/** * This module holds an evaluation scripts for AI assistance. It tests ai assistance on the formula * dataset. The formula dataset is made of an index file (formula-dataset-index.csv) and a list of * grist documents hosted on S3. A row in the index file, reference one column (doc_id, table_id, * col_id) amongst theses documents and a free-text description. * * For each entries of the data set, the scripts load the document, requests assistance based on the * description, and applies the suggested actions to the document. Then it compares the col values * before and after. Finally it reverts the modification. * * The list of grist documents for the formula dataset is a screenshot of all templates document * taken somewhere in the beginning of Feb 2023. * * The script maintains a simple cache of all request to AI to save on the ai requests. * * USAGE: * OPENAI_API_KEY= node core/test/formula-dataset/runCompletion.js * * # WITH VERBOSE: * VERBOSE=1 OPENAI_API_KEY= node core/test/formula-dataset/runCompletion.js * * # to reset cache * rm core/test/formula-dataset/data/cache.json */ import { ActiveDoc, Deps as ActiveDocDeps } from "app/server/lib/ActiveDoc"; import { DEPS, sendForCompletion } from "app/server/lib/Assistance"; import log from 'app/server/lib/log'; import crypto from 'crypto'; import parse from 'csv-parse/lib/sync'; import fetch, {RequestInfo, RequestInit, Response} from 'node-fetch'; import * as fs from "fs"; import JSZip from "jszip"; import { isEqual, MapCache } from "lodash"; import path from 'path'; import * as os from 'os'; import { pipeline } from 'stream'; import { createDocTools } from "test/server/docTools"; import { promisify } from 'util'; import { AssistanceResponse, AssistanceState } from "app/common/AssistancePrompts"; import { CellValue } from "app/plugin/GristData"; const streamPipeline = promisify(pipeline); const DATA_PATH = process.env.DATA_PATH || path.join(__dirname, 'data'); const PATH_TO_DOC = path.join(DATA_PATH, 'templates'); const PATH_TO_RESULTS = path.join(DATA_PATH, 'results'); const PATH_TO_CSV = path.join(DATA_PATH, 'formula-dataset-index.csv'); const PATH_TO_CACHE = path.join(DATA_PATH, 'cache'); const TEMPLATE_URL = "https://grist-static.com/datasets/grist_dataset_formulai_2023_02_20.zip"; const oldFetch = DEPS.fetch; interface FormulaRec { no_formula: string; table_id: string; col_id: string; doc_id: string; Description: string; } const _stats = { callCount: 0, }; const SEEMS_CHATTY = (process.env.COMPLETION_MODEL || '').includes('turbo'); const SIMULATE_CONVERSATION = SEEMS_CHATTY; export async function runCompletion() { ActiveDocDeps.ACTIVEDOC_TIMEOUT = 600; // if template directory not exists, make it if (!fs.existsSync(path.join(PATH_TO_DOC))) { fs.mkdirSync(path.join(PATH_TO_DOC), {recursive: true}); // create tempdir const dir = fs.mkdtempSync(path.join(os.tmpdir(), 'grist-templates-')); const destPath = path.join(dir, 'template.zip'); // start downloading console.log( `source url: ${TEMPLATE_URL}\n` + `destination: ${destPath}\n` + `download...` ); const response = await fetch(TEMPLATE_URL); if (!response.ok) { throw new Error(`unexpected response ${response.statusText}`); } await streamPipeline(response.body, fs.createWriteStream(destPath)); console.log('done!\n\n' + 'start extraction...'); // unzip to directory const data = fs.readFileSync(destPath); const zip = await JSZip.loadAsync(data); let count = 0; for (const filename of Object.keys(zip.files)) { if (filename.includes('/')) { continue; } const fileBuffer = await zip.files[filename].async('nodebuffer'); fs.writeFileSync(path.join(PATH_TO_DOC, filename), fileBuffer); count++; } console.log( `Successfully extracted ${count} template files to ${PATH_TO_DOC}` ); } const content = fs.readFileSync(PATH_TO_CSV, {encoding: 'utf8'}); const records = parse(content, {columns: true}) as FormulaRec[]; // let's group by doc id to save on document loading time records.sort((a, b) => a.doc_id.localeCompare(b.doc_id)); if (!process.env.VERBOSE) { log.transports.file.level = 'error'; // Suppress most of log output. } const docTools = createDocTools(); const session = docTools.createFakeSession('owners'); await docTools.before(); let successCount = 0; let caseCount = 0; fs.mkdirSync(path.join(PATH_TO_RESULTS), {recursive: true}); console.log('Testing AI assistance: '); try { DEPS.fetch = fetchWithCache; let activeDoc: ActiveDoc|undefined; for (const rec of records) { let success: boolean = false; let suggestedActions: AssistanceResponse['suggestedActions'] | undefined; let newValues: CellValue[] | undefined; let expected: CellValue[] | undefined; let formula: string | undefined; let history: AssistanceState = {messages: []}; let lastFollowUp: string | undefined; try { async function sendMessage(followUp?: string) { // load new document if (!activeDoc || activeDoc.docName !== rec.doc_id) { const docPath = path.join(PATH_TO_DOC, rec.doc_id + '.grist'); activeDoc = await docTools.loadLocalDoc(docPath); await activeDoc.waitForInitialization(); } if (!activeDoc) { throw new Error("No doc"); } // get values await activeDoc.docData!.fetchTable(rec.table_id); expected = activeDoc.docData!.getTable(rec.table_id)!.getColValues(rec.col_id)!.slice(); // send prompt const tableId = rec.table_id; const colId = rec.col_id; const description = rec.Description; const colInfo = await activeDoc.docStorage.get(` select * from _grist_Tables_column as c left join _grist_Tables as t on t.id = c.parentId where c.colId = ? and t.tableId = ? `, rec.col_id, rec.table_id); formula = colInfo?.formula; const result = await sendForCompletion(session, activeDoc, { conversationId: 'conversationId', context: {type: 'formula', tableId, colId}, state: history, text: followUp || description, }); if (result.state) { history = result.state; } if (rec.no_formula == "1") { success = result.suggestedActions.length === 0; return null; } suggestedActions = result.suggestedActions; // apply modification const {actionNum} = await activeDoc.applyUserActions(session, suggestedActions); // get new values newValues = activeDoc.docData!.getTable(rec.table_id)!.getColValues(rec.col_id)!.slice(); // revert modification const [bundle] = await activeDoc.getActions([actionNum]); await activeDoc.applyUserActionsById(session, [bundle!.actionNum], [bundle!.actionHash!], true); // compare values success = isEqual(expected, newValues); if (!success) { const rowIds = activeDoc.docData!.getTable(rec.table_id)!.getRowIds(); const result = await activeDoc.getFormulaError({client: null, mode: 'system'} as any, rec.table_id, rec.col_id, rowIds[0]); if (Array.isArray(result) && result[0] === 'E') { result.shift(); const txt = `I got a \`${result.shift()}\` error:\n` + '```\n' + result.shift() + '\n' + result.shift() + '\n' + '```\n' + 'Please answer with the code block you (the assistant) just gave, ' + 'revised based on this error. Your answer must include a code block. ' + 'If you have to explain anything, do it after. ' + 'It is perfectly acceptable (and may be necessary) to do ' + 'imports from within a method body.\n'; return { followUp: txt }; } else { for (let i = 0; i < expected.length; i++) { const e = expected[i]; const v = newValues[i]; if (String(e) !== String(v)) { const txt = `I got \`${v}\` where I expected \`${e}\`\n` + 'Please answer with the code block you (the assistant) just gave, ' + 'revised based on this information. Your answer must include a code ' + 'block. If you have to explain anything, do it after.\n'; return { followUp: txt }; } } } } return null; } const result = await sendMessage(); if (result?.followUp && SIMULATE_CONVERSATION) { // Allow one follow up message, based on error or differences. const result2 = await sendMessage(result.followUp); if (result2?.followUp) { lastFollowUp = result2.followUp; } } } catch (e) { console.error(e); } console.log(` ${success ? 'Successfully' : 'Failed to'} complete formula ` + `for column ${rec.table_id}.${rec.col_id} (doc=${rec.doc_id})`); if (success) { successCount++; } else { // TODO: log the difference between expected and actual, similar to what mocha does on // failure. // console.log('expected=', expected); // console.log('actual=', newValues); } const suggestedFormula = suggestedActions?.length === 1 && suggestedActions[0][0] === 'ModifyColumn' && suggestedActions[0][3].formula || suggestedActions; fs.writeFileSync( path.join( PATH_TO_RESULTS, `${rec.table_id}_${rec.col_id}_` + caseCount.toLocaleString('en', {minimumIntegerDigits: 8, useGrouping: false}) + '.json'), JSON.stringify({ formula, suggestedFormula, success, expectedValues: expected, suggestedValues: newValues, history, lastFollowUp, }, null, 2)); caseCount++; } } finally { await docTools.after(); log.transports.file.level = 'debug'; printStats(); DEPS.fetch = oldFetch; console.log( `AI Assistance completed ${successCount} successful prompt on a total of ${records.length};` ); console.log(JSON.stringify( { hit: successCount, total: records.length, percentage: (100.0 * successCount) / Math.max(records.length, 1), } )); } } export function main() { runCompletion().catch(console.error); } function printStats() { console.log(`Ai assistance requests stats: ${_stats.callCount} calls`); } /** * Implements a simple cache that read/write from filesystem. */ class JsonCache implements MapCache { constructor() { if (!fs.existsSync(PATH_TO_CACHE)) { fs.mkdirSync(path.join(PATH_TO_CACHE), {recursive: true}); } } public get(key: string): any { if (!this.has(key)) { return undefined; } const content = JSON.parse(fs.readFileSync(this._path(key), 'utf8')); return JSON.stringify(content.responseBody); } public has(key: string): boolean { return fs.existsSync(this._path(key)); } public set(key: string, value: any): JsonCache { const content = { requestBody: key, responseBody: JSON.parse(value), }; fs.writeFileSync(this._path(key), JSON.stringify(content)); return this; } public clear(): void { throw new Error('not implemented'); } public delete(_key: string): boolean { throw new Error('not implemented'); } private _path(key: string) { return path.join(PATH_TO_CACHE, this._hash(key) + '.json'); } private _hash(key: string) { return crypto.createHash('md5').update(key).digest('hex'); } } /** * Calls fetch and uses caching. */ const _cache = new JsonCache(); const _queue = new Map(); async function fetchWithCache(rinfo: RequestInfo, init?: RequestInit): Promise async function fetchWithCache(rinfo: any, init?: RequestInit): Promise { const url: string = rinfo.url || rinfo.href || rinfo; const hash = JSON.stringify({url, body: init?.body}); if (_cache.has(hash)) { return new Response(_cache.get(hash), {status: 200}); } if (_queue.has(hash)) { return new Response(await _queue.get(hash), {status: 200}); } _queue.set(hash, fetch(url, init)); const response = await _queue.get(hash); _stats.callCount++; if (response.status === 200) { _cache.set(hash, await response.clone().text()); // response cannot be read twice, hence clone } return response; } // ts expect this function fetchWithCache.isRedirect = fetch.isRedirect;