diff --git a/sandbox/grist/functions/math.py b/sandbox/grist/functions/math.py index b556fbba..78e196b6 100644 --- a/sandbox/grist/functions/math.py +++ b/sandbox/grist/functions/math.py @@ -1,6 +1,8 @@ # pylint: disable=unused-argument from __future__ import absolute_import + +import datetime import math as _math import operator import os @@ -38,6 +40,13 @@ def _chain_numeric_a(*values_or_iterables): yield int(v) if ISLOGICAL(v) else v if ISNUMBER(v) else 0 +# Iterates through iterable or other arguments, only including numbers, dates, and datetimes. +def _chain_numeric_or_date(*values_or_iterables): + for v in _chain(*values_or_iterables): + if ISNUMBER(v) and not ISLOGICAL(v) or isinstance(v, (datetime.date, datetime.datetime)): + yield v + + def _round_toward_zero(value): return _math.floor(value) if value >= 0 else _math.ceil(value) diff --git a/sandbox/grist/functions/stats.py b/sandbox/grist/functions/stats.py index 08bcf799..95bf279e 100644 --- a/sandbox/grist/functions/stats.py +++ b/sandbox/grist/functions/stats.py @@ -1,8 +1,9 @@ # pylint: disable=redefined-builtin, line-too-long, unused-argument +import datetime -from .math import _chain, _chain_numeric, _chain_numeric_a +from .math import _chain, _chain_numeric, _chain_numeric_a, _chain_numeric_or_date from .info import ISNUMBER, ISLOGICAL -from .date import DATE # pylint: disable=unused-import +from .date import DATE, DTIME # pylint: disable=unused-import from .unimplemented import unimplemented def _average(iterable): @@ -127,21 +128,24 @@ def CORREL(data_y, data_x): def COUNT(value, *more_values): """ - Returns the count of numerical values in a dataset, ignoring non-numerical values. + Returns the count of numerical and date/datetime values in a dataset, + ignoring other types of values. - Each argument may be a value or an array. Values that are not numbers, including logical + Each argument may be a value or an array. Values that are not numbers or dates, including logical and blank values, and text representations of numbers, are ignored. >>> COUNT([2, -1.0, 11]) 3 >>> COUNT([2, -1, 11, "Hello"]) 3 - >>> COUNT([2, -1, "Hello", DATE(2015,1,1)], True, [False, "123", "", 11.5]) + >>> COUNT([DATE(2000, 1, 1), DATE(2000, 1, 2), DATE(2000, 1, 3), "Hello"]) 3 + >>> COUNT([2, -1, "Hello", DATE(2015,1,1)], True, [False, "123", "", 11.5]) + 4 >>> COUNT(False, True) 0 """ - return sum(1 for v in _chain_numeric(value, *more_values)) + return sum(1 for _ in _chain_numeric_or_date(value, *more_values)) def COUNTA(value, *more_values): @@ -159,7 +163,7 @@ def COUNTA(value, *more_values): >>> COUNTA(False, True) 2 """ - return sum(1 for v in _chain(value, *more_values)) + return sum(1 for _ in _chain(value, *more_values)) @unimplemented @@ -267,24 +271,31 @@ def LOGNORMDIST(x, mean, standard_deviation): def MAX(value, *more_values): """ - Returns the maximum value in a dataset, ignoring non-numerical values. + Returns the maximum value in a dataset, ignoring values other than numbers and dates/datetimes. - Each argument may be a value or an array. Values that are not numbers, including logical + Each argument may be a value or an array. Values that are not numbers or dates, including logical and blank values, and text representations of numbers, are ignored. Returns 0 if the arguments - contain no numbers. + contain no numbers or dates. >>> MAX([2, -1.5, 11.5]) 11.5 - >>> MAX([2, -1.5, "Hello", DATE(2015, 1, 1)], True, [False, "123", "", 11.5]) + >>> MAX([2, -1.5, "Hello"], True, [False, "123", "", 11.5]) 11.5 >>> MAX(True, -123) -123 >>> MAX("123", -123) -123 - >>> MAX("Hello", "123", DATE(2015, 1, 1)) + >>> MAX("Hello", "123", True, False) 0 + >>> MAX(DATE(2015, 1, 1), DATE(2015, 1, 2)) + datetime.date(2015, 1, 2) + >>> MAX(DATE(2015, 1, 1), datetime.datetime(2015, 1, 1, 12, 34, 56)) + datetime.datetime(2015, 1, 1, 12, 34, 56) + >>> MAX(DATE(2015, 1, 2), datetime.datetime(2015, 1, 1, 12, 34, 56)) + datetime.date(2015, 1, 2) """ - return max(_default_if_empty(_chain_numeric(value, *more_values), 0)) + values = _default_if_empty(_chain_numeric_or_date(value, *more_values), 0) + return max(values, key=_compare_date_datetime_key) def MAXA(value, *more_values): @@ -345,26 +356,41 @@ def MEDIAN(value, *more_values): return values[(count - 1) // 2] +def _compare_date_datetime_key(x): + # Convert dates and naive datetimes to timezone-aware datetimes for sorting. + if isinstance(x, (datetime.date, datetime.datetime)): + return DTIME(x) + else: + return x + + def MIN(value, *more_values): """ - Returns the minimum value in a dataset, ignoring non-numerical values. + Returns the minimum value in a dataset, ignoring values other than numbers and dates/datetimes. - Each argument may be a value or an array. Values that are not numbers, including logical + Each argument may be a value or an array. Values that are not numbers or dates, including logical and blank values, and text representations of numbers, are ignored. Returns 0 if the arguments - contain no numbers. + contain no numbers or dates. >>> MIN([2, -1.5, 11.5]) -1.5 - >>> MIN([2, -1.5, "Hello", DATE(2015, 1, 1)], True, [False, "123", "", 11.5]) + >>> MIN([2, -1.5, "Hello"], True, [False, "123", "", 11.5]) -1.5 >>> MIN(True, 123) 123 >>> MIN("-123", 123) 123 - >>> MIN("Hello", "123", DATE(2015, 1, 1)) + >>> MIN("Hello", "123", True, False) 0 + >>> MIN(DATE(2015, 1, 1), DATE(2015, 1, 2)) + datetime.date(2015, 1, 1) + >>> MIN(DATE(2015, 1, 1), datetime.datetime(2015, 1, 1, 12, 34, 56)) + datetime.date(2015, 1, 1) + >>> MIN(DATE(2015, 1, 2), datetime.datetime(2015, 1, 1, 12, 34, 56)) + datetime.datetime(2015, 1, 1, 12, 34, 56) """ - return min(_default_if_empty(_chain_numeric(value, *more_values), 0)) + values = _default_if_empty(_chain_numeric_or_date(value, *more_values), 0) + return min(values, key=_compare_date_datetime_key) def MINA(value, *more_values): """