""" This module defines what sandbox functions are made available to the Node controller, and starts the grist sandbox. See engine.py for the API documentation. """ import os import random import sys from timing import DummyTiming, Timing sys.path.append('thirdparty') # pylint: disable=wrong-import-position import logging import marshal import functools import six import actions import engine import formula_prompt import migrations import schema import useractions import objtypes from acl_formula import parse_acl_formula from sandbox import get_default_sandbox from imports.register import register_import_parsers # Handler for logging, which flushes each message. class FlushingStreamHandler(logging.StreamHandler): def emit(self, record): super(FlushingStreamHandler, self).emit(record) self.flush() # Configure logging module to produce messages with log level and logger name. logging.basicConfig(format="[%(levelname)s] [%(name)s] %(message)s", handlers=[FlushingStreamHandler(sys.stderr)], level=logging.INFO) # The default level is INFO. If a different level is desired, add a call like this: # log.setLevel(logging.WARNING) log = logging.getLogger(__name__) def table_data_from_db(table_name, table_data_repr): if table_data_repr is None: return actions.TableData(table_name, [], {}) table_data_parsed = marshal.loads(table_data_repr) table_data_parsed = {key.decode("utf8"): value for key, value in table_data_parsed.items()} id_col = table_data_parsed.pop("id") return actions.TableData(table_name, id_col, actions.decode_bulk_values(table_data_parsed, _decode_db_value)) def _decode_db_value(value): # Decode database values received from SQLite's allMarshal() call. These are encoded by # marshalling certain types and storing as BLOBs (received in Python as binary strings, as # opposed to text which is received as unicode). See also encodeValue() in DocStorage.js t = type(value) if t == six.binary_type: return objtypes.decode_object(marshal.loads(value)) else: return value def run(sandbox): eng = engine.Engine() def export(method): # Wrap each method so that it logs a message that it's being called. @functools.wraps(method) def wrapper(*args, **kwargs): log.debug("calling %s", method.__name__) return method(*args, **kwargs) sandbox.register(method.__name__, wrapper) def load_and_record_table_data(table_name, table_data_repr): result = table_data_from_db(table_name, table_data_repr) eng.record_table_stats(result, table_data_repr) return result @export def apply_user_actions(action_reprs, user=None): action_group = eng.apply_user_actions([useractions.from_repr(u) for u in action_reprs], user) result = dict( rowCount=eng.count_rows(), **eng.acl_split(action_group).to_json_obj() ) if action_group.requests: result["requests"] = action_group.requests return result @export def fetch_table(table_id, formulas=True, query=None): return actions.get_action_repr(eng.fetch_table(table_id, formulas=formulas, query=query)) @export def fetch_table_schema(): return eng.fetch_table_schema() @export def autocomplete(txt, table_id, column_id, row_id, user): return eng.autocomplete(txt, table_id, column_id, row_id, user) @export def find_col_from_values(values, n, opt_table_id): return eng.find_col_from_values(values, n, opt_table_id) @export def fetch_meta_tables(formulas=True): return {table_id: actions.get_action_repr(table_data) for (table_id, table_data) in six.iteritems(eng.fetch_meta_tables(formulas))} @export def load_meta_tables(meta_tables, meta_columns): return eng.load_meta_tables(load_and_record_table_data("_grist_Tables", meta_tables), load_and_record_table_data("_grist_Tables_column", meta_columns)) @export def load_table(table_name, table_data): return eng.load_table(load_and_record_table_data(table_name, table_data)) @export def get_table_stats(): return eng.get_table_stats() @export def create_migrations(all_tables, metadata_only=False): doc_actions = migrations.create_migrations( {t: table_data_from_db(t, data) for t, data in six.iteritems(all_tables)}, metadata_only) return [actions.get_action_repr(action) for action in doc_actions] @export def get_version(): return schema.SCHEMA_VERSION @export def initialize(doc_url): if os.environ.get("DETERMINISTIC_MODE"): random.seed(1) else: # Make sure we have randomness, even if we are being cloned from a checkpoint random.seed() if doc_url: os.environ['DOC_URL'] = doc_url @export def get_formula_error(table_id, col_id, row_id): return objtypes.encode_object(eng.get_formula_error(table_id, col_id, row_id)) @export def get_formula_prompt(table_id, col_id, description, include_all_tables=True, lookups=True): return formula_prompt.get_formula_prompt(eng, table_id, col_id, description, include_all_tables, lookups) @export def convert_formula_completion(completion): return formula_prompt.convert_completion(completion) @export def evaluate_formula(table_id, col_id, row_id): return formula_prompt.evaluate_formula(eng, table_id, col_id, row_id) @export def start_timing(): eng._timing = Timing() @export def stop_timing(): stats = eng._timing.get() eng._timing = DummyTiming() return stats @export def get_timings(): return eng._timing.get() export(parse_acl_formula) export(eng.load_empty) export(eng.load_done) register_import_parsers(sandbox) log.info("Ready") # This log message is significant for checkpointing. sandbox.run() def main(): run(get_default_sandbox()) if __name__ == "__main__": main()