/** @license Copyright (c) 2012 Daniel Trebbien and other contributors
Portions Copyright (c) 2003 STZ-IDA and PTV AG, Karlsruhe, Germany
Portions Copyright (c) 1995-2001 International Business Machines Corporation and others
All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.
*/
(function () {
var MathContext = (function () {
/* Generated from 'MathContext.nrx' 8 Sep 2000 11:07:48 [v2.00] */
/* Options: Binary Comments Crossref Format Java Logo Strictargs Strictcase Trace2 Verbose3 */
//--package com.ibm.icu.math;
/* ------------------------------------------------------------------ */
/* MathContext -- Math context settings */
/* ------------------------------------------------------------------ */
/* Copyright IBM Corporation, 1997, 2000. All Rights Reserved. */
/* */
/* The MathContext object encapsulates the settings used by the */
/* BigDecimal class; it could also be used by other arithmetics. */
/* ------------------------------------------------------------------ */
/* Notes: */
/* */
/* 1. The properties are checked for validity on construction, so */
/* the BigDecimal class may assume that they are correct. */
/* ------------------------------------------------------------------ */
/* Author: Mike Cowlishaw */
/* 1997.09.03 Initial version (edited from netrexx.lang.RexxSet) */
/* 1997.09.12 Add lostDigits property */
/* 1998.05.02 Make the class immutable and final; drop set methods */
/* 1998.06.05 Add Round (rounding modes) property */
/* 1998.06.25 Rename from DecimalContext; allow digits=0 */
/* 1998.10.12 change to com.ibm.icu.math package */
/* 1999.02.06 add javadoc comments */
/* 1999.03.05 simplify; changes from discussion with J. Bloch */
/* 1999.03.13 1.00 release to IBM Centre for Java Technology */
/* 1999.07.10 1.04 flag serialization unused */
/* 2000.01.01 1.06 copyright update */
/* ------------------------------------------------------------------ */
/* JavaScript conversion (c) 2003 STZ-IDA and PTV AG, Karlsruhe, Germany */
/**
* The MathContext immutable class encapsulates the
* settings understood by the operator methods of the {@link BigDecimal}
* class (and potentially other classes). Operator methods are those
* that effect an operation on a number or a pair of numbers.
*
* The settings, which are not base-dependent, comprise: *
digits:
* the number of digits (precision) to be used for an operation
* form:
* the form of any exponent that results from the operation
* lostDigits:
* whether checking for lost digits is enabled
* roundingMode:
* the algorithm to be used for rounding.
*
* When provided, a MathContext object supplies the
* settings for an operation directly.
*
* When MathContext.DEFAULT is provided for a
* MathContext parameter then the default settings are used
* (9, SCIENTIFIC, false, ROUND_HALF_UP).
*
* In the BigDecimal class, all methods which accept a
* MathContext object defaults) also have a version of the
* method which does not accept a MathContext parameter. These versions
* carry out unlimited precision fixed point arithmetic (as though the
* settings were (0, PLAIN, false, ROUND_HALF_UP).
*
* The instance variables are shared with default access (so they are
* directly accessible to the BigDecimal class), but must
* never be changed.
*
* The rounding mode constants have the same names and values as the
* constants of the same name in java.math.BigDecimal, to
* maintain compatibility with earlier versions of
* BigDecimal.
*
* @see BigDecimal
* @author Mike Cowlishaw
* @stable ICU 2.0
*/
//--public final class MathContext implements java.io.Serializable{
//--private static final java.lang.String $0="MathContext.nrx";
//-- methods
MathContext.prototype.getDigits = getDigits;
MathContext.prototype.getForm = getForm;
MathContext.prototype.getLostDigits = getLostDigits;
MathContext.prototype.getRoundingMode = getRoundingMode;
MathContext.prototype.toString = toString;
MathContext.prototype.isValidRound = isValidRound;
/* ----- Properties ----- */
/* properties public constant */
/**
* Plain (fixed point) notation, without any exponent.
* Used as a setting to control the form of the result of a
* BigDecimal operation.
* A zero result in plain form may have a decimal part of one or
* more zeros.
*
* @see #ENGINEERING
* @see #SCIENTIFIC
* @stable ICU 2.0
*/
//--public static final int PLAIN=0; // [no exponent]
MathContext.PLAIN = MathContext.prototype.PLAIN = 0; // [no exponent]
/**
* Standard floating point notation (with scientific exponential
* format, where there is one digit before any decimal point).
* Used as a setting to control the form of the result of a
* BigDecimal operation.
* A zero result in plain form may have a decimal part of one or
* more zeros.
*
* @see #ENGINEERING
* @see #PLAIN
* @stable ICU 2.0
*/
//--public static final int SCIENTIFIC=1; // 1 digit before .
MathContext.SCIENTIFIC = MathContext.prototype.SCIENTIFIC = 1; // 1 digit before .
/**
* Standard floating point notation (with engineering exponential
* format, where the power of ten is a multiple of 3).
* Used as a setting to control the form of the result of a
* BigDecimal operation.
* A zero result in plain form may have a decimal part of one or
* more zeros.
*
* @see #PLAIN
* @see #SCIENTIFIC
* @stable ICU 2.0
*/
//--public static final int ENGINEERING=2; // 1-3 digits before .
MathContext.ENGINEERING = MathContext.prototype.ENGINEERING = 2; // 1-3 digits before .
// The rounding modes match the original BigDecimal class values
/**
* Rounding mode to round to a more positive number.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If any of the discarded digits are non-zero then the result
* should be rounded towards the next more positive digit.
* @stable ICU 2.0
*/
//--public static final int ROUND_CEILING=2;
MathContext.ROUND_CEILING = MathContext.prototype.ROUND_CEILING = 2;
/**
* Rounding mode to round towards zero.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* All discarded digits are ignored (truncated). The result is
* neither incremented nor decremented.
* @stable ICU 2.0
*/
//--public static final int ROUND_DOWN=1;
MathContext.ROUND_DOWN = MathContext.prototype.ROUND_DOWN = 1;
/**
* Rounding mode to round to a more negative number.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If any of the discarded digits are non-zero then the result
* should be rounded towards the next more negative digit.
* @stable ICU 2.0
*/
//--public static final int ROUND_FLOOR=3;
MathContext.ROUND_FLOOR = MathContext.prototype.ROUND_FLOOR = 3;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded down.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If the discarded digits represent greater than half (0.5 times)
* the value of a one in the next position then the result should be
* rounded up (away from zero). Otherwise the discarded digits are
* ignored.
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_DOWN=5;
MathContext.ROUND_HALF_DOWN = MathContext.prototype.ROUND_HALF_DOWN = 5;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded to the nearest even neighbor.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If the discarded digits represent greater than half (0.5 times) * the value of a one in the next position then the result should be * rounded up (away from zero). If they represent less than half, * then the result should be rounded down. *
* Otherwise (they represent exactly half) the result is rounded
* down if its rightmost digit is even, or rounded up if its
* rightmost digit is odd (to make an even digit).
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_EVEN=6;
MathContext.ROUND_HALF_EVEN = MathContext.prototype.ROUND_HALF_EVEN = 6;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded up.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If the discarded digits represent greater than or equal to half
* (0.5 times) the value of a one in the next position then the result
* should be rounded up (away from zero). Otherwise the discarded
* digits are ignored.
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_UP=4;
MathContext.ROUND_HALF_UP = MathContext.prototype.ROUND_HALF_UP = 4;
/**
* Rounding mode to assert that no rounding is necessary.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* Rounding (potential loss of information) is not permitted.
* If any of the discarded digits are non-zero then an
* ArithmeticException should be thrown.
* @stable ICU 2.0
*/
//--public static final int ROUND_UNNECESSARY=7;
MathContext.ROUND_UNNECESSARY = MathContext.prototype.ROUND_UNNECESSARY = 7;
/**
* Rounding mode to round away from zero.
* Used as a setting to control the rounding mode used during a
* BigDecimal operation.
*
* If any of the discarded digits are non-zero then the result will * be rounded up (away from zero). * @stable ICU 2.0 */ //--public static final int ROUND_UP=0; MathContext.ROUND_UP = MathContext.prototype.ROUND_UP = 0; /* properties shared */ /** * The number of digits (precision) to be used for an operation. * A value of 0 indicates that unlimited precision (as many digits * as are required) will be used. *
* The {@link BigDecimal} operator methods use this value to * determine the precision of results. * Note that leading zeros (in the integer part of a number) are * never significant. *
* digits will always be non-negative.
*
* @serial
*/
//--int digits;
/**
* The form of results from an operation.
*
* The {@link BigDecimal} operator methods use this value to
* determine the form of results, in particular whether and how
* exponential notation should be used.
*
* @see #ENGINEERING
* @see #PLAIN
* @see #SCIENTIFIC
* @serial
*/
//--int form; // values for this must fit in a byte
/**
* Controls whether lost digits checking is enabled for an
* operation.
* Set to true to enable checking, or
* to false to disable checking.
*
* When enabled, the {@link BigDecimal} operator methods check
* the precision of their operand or operands, and throw an
* ArithmeticException if an operand is more precise
* than the digits setting (that is, digits would be lost).
* When disabled, operands are rounded to the specified digits.
*
* @serial
*/
//--boolean lostDigits;
/**
* The rounding algorithm to be used for an operation.
*
* The {@link BigDecimal} operator methods use this value to
* determine the algorithm to be used when non-zero digits have to
* be discarded in order to reduce the precision of a result.
* The value must be one of the public constants whose name starts
* with
* For example:
*
* Additional words may be appended to the result of
*
* As the numbers are decimal, there is an exact correspondence between
* an instance of a
* In the descriptions of constructors and methods in this documentation,
* the value of a
* The floating point arithmetic provided by this class is defined by
* the ANSI X3.274-1996 standard, and is also documented at
*
* Operations on
* Each operator method also has a version provided which does
* not take a
* For monadic operators, only the optional
* For dyadic operators, a
* For example, adding two
* (where
* When a where the value on the right of the results in results in
* The form of the exponential notation (scientific or engineering) is
* determined by the
* The names of methods in this class follow the conventions established
* by
* This property is an optimization; it allows us to defer number
* layout until it is actually needed as a string, hence avoiding
* unnecessary formatting.
*
* @serial
*/
//--private byte form=(byte)com.ibm.icu.math.MathContext.PLAIN; // assumed PLAIN
// We only need two bits for this, at present, but use a byte
// [again, to allow for smooth future extension]
/**
* The value of the mantissa.
*
* Once constructed, this may become shared between several BigDecimal
* objects, so must not be altered.
*
* For efficiency (speed), this is a byte array, with each byte
* taking a value of 0 -> 9.
*
* If the first byte is 0 then the value of the number is zero (and
* mant.length=1, except when constructed from a plain number, for
* example, 0.000).
*
* @serial
*/
//--private byte mant[]; // assumed null
/**
* The exponent.
*
* For fixed point arithmetic, scale is
* Constructs a
* (Note: this constructor is provided only in the
*
* Constructs a
* The
* Constructs a
* The
* Constructs a
* Using this constructor is faster than using the
*
* Constructs a
* Using this constructor is faster than using the
*
* Constructs a
* Note that this constructor it an exact conversion; it does not give
* the same result as converting
* Constructs a
* Constructs a
* Constructs a
* In summary, numbers in
* Some valid strings from which a
* (Exponential notation means that the number includes an optional
* sign and a power of ten following an 'E' that
* indicates how the decimal point will be shifted. Thus the
*
* The
* Any digits in the parameter must be decimal; that is,
*
* The same as {@link #abs(MathContext)}, where the context is
*
* The length of the decimal part (the scale) of the result will
* be
* If the current object is zero or positive, then the same result as
* invoking the {@link #plus(MathContext)} method with the same
* parameter is returned.
* Otherwise, the same result as invoking the
* {@link #negate(MathContext)} method with the same parameter is
* returned.
*
* @param set The
* The same as {@link #add(BigDecimal, MathContext)},
* where the
* The length of the decimal part (the scale) of the result will be
* the maximum of the scales of the two operands.
*
* @param rhs The
* Implements the addition (
* The same as {@link #compareTo(BigDecimal, MathContext)},
* where the
* Implements numeric comparison,
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns a result of type
* The result will be:
*
* A {@link #compareTo(Object)} method is also provided.
*
* @param rhs The
* The same as {@link #divide(BigDecimal, int)},
* where the
* The same as {@link #divide(BigDecimal, int, int)},
* where the
* The length of the decimal part (the scale) of the result will
* therefore be the same as the scale of the current object, if the
* latter were formatted without exponential notation.
*
* @param rhs The
* The same as {@link #divide(BigDecimal, MathContext)},
* where the
* The length of the decimal part (the scale) of the result will be
* the same as the scale of the current object, if the latter were
* formatted without exponential notation.
*
* @param rhs The
* Implements the division (
* The same as {@link #divideInteger(BigDecimal, MathContext)},
* where the
* Implements the integer division operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a
* The same as {@link #max(BigDecimal, MathContext)},
* where the
* Returns the larger of the current object and the first parameter.
*
* If calling the {@link #compareTo(BigDecimal, MathContext)} method
* with the same parameters would return
* The same as {@link #min(BigDecimal, MathContext)},
* where the
* Returns the smaller of the current object and the first parameter.
*
* If calling the {@link #compareTo(BigDecimal, MathContext)} method
* with the same parameters would return
* The same as {@link #add(BigDecimal, MathContext)},
* where the
* The length of the decimal part (the scale) of the result will be
* the sum of the scales of the operands, if they were formatted
* without exponential notation.
*
* @param rhs The
* Implements the multiplication (
* The same as {@link #negate(MathContext)}, where the context is
*
* The length of the decimal part (the scale) of the result will be
* be
* Implements the negation (Prefix
* The same as {@link #plus(MathContext)}, where the context is
*
* The length of the decimal part (the scale) of the result will be
* be
* Implements the plus (Prefix
* This method is useful for rounding or otherwise applying a context
* to a decimal value.
*
* @param set The
* The same as {@link #pow(BigDecimal, MathContext)},
* where the
* The parameter is the power to which the
* In addition, the power must not be negative, as no
*
* Implements the power (
* The first parameter is the power to which the
* If the
* The same as {@link #remainder(BigDecimal, MathContext)},
* where the
* This is not the modulo operator -- the result may be negative.
*
* @param rhs The
* Implements the remainder operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a
* This is not the modulo operator -- the result may be negative.
*
* @param rhs The
* The same as {@link #subtract(BigDecimal, MathContext)},
* where the
* The length of the decimal part (the scale) of the result will be
* the maximum of the scales of the two operands.
*
* @param rhs The
* Implements the subtraction (
* If the parameter is
* The {@link #compareTo(BigDecimal, MathContext)} method should be
* used when a
* The double produced is identical to result of expressing the
*
* If the parameter is
* "Exactly equal", here, means that the
* The {@link #compareTo(BigDecimal, MathContext)} method should be
* used for more general comparisons.
* @param rhs The
* The float produced is identical to result of expressing the
*
* This method is provided as a primitive for use by more
* sophisticated classes, such as
* The parameters, for both forms of the
* The parameters,
*
*
* Other rounding methods, and the use of exponential notation, can
* be selected by using {@link #format(int,int,int,int,int,int)}.
* Using the two-parameter form of the method has exactly the same
* effect as using the six-parameter form with the final four
* parameters all being -1.
*
* @param before The
* This method is provided as a primitive for use by more
* sophisticated classes, such as
* The parameters are all of type
* The first two parameters (
* The remaining parameters control the use of exponential notation
* and rounding. Three (
*
*
*
* Finally, the sixth argument,
* The special value
* Note that two
*
*
* If the given scale (which must be zero or positive) is the same as
* or greater than the length of the decimal part (the scale) of this
*
* If the given scale is less than the length of the decimal part (the
* scale) of this
* The same as {@link #setScale(int, int)}, where the first parameter
* is the scale, and the second is
*
* If the given scale (which must be zero or positive) is the same as
* or greater than the length of the decimal part (the scale) of this
*
* If the given scale is less than the length of the decimal part (the
* scale) of this
* If
* This is an exact conversion; the result is the same as if the
*
* (Note: this method is provided only in the
*
* Any decimal part is truncated (discarded).
* If an exception is desired should the decimal part be non-zero,
* use {@link #toBigIntegerExact()}.
*
* @return The
* An exception is thrown if the decimal part (if any) is non-zero.
*
* @return The
* By definition, using the {@link #BigDecimal(String)} constructor
* on the result
* Returns a
* The number is constructed as though
* The result is given by:
*
* A The mantissa will either already have been rounded (following an
operation) or will be of length appropriate (in the case of
construction from an int, for example).
We must not alter the mantissa, here.
'form' describes whether we are to use exponential notation (and
if so, which), or if we are to lay out as a plain/pure numeric.
If OK, returns it as an int. This routine performs the calculation:
If M<0 then A>=B must be true, so the result is always
non-negative.
Leading zeros are not removed after a subtraction. The result is
either the same length as the longer of A and B, or 1 longer than
that (if a carry occurred).
A is not altered unless Arg6 is 1.
B is never altered.
Arg1 is A
Arg2 is A length to use (if longer than A, pad with 0's)
Arg3 is B
Arg4 is B length to use (if longer than B, pad with 0's)
Arg5 is M, the multiplier
Arg6 is 1 if A can be used to build the result (if it fits)
This routine is severely performance-critical; *any* change here
must be measured (timed) to assure no performance degradation.
*/
// 1996.02.20 -- enhanced version of DMSRCN algorithm (1981)
// 1997.10.05 -- changed to byte arrays (from char arrays)
// 1998.07.01 -- changed to allow destructive reuse of LHS
// 1998.07.01 -- changed to allow virtual lengths for the arrays
// 1998.12.29 -- use lookaside for digit/carry calculation
// 1999.08.07 -- avoid multiply when mult=1, and make db an int
// 1999.12.22 -- special case m=-1, also drop 0 special case
//--private static final byte[] byteaddsub(byte a[],int avlen,byte b[],int bvlen,int m,boolean reuse){
function byteaddsub(a, avlen, b, bvlen, m, reuse) {
//--int alength;
var alength;
//--int blength;
var blength;
//--int ap;
var ap;
//--int bp;
var bp;
//--int maxarr;
var maxarr;
//--byte reb[];
var reb;
//--boolean quickm;
var quickm;
//--int digit;
var digit;
//--int op=0;
var op=0;
//--int dp90=0;
var dp90=0;
//--byte newarr[];
var newarr;
//--int i=0;
var i=0;
// We'll usually be right if we assume no carry
alength=a.length; // physical lengths
blength=b.length; // ..
ap=avlen-1; // -> final (rightmost) digit
bp=bvlen-1; // ..
maxarr=bp;
if (maxarr This does NOT make a copy of the mantissa array.
This finishes off the current number by:
1. Rounding if necessary (NB: length includes leading zeros)
2. Stripping trailing zeros (if requested and \PLAIN)
3. Stripping leading zeros (always)
4. Selecting exponential notation (if required)
5. Converting a zero result to just '0' (if \PLAIN)
In practice, these operations overlap and share code.
It always sets form.
ROUND_.
*
* @see #ROUND_CEILING
* @see #ROUND_DOWN
* @see #ROUND_FLOOR
* @see #ROUND_HALF_DOWN
* @see #ROUND_HALF_EVEN
* @see #ROUND_HALF_UP
* @see #ROUND_UNNECESSARY
* @see #ROUND_UP
* @serial
*/
//--int roundingMode;
/* properties private constant */
// default settings
//--private static final int DEFAULT_FORM=SCIENTIFIC;
//--private static final int DEFAULT_DIGITS=9;
//--private static final boolean DEFAULT_LOSTDIGITS=false;
//--private static final int DEFAULT_ROUNDINGMODE=ROUND_HALF_UP;
MathContext.prototype.DEFAULT_FORM=MathContext.prototype.SCIENTIFIC;
MathContext.prototype.DEFAULT_DIGITS=9;
MathContext.prototype.DEFAULT_LOSTDIGITS=false;
MathContext.prototype.DEFAULT_ROUNDINGMODE=MathContext.prototype.ROUND_HALF_UP;
/* properties private constant */
//--private static final int MIN_DIGITS=0; // smallest value for DIGITS.
//--private static final int MAX_DIGITS=999999999; // largest value for DIGITS. If increased,
MathContext.prototype.MIN_DIGITS=0; // smallest value for DIGITS.
MathContext.prototype.MAX_DIGITS=999999999; // largest value for DIGITS. If increased,
// the BigDecimal class may need update.
// list of valid rounding mode values, most common two first
//--private static final int ROUNDS[]=new int[]{ROUND_HALF_UP,ROUND_UNNECESSARY,ROUND_CEILING,ROUND_DOWN,ROUND_FLOOR,ROUND_HALF_DOWN,ROUND_HALF_EVEN,ROUND_UP};
MathContext.prototype.ROUNDS=new Array(MathContext.prototype.ROUND_HALF_UP,MathContext.prototype.ROUND_UNNECESSARY,MathContext.prototype.ROUND_CEILING,MathContext.prototype.ROUND_DOWN,MathContext.prototype.ROUND_FLOOR,MathContext.prototype.ROUND_HALF_DOWN,MathContext.prototype.ROUND_HALF_EVEN,MathContext.prototype.ROUND_UP);
//--private static final java.lang.String ROUNDWORDS[]=new java.lang.String[]{"ROUND_HALF_UP","ROUND_UNNECESSARY","ROUND_CEILING","ROUND_DOWN","ROUND_FLOOR","ROUND_HALF_DOWN","ROUND_HALF_EVEN","ROUND_UP"}; // matching names of the ROUNDS values
MathContext.prototype.ROUNDWORDS=new Array("ROUND_HALF_UP","ROUND_UNNECESSARY","ROUND_CEILING","ROUND_DOWN","ROUND_FLOOR","ROUND_HALF_DOWN","ROUND_HALF_EVEN","ROUND_UP"); // matching names of the ROUNDS values
/* properties private constant unused */
// Serialization version
//--private static final long serialVersionUID=7163376998892515376L;
/* properties public constant */
/**
* A MathContext object initialized to the default
* settings for general-purpose arithmetic. That is,
* digits=9 form=SCIENTIFIC lostDigits=false
* roundingMode=ROUND_HALF_UP.
*
* @see #SCIENTIFIC
* @see #ROUND_HALF_UP
* @stable ICU 2.0
*/
//--public static final com.ibm.icu.math.MathContext DEFAULT=new com.ibm.icu.math.MathContext(DEFAULT_DIGITS,DEFAULT_FORM,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
MathContext.prototype.DEFAULT=new MathContext(MathContext.prototype.DEFAULT_DIGITS,MathContext.prototype.DEFAULT_FORM,MathContext.prototype.DEFAULT_LOSTDIGITS,MathContext.prototype.DEFAULT_ROUNDINGMODE);
/* ----- Constructors ----- */
/**
* Constructs a new MathContext with a specified
* precision.
* The other settings are set to the default values
* (see {@link #DEFAULT}).
*
* An IllegalArgumentException is thrown if the
* setdigits parameter is out of range
* (<0 or >999999999).
*
* @param setdigits The int digits setting
* for this MathContext.
* @throws IllegalArgumentException parameter out of range.
* @stable ICU 2.0
*/
//--public MathContext(int setdigits){
//-- this(setdigits,DEFAULT_FORM,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
//-- return;}
/**
* Constructs a new MathContext with a specified
* precision and form.
* The other settings are set to the default values
* (see {@link #DEFAULT}).
*
* An IllegalArgumentException is thrown if the
* setdigits parameter is out of range
* (<0 or >999999999), or if the value given for the
* setform parameter is not one of the appropriate
* constants.
*
* @param setdigits The int digits setting
* for this MathContext.
* @param setform The int form setting
* for this MathContext.
* @throws IllegalArgumentException parameter out of range.
* @stable ICU 2.0
*/
//--public MathContext(int setdigits,int setform){
//-- this(setdigits,setform,DEFAULT_LOSTDIGITS,DEFAULT_ROUNDINGMODE);
//-- return;}
/**
* Constructs a new MathContext with a specified
* precision, form, and lostDigits setting.
* The roundingMode setting is set to its default value
* (see {@link #DEFAULT}).
*
* An IllegalArgumentException is thrown if the
* setdigits parameter is out of range
* (<0 or >999999999), or if the value given for the
* setform parameter is not one of the appropriate
* constants.
*
* @param setdigits The int digits setting
* for this MathContext.
* @param setform The int form setting
* for this MathContext.
* @param setlostdigits The boolean lostDigits
* setting for this MathContext.
* @throws IllegalArgumentException parameter out of range.
* @stable ICU 2.0
*/
//--public MathContext(int setdigits,int setform,boolean setlostdigits){
//-- this(setdigits,setform,setlostdigits,DEFAULT_ROUNDINGMODE);
//-- return;}
/**
* Constructs a new MathContext with a specified
* precision, form, lostDigits, and roundingMode setting.
*
* An IllegalArgumentException is thrown if the
* setdigits parameter is out of range
* (<0 or >999999999), or if the value given for the
* setform or setroundingmode parameters is
* not one of the appropriate constants.
*
* @param setdigits The int digits setting
* for this MathContext.
* @param setform The int form setting
* for this MathContext.
* @param setlostdigits The boolean lostDigits
* setting for this MathContext.
* @param setroundingmode The int roundingMode setting
* for this MathContext.
* @throws IllegalArgumentException parameter out of range.
* @stable ICU 2.0
*/
//--public MathContext(int setdigits,int setform,boolean setlostdigits,int setroundingmode){super();
function MathContext() {
//-- members
this.digits = 0;
this.form = 0; // values for this must fit in a byte
this.lostDigits = false;
this.roundingMode = 0;
//-- overloaded ctor
var setform = this.DEFAULT_FORM;
var setlostdigits = this.DEFAULT_LOSTDIGITS;
var setroundingmode = this.DEFAULT_ROUNDINGMODE;
if (MathContext.arguments.length == 4)
{
setform = MathContext.arguments[1];
setlostdigits = MathContext.arguments[2];
setroundingmode = MathContext.arguments[3];
}
else if (MathContext.arguments.length == 3)
{
setform = MathContext.arguments[1];
setlostdigits = MathContext.arguments[2];
}
else if (MathContext.arguments.length == 2)
{
setform = MathContext.arguments[1];
}
else if (MathContext.arguments.length != 1)
{
throw "MathContext(): " + MathContext.arguments.length + " arguments given; expected 1 to 4";
}
var setdigits = MathContext.arguments[0];
// set values, after checking
if (setdigits!=this.DEFAULT_DIGITS)
{
if (setdigitsint which is the value of the digits
* setting
* @stable ICU 2.0
*/
//--public int getDigits(){
function getDigits() {
return this.digits;
}
/**
* Returns the form setting.
* This will be one of
* {@link #ENGINEERING},
* {@link #PLAIN}, or
* {@link #SCIENTIFIC}.
*
* @return an int which is the value of the form setting
* @stable ICU 2.0
*/
//--public int getForm(){
function getForm() {
return this.form;
}
/**
* Returns the lostDigits setting.
* This will be either true (enabled) or
* false (disabled).
*
* @return a boolean which is the value of the lostDigits
* setting
* @stable ICU 2.0
*/
//--public boolean getLostDigits(){
function getLostDigits() {
return this.lostDigits;
}
/**
* Returns the roundingMode setting.
* This will be one of
* {@link #ROUND_CEILING},
* {@link #ROUND_DOWN},
* {@link #ROUND_FLOOR},
* {@link #ROUND_HALF_DOWN},
* {@link #ROUND_HALF_EVEN},
* {@link #ROUND_HALF_UP},
* {@link #ROUND_UNNECESSARY}, or
* {@link #ROUND_UP}.
*
* @return an int which is the value of the roundingMode
* setting
* @stable ICU 2.0
*/
//--public int getRoundingMode(){
function getRoundingMode() {
return this.roundingMode;
}
/** Returns the MathContext as a readable string.
* The String returned represents the settings of the
* MathContext object as four blank-delimited words
* separated by a single blank and with no leading or trailing blanks,
* as follows:
*
*
* digits=, immediately followed by
* the value of the digits setting as a numeric word.
* form=, immediately followed by
* the value of the form setting as an uppercase word
* (one of SCIENTIFIC, PLAIN, or
* ENGINEERING).
* lostDigits=, immediately followed by
* the value of the lostDigits setting
* (1 if enabled, 0 if disabled).
* roundingMode=, immediately followed by
* the value of the roundingMode setting as a word.
* This word will be the same as the name of the corresponding public
* constant.
*
* digits=9 form=SCIENTIFIC lostDigits=0 roundingMode=ROUND_HALF_UP
*
* toString in the future if more properties are added
* to the class.
*
* @return a String representing the context settings.
* @stable ICU 2.0
*/
//--public java.lang.String toString(){
function toString() {
//--java.lang.String formstr=null;
var formstr=null;
//--int r=0;
var r=0;
//--java.lang.String roundword=null;
var roundword=null;
{/*select*/
if (this.form==this.SCIENTIFIC)
formstr="SCIENTIFIC";
else if (this.form==this.ENGINEERING)
formstr="ENGINEERING";
else{
formstr="PLAIN";/* form=PLAIN */
}
}
{var $1=this.ROUNDS.length;r=0;r:for(;$1>0;$1--,r++){
if (this.roundingMode==this.ROUNDS[r])
{
roundword=this.ROUNDWORDS[r];
break r;
}
}
}/*r*/
return "digits="+this.digits+" "+"form="+formstr+" "+"lostDigits="+(this.lostDigits?"1":"0")+" "+"roundingMode="+roundword;
}
/* BigDecimal class implements immutable
* arbitrary-precision decimal numbers. The methods of the
* BigDecimal class provide operations for fixed and
* floating point arithmetic, comparison, format conversions, and
* hashing.
* BigDecimal object and its
* String representation; the BigDecimal class
* provides direct conversions to and from String and
* character array (char[]) objects, as well as conversions
* to and from the Java primitive types (which may not be exact) and
* BigInteger.
* BigDecimal number object is shown as the
* result of invoking the toString() method on the object.
* The internal representation of a decimal number is neither defined
* nor exposed, and is not permitted to affect the result of any
* operation.
* http://www2.hursley.ibm.com/decimal
*
[This URL will change.]
*
* Operator methods
* BigDecimal numbers are controlled by a
* {@link MathContext} object, which provides the context (precision and
* other information) for the operation. Methods that can take a
* MathContext parameter implement the standard arithmetic
* operators for BigDecimal objects and are known as
* operator methods. The default settings provided by the
* constant {@link MathContext#DEFAULT} (digits=9,
* form=SCIENTIFIC, lostDigits=false, roundingMode=ROUND_HALF_UP)
* perform general-purpose floating point arithmetic to nine digits of
* precision. The MathContext parameter must not be
* null.
* MathContext parameter. For this version of
* each method, the context settings used are digits=0,
* form=PLAIN, lostDigits=false, roundingMode=ROUND_HALF_UP;
* these settings perform fixed point arithmetic with unlimited
* precision, as defined for the original BigDecimal class in Java 1.1
* and Java 1.2.
* MathContext
* parameter is present; the operation acts upon the current object.
* BigDecimal parameter is always
* present; it must not be null.
* The operation acts with the current object being the left-hand operand
* and the BigDecimal parameter being the right-hand operand.
* BigDecimal objects referred to
* by the names award and extra could be
* written as any of:
*
* award.add(extra)
*
*
award.add(extra, MathContext.DEFAULT)
*
award.add(extra, acontext)
* acontext is a MathContext object),
* which would return a BigDecimal object whose value is
* the result of adding award and extra under
* the appropriate context settings.
* BigDecimal operator method is used, a set of
* rules define what the result will be (and, by implication, how the
* result would be represented as a character string).
* These rules are defined in the BigDecimal arithmetic documentation
* (see the URL above), but in summary:
*
*
MathContext parameter for an operation
* were MathContext.DEFAULT then the result would be
* rounded to 9 digits; the division of 2 by 3 would then result in
* 0.666666667.
*
* You can change the default of 9 significant digits by providing the
* method with a suitable MathContext object. This lets you
* calculate using as many digits as you need -- thousands, if necessary.
* Fixed point (scaled) arithmetic is indicated by using a
* digits setting of 0 (or omitting the
* MathContext parameter).
*
* Similarly, you can change the algorithm used for rounding from the
* default "classic" algorithm.
* form setting
* is not PLAIN), a zero result is always expressed as the
* single digit '0' (that is, with no sign, decimal point,
* or exponent part).
*
* So, for example:
*
* new BigDecimal("2.40").add( new BigDecimal("2")) => "4.40"
*
*
new BigDecimal("2.40").subtract(new BigDecimal("2")) => "0.40"
*
new BigDecimal("2.40").multiply(new BigDecimal("2")) => "4.80"
*
new BigDecimal("2.40").divide( new BigDecimal("2"), def) => "1.2"
* => would be the
* result of the operation, expressed as a String, and
* def (in this and following examples) refers to
* MathContext.DEFAULT).
* This preservation of trailing zeros is desirable for most
* calculations (including financial calculations).
* If necessary, trailing zeros may be easily removed using division by 1.
* digits
* (the default is 9 digits).
* If the number of places needed before the decimal point exceeds the
* digits setting, or the absolute value of the number is
* less than 0.000001, then the number will be expressed in
* exponential notation; thus
*
* new BigDecimal("1e+6").multiply(new BigDecimal("1e+6"), def)
*
* 1E+12 instead of
* 1000000000000, and
*
* new BigDecimal("1").divide(new BigDecimal("3E+10"), def)
*
* 3.33333333E-11 instead of
* 0.0000000000333333333.
* form setting.
* java.lang.Number, java.math.BigInteger,
* and java.math.BigDecimal in Java 1.1 and Java 1.2.
*
* @see MathContext
* @author Mike Cowlishaw
* @stable ICU 2.0
*/
//--public class BigDecimal extends java.lang.Number implements java.io.Serializable,java.lang.Comparable{
//-- private static final java.lang.String $0="BigDecimal.nrx";
//-- methods
BigDecimal.prototype.abs = abs;
BigDecimal.prototype.add = add;
BigDecimal.prototype.compareTo = compareTo;
BigDecimal.prototype.divide = divide;
BigDecimal.prototype.divideInteger = divideInteger;
BigDecimal.prototype.max = max;
BigDecimal.prototype.min = min;
BigDecimal.prototype.multiply = multiply;
BigDecimal.prototype.negate = negate;
BigDecimal.prototype.plus = plus;
BigDecimal.prototype.pow = pow;
BigDecimal.prototype.remainder = remainder;
BigDecimal.prototype.subtract = subtract;
BigDecimal.prototype.equals = equals;
BigDecimal.prototype.format = format;
BigDecimal.prototype.intValueExact = intValueExact;
BigDecimal.prototype.movePointLeft = movePointLeft;
BigDecimal.prototype.movePointRight = movePointRight;
BigDecimal.prototype.scale = scale;
BigDecimal.prototype.setScale = setScale;
BigDecimal.prototype.signum = signum;
BigDecimal.prototype.toString = toString;
BigDecimal.prototype.layout = layout;
BigDecimal.prototype.intcheck = intcheck;
BigDecimal.prototype.dodivide = dodivide;
BigDecimal.prototype.bad = bad;
BigDecimal.prototype.badarg = badarg;
BigDecimal.prototype.extend = extend;
BigDecimal.prototype.byteaddsub = byteaddsub;
BigDecimal.prototype.diginit = diginit;
BigDecimal.prototype.clone = clone;
BigDecimal.prototype.checkdigits = checkdigits;
BigDecimal.prototype.round = round;
BigDecimal.prototype.allzero = allzero;
BigDecimal.prototype.finish = finish;
// Convenience methods
BigDecimal.prototype.isGreaterThan = isGreaterThan;
BigDecimal.prototype.isLessThan = isLessThan;
BigDecimal.prototype.isGreaterThanOrEqualTo = isGreaterThanOrEqualTo;
BigDecimal.prototype.isLessThanOrEqualTo = isLessThanOrEqualTo;
BigDecimal.prototype.isPositive = isPositive;
BigDecimal.prototype.isNegative = isNegative;
BigDecimal.prototype.isZero = isZero;
/* ----- Constants ----- */
/* properties constant public */ // useful to others
// the rounding modes (copied here for upwards compatibility)
/**
* Rounding mode to round to a more positive number.
* @see MathContext#ROUND_CEILING
* @stable ICU 2.0
*/
//--public static final int ROUND_CEILING=com.ibm.icu.math.MathContext.ROUND_CEILING;
BigDecimal.ROUND_CEILING = BigDecimal.prototype.ROUND_CEILING = MathContext.prototype.ROUND_CEILING;
/**
* Rounding mode to round towards zero.
* @see MathContext#ROUND_DOWN
* @stable ICU 2.0
*/
//--public static final int ROUND_DOWN=com.ibm.icu.math.MathContext.ROUND_DOWN;
BigDecimal.ROUND_DOWN = BigDecimal.prototype.ROUND_DOWN = MathContext.prototype.ROUND_DOWN;
/**
* Rounding mode to round to a more negative number.
* @see MathContext#ROUND_FLOOR
* @stable ICU 2.0
*/
//--public static final int ROUND_FLOOR=com.ibm.icu.math.MathContext.ROUND_FLOOR;
BigDecimal.ROUND_FLOOR = BigDecimal.prototype.ROUND_FLOOR = MathContext.prototype.ROUND_FLOOR;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded down.
* @see MathContext#ROUND_HALF_DOWN
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_DOWN=com.ibm.icu.math.MathContext.ROUND_HALF_DOWN;
BigDecimal.ROUND_HALF_DOWN = BigDecimal.prototype.ROUND_HALF_DOWN = MathContext.prototype.ROUND_HALF_DOWN;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded to the nearest even neighbor.
* @see MathContext#ROUND_HALF_EVEN
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_EVEN=com.ibm.icu.math.MathContext.ROUND_HALF_EVEN;
BigDecimal.ROUND_HALF_EVEN = BigDecimal.prototype.ROUND_HALF_EVEN = MathContext.prototype.ROUND_HALF_EVEN;
/**
* Rounding mode to round to nearest neighbor, where an equidistant
* value is rounded up.
* @see MathContext#ROUND_HALF_UP
* @stable ICU 2.0
*/
//--public static final int ROUND_HALF_UP=com.ibm.icu.math.MathContext.ROUND_HALF_UP;
BigDecimal.ROUND_HALF_UP = BigDecimal.prototype.ROUND_HALF_UP = MathContext.prototype.ROUND_HALF_UP;
/**
* Rounding mode to assert that no rounding is necessary.
* @see MathContext#ROUND_UNNECESSARY
* @stable ICU 2.0
*/
//--public static final int ROUND_UNNECESSARY=com.ibm.icu.math.MathContext.ROUND_UNNECESSARY;
BigDecimal.ROUND_UNNECESSARY = BigDecimal.prototype.ROUND_UNNECESSARY = MathContext.prototype.ROUND_UNNECESSARY;
/**
* Rounding mode to round away from zero.
* @see MathContext#ROUND_UP
* @stable ICU 2.0
*/
//--public static final int ROUND_UP=com.ibm.icu.math.MathContext.ROUND_UP;
BigDecimal.ROUND_UP = BigDecimal.prototype.ROUND_UP = MathContext.prototype.ROUND_UP;
/* properties constant private */ // locals
//--private static final byte ispos=1; // ind: indicates positive (must be 1)
//--private static final byte iszero=0; // ind: indicates zero (must be 0)
//--private static final byte isneg=-1; // ind: indicates negative (must be -1)
BigDecimal.prototype.ispos = 1;
BigDecimal.prototype.iszero = 0;
BigDecimal.prototype.isneg = -1;
// [later could add NaN, +/- infinity, here]
//--private static final int MinExp=-999999999; // minimum exponent allowed
//--private static final int MaxExp=999999999; // maximum exponent allowed
//--private static final int MinArg=-999999999; // minimum argument integer
//--private static final int MaxArg=999999999; // maximum argument integer
BigDecimal.prototype.MinExp=-999999999; // minimum exponent allowed
BigDecimal.prototype.MaxExp=999999999; // maximum exponent allowed
BigDecimal.prototype.MinArg=-999999999; // minimum argument integer
BigDecimal.prototype.MaxArg=999999999; // maximum argument integer
//--private static final com.ibm.icu.math.MathContext plainMC=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN); // context for plain unlimited math
BigDecimal.prototype.plainMC=new MathContext(0, MathContext.prototype.PLAIN);
/* properties constant private unused */ // present but not referenced
// Serialization version
//--private static final long serialVersionUID=8245355804974198832L;
//--private static final java.lang.String copyright=" Copyright (c) IBM Corporation 1996, 2000. All rights reserved. ";
/* properties static private */
// Precalculated constant arrays (used by byteaddsub)
//--private static byte bytecar[]=new byte[(90+99)+1]; // carry/borrow array
//--private static byte bytedig[]=diginit(); // next digit array
BigDecimal.prototype.bytecar = new Array((90+99)+1);
BigDecimal.prototype.bytedig = diginit();
/**
* The BigDecimal constant "0".
*
* @see #ONE
* @see #TEN
* @stable ICU 2.0
*/
//--public static final com.ibm.icu.math.BigDecimal ZERO=new com.ibm.icu.math.BigDecimal((long)0); // use long as we want the int constructor
// .. to be able to use this, for speed
BigDecimal.ZERO = BigDecimal.prototype.ZERO = new BigDecimal("0");
/**
* The BigDecimal constant "1".
*
* @see #TEN
* @see #ZERO
* @stable ICU 2.0
*/
//--public static final com.ibm.icu.math.BigDecimal ONE=new com.ibm.icu.math.BigDecimal((long)1); // use long as we want the int constructor
// .. to be able to use this, for speed
BigDecimal.ONE = BigDecimal.prototype.ONE = new BigDecimal("1");
/**
* The BigDecimal constant "10".
*
* @see #ONE
* @see #ZERO
* @stable ICU 2.0
*/
//--public static final com.ibm.icu.math.BigDecimal TEN=new com.ibm.icu.math.BigDecimal(10);
BigDecimal.TEN = BigDecimal.prototype.TEN = new BigDecimal("10");
/* ----- Instance properties [all private and immutable] ----- */
/* properties private */
/**
* The indicator. This may take the values:
*
*
*
* @serial
*/
//--private byte ind; // assumed undefined
// Note: some code below assumes IND = Sign [-1, 0, 1], at present.
// We only need two bits for this, but use a byte [also permits
// smooth future extension].
/**
* The formatting style. This may take the values:
*
*
* -exp, and can
* apply to zero.
*
* Note that this property can have a value less than MinExp when
* the mantissa has more than one digit.
*
* @serial
*/
//--private int exp;
// assumed 0
/* ---------------------------------------------------------------- */
/* Constructors */
/* ---------------------------------------------------------------- */
/**
* Constructs a BigDecimal object from a
* java.math.BigDecimal.
* BigDecimal as though the parameter had
* been represented as a String (using its
* toString method) and the
* {@link #BigDecimal(java.lang.String)} constructor had then been
* used.
* The parameter must not be null.
* com.ibm.icu.math version of the BigDecimal class.
* It would not be present in a java.math version.)
*
* @param bd The BigDecimal to be translated.
* @stable ICU 2.0
*/
//--public BigDecimal(java.math.BigDecimal bd){
//-- this(bd.toString());
//-- return;}
/**
* Constructs a BigDecimal object from a
* BigInteger, with scale 0.
* BigDecimal which is the exact decimal
* representation of the BigInteger, with a scale of
* zero.
* The value of the BigDecimal is identical to the value
* of the BigInteger.
* The parameter must not be null.
* BigDecimal will contain only decimal digits,
* prefixed with a leading minus sign (hyphen) if the
* BigInteger is negative. A leading zero will be
* present only if the BigInteger is zero.
*
* @param bi The BigInteger to be converted.
* @stable ICU 2.0
*/
//--public BigDecimal(java.math.BigInteger bi){
//-- this(bi.toString(10));
//-- return;}
// exp remains 0
/**
* Constructs a BigDecimal object from a
* BigInteger and a scale.
* BigDecimal which is the exact decimal
* representation of the BigInteger, scaled by the
* second parameter, which may not be negative.
* The value of the BigDecimal is the
* BigInteger divided by ten to the power of the scale.
* The BigInteger parameter must not be
* null.
* BigDecimal will contain only decimal digits, (with
* an embedded decimal point followed by scale decimal
* digits if the scale is positive), prefixed with a leading minus
* sign (hyphen) if the BigInteger is negative. A
* leading zero will be present only if the BigInteger is
* zero.
*
* @param bi The BigInteger to be converted.
* @param scale The int specifying the scale.
* @throws NumberFormatException if the scale is negative.
* @stable ICU 2.0
*/
//--public BigDecimal(java.math.BigInteger bi,int scale){
//-- this(bi.toString(10));
//-- if (scale<0)
//-- throw new java.lang.NumberFormatException("Negative scale:"+" "+scale);
//-- exp=(int)-scale; // exponent is -scale
//-- return;}
/**
* Constructs a BigDecimal object from an array of characters.
* BigDecimal as though a
* String had been constructed from the character array
* and the {@link #BigDecimal(java.lang.String)} constructor had then
* been used. The parameter must not be null.
* BigDecimal(String) constructor if the string is
* already available in character array form.
*
* @param inchars The char[] array containing the number
* to be converted.
* @throws NumberFormatException if the parameter is not a valid
* number.
* @stable ICU 2.0
*/
//--public BigDecimal(char inchars[]){
//-- this(inchars,0,inchars.length);
//-- return;}
/**
* Constructs a BigDecimal object from an array of characters.
* BigDecimal as though a
* String had been constructed from the character array
* (or a subarray of that array) and the
* {@link #BigDecimal(java.lang.String)} constructor had then been
* used. The first parameter must not be null, and the
* subarray must be wholly contained within it.
* BigDecimal(String) constructor if the string is
* already available within a character array.
*
* @param inchars The char[] array containing the number
* to be converted.
* @param offset The int offset into the array of the
* start of the number to be converted.
* @param length The int length of the number.
* @throws NumberFormatException if the parameter is not a valid
* number for any reason.
* @stable ICU 2.0
*/
//--public BigDecimal(char inchars[],int offset,int length){super();
function BigDecimal() {
//-- members
this.ind = 0;
this.form = MathContext.prototype.PLAIN;
this.mant = null;
this.exp = 0;
//-- overloaded ctor
if (BigDecimal.arguments.length == 0)
return;
var inchars;
var offset;
var length;
if (BigDecimal.arguments.length == 1)
{
inchars = BigDecimal.arguments[0];
offset = 0;
length = inchars.length;
}
else
{
inchars = BigDecimal.arguments[0];
offset = BigDecimal.arguments[1];
length = BigDecimal.arguments[2];
}
if (typeof inchars == "string")
{
inchars = inchars.split("");
}
//--boolean exotic;
var exotic;
//--boolean hadexp;
var hadexp;
//--int d;
var d;
//--int dotoff;
var dotoff;
//--int last;
var last;
//--int i=0;
var i=0;
//--char si=0;
var si=0;
//--boolean eneg=false;
var eneg=false;
//--int k=0;
var k=0;
//--int elen=0;
var elen=0;
//--int j=0;
var j=0;
//--char sj=0;
var sj=0;
//--int dvalue=0;
var dvalue=0;
//--int mag=0;
var mag=0;
// This is the primary constructor; all incoming strings end up
// here; it uses explicit (inline) parsing for speed and to avoid
// generating intermediate (temporary) objects of any kind.
// 1998.06.25: exponent form built only if E/e in string
// 1998.06.25: trailing zeros not removed for zero
// 1999.03.06: no embedded blanks; allow offset and length
if (length<=0)
this.bad("BigDecimal(): ", inchars); // bad conversion (empty string)
// [bad offset will raise array bounds exception]
/* Handle and step past sign */
this.ind=this.ispos; // assume positive
if (inchars[0]==('-'))
{
length--;
if (length==0)
this.bad("BigDecimal(): ", inchars); // nothing after sign
this.ind=this.isneg;
offset++;
}
else
if (inchars[0]==('+'))
{
length--;
if (length==0)
this.bad("BigDecimal(): ", inchars); // nothing after sign
offset++;
}
/* We're at the start of the number */
exotic=false; // have extra digits
hadexp=false; // had explicit exponent
d=0; // count of digits found
dotoff=-1; // offset where dot was found
last=-1; // last character of mantissa
{var $1=length;i=offset;i:for(;$1>0;$1--,i++){
si=inchars[i];
if (si>='0') // test for Arabic digit
if (si<='9')
{
last=i;
d++; // still in mantissa
continue i;
}
if (si=='.')
{ // record and ignore
if (dotoff>=0)
this.bad("BigDecimal(): ", inchars); // two dots
dotoff=i-offset; // offset into mantissa
continue i;
}
if (si!='e')
if (si!='E')
{ // expect an extra digit
if (si<'0' || si>'9')
this.bad("BigDecimal(): ", inchars); // not a number
// defer the base 10 check until later to avoid extra method call
exotic=true; // will need conversion later
last=i;
d++; // still in mantissa
continue i;
}
/* Found 'e' or 'E' -- now process explicit exponent */
// 1998.07.11: sign no longer required
if ((i-offset)>(length-2))
this.bad("BigDecimal(): ", inchars); // no room for even one digit
eneg=false;
if ((inchars[i+1])==('-'))
{
eneg=true;
k=i+2;
}
else
if ((inchars[i+1])==('+'))
k=i+2;
else
k=i+1;
// k is offset of first expected digit
elen=length-((k-offset)); // possible number of digits
if ((elen==0)||(elen>9))
this.bad("BigDecimal(): ", inchars); // 0 or more than 9 digits
{var $2=elen;j=k;j:for(;$2>0;$2--,j++){
sj=inchars[j];
if (sj<'0')
this.bad("BigDecimal(): ", inchars); // always bad
if (sj>'9')
{ // maybe an exotic digit
/*if (si<'0' || si>'9')
this.bad(inchars); // not a number
dvalue=java.lang.Character.digit(sj,10); // check base
if (dvalue<0)
bad(inchars); // not base 10*/
this.bad("BigDecimal(): ", inchars);
}
else
dvalue=sj-'0';
this.exp=(this.exp*10)+dvalue;
}
}/*j*/
if (eneg)
this.exp=-this.exp; // was negative
hadexp=true; // remember we had one
break i; // we are done
}
}/*i*/
/* Here when all inspected */
if (d==0)
this.bad("BigDecimal(): ", inchars); // no mantissa digits
if (dotoff>=0)
this.exp=(this.exp+dotoff)-d; // adjust exponent if had dot
/* strip leading zeros/dot (leave final if all 0's) */
{var $3=last-1;i=offset;i:for(;i<=$3;i++){
si=inchars[i];
if (si=='0')
{
offset++;
dotoff--;
d--;
}
else
if (si=='.')
{
offset++; // step past dot
dotoff--;
}
else
if (si<='9')
break i;/* non-0 */
else
{/* exotic */
//if ((java.lang.Character.digit(si,10))!=0)
break i; // non-0 or bad
// is 0 .. strip like '0'
//offset++;
//dotoff--;
//d--;
}
}
}/*i*/
/* Create the mantissa array */
this.mant=new Array(d); // we know the length
j=offset; // input offset
if (exotic)
{exotica:do{ // slow: check for exotica
{var $4=d;i=0;i:for(;$4>0;$4--,i++){
if (i==dotoff)
j++; // at dot
sj=inchars[j];
if (sj<='9')
this.mant[i]=sj-'0';/* easy */
else
{
//dvalue=java.lang.Character.digit(sj,10);
//if (dvalue<0)
this.bad("BigDecimal(): ", inchars); // not a number after all
//mant[i]=(byte)dvalue;
}
j++;
}
}/*i*/
}while(false);}/*exotica*/
else
{simple:do{
{var $5=d;i=0;i:for(;$5>0;$5--,i++){
if (i==dotoff)
j++;
this.mant[i]=inchars[j]-'0';
j++;
}
}/*i*/
}while(false);}/*simple*/
/* Looks good. Set the sign indicator and form, as needed. */
// Trailing zeros are preserved
// The rule here for form is:
// If no E-notation, then request plain notation
// Otherwise act as though add(0,DEFAULT) and request scientific notation
// [form is already PLAIN]
if (this.mant[0]==0)
{
this.ind=this.iszero; // force to show zero
// negative exponent is significant (e.g., -3 for 0.000) if plain
if (this.exp>0)
this.exp=0; // positive exponent can be ignored
if (hadexp)
{ // zero becomes single digit from add
this.mant=this.ZERO.mant;
this.exp=0;
}
}
else
{ // non-zero
// [ind was set earlier]
// now determine form
if (hadexp)
{
this.form=MathContext.prototype.SCIENTIFIC;
// 1999.06.29 check for overflow
mag=(this.exp+this.mant.length)-1; // true exponent in scientific notation
if ((magBigDecimal object directly from a
* double.
* BigDecimal which is the exact decimal
* representation of the 64-bit signed binary floating point
* parameter.
* num to a
* String using the Double.toString() method
* and then using the {@link #BigDecimal(java.lang.String)}
* constructor.
* To get that result, use the static {@link #valueOf(double)}
* method to construct a BigDecimal from a
* double.
*
* @param num The double to be converted.
* @throws NumberFormatException if the parameter is infinite or
* not a number.
* @stable ICU 2.0
*/
//--public BigDecimal(double num){
//-- // 1999.03.06: use exactly the old algorithm
//-- // 2000.01.01: note that this constructor does give an exact result,
//-- // so perhaps it should not be deprecated
//-- // 2000.06.18: no longer deprecated
//-- this((new java.math.BigDecimal(num)).toString());
//-- return;}
/**
* Constructs a BigDecimal object directly from a
* int.
* BigDecimal which is the exact decimal
* representation of the 32-bit signed binary integer parameter.
* The BigDecimal will contain only decimal digits,
* prefixed with a leading minus sign (hyphen) if the parameter is
* negative.
* A leading zero will be present only if the parameter is zero.
*
* @param num The int to be converted.
* @stable ICU 2.0
*/
//--public BigDecimal(int num){super();
//-- int mun;
//-- int i=0;
//-- // We fastpath commoners
//-- if (num<=9)
//-- if (num>=(-9))
//-- {singledigit:do{
//-- // very common single digit case
//-- {/*select*/
//-- if (num==0)
//-- {
//-- mant=ZERO.mant;
//-- ind=iszero;
//-- }
//-- else if (num==1)
//-- {
//-- mant=ONE.mant;
//-- ind=ispos;
//-- }
//-- else if (num==(-1))
//-- {
//-- mant=ONE.mant;
//-- ind=isneg;
//-- }
//-- else{
//-- {
//-- mant=new byte[1];
//-- if (num>0)
//-- {
//-- mant[0]=(byte)num;
//-- ind=ispos;
//-- }
//-- else
//-- { // num<-1
//-- mant[0]=(byte)((int)-num);
//-- ind=isneg;
//-- }
//-- }
//-- }
//-- }
//-- return;
//-- }while(false);}/*singledigit*/
//--
//-- /* We work on negative numbers so we handle the most negative number */
//-- if (num>0)
//-- {
//-- ind=ispos;
//-- num=(int)-num;
//-- }
//-- else
//-- ind=isneg;/* negative */ // [0 case already handled]
//-- // [it is quicker, here, to pre-calculate the length with
//-- // one loop, then allocate exactly the right length of byte array,
//-- // then re-fill it with another loop]
//-- mun=num; // working copy
//-- {i=9;i:for(;;i--){
//-- mun=mun/10;
//-- if (mun==0)
//-- break i;
//-- }
//-- }/*i*/
//-- // i is the position of the leftmost digit placed
//-- mant=new byte[10-i];
//-- {i=(10-i)-1;i:for(;;i--){
//-- mant[i]=(byte)-(((byte)(num%10)));
//-- num=num/10;
//-- if (num==0)
//-- break i;
//-- }
//-- }/*i*/
//-- return;
//-- }
/**
* Constructs a BigDecimal object directly from a
* long.
* BigDecimal which is the exact decimal
* representation of the 64-bit signed binary integer parameter.
* The BigDecimal will contain only decimal digits,
* prefixed with a leading minus sign (hyphen) if the parameter is
* negative.
* A leading zero will be present only if the parameter is zero.
*
* @param num The long to be converted.
* @stable ICU 2.0
*/
//--public BigDecimal(long num){super();
//-- long mun;
//-- int i=0;
//-- // Not really worth fastpathing commoners in this constructor [also,
//-- // we use this to construct the static constants].
//-- // This is much faster than: this(String.valueOf(num).toCharArray())
//-- /* We work on negative num so we handle the most negative number */
//-- if (num>0)
//-- {
//-- ind=ispos;
//-- num=(long)-num;
//-- }
//-- else
//-- if (num==0)
//-- ind=iszero;
//-- else
//-- ind=isneg;/* negative */
//-- mun=num;
//-- {i=18;i:for(;;i--){
//-- mun=mun/10;
//-- if (mun==0)
//-- break i;
//-- }
//-- }/*i*/
//-- // i is the position of the leftmost digit placed
//-- mant=new byte[19-i];
//-- {i=(19-i)-1;i:for(;;i--){
//-- mant[i]=(byte)-(((byte)(num%10)));
//-- num=num/10;
//-- if (num==0)
//-- break i;
//-- }
//-- }/*i*/
//-- return;
//-- }
/**
* Constructs a BigDecimal object from a String.
* BigDecimal from the parameter, which must
* not be null and must represent a valid number,
* as described formally in the documentation referred to
* {@link BigDecimal above}.
* String form must have at least
* one digit, may have a leading sign, may have a decimal point, and
* exponential notation may be used. They follow conventional syntax,
* and may not contain blanks.
* BigDecimal might
* be constructed are:
*
* "0" -- Zero
* "12" -- A whole number
* "-76" -- A signed whole number
* "12.70" -- Some decimal places
* "+0.003" -- Plus sign is allowed
* "17." -- The same as 17
* ".5" -- The same as 0.5
* "4E+9" -- Exponential notation
* "0.73e-7" -- Exponential notation
*
* "4E+9" above is just a short way of writing
* 4000000000, and the "0.73e-7" is short
* for 0.000000073.)
* BigDecimal constructed from the String is in a
* standard form, with no blanks, as though the
* {@link #add(BigDecimal)} method had been used to add zero to the
* number with unlimited precision.
* If the string uses exponential notation (that is, includes an
* e or an E), then the
* BigDecimal number will be expressed in scientific
* notation (where the power of ten is adjusted so there is a single
* non-zero digit to the left of the decimal point); in this case if
* the number is zero then it will be expressed as the single digit 0,
* and if non-zero it will have an exponent unless that exponent would
* be 0. The exponent must fit in nine digits both before and after it
* is expressed in scientific notation.
* Character.digit(c, 10) (where c is the
* character in question) would not return -1.
*
* @param string The String to be converted.
* @throws NumberFormatException if the parameter is not a valid
* number.
* @stable ICU 2.0
*/
//--public BigDecimal(java.lang.String string){
//-- this(string.toCharArray(),0,string.length());
//-- return;}
/* BigDecimal whose value is the absolute
* value of this BigDecimal.
* new MathContext(0, MathContext.PLAIN).
* this.scale()
*
* @return A BigDecimal whose value is the absolute
* value of this BigDecimal.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal abs(){
//- return this.abs(plainMC);
//- }
/**
* Returns a BigDecimal whose value is the absolute value
* of this BigDecimal.
* MathContext arithmetic settings.
* @return A BigDecimal whose value is the absolute
* value of this BigDecimal.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal abs(com.ibm.icu.math.MathContext set){
function abs() {
var set;
if (abs.arguments.length == 1)
{
set = abs.arguments[0];
}
else if (abs.arguments.length == 0)
{
set = this.plainMC;
}
else
{
throw "abs(): " + abs.arguments.length + " arguments given; expected 0 or 1";
}
if (this.ind==this.isneg)
return this.negate(set);
return this.plus(set);
}
/**
* Returns a plain BigDecimal whose value is
* this+rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
* BigDecimal for the right hand side of
* the addition.
* @return A BigDecimal whose value is
* this+rhs, using fixed point arithmetic.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal add(com.ibm.icu.math.BigDecimal rhs){
//-- return this.add(rhs,plainMC);
//-- }
/**
* Returns a BigDecimal whose value is this+rhs.
* +) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
*
* @param rhs The BigDecimal for the right hand side of
* the addition.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* this+rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal add(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function add() {
var set;
if (add.arguments.length == 2)
{
set = add.arguments[1];
}
else if (add.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "add(): " + add.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = add.arguments[0];
//--com.ibm.icu.math.BigDecimal lhs;
var lhs;
//--int reqdig;
var reqdig;
//--com.ibm.icu.math.BigDecimal res;
var res;
//--byte usel[];
var usel;
//--int usellen;
var usellen;
//--byte user[];
var user;
//--int userlen;
var userlen;
//--int newlen=0;
var newlen=0;
//--int tlen=0;
var tlen=0;
//--int mult=0;
var mult=0;
//--byte t[]=null;
var t=null;
//--int ia=0;
var ia=0;
//--int ib=0;
var ib=0;
//--int ea=0;
var ea=0;
//int eb=0;
var eb=0;
//byte ca=0;
var ca=0;
//--byte cb=0;
var cb=0;
/* determine requested digits and form */
if (set.lostDigits)
this.checkdigits(rhs,set.digits);
lhs=this; // name for clarity and proxy
/* Quick exit for add floating 0 */
// plus() will optimize to return same object if possible
if (lhs.ind==0)
if (set.form!=MathContext.prototype.PLAIN)
return rhs.plus(set);
if (rhs.ind==0)
if (set.form!=MathContext.prototype.PLAIN)
return lhs.plus(set);
/* Prepare numbers (round, unless unlimited precision) */
reqdig=set.digits; // local copy (heavily used)
if (reqdig>0)
{
if (lhs.mant.length>reqdig)
lhs=this.clone(lhs).round(set);
if (rhs.mant.length>reqdig)
rhs=this.clone(rhs).round(set);
// [we could reuse the new LHS for result in this case]
}
res=new BigDecimal(); // build result here
/* Now see how much we have to pad or truncate lhs or rhs in order
to align the numbers. If one number is much larger than the
other, then the smaller cannot affect the answer [but we may
still need to pad with up to DIGITS trailing zeros]. */
// Note sign may be 0 if digits (reqdig) is 0
// usel and user will be the byte arrays passed to the adder; we'll
// use them on all paths except quick exits
usel=lhs.mant;
usellen=lhs.mant.length;
user=rhs.mant;
userlen=rhs.mant.length;
{padder:do{/*select*/
if (lhs.exp==rhs.exp)
{/* no padding needed */
// This is the most common, and fastest, path
res.exp=lhs.exp;
}
else if (lhs.exp>rhs.exp)
{ // need to pad lhs and/or truncate rhs
newlen=(usellen+lhs.exp)-rhs.exp;
/* If, after pad, lhs would be longer than rhs by digits+1 or
more (and digits>0) then rhs cannot affect answer, so we only
need to pad up to a length of DIGITS+1. */
if (newlen>=((userlen+reqdig)+1))
if (reqdig>0)
{
// LHS is sufficient
res.mant=usel;
res.exp=lhs.exp;
res.ind=lhs.ind;
if (usellenBigDecimal to another, using unlimited
* precision.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
*
* @param rhs The BigDecimal for the right hand side of
* the comparison.
* @return An int whose value is -1, 0, or 1 as
* this is numerically less than, equal to,
* or greater than rhs.
* @see #compareTo(Object)
* @stable ICU 2.0
*/
//--public int compareTo(com.ibm.icu.math.BigDecimal rhs){
//-- return this.compareTo(rhs,plainMC);
//-- }
/**
* Compares this BigDecimal to another.
* int.
*
*
* -1
* if the current object is less than the first parameter
*
* 0
* if the current object is equal to the first parameter
*
* 1
* if the current object is greater than the first parameter.
* BigDecimal for the right hand side of
* the comparison.
* @param set The MathContext arithmetic settings.
* @return An int whose value is -1, 0, or 1 as
* this is numerically less than, equal to,
* or greater than rhs.
* @see #compareTo(Object)
* @stable ICU 2.0
*/
//public int compareTo(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function compareTo() {
var set;
if (compareTo.arguments.length == 2)
{
set = compareTo.arguments[1];
}
else if (compareTo.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "compareTo(): " + compareTo.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = compareTo.arguments[0];
//--int thislength=0;
var thislength=0;
//--int i=0;
var i=0;
//--com.ibm.icu.math.BigDecimal newrhs;
var newrhs;
// rhs=null will raise NullPointerException, as per Comparable interface
if (set.lostDigits)
this.checkdigits(rhs,set.digits);
// [add will recheck in slowpath cases .. but would report -rhs]
if ((this.ind==rhs.ind)&&(this.exp==rhs.exp))
{
/* sign & exponent the same [very common] */
thislength=this.mant.length;
if (thislengthBigDecimal whose value is
* this/rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the rounding mode is {@link MathContext#ROUND_HALF_UP}.
*
* The length of the decimal part (the scale) of the result will be
* the same as the scale of the current object, if the latter were
* formatted without exponential notation.
*
* @param rhs The BigDecimal for the right hand side of
* the division.
* @return A plain BigDecimal whose value is
* this/rhs, using fixed point arithmetic.
* @throws ArithmeticException if rhs is zero.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs){
//-- return this.dodivide('D',rhs,plainMC,-1);
//-- }
/**
* Returns a plain BigDecimal whose value is
* this/rhs, using fixed point arithmetic and a
* rounding mode.
* BigDecimal is rhs,
* and the second parameter is this.scale(), and
* the third is round.
* BigDecimal for the right hand side of
* the division.
* @param round The int rounding mode to be used for
* the division (see the {@link MathContext} class).
* @return A plain BigDecimal whose value is
* this/rhs, using fixed point arithmetic
* and the specified rounding mode.
* @throws IllegalArgumentException if round is not a
* valid rounding mode.
* @throws ArithmeticException if rhs is zero.
* @throws ArithmeticException if round is {@link
* MathContext#ROUND_UNNECESSARY} and
* this.scale() is insufficient to
* represent the result exactly.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,int round){
//-- com.ibm.icu.math.MathContext set;
//-- set=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN,false,round); // [checks round, too]
//-- return this.dodivide('D',rhs,set,-1); // take scale from LHS
//-- }
/**
* Returns a plain BigDecimal whose value is
* this/rhs, using fixed point arithmetic and a
* given scale and rounding mode.
* BigDecimal is rhs,
* new MathContext(0, MathContext.PLAIN, false, round),
* except that the length of the decimal part (the scale) to be used
* for the result is explicit rather than being taken from
* this.
* BigDecimal for the right hand side of
* the division.
* @param scale The int scale to be used for the result.
* @param round The int rounding mode to be used for
* the division (see the {@link MathContext} class).
* @return A plain BigDecimal whose value is
* this/rhs, using fixed point arithmetic
* and the specified rounding mode.
* @throws IllegalArgumentException if round is not a
* valid rounding mode.
* @throws ArithmeticException if rhs is zero.
* @throws ArithmeticException if scale is negative.
* @throws ArithmeticException if round is {@link
* MathContext#ROUND_UNNECESSARY} and scale
* is insufficient to represent the result exactly.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,int scale,int round){
//-- com.ibm.icu.math.MathContext set;
//-- if (scale<0)
//-- throw new java.lang.ArithmeticException("Negative scale:"+" "+scale);
//-- set=new com.ibm.icu.math.MathContext(0,com.ibm.icu.math.MathContext.PLAIN,false,round); // [checks round]
//-- return this.dodivide('D',rhs,set,scale);
//-- }
/**
* Returns a BigDecimal whose value is this/rhs.
* /) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
*
* @param rhs The BigDecimal for the right hand side of
* the division.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* this/rhs.
* @throws ArithmeticException if rhs is zero.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divide(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function divide() {
var set;
var scale = -1;
if (divide.arguments.length == 2)
{
if (typeof divide.arguments[1] == 'number')
{
set=new MathContext(0,MathContext.prototype.PLAIN,false,divide.arguments[1]); // [checks round, too]
}
else
{
set = divide.arguments[1];
}
}
else if (divide.arguments.length == 3)
{
scale = divide.arguments[1];
if (scale<0)
throw "divide(): Negative scale: "+scale;
set=new MathContext(0,MathContext.prototype.PLAIN,false,divide.arguments[2]); // [checks round]
}
else if (divide.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "divide(): " + divide.arguments.length + " arguments given; expected between 1 and 3";
}
var rhs = divide.arguments[0];
return this.dodivide('D',rhs,set,scale);
}
/**
* Returns a plain BigDecimal whose value is the integer
* part of this/rhs.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
*
* @param rhs The BigDecimal for the right hand side of
* the integer division.
* @return A BigDecimal whose value is the integer
* part of this/rhs.
* @throws ArithmeticException if rhs is zero.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divideInteger(com.ibm.icu.math.BigDecimal rhs){
//-- // scale 0 to drop .000 when plain
//-- return this.dodivide('I',rhs,plainMC,0);
//-- }
/**
* Returns a BigDecimal whose value is the integer
* part of this/rhs.
* BigDecimal object.
*
* @param rhs The BigDecimal for the right hand side of
* the integer division.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is the integer
* part of this/rhs.
* @throws ArithmeticException if rhs is zero.
* @throws ArithmeticException if the result will not fit in the
* number of digits specified for the context.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal divideInteger(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function divideInteger() {
var set;
if (divideInteger.arguments.length == 2)
{
set = divideInteger.arguments[1];
}
else if (divideInteger.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "divideInteger(): " + divideInteger.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = divideInteger.arguments[0];
// scale 0 to drop .000 when plain
return this.dodivide('I',rhs,set,0);
}
/**
* Returns a plain BigDecimal whose value is
* the maximum of this and rhs.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
*
* @param rhs The BigDecimal for the right hand side of
* the comparison.
* @return A BigDecimal whose value is
* the maximum of this and rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal max(com.ibm.icu.math.BigDecimal rhs){
//-- return this.max(rhs,plainMC);
//-- }
/**
* Returns a BigDecimal whose value is
* the maximum of this and rhs.
* 1 or
* 0, then the result of calling the
* {@link #plus(MathContext)} method on the current object (using the
* same MathContext parameter) is returned.
* Otherwise, the result of calling the {@link #plus(MathContext)}
* method on the first parameter object (using the same
* MathContext parameter) is returned.
*
* @param rhs The BigDecimal for the right hand side of
* the comparison.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* the maximum of this and rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal max(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function max() {
var set;
if (max.arguments.length == 2)
{
set = max.arguments[1];
}
else if (max.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "max(): " + max.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = max.arguments[0];
if ((this.compareTo(rhs,set))>=0)
return this.plus(set);
else
return rhs.plus(set);
}
/**
* Returns a plain BigDecimal whose value is
* the minimum of this and rhs.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
*
* @param rhs The BigDecimal for the right hand side of
* the comparison.
* @return A BigDecimal whose value is
* the minimum of this and rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal min(com.ibm.icu.math.BigDecimal rhs){
//-- return this.min(rhs,plainMC);
//-- }
/**
* Returns a BigDecimal whose value is
* the minimum of this and rhs.
* -1 or
* 0, then the result of calling the
* {@link #plus(MathContext)} method on the current object (using the
* same MathContext parameter) is returned.
* Otherwise, the result of calling the {@link #plus(MathContext)}
* method on the first parameter object (using the same
* MathContext parameter) is returned.
*
* @param rhs The BigDecimal for the right hand side of
* the comparison.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* the minimum of this and rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal min(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function min() {
var set;
if (min.arguments.length == 2)
{
set = min.arguments[1];
}
else if (min.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "min(): " + min.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = min.arguments[0];
if ((this.compareTo(rhs,set))<=0)
return this.plus(set);
else
return rhs.plus(set);
}
/**
* Returns a plain BigDecimal whose value is
* this*rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
* BigDecimal for the right hand side of
* the multiplication.
* @return A BigDecimal whose value is
* this*rhs, using fixed point arithmetic.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal multiply(com.ibm.icu.math.BigDecimal rhs){
//-- return this.multiply(rhs,plainMC);
//-- }
/**
* Returns a BigDecimal whose value is this*rhs.
* *) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
*
* @param rhs The BigDecimal for the right hand side of
* the multiplication.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* this*rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal multiply(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function multiply() {
var set;
if (multiply.arguments.length == 2)
{
set = multiply.arguments[1];
}
else if (multiply.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "multiply(): " + multiply.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = multiply.arguments[0];
//--com.ibm.icu.math.BigDecimal lhs;
var lhs;
//--int padding;
var padding;
//--int reqdig;
var reqdig;
//--byte multer[]=null;
var multer=null;
//--byte multand[]=null;
var multand=null;
//--int multandlen;
var multandlen;
//--int acclen=0;
var acclen=0;
//--com.ibm.icu.math.BigDecimal res;
var res;
//--byte acc[];
var acc;
//--int n=0;
var n=0;
//--byte mult=0;
var mult=0;
if (set.lostDigits)
this.checkdigits(rhs,set.digits);
lhs=this; // name for clarity and proxy
/* Prepare numbers (truncate, unless unlimited precision) */
padding=0; // trailing 0's to add
reqdig=set.digits; // local copy
if (reqdig>0)
{
if (lhs.mant.length>reqdig)
lhs=this.clone(lhs).round(set);
if (rhs.mant.length>reqdig)
rhs=this.clone(rhs).round(set);
// [we could reuse the new LHS for result in this case]
}
else
{/* unlimited */
// fixed point arithmetic will want every trailing 0; we add these
// after the calculation rather than before, for speed.
if (lhs.exp>0)
padding=padding+lhs.exp;
if (rhs.exp>0)
padding=padding+rhs.exp;
}
// For best speed, as in DMSRCN, we use the shorter number as the
// multiplier and the longer as the multiplicand.
// 1999.12.22: We used to special case when the result would fit in
// a long, but with Java 1.3 this gave no advantage.
if (lhs.mant.lengthBigDecimal whose value is
* -this.
* new MathContext(0, MathContext.PLAIN).
* this.scale()
*
*
* @return A BigDecimal whose value is
* -this.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal negate(){
//-- return this.negate(plainMC);
//-- }
/**
* Returns a BigDecimal whose value is -this.
* -) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
*
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* -this.
* @stable ICU 2.0
*/
//public com.ibm.icu.math.BigDecimal negate(com.ibm.icu.math.MathContext set){
function negate() {
var set;
if (negate.arguments.length == 1)
{
set = negate.arguments[0];
}
else if (negate.arguments.length == 0)
{
set = this.plainMC;
}
else
{
throw "negate(): " + negate.arguments.length + " arguments given; expected 0 or 1";
}
//--com.ibm.icu.math.BigDecimal res;
var res;
// Originally called minus(), changed to matched Java precedents
// This simply clones, flips the sign, and possibly rounds
if (set.lostDigits)
this.checkdigits(null,set.digits);
res=this.clone(this); // safe copy
res.ind=-res.ind;
return res.finish(set,false);
}
/**
* Returns a plain BigDecimal whose value is
* +this.
* Note that this is not necessarily a
* plain BigDecimal, but the result will always be.
* new MathContext(0, MathContext.PLAIN).
* this.scale()
*
* @return A BigDecimal whose value is
* +this.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal plus(){
//-- return this.plus(plainMC);
//-- }
/**
* Returns a BigDecimal whose value is
* +this.
* +) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
* MathContext arithmetic settings.
* @return A BigDecimal whose value is
* +this.
* @stable ICU 2.0
*/
//public com.ibm.icu.math.BigDecimal plus(com.ibm.icu.math.MathContext set){
function plus() {
var set;
if (plus.arguments.length == 1)
{
set = plus.arguments[0];
}
else if (plus.arguments.length == 0)
{
set = this.plainMC;
}
else
{
throw "plus(): " + plus.arguments.length + " arguments given; expected 0 or 1";
}
// This clones and forces the result to the new settings
// May return same object
if (set.lostDigits)
this.checkdigits(null,set.digits);
// Optimization: returns same object for some common cases
if (set.form==MathContext.prototype.PLAIN)
if (this.form==MathContext.prototype.PLAIN)
{
if (this.mant.length<=set.digits)
return this;
if (set.digits==0)
return this;
}
return this.clone(this).finish(set,false);
}
/**
* Returns a plain BigDecimal whose value is
* this**rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
* this will be
* raised; it must be in the range 0 through 999999999, and must
* have a decimal part of zero. Note that these restrictions may be
* removed in the future, so they should not be used as a test for a
* whole number.
* MathContext is used and so the result would then
* always be 0.
*
* @param rhs The BigDecimal for the right hand side of
* the operation (the power).
* @return A BigDecimal whose value is
* this**rhs, using fixed point arithmetic.
* @throws ArithmeticException if rhs is out of range or
* is not a whole number.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal pow(com.ibm.icu.math.BigDecimal rhs){
//-- return this.pow(rhs,plainMC);
//-- }
// The name for this method is inherited from the precedent set by the
// BigInteger and Math classes.
/**
* Returns a BigDecimal whose value is this**rhs.
* **) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
* this
* will be raised; it must be in the range -999999999 through
* 999999999, and must have a decimal part of zero. Note that these
* restrictions may be removed in the future, so they should not be
* used as a test for a whole number.
* digits setting of the MathContext
* parameter is 0, the power must be zero or positive.
*
* @param rhs The BigDecimal for the right hand side of
* the operation (the power).
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* this**rhs.
* @throws ArithmeticException if rhs is out of range or
* is not a whole number.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal pow(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function pow() {
var set;
if (pow.arguments.length == 2)
{
set = pow.arguments[1];
}
else if (pow.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "pow(): " + pow.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = pow.arguments[0];
//--int n;
var n;
//--com.ibm.icu.math.BigDecimal lhs;
var lhs;
//--int reqdig;
var reqdig;
//-- int workdigits=0;
var workdigits=0;
//--int L=0;
var L=0;
//--com.ibm.icu.math.MathContext workset;
var workset;
//--com.ibm.icu.math.BigDecimal res;
var res;
//--boolean seenbit;
var seenbit;
//--int i=0;
var i=0;
if (set.lostDigits)
this.checkdigits(rhs,set.digits);
n=rhs.intcheck(this.MinArg,this.MaxArg); // check RHS by the rules
lhs=this; // clarified name
reqdig=set.digits; // local copy (heavily used)
if (reqdig==0)
{
if (rhs.ind==this.isneg)
//--throw new java.lang.ArithmeticException("Negative power:"+" "+rhs.toString());
throw "pow(): Negative power: " + rhs.toString();
workdigits=0;
}
else
{/* non-0 digits */
if ((rhs.mant.length+rhs.exp)>reqdig)
//--throw new java.lang.ArithmeticException("Too many digits:"+" "+rhs.toString());
throw "pow(): Too many digits: " + rhs.toString();
/* Round the lhs to DIGITS if need be */
if (lhs.mant.length>reqdig)
lhs=this.clone(lhs).round(set);
/* L for precision calculation [see ANSI X3.274-1996] */
L=rhs.mant.length+rhs.exp; // length without decimal zeros/exp
workdigits=(reqdig+L)+1; // calculate the working DIGITS
}
/* Create a copy of set for working settings */
// Note: no need to check for lostDigits again.
// 1999.07.17 Note: this construction must follow RHS check
workset=new MathContext(workdigits,set.form,false,set.roundingMode);
res=this.ONE; // accumulator
if (n==0)
return res; // x**0 == 1
if (n<0)
n=-n; // [rhs.ind records the sign]
seenbit=false; // set once we've seen a 1-bit
{i=1;i:for(;;i++){ // for each bit [top bit ignored]
//n=n+n; // shift left 1 bit
n<<=1;
if (n<0)
{ // top bit is set
seenbit=true; // OK, we're off
res=res.multiply(lhs,workset); // acc=acc*x
}
if (i==31)
break i; // that was the last bit
if ((!seenbit))
continue i; // we don't have to square 1
res=res.multiply(res,workset); // acc=acc*acc [square]
}
}/*i*/ // 32 bits
if (rhs.ind<0) // was a **-n [hence digits>0]
res=this.ONE.divide(res,workset); // .. so acc=1/acc
return res.finish(set,true); // round and strip [original digits]
}
/**
* Returns a plain BigDecimal whose value is
* the remainder of this/rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
* BigDecimal for the right hand side of
* the remainder operation.
* @return A BigDecimal whose value is the remainder
* of this/rhs, using fixed point arithmetic.
* @throws ArithmeticException if rhs is zero.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal remainder(com.ibm.icu.math.BigDecimal rhs){
//-- return this.dodivide('R',rhs,plainMC,-1);
//-- }
/**
* Returns a BigDecimal whose value is the remainder of
* this/rhs.
* BigDecimal object.
* BigDecimal for the right hand side of
* the remainder operation.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is the remainder
* of this+rhs.
* @throws ArithmeticException if rhs is zero.
* @throws ArithmeticException if the integer part of the result will
* not fit in the number of digits specified for the
* context.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal remainder(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function remainder() {
var set;
if (remainder.arguments.length == 2)
{
set = remainder.arguments[1];
}
else if (remainder.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "remainder(): " + remainder.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = remainder.arguments[0];
return this.dodivide('R',rhs,set,-1);
}
/**
* Returns a plain BigDecimal whose value is
* this-rhs, using fixed point arithmetic.
* BigDecimal is rhs,
* and the context is new MathContext(0, MathContext.PLAIN).
* BigDecimal for the right hand side of
* the subtraction.
* @return A BigDecimal whose value is
* this-rhs, using fixed point arithmetic.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal subtract(com.ibm.icu.math.BigDecimal rhs){
//-- return this.subtract(rhs,plainMC);
//-- }
/**
* Returns a BigDecimal whose value is this-rhs.
* -) operator
* (as defined in the decimal documentation, see {@link BigDecimal
* class header}),
* and returns the result as a BigDecimal object.
*
* @param rhs The BigDecimal for the right hand side of
* the subtraction.
* @param set The MathContext arithmetic settings.
* @return A BigDecimal whose value is
* this-rhs.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal subtract(com.ibm.icu.math.BigDecimal rhs,com.ibm.icu.math.MathContext set){
function subtract() {
var set;
if (subtract.arguments.length == 2)
{
set = subtract.arguments[1];
}
else if (subtract.arguments.length == 1)
{
set = this.plainMC;
}
else
{
throw "subtract(): " + subtract.arguments.length + " arguments given; expected 1 or 2";
}
var rhs = subtract.arguments[0];
//--com.ibm.icu.math.BigDecimal newrhs;
var newrhs;
if (set.lostDigits)
this.checkdigits(rhs,set.digits);
// [add will recheck .. but would report -rhs]
/* carry out the subtraction */
// we could fastpath -0, but it is too rare.
newrhs=this.clone(rhs); // safe copy
newrhs.ind=-newrhs.ind; // prepare to subtract
return this.add(newrhs,set); // arithmetic
}
/* ---------------------------------------------------------------- */
/* Other methods */
/* ---------------------------------------------------------------- */
/**
* Converts this BigDecimal to a byte.
* If the BigDecimal has a non-zero decimal part or is
* out of the possible range for a byte (8-bit signed
* integer) result then an ArithmeticException is thrown.
*
* @return A byte equal in value to this.
* @throws ArithmeticException if this has a non-zero
* decimal part, or will not fit in a byte.
* @stable ICU 2.0
*/
//--public byte byteValueExact(){
//-- int num;
//-- num=this.intValueExact(); // will check decimal part too
//-- if ((num>127)|(num<(-128)))
//-- throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
//-- return (byte)num;
//-- }
/**
* Compares this BigDecimal with the value of the parameter.
* null, or is not an instance of the
* BigDecimal type, an exception is thrown.
* Otherwise, the parameter is cast to type BigDecimal
* and the result of the {@link #compareTo(BigDecimal)} method,
* using the cast parameter, is returned.
* MathContext is needed for the comparison.
*
* @param rhs The Object for the right hand side of
* the comparison.
* @return An int whose value is -1, 0, or 1 as
* this is numerically less than, equal to,
* or greater than rhs.
* @throws ClassCastException if rhs cannot be cast to
* a BigDecimal object.
* @see #compareTo(BigDecimal)
* @stable ICU 2.0
*/
//--public int compareTo(java.lang.Object rhsobj){
//-- // the cast in the next line will raise ClassCastException if necessary
//-- return compareTo((com.ibm.icu.math.BigDecimal)rhsobj,plainMC);
//-- }
/**
* Converts this BigDecimal to a double.
* If the BigDecimal is out of the possible range for a
* double (64-bit signed floating point) result then an
* ArithmeticException is thrown.
* BigDecimal as a String and then
* converting it using the Double(String) constructor;
* this can result in values of Double.NEGATIVE_INFINITY
* or Double.POSITIVE_INFINITY.
*
* @return A double corresponding to this.
* @stable ICU 2.0
*/
//--public double doubleValue(){
//-- // We go via a String [as does BigDecimal in JDK 1.2]
//-- // Next line could possibly raise NumberFormatException
//-- return java.lang.Double.valueOf(this.toString()).doubleValue();
//-- }
/**
* Compares this BigDecimal with rhs for
* equality.
* null, or is not an instance of the
* BigDecimal type, or is not exactly equal to the current
* BigDecimal object, then false is returned.
* Otherwise, true is returned.
* String
* representations of the BigDecimal numbers are
* identical (they have the same characters in the same sequence).
* Object for the right hand side of
* the comparison.
* @return A boolean whose value true if and
* only if the operands have identical string representations.
* @throws ClassCastException if rhs cannot be cast to
* a BigDecimal object.
* @stable ICU 2.0
* @see #compareTo(Object)
* @see #compareTo(BigDecimal)
* @see #compareTo(BigDecimal, MathContext)
*/
//--public boolean equals(java.lang.Object obj){
function equals(obj) {
//--com.ibm.icu.math.BigDecimal rhs;
var rhs;
//--int i=0;
var i=0;
//--char lca[]=null;
var lca=null;
//--char rca[]=null;
var rca=null;
// We are equal iff toString of both are exactly the same
if (obj==null)
return false; // not equal
if ((!(((obj instanceof BigDecimal)))))
return false; // not a decimal
rhs=obj; // cast; we know it will work
if (this.ind!=rhs.ind)
return false; // different signs never match
if (((this.mant.length==rhs.mant.length)&&(this.exp==rhs.exp))&&(this.form==rhs.form))
{ // mantissas say all
// here with equal-length byte arrays to compare
{var $8=this.mant.length;i=0;i:for(;$8>0;$8--,i++){
if (this.mant[i]!=rhs.mant[i])
return false;
}
}/*i*/
}
else
{ // need proper layout
lca=this.layout(); // layout to character array
rca=rhs.layout();
if (lca.length!=rca.length)
return false; // mismatch
// here with equal-length character arrays to compare
{var $9=lca.length;i=0;i:for(;$9>0;$9--,i++){
if (lca[i]!=rca[i])
return false;
}
}/*i*/
}
return true; // arrays have identical content
}
/**
* Converts this BigDecimal to a float.
* If the BigDecimal is out of the possible range for a
* float (32-bit signed floating point) result then an
* ArithmeticException is thrown.
* BigDecimal as a String and then
* converting it using the Float(String) constructor;
* this can result in values of Float.NEGATIVE_INFINITY
* or Float.POSITIVE_INFINITY.
*
* @return A float corresponding to this.
* @stable ICU 2.0
*/
//--public float floatValue(){
//-- return java.lang.Float.valueOf(this.toString()).floatValue();
//-- }
/**
* Returns the String representation of this
* BigDecimal, modified by layout parameters.
* DecimalFormat, that
* can apply locale-sensitive editing of the result. The level of
* formatting that it provides is a necessary part of the BigDecimal
* class as it is sensitive to and must follow the calculation and
* rounding rules for BigDecimal arithmetic.
* However, if the function is provided elsewhere, it may be removed
* from this class.
* format method
* are all of type int.
* A value of -1 for any parameter indicates that the default action
* or value for that parameter should be used.
* before and after,
* specify the number of characters to be used for the integer part
* and decimal part of the result respectively. Exponential notation
* is not used. If either parameter is -1 (which indicates the default
* action), the number of characters used will be exactly as many as
* are needed for that part.
* before must be a positive number; if it is larger than
* is needed to contain the integer part, that part is padded on the
* left with blanks to the requested length. If before is
* not large enough to contain the integer part of the number
* (including the sign, for negative numbers) an exception is thrown.
* after must be a non-negative number; if it is not the
* same size as the decimal part of the number, the number will be
* rounded (or extended with zeros) to fit. Specifying 0 for
* after will cause the number to be rounded to an
* integer (that is, it will have no decimal part or decimal point).
* The rounding method will be the default,
* MathContext.ROUND_HALF_UP.
* int specifying the number of places
* before the decimal point. Use -1 for 'as many as
* are needed'.
* @param after The int specifying the number of places
* after the decimal point. Use -1 for 'as many as are
* needed'.
* @return A String representing this
* BigDecimal, laid out according to the
* specified parameters
* @throws ArithmeticException if the number cannot be laid out as
* requested.
* @throws IllegalArgumentException if a parameter is out of range.
* @stable ICU 2.0
* @see #toString
* @see #toCharArray
*/
//--public java.lang.String format(int before,int after){
//-- return format(before,after,-1,-1,com.ibm.icu.math.MathContext.SCIENTIFIC,ROUND_HALF_UP);
//-- }
/**
* Returns the String representation of this
* BigDecimal, modified by layout parameters and allowing
* exponential notation.
* DecimalFormat, that
* can apply locale-sensitive editing of the result. The level of
* formatting that it provides is a necessary part of the BigDecimal
* class as it is sensitive to and must follow the calculation and
* rounding rules for BigDecimal arithmetic.
* However, if the function is provided elsewhere, it may be removed
* from this class.
* int.
* A value of -1 for any parameter indicates that the default action
* or value for that parameter should be used.
* before and
* after) specify the number of characters to be used for
* the integer part and decimal part of the result respectively, as
* defined for {@link #format(int,int)}.
* If either of these is -1 (which indicates the default action), the
* number of characters used will be exactly as many as are needed for
* that part.
* explaces, exdigits,
* and exform) control the exponent part of the result.
* As before, the default action for any of these parameters may be
* selected by using the value -1.
* explaces must be a positive number; it sets the number
* of places (digits after the sign of the exponent) to be used for
* any exponent part, the default (when explaces is -1)
* being to use as many as are needed.
* If explaces is not -1, space is always reserved for
* an exponent; if one is not needed (for example, if the exponent
* will be 0) then explaces+2 blanks are appended to the
* result.
*
* If explaces is not -1 and is not large enough to
* contain the exponent, an exception is thrown.
* exdigits sets the trigger point for use of exponential
* notation. If, before any rounding, the number of places needed
* before the decimal point exceeds exdigits, or if the
* absolute value of the result is less than 0.000001,
* then exponential form will be used, provided that
* exdigits was specified.
* When exdigits is -1, exponential notation will never
* be used. If 0 is specified for exdigits, exponential
* notation is always used unless the exponent would be 0.
* exform sets the form for exponential notation (if
* needed).
* It may be either {@link MathContext#SCIENTIFIC} or
* {@link MathContext#ENGINEERING}.
* If the latter, engineering, form is requested, up to three digits
* (plus sign, if negative) may be needed for the integer part of the
* result (before). Otherwise, only one digit (plus
* sign, if negative) is needed.
* exround, selects the
* rounding algorithm to be used, and must be one of the values
* indicated by a public constant in the {@link MathContext} class
* whose name starts with ROUND_.
* The default (ROUND_HALF_UP) may also be selected by
* using the value -1, as before.
* MathContext.ROUND_UNNECESSARY may be
* used to detect whether non-zero digits are discarded -- if
* exround has this value than if non-zero digits would
* be discarded (rounded) during formatting then an
* ArithmeticException is thrown.
*
* @param before The int specifying the number of places
* before the decimal point.
* Use -1 for 'as many as are needed'.
* @param after The int specifying the number of places
* after the decimal point.
* Use -1 for 'as many as are needed'.
* @param explaces The int specifying the number of places
* to be used for any exponent.
* Use -1 for 'as many as are needed'.
* @param exdigits The int specifying the trigger
* (digits before the decimal point) which if
* exceeded causes exponential notation to be used.
* Use 0 to force exponential notation.
* Use -1 to force plain notation (no exponential
* notation).
* @param exform The int specifying the form of
* exponential notation to be used
* ({@link MathContext#SCIENTIFIC} or
* {@link MathContext#ENGINEERING}).
* @param exround The int specifying the rounding mode
* to use.
* Use -1 for the default, {@link MathContext#ROUND_HALF_UP}.
* @return A String representing this
* BigDecimal, laid out according to the
* specified parameters
* @throws ArithmeticException if the number cannot be laid out as
* requested.
* @throws IllegalArgumentException if a parameter is out of range.
* @see #toString
* @see #toCharArray
* @stable ICU 2.0
*/
//--public java.lang.String format(int before,int after,int explaces,int exdigits,int exformint,int exround){
function format() {
var explaces;
var exdigits;
var exformint;
var exround;
if (format.arguments.length == 6)
{
explaces = format.arguments[2];
exdigits = format.arguments[3];
exformint = format.arguments[4];
exround = format.arguments[5];
}
else if (format.arguments.length == 2)
{
explaces = -1;
exdigits = -1;
exformint = MathContext.prototype.SCIENTIFIC;
exround = this.ROUND_HALF_UP;
}
else
{
throw "format(): " + format.arguments.length + " arguments given; expected 2 or 6";
}
var before = format.arguments[0];
var after = format.arguments[1];
//--com.ibm.icu.math.BigDecimal num;
var num;
//--int mag=0;
var mag=0;
//--int thisafter=0;
var thisafter=0;
//--int lead=0;
var lead=0;
//--byte newmant[]=null;
var newmant=null;
//--int chop=0;
var chop=0;
//--int need=0;
var need=0;
//--int oldexp=0;
var oldexp=0;
//--char a[];
var a;
//--int p=0;
var p=0;
//--char newa[]=null;
var newa=null;
//--int i=0;
var i=0;
//--int places=0;
var places=0;
/* Check arguments */
if ((before<(-1))||(before==0))
this.badarg("format",1,before);
if (after<(-1))
this.badarg("format",2,after);
if ((explaces<(-1))||(explaces==0))
this.badarg("format",3,explaces);
if (exdigits<(-1))
this.badarg("format",4,exdigits);
{/*select*/
if (exformint==MathContext.prototype.SCIENTIFIC)
{}
else if (exformint==MathContext.prototype.ENGINEERING)
{}
else if (exformint==(-1))
exformint=MathContext.prototype.SCIENTIFIC;
// note PLAIN isn't allowed
else{
this.badarg("format",5,exformint);
}
}
// checking the rounding mode is done by trying to construct a
// MathContext object with that mode; it will fail if bad
if (exround!=this.ROUND_HALF_UP)
{try{ // if non-default...
if (exround==(-1))
exround=this.ROUND_HALF_UP;
else
new MathContext(9,MathContext.prototype.SCIENTIFIC,false,exround);
}
catch ($10){
this.badarg("format",6,exround);
}}
num=this.clone(this); // make private copy
/* Here:
num is BigDecimal to format
before is places before point [>0]
after is places after point [>=0]
explaces is exponent places [>0]
exdigits is exponent digits [>=0]
exformint is exponent form [one of two]
exround is rounding mode [one of eight]
'before' through 'exdigits' are -1 if not specified
*/
/* determine form */
{setform:do{/*select*/
if (exdigits==(-1))
num.form=MathContext.prototype.PLAIN;
else if (num.ind==this.iszero)
num.form=MathContext.prototype.PLAIN;
else{
// determine whether triggers
mag=num.exp+num.mant.length;
if (mag>exdigits)
num.form=exformint;
else
if (mag<(-5))
num.form=exformint;
else
num.form=MathContext.prototype.PLAIN;
}
}while(false);}/*setform*/
/* If 'after' was specified then we may need to adjust the
mantissa. This is a little tricky, as we must conform to the
rules of exponential layout if necessary (e.g., we cannot end up
with 10.0 if scientific). */
if (after>=0)
{setafter:for(;;){
// calculate the current after-length
{/*select*/
if (num.form==MathContext.prototype.PLAIN)
thisafter=-num.exp; // has decimal part
else if (num.form==MathContext.prototype.SCIENTIFIC)
thisafter=num.mant.length-1;
else{ // engineering
lead=(((num.exp+num.mant.length)-1))%3; // exponent to use
if (lead<0)
lead=3+lead; // negative exponent case
lead++; // number of leading digits
if (lead>=num.mant.length)
thisafter=0;
else
thisafter=num.mant.length-lead;
}
}
if (thisafter==after)
break setafter; // we're in luck
if (thisafterBigDecimal.
* This hashcode is suitable for use by the
* java.util.Hashtable class.
* BigDecimal objects are only guaranteed
* to produce the same hashcode if they are exactly equal (that is,
* the String representations of the
* BigDecimal numbers are identical -- they have the same
* characters in the same sequence).
*
* @return An int that is the hashcode for this.
* @stable ICU 2.0
*/
//--public int hashCode(){
//-- // Maybe calculate ourselves, later. If so, note that there can be
//-- // more than one internal representation for a given toString() result.
//-- return this.toString().hashCode();
//-- }
/**
* Converts this BigDecimal to an int.
* If the BigDecimal has a non-zero decimal part it is
* discarded. If the BigDecimal is out of the possible
* range for an int (32-bit signed integer) result then
* only the low-order 32 bits are used. (That is, the number may be
* decapitated.) To avoid unexpected errors when these
* conditions occur, use the {@link #intValueExact} method.
*
* @return An int converted from this,
* truncated and decapitated if necessary.
* @stable ICU 2.0
*/
//--public int intValue(){
//-- return toBigInteger().intValue();
//-- }
/**
* Converts this BigDecimal to an int.
* If the BigDecimal has a non-zero decimal part or is
* out of the possible range for an int (32-bit signed
* integer) result then an ArithmeticException is thrown.
*
* @return An int equal in value to this.
* @throws ArithmeticException if this has a non-zero
* decimal part, or will not fit in an
* int.
* @stable ICU 2.0
*/
//--public int intValueExact(){
function intValueExact() {
//--int lodigit;
var lodigit;
//--int useexp=0;
var useexp=0;
//--int result;
var result;
//--int i=0;
var i=0;
//--int topdig=0;
var topdig=0;
// This does not use longValueExact() as the latter can be much
// slower.
// intcheck (from pow) relies on this to check decimal part
if (this.ind==this.iszero)
return 0; // easy, and quite common
/* test and drop any trailing decimal part */
lodigit=this.mant.length-1;
if (this.exp<0)
{
lodigit=lodigit+this.exp; // reduces by -(-exp)
/* all decimal places must be 0 */
if ((!(this.allzero(this.mant,lodigit+1))))
throw "intValueExact(): Decimal part non-zero: " + this.toString();
if (lodigit<0)
return 0; // -1BigDecimal to a long.
* If the BigDecimal has a non-zero decimal part it is
* discarded. If the BigDecimal is out of the possible
* range for a long (64-bit signed integer) result then
* only the low-order 64 bits are used. (That is, the number may be
* decapitated.) To avoid unexpected errors when these
* conditions occur, use the {@link #longValueExact} method.
*
* @return A long converted from this,
* truncated and decapitated if necessary.
* @stable ICU 2.0
*/
//--public long longValue(){
//-- return toBigInteger().longValue();
//-- }
/**
* Converts this BigDecimal to a long.
* If the BigDecimal has a non-zero decimal part or is
* out of the possible range for a long (64-bit signed
* integer) result then an ArithmeticException is thrown.
*
* @return A long equal in value to this.
* @throws ArithmeticException if this has a non-zero
* decimal part, or will not fit in a
* long.
* @stable ICU 2.0
*/
//--public long longValueExact(){
//-- int lodigit;
//-- int cstart=0;
//-- int useexp=0;
//-- long result;
//-- int i=0;
//-- long topdig=0;
//-- // Identical to intValueExact except for result=long, and exp>=20 test
//-- if (ind==0)
//-- return 0; // easy, and quite common
//-- lodigit=mant.length-1; // last included digit
//-- if (exp<0)
//-- {
//-- lodigit=lodigit+exp; // -(-exp)
//-- /* all decimal places must be 0 */
//-- if (lodigit<0)
//-- cstart=0;
//-- else
//-- cstart=lodigit+1;
//-- if ((!(allzero(mant,cstart))))
//-- throw new java.lang.ArithmeticException("Decimal part non-zero:"+" "+this.toString());
//-- if (lodigit<0)
//-- return 0; // -1BigDecimal whose decimal point has
* been moved to the left by a specified number of positions.
* The parameter, n, specifies the number of positions to
* move the decimal point.
* That is, if n is 0 or positive, the number returned is
* given by:
*
* this.multiply(TEN.pow(new BigDecimal(-n)))
*
* n may be negative, in which case the method returns
* the same result as movePointRight(-n).
*
* @param n The int specifying the number of places to
* move the decimal point leftwards.
* @return A BigDecimal derived from
* this, with the decimal point moved
* n places to the left.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal movePointLeft(int n){
function movePointLeft(n) {
//--com.ibm.icu.math.BigDecimal res;
var res;
// very little point in optimizing for shift of 0
res=this.clone(this);
res.exp=res.exp-n;
return res.finish(this.plainMC,false); // finish sets form and checks exponent
}
/**
* Returns a plain BigDecimal whose decimal point has
* been moved to the right by a specified number of positions.
* The parameter, n, specifies the number of positions to
* move the decimal point.
* That is, if n is 0 or positive, the number returned is
* given by:
*
* this.multiply(TEN.pow(new BigDecimal(n)))
*
* n may be negative, in which case the method returns
* the same result as movePointLeft(-n).
*
* @param n The int specifying the number of places to
* move the decimal point rightwards.
* @return A BigDecimal derived from
* this, with the decimal point moved
* n places to the right.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal movePointRight(int n){
function movePointRight(n) {
//--com.ibm.icu.math.BigDecimal res;
var res;
res=this.clone(this);
res.exp=res.exp+n;
return res.finish(this.plainMC,false);
}
/**
* Returns the scale of this BigDecimal.
* Returns a non-negative int which is the scale of the
* number. The scale is the number of digits in the decimal part of
* the number if the number were formatted without exponential
* notation.
*
* @return An int whose value is the scale of this
* BigDecimal.
* @stable ICU 2.0
*/
//--public int scale(){
function scale() {
if (this.exp>=0)
return 0; // scale can never be negative
return -this.exp;
}
/**
* Returns a plain BigDecimal with a given scale.
* BigDecimal then trailing zeros will be added to the
* decimal part as necessary.
* BigDecimal then trailing digits
* will be removed, and in this case an
* ArithmeticException is thrown if any discarded digits
* are non-zero.
* MathContext.ROUND_UNNECESSARY.
*
* @param scale The int specifying the scale of the
* resulting BigDecimal.
* @return A plain BigDecimal with the given scale.
* @throws ArithmeticException if scale is negative.
* @throws ArithmeticException if reducing scale would discard
* non-zero digits.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal setScale(int scale){
//-- return setScale(scale,ROUND_UNNECESSARY);
//-- }
/**
* Returns a plain BigDecimal with a given scale.
* BigDecimal then trailing zeros will be added to the
* decimal part as necessary.
* BigDecimal then trailing digits
* will be removed, and the rounding mode given by the second
* parameter is used to determine if the remaining digits are
* affected by a carry.
* In this case, an IllegalArgumentException is thrown if
* round is not a valid rounding mode.
* round is MathContext.ROUND_UNNECESSARY,
* an ArithmeticException is thrown if any discarded
* digits are non-zero.
*
* @param scale The int specifying the scale of the
* resulting BigDecimal.
* @param round The int rounding mode to be used for
* the division (see the {@link MathContext} class).
* @return A plain BigDecimal with the given scale.
* @throws IllegalArgumentException if round is not a
* valid rounding mode.
* @throws ArithmeticException if scale is negative.
* @throws ArithmeticException if round is
* MathContext.ROUND_UNNECESSARY, and
* reducing scale would discard non-zero digits.
* @stable ICU 2.0
*/
//--public com.ibm.icu.math.BigDecimal setScale(int scale,int round){
function setScale() {
var round;
if (setScale.arguments.length == 2)
{
round = setScale.arguments[1];
}
else if (setScale.arguments.length == 1)
{
round = this.ROUND_UNNECESSARY;
}
else
{
throw "setScale(): " + setScale.arguments.length + " given; expected 1 or 2";
}
var scale = setScale.arguments[0];
//--int ourscale;
var ourscale;
//--com.ibm.icu.math.BigDecimal res;
var res;
//--int padding=0;
var padding=0;
//--int newlen=0;
var newlen=0;
// at present this naughtily only checks the round value if it is
// needed (used), for speed
ourscale=this.scale();
if (ourscale==scale) // already correct scale
if (this.form==MathContext.prototype.PLAIN) // .. and form
return this;
res=this.clone(this); // need copy
if (ourscale<=scale)
{ // simply zero-padding/changing form
// if ourscale is 0 we may have lots of 0s to add
if (ourscale==0)
padding=res.exp+scale;
else
padding=scale-ourscale;
res.mant=this.extend(res.mant,res.mant.length+padding);
res.exp=-scale; // as requested
}
else
{/* ourscale>scale: shortening, probably */
if (scale<0)
//--throw new java.lang.ArithmeticException("Negative scale:"+" "+scale);
throw "setScale(): Negative scale: " + scale;
// [round() will raise exception if invalid round]
newlen=res.mant.length-((ourscale-scale)); // [<=0 is OK]
res=res.round(newlen,round); // round to required length
// This could have shifted left if round (say) 0.9->1[.0]
// Repair if so by adding a zero and reducing exponent
if (res.exp!=(-scale))
{
res.mant=this.extend(res.mant,res.mant.length+1);
res.exp=res.exp-1;
}
}
res.form=MathContext.prototype.PLAIN; // by definition
return res;
}
/**
* Converts this BigDecimal to a short.
* If the BigDecimal has a non-zero decimal part or is
* out of the possible range for a short (16-bit signed
* integer) result then an ArithmeticException is thrown.
*
* @return A short equal in value to this.
* @throws ArithmeticException if this has a non-zero
* decimal part, or will not fit in a
* short.
* @stable ICU 2.0
*/
//--public short shortValueExact(){
//-- int num;
//-- num=this.intValueExact(); // will check decimal part too
//-- if ((num>32767)|(num<(-32768)))
//-- throw new java.lang.ArithmeticException("Conversion overflow:"+" "+this.toString());
//-- return (short)num;
//-- }
/**
* Returns the sign of this BigDecimal, as an
* int.
* This returns the signum function value that represents the
* sign of this BigDecimal.
* That is, -1 if the BigDecimal is negative, 0 if it is
* numerically equal to zero, or 1 if it is positive.
*
* @return An int which is -1 if the
* BigDecimal is negative, 0 if it is
* numerically equal to zero, or 1 if it is positive.
* @stable ICU 2.0
*/
//--public int signum(){
function signum() {
return this.ind; // [note this assumes values for ind.]
}
/**
* Converts this BigDecimal to a
* java.math.BigDecimal.
* BigDecimal were formatted as a plain number without
* any rounding or exponent and then the
* java.math.BigDecimal(java.lang.String) constructor
* were used to construct the result.
* com.ibm.icu.math version of the BigDecimal class.
* It would not be present in a java.math version.)
*
* @return The java.math.BigDecimal equal in value
* to this BigDecimal.
* @stable ICU 2.0
*/
//--public java.math.BigDecimal toBigDecimal(){
//-- return new java.math.BigDecimal(this.unscaledValue(),this.scale());
//-- }
/**
* Converts this BigDecimal to a
* java.math.BigInteger.
* java.math.BigInteger equal in value
* to the integer part of this BigDecimal.
* @stable ICU 2.0
*/
//--public java.math.BigInteger toBigInteger(){
//-- com.ibm.icu.math.BigDecimal res=null;
//-- int newlen=0;
//-- byte newmant[]=null;
//-- {/*select*/
//-- if ((exp>=0)&(form==com.ibm.icu.math.MathContext.PLAIN))
//-- res=this; // can layout simply
//-- else if (exp>=0)
//-- {
//-- res=clone(this); // safe copy
//-- res.form=(byte)com.ibm.icu.math.MathContext.PLAIN; // .. and request PLAIN
//-- }
//-- else{
//-- { // exp<0; scale to be truncated
//-- // we could use divideInteger, but we may as well be quicker
//-- if (((int)-this.exp)>=this.mant.length)
//-- res=ZERO; // all blows away
//-- else
//-- {
//-- res=clone(this); // safe copy
//-- newlen=res.mant.length+res.exp;
//-- newmant=new byte[newlen]; // [shorter]
//-- java.lang.System.arraycopy((java.lang.Object)res.mant,0,(java.lang.Object)newmant,0,newlen);
//-- res.mant=newmant;
//-- res.form=(byte)com.ibm.icu.math.MathContext.PLAIN;
//-- res.exp=0;
//-- }
//-- }
//-- }
//-- }
//-- return new BigInteger(new java.lang.String(res.layout()));
//-- }
/**
* Converts this BigDecimal to a
* java.math.BigInteger.
* java.math.BigInteger equal in value
* to the integer part of this BigDecimal.
* @throws ArithmeticException if this has a non-zero
* decimal part.
* @stable ICU 2.0
*/
//--public java.math.BigInteger toBigIntegerExact(){
//-- /* test any trailing decimal part */
//-- if (exp<0)
//-- { // possible decimal part
//-- /* all decimal places must be 0; note exp<0 */
//-- if ((!(allzero(mant,mant.length+exp))))
//-- throw new java.lang.ArithmeticException("Decimal part non-zero:"+" "+this.toString());
//-- }
//-- return toBigInteger();
//-- }
/**
* Returns the BigDecimal as a character array.
* The result of this method is the same as using the
* sequence toString().toCharArray(), but avoids creating
* the intermediate String and char[]
* objects.
*
* @return The char[] array corresponding to this
* BigDecimal.
* @stable ICU 2.0
*/
//--public char[] toCharArray(){
//-- return layout();
//-- }
/**
* Returns the BigDecimal as a String.
* This returns a String that exactly represents this
* BigDecimal, as defined in the decimal documentation
* (see {@link BigDecimal class header}).
* String will create a
* BigDecimal that is exactly equal to the original
* BigDecimal.
*
* @return The String exactly corresponding to this
* BigDecimal.
* @see #format(int, int)
* @see #format(int, int, int, int, int, int)
* @see #toCharArray()
* @stable ICU 2.0
*/
//--public java.lang.String toString(){
function toString() {
return this.layout().join("");
}
/**
* Returns the number as a BigInteger after removing the
* scale.
* That is, the number is expressed as a plain number, any decimal
* point is then removed (retaining the digits of any decimal part),
* and the result is then converted to a BigInteger.
*
* @return The java.math.BigInteger equal in value to
* this BigDecimal multiplied by ten to the
* power of this.scale().
* @stable ICU 2.0
*/
//--public java.math.BigInteger unscaledValue(){
//-- com.ibm.icu.math.BigDecimal res=null;
//-- if (exp>=0)
//-- res=this;
//-- else
//-- {
//-- res=clone(this); // safe copy
//-- res.exp=0; // drop scale
//-- }
//-- return res.toBigInteger();
//-- }
/**
* Translates a double to a BigDecimal.
* BigDecimal which is the decimal
* representation of the 64-bit signed binary floating point
* parameter. If the parameter is infinite, or is not a number (NaN),
* a NumberFormatException is thrown.
* num had been
* converted to a String using the
* Double.toString() method and the
* {@link #BigDecimal(java.lang.String)} constructor had then been used.
* This is typically not an exact conversion.
*
* @param dub The double to be translated.
* @return The BigDecimal equal in value to
* dub.
* @throws NumberFormatException if the parameter is infinite or
* not a number.
* @stable ICU 2.0
*/
//--public static com.ibm.icu.math.BigDecimal valueOf(double dub){
//-- // Reminder: a zero double returns '0.0', so we cannot fastpath to
//-- // use the constant ZERO. This might be important enough to justify
//-- // a factory approach, a cache, or a few private constants, later.
//-- return new com.ibm.icu.math.BigDecimal((new java.lang.Double(dub)).toString());
//-- }
/**
* Translates a long to a BigDecimal.
* That is, returns a plain BigDecimal whose value is
* equal to the given long.
*
* @param lint The long to be translated.
* @return The BigDecimal equal in value to
* lint.
* @stable ICU 2.0
*/
//--public static com.ibm.icu.math.BigDecimal valueOf(long lint){
//-- return valueOf(lint,0);
//-- }
/**
* Translates a long to a BigDecimal with a
* given scale.
* That is, returns a plain BigDecimal whose unscaled
* value is equal to the given long, adjusted by the
* second parameter, scale.
*
* (new BigDecimal(lint)).divide(TEN.pow(new BigDecimal(scale)))
*
* NumberFormatException is thrown if scale
* is negative.
*
* @param lint The long to be translated.
* @param scale The int scale to be applied.
* @return The BigDecimal equal in value to
* lint.
* @throws NumberFormatException if the scale is negative.
* @stable ICU 2.0
*/
//--public static com.ibm.icu.math.BigDecimal valueOf(long lint,int scale){
//-- com.ibm.icu.math.BigDecimal res=null;
//-- {/*select*/
//-- if (lint==0)
//-- res=ZERO;
//-- else if (lint==1)
//-- res=ONE;
//-- else if (lint==10)
//-- res=TEN;
//-- else{
//-- res=new com.ibm.icu.math.BigDecimal(lint);
//-- }
//-- }
//-- if (scale==0)
//-- return res;
//-- if (scale<0)
//-- throw new java.lang.NumberFormatException("Negative scale:"+" "+scale);
//-- res=clone(res); // safe copy [do not mutate]
//-- res.exp=(int)-scale; // exponent is -scale
//-- return res;
//-- }
/* ---------------------------------------------------------------- */
/* Private methods */
/* ---------------------------------------------------------------- */
/*
C=A+(B*M)
Where M is in the range -9 through +9