table_id'] if not merge_options.get('mergeCols'): self._useractions.BulkAddRecord(dest_table_id, [None] * len(row_ids), column_data) else: self._MergeColumnData(dest_table_id, column_data, merge_options) log.debug("Finishing TransformAndFinishImport") return dest_table_id