An arbitrary-precision Decimal type for JavaScript.
The library is incorporated into this page, so it should be available in the console now.
See the README on GitHub for a quick-start introduction.
In all examples below, var
and semicolons are not shown, and if a commented-out
value is in quotes it means toString
has been called on the preceding expression.
When the library is loaded, it defines a single function object,
Decimal
, the constructor of Decimal instances.
If necessary, multiple Decimal constructors can be created, each with their own independent configuration, e.g. precision and range, which applies to all Decimal instances created from it.
A new Decimal constructor is created by calling the clone
method of an already existing Decimal constructor.
Decimal(value) ⇒ Decimal
value
: number|string|Decimalvalue
is an integer or float, including ±0
, or
is ±Infinity
, or NaN
.
value
is not limited, except by JavaScript's maximum
array size and, in practice, the processing time required.
value
is defined in terms of a maximum exponent, see
maxE, and a minimum exponent, see minE.
value
may be expressed in binary, hexadecimal
or octal, if the appropriate prefix is included: 0x
or 0X
for
hexadecimal, 0b
or 0B
for binary, and 0o
or
0O
for octal.
e
or E
defines a power-of-ten exponent
for decimal values, and p
or P
defines a power-of-two exponent for
non-decimal values, i.e. binary, hexadecimal or octal.
Returns a new Decimal object instance.
Throws on an invalid value
.
x = new Decimal(9) // '9' y = new Decimal(x) // '9' new Decimal('5032485723458348569331745.33434346346912144534543') new Decimal('4.321e+4') // '43210' new Decimal('-735.0918e-430') // '-7.350918e-428' new Decimal('5.6700000') // '5.67' new Decimal(Infinity) // 'Infinity' new Decimal(NaN) // 'NaN' new Decimal('.5') // '0.5' new Decimal('-0b10110100.1') // '-180.5' new Decimal('0xff.8') // '255.5' new Decimal(0.046875) // '0.046875' new Decimal('0.046875000000') // '0.046875' new Decimal(4.6875e-2) // '0.046875' new Decimal('468.75e-4') // '0.046875' new Decimal('0b0.000011') // '0.046875' new Decimal('0o0.03') // '0.046875' new Decimal('0x0.0c') // '0.046875' new Decimal('0b1.1p-5') // '0.046875' new Decimal('0o1.4p-5') // '0.046875' new Decimal('0x1.8p-5') // '0.046875'
The methods of a Decimal constructor.
.abs(x) ⇒ Decimal
x
: number|string|Decimal
See absoluteValue
.
a = Decimal.abs(x) b = new Decimal(x).abs() a.equals(b) // true
.acos(x) ⇒ Decimal
x
: number|string|Decimal
See inverseCosine
.
a = Decimal.acos(x) b = new Decimal(x).acos() a.equals(b) // true
.acosh(x) ⇒ Decimal
x
: number|string|Decimal
a = Decimal.acosh(x) b = new Decimal(x).acosh() a.equals(b) // true
.add(x, y) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
See plus
.
a = Decimal.add(x, y) b = new Decimal(x).plus(y) a.equals(b) // true
.asin(x) ⇒ Decimal
x
: number|string|Decimal
See inverseSine
.
a = Decimal.asin(x) b = new Decimal(x).asin() a.equals(b) // true
.asinh(x) ⇒ Decimal
x
: number|string|Decimal
a = Decimal.asinh(x) b = new Decimal(x).asinh() a.equals(b) // true
.atan(x) ⇒ Decimal
x
: number|string|Decimal
See inverseTangent
.
a = Decimal.atan(x) b = new Decimal(x).atan() a.equals(b) // true
.atanh(x) ⇒ Decimal
x
: number|string|Decimal
a = Decimal.atanh(x) b = new Decimal(x).atanh() a.equals(b) // true
.atan2(y, x) ⇒ Decimal
y
: number|string|Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the inverse tangent in radians of the quotient of
y
and x
, rounded to precision
significant digits using rounding mode rounding
.
The signs of y
and x
are used to determine the quadrant of the
result.
Domain: [-Infinity, Infinity
]
Range: [-pi, pi
]
See Pi
and
Math.atan2()
.
r = Decimal.atan2(y, x)
.cbrt(x) ⇒ Decimal
x
: number|string|Decimal
See cubeRoot
.
a = Decimal.cbrt(x) b = new Decimal(x).cbrt() a.equals(b) // true
.ceil(x) ⇒ Decimal
x
: number|string|Decimal
See ceil
.
a = Decimal.ceil(x) b = new Decimal(x).ceil() a.equals(b) // true
.clone([object]) ⇒ Decimal constructor
object
: object
Returns a new independent Decimal constructor with configuration settings as described by
object
(see set
), or with the same
settings as this
Decimal constructor if object
is omitted.
Decimal.set({ precision: 5 }) Decimal9 = Decimal.clone({ precision: 9 }) a = new Decimal(1) b = new Decimal9(1) a.div(3) // 0.33333 b.div(3) // 0.333333333 // Decimal9 = Decimal.clone({ precision: 9 }) is equivalent to: Decimal9 = Decimal.clone() Decimal9.set({ precision: 9 })
If object
has a 'defaults'
property with value true
then the new constructor will use the default configuration.
D1 = Decimal.clone({ defaults: true }) // Use the defaults except for precision D2 = Decimal.clone({ defaults: true, precision: 50 })
It is not inefficient in terms of memory usage to use multiple Decimal constructors as functions are shared between them.
.cos(x) ⇒ Decimal
x
: number|string|Decimal
See cosine
.
a = Decimal.cos(x) b = new Decimal(x).cos() a.equals(b) // true
.cosh(x) ⇒ Decimal
x
: number|string|Decimal
See hyperbolicCosine
.
a = Decimal.cosh(x) b = new Decimal(x).cosh() a.equals(b) // true
.div(x, y) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
See dividedBy
.
a = Decimal.div(x, y) b = new Decimal(x).div(y) a.equals(b) // true
.exp(x) ⇒ Decimal
x
: number|string|Decimal
See naturalExponential
.
a = Decimal.exp(x) b = new Decimal(x).exp() a.equals(b) // true
.floor(x) ⇒ Decimal
x
: number|string|Decimal
See floor
.
a = Decimal.floor(x) b = new Decimal(x).floor() a.equals(b) // true
.hypot([x [, y, ...]]) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
Returns a new Decimal whose value is the square root of the sum of the squares of the
arguments, rounded to precision
significant digits using
rounding mode rounding
.
r = Decimal.hypot(x, y)
.ln(x) ⇒ Decimal
x
: number|string|Decimal
See naturalLogarithm
.
a = Decimal.ln(x) b = new Decimal(x).ln() a.equals(b) // true
.isDecimal(object) ⇒ boolean
object
: any
Returns true
if object
is a Decimal instance (where Decimal is any
Decimal constructor), or false
if it is not.
a = new Decimal(1) b = {} a instanceof Decimal // true Decimal.isDecimal(a) // true Decimal.isDecimal(b) // false
.log(x [, base]) ⇒ Decimal
x
: number|string|Decimal
base
: number|string|Decimal
See logarithm
.
The default base is 10
, which is not the same as JavaScript's
Math.log()
, which returns the natural logarithm (base e
).
a = Decimal.log(x, y) b = new Decimal(x).log(y) a.equals(b) // true
.log2(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the base 2
logarithm of x
,
rounded to precision
significant digits using rounding
mode rounding
.
r = Decimal.log2(x)
.log10(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the base 10
logarithm of x
,
rounded to precision
significant digits using rounding
mode rounding
.
r = Decimal.log10(x)
.max([x [, y, ...]]) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
Returns a new Decimal whose value is the maximum of the arguments
.
r = Decimal.max(x, y, z)
.min([x [, y, ...]]) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
Returns a new Decimal whose value is the minimum of the arguments
.
r = Decimal.min(x, y, z)
.mod(x, y) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
See modulo
.
a = Decimal.mod(x, y) b = new Decimal(x).mod(y) a.equals(b) // true
.mul(x, y) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
See times
.
a = Decimal.mul(x, y) b = new Decimal(x).mul(y) a.equals(b) // true
.noConflict() ⇒ Decimal constructor
Browsers only.
Reverts the Decimal
variable to the value it had before this library was loaded
and returns a reference to the original Decimal constructor so it can be assigned to a
variable with a different name.
<script> Decimal = 1 </script> <script src='/path/to/decimal.js'></script> <script> a = new Decimal(2) // '2' D = Decimal.noConflict() Decimal // 1 b = new D(3) // '3' </script>
.pow(base, exponent) ⇒ Decimal
base
: number|string|Decimal
exponent
: number|string|Decimal
See toPower
.
a = Decimal.pow(x, y) b = new Decimal(x).pow(y) a.equals(b) // true
.random([dp]) ⇒ Decimal
dp
: number: integer, 0
to 1e+9
inclusive
Returns a new Decimal with a pseudo-random value equal to or greater than 0
and
less than 1
.
The return value will have dp
decimal places (or less if trailing zeros are
produced). If dp
is omitted then the number of decimal places will
default to the current precision
setting.
If the value of this
Decimal constructor's
crypto
property is true
, and the
crypto
object is available globally in the host environment, the random digits of
the return value are generated by either crypto.getRandomValues
(Web Cryptography
API in modern browsers) or crypto.randomBytes
(Node.js), otherwise, if the the
value of the property is false
the return value is generated by
Math.random
(fastest).
To make the crypto
object available globally in Node.js use
global.crypto = require('crypto')
If the value of this
Decimal constructor's
crypto
property is set true
and the
crypto
object and associated method are not available, an exception will be
thrown.
If one of the crypto
methods is used, the value of the returned Decimal should be
cryptographically-secure and statistically indistinguishable from a random value.
Decimal.set({ precision: 10 }) Decimal.random() // '0.4117936847' Decimal.random(20) // '0.78193327636914089009'
.round(x) ⇒ Decimal
x
: number|string|Decimal
See round
.
a = Decimal.round(x) b = new Decimal(x).round() a.equals(b) // true
.set(object) ⇒ Decimal constructor
object
: object
Configures the 'global' settings for this
particular Decimal constructor, i.e.
the settings which apply to operations performed on the Decimal instances created by it.
Returns this
Decimal constructor.
The configuration object, object
, can contain some or all of the properties
described in detail at Properties and shown in the
example below.
The values of the configuration object properties are checked for validity and then stored as
equivalently-named properties of this
Decimal constructor.
If object
has a 'defaults'
property with value true
then any unspecified properties will be reset to their default values.
Throws on an invalid object
or configuration property value.
// Defaults Decimal.set({ precision: 20, rounding: 4, toExpNeg: -7, toExpPos: 21, maxE: 9e15, minE: -9e15, modulo: 1, crypto: false }) // Reset all properties to their default values Decimal.set({ defaults: true }) // Set precision to 50 and all other properties to their default values Decimal.set({ precision: 50, defaults: true })
The properties of a Decimal constructor can also be set by direct assignment, but that will by-pass the validity checking that this method performs - this is not a problem if the user knows that the assignment is valid.
Decimal.precision = 40
.sign(x) ⇒ number
x
: number|string|Decimal
Returns | |
---|---|
1 |
if the value of x is non-zero and its sign is positive |
-1 |
if the value of x is non-zero and its sign is negative |
0 |
if the value of x is positive zero |
-0 |
if the value of x is negative zero |
NaN |
if the value of x is NaN |
r = Decimal.sign(x)
.sin(x) ⇒ Decimal
x
: number|string|Decimal
See sine
.
a = Decimal.sin(x) b = new Decimal(x).sin() a.equals(b) // true
.sinh(x) ⇒ Decimal
x
: number|string|Decimal
See hyperbolicSine
.
a = Decimal.sinh(x) b = new Decimal(x).sinh() a.equals(b) // true
.sqrt(x) ⇒ Decimal
x
: number|string|Decimal
See squareRoot.
a = Decimal.sqrt(x) b = new Decimal(x).sqrt() a.equals(b) // true
.sub(x, y) ⇒ Decimal
x
: number|string|Decimal
y
: number|string|Decimal
See minus
.
a = Decimal.sub(x, y) b = new Decimal(x).sub(y) a.equals(b) // true
.tan(x) ⇒ Decimal
x
: number|string|Decimal
See tangent
.
a = Decimal.tan(x) b = new Decimal(x).tan() a.equals(b) // true
.tanh(x) ⇒ Decimal
x
: number|string|Decimal
See hyperbolicTangent
.
a = Decimal.tanh(x) b = new Decimal(x).tanh() a.equals(b) // true
.trunc(x) ⇒ Decimal
x
: number|string|Decimal
See truncated
.
a = Decimal.trunc(x) b = new Decimal(x).trunc() a.equals(b) // true
The properties of a Decimal constructor.
The values of the configuration properties precision
,
rounding
, minE
,
maxE
, toExpNeg
,
toExpPos
, modulo
, and
crypto
are set using the
set
method.
As simple object properties they can be set directly without using
set
, and it is fine to do so, but the values assigned
will not then be checked for validity. For example:
Decimal.set({ precision: 0 }) // '[DecimalError] Invalid argument: precision: 0' Decimal.precision = 0 // No error is thrown and the results of calculations are unreliable
number: integer, 1
to 1e+9
inclusive
Default value: 20
The maximum number of significant digits of the result of an operation.
All functions which return a Decimal will round the return value to precision
significant digits except Decimal
,
absoluteValue
,
ceil
, floor
,
negated
, round
,
toDecimalPlaces
,
toNearest
and
truncated
.
See Pi
for the precision limit of the trigonometric methods.
Decimal.set({ precision: 5 }) Decimal.precision // 5
number: integer, 0
to 8
inclusive
Default value: 4
(ROUND_HALF_UP
)
The default rounding mode used when rounding the result of an operation to
precision
significant digits, and when rounding the
return value of the round
,
toBinary
,
toDecimalPlaces
,
toExponential
,
toFixed
,
toHexadecimal
,
toNearest
,
toOctal
,
toPrecision
and
toSignificantDigits
methods.
The rounding modes are available as enumerated properties of the constructor.
Decimal.set({ rounding: Decimal.ROUND_UP }) Decimal.set({ rounding: 0 }) // equivalent Decimal.rounding // 0
number: integer, -9e15
to 0
inclusive
Default value: -9e15
The negative exponent limit, i.e. the exponent value below which underflow to zero occurs.
If the Decimal
to be returned by a calculation would have an exponent lower than
minE
then the value of that Decimal
becomes zero.
JavaScript numbers underflow to zero for exponents below -324
.
Decimal.set({ minE: -500 }) Decimal.minE // -500 new Decimal('1e-500') // '1e-500' new Decimal('9.9e-501') // '0' Decimal.set({ minE: -3 }) new Decimal(0.001) // '0.01' e is -3 new Decimal(0.0001) // '0' e is -4
The smallest possible magnitude of a non-zero Decimal is 1e-9000000000000000
number: integer, 0
to 9e15
inclusive
Default value: 9e15
The positive exponent limit, i.e. the exponent value above which overflow to
Infinity
occurs.
If the Decimal
to be returned by a calculation would have an exponent higher than
maxE
then the value of that Decimal
becomes Infinity
.
JavaScript numbers overflow to Infinity
for exponents above 308
.
Decimal.set({ maxE: 500 }) Decimal.maxE // 500 new Decimal('9.999e500') // '9.999e+500' new Decimal('1e501') // 'Infinity' Decimal.set({ maxE: 4 }) new Decimal(99999) // '99999' e is 4 new Decimal(100000) // 'Infinity'
The largest possible magnitude of a finite Decimal is 9.999...e+9000000000000000
number: integer, -9e15
to 0
inclusive
Default value: -7
The negative exponent value at and below which toString
returns exponential notation.
Decimal.set({ toExpNeg: -7 }) Decimal.toExpNeg // -7 new Decimal(0.00000123) // '0.00000123' e is -6 new Decimal(0.000000123) // '1.23e-7' // Always return exponential notation: Decimal.set({ toExpNeg: 0 })
JavaScript numbers use exponential notation for negative exponents of -7
and
below.
Regardless of the value of toExpNeg
, the
toFixed
method will always return a value in normal
notation and the toExponential
method will always
return a value in exponential form.
number: integer, 0
to 9e15
inclusive
Default value: 20
The positive exponent value at and above which toString
returns exponential notation.
Decimal.set({ toExpPos: 2 }) Decimal.toExpPos // 2 new Decimal(12.3) // '12.3' e is 1 new Decimal(123) // '1.23e+2' // Always return exponential notation: Decimal.set({ toExpPos: 0 })
JavaScript numbers use exponential notation for positive exponents of 20
and
above.
Regardless of the value of toExpPos
, the
toFixed
method will always return a value in normal
notation and the toExponential
method will always
return a value in exponential form.
number: integer, 0
to 9
inclusive
Default value: 1
(ROUND_DOWN
)
The modulo mode used when calculating the modulus: a mod n
.
The quotient, q = a / n
, is calculated according to the
rounding
mode that corresponds to the chosen
modulo
mode.
The remainder, r
, is calculated as: r = a - n * q
.
The modes that are most commonly used for the modulus/remainder operation are shown in the
following table. Although the other rounding
modes can
be used, they may not give useful results.
Property | Value | Description |
---|---|---|
ROUND_UP | 0 | The remainder is positive if the dividend is negative, else is negative |
ROUND_DOWN | 1 |
The remainder has the same sign as the dividend. This uses truncating division and matches the behaviour of JavaScript's remainder operator % .
|
ROUND_FLOOR | 3 |
The remainder has the same sign as the divisor. (This matches Python's % operator)
|
ROUND_HALF_EVEN | 6 | The IEEE 754 remainder function |
EUCLID | 9 |
The remainder is always positive. Euclidian division: q = sign(x) * floor(a / abs(x)) .
|
The rounding/modulo modes are available as enumerated properties of the Decimal constructor.
Decimal.set({ modulo: Decimal.EUCLID }) Decimal.set({ modulo: 9 }) // equivalent Decimal.modulo // 9
boolean: true/false
Default value: false
The value that determines whether cryptographically-secure pseudo-random number generation is used.
See random
.
// Node.js global.crypto = require('crypto') Decimal.crypto // false Decimal.set({ crypto: true }) Decimal.crypto // true
The library's enumerated rounding modes are stored as properties of the Decimal constructor.
They are not referenced internally by the library itself.
Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
Property | Value | Description |
---|---|---|
ROUND_UP | 0 | Rounds away from zero |
ROUND_DOWN | 1 | Rounds towards zero |
ROUND_CEIL | 2 | Rounds towards Infinity |
ROUND_FLOOR | 3 | Rounds towards -Infinity |
ROUND_HALF_UP | 4 | Rounds towards nearest neighbour. If equidistant, rounds away from zero |
ROUND_HALF_DOWN | 5 | Rounds towards nearest neighbour. If equidistant, rounds towards zero |
ROUND_HALF_EVEN | 6 |
Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour |
ROUND_HALF_CEIL | 7 | Rounds towards nearest neighbour. If equidistant, rounds towards Infinity |
ROUND_HALF_FLOOR | 8 | Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity |
EUCLID | 9 | Not a rounding mode, see modulo |
Decimal.set({ rounding: Decimal.ROUND_CEIL }) Decimal.set({ rounding: 2 }) // equivalent Decimal.rounding // 2
The methods inherited by a Decimal instance from its constructor's prototype object.
A Decimal instance is immutable in the sense that it is not changed by its methods.
Methods that return a Decimal can be chained:
x = new Decimal(2).times('999.999999999999999').dividedBy(4).ceil()
Methods do not round their arguments before execution.
The treatment of ±0
, ±Infinity
and NaN
is consistent with how JavaScript treats these values.
Many method names have a shorter alias. (Internally, the library always uses the shorter method names.)
.abs() ⇒ Decimal
Returns a new Decimal whose value is the absolute value, i.e. the magnitude, of the value of this Decimal.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.ceil() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
the direction of positive Infinity
.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(1.3) x.ceil() // '2' y = new Decimal(-1.8) y.ceil() // '-1'
.cmp(x) ⇒ number
x
: number|string|Decimal
Returns | |
---|---|
1 |
if the value of this Decimal is greater than the value of x |
-1 |
if the value of this Decimal is less than the value of x |
0 |
if this Decimal and x have the same value |
NaN |
if the value of either this Decimal or x is NaN |
x = new Decimal(Infinity) y = new Decimal(5) x.comparedTo(y) // 1 x.comparedTo(x.minus(1)) // 0 y.cmp(NaN) // NaN
.cos() ⇒ Decimal
Returns a new Decimal whose value is the cosine of the value in radians of this Decimal,
rounded to precision
significant digits using rounding
mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-1, 1
]
See Pi
for the precision limit of this method.
x = new Decimal(0.25) x.cosine() // '0.96891242171064478414' y = new Decimal(-0.25) y.cos() // '0.96891242171064478414'
.cbrt() ⇒ Decimal
Returns a new Decimal whose value is the cube root of this Decimal, rounded to
precision
significant digits using rounding mode
rounding
.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
x = new Decimal(125) x.cubeRoot() // '5' y = new Decimal(3) y.cbrt() // '1.4422495703074083823'
.dp() ⇒ number
Returns the number of decimal places, i.e. the number of digits after the decimal point, of the value of this Decimal.
x = new Decimal(1.234) x.decimalPlaces() // '3' y = new Decimal(987.654321) y.dp() // '6'
.div(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the value of this Decimal divided by x
,
rounded to precision
significant digits using rounding
mode rounding
.
x = new Decimal(355) y = new Decimal(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71'
.divToInt(x) ⇒ Decimal
x
: number|string|Decimal
Return a new Decimal whose value is the integer part of dividing this Decimal by
x
, rounded to precision
significant digits
using rounding mode rounding
.
x = new Decimal(5) y = new Decimal(3) x.dividedToIntegerBy(y) // '1' x.divToInt(0.7) // '7'
.eq(x) ⇒ boolean
x
: number|string|Decimal
Returns true
if the value of this Decimal equals the value of x
,
otherwise returns false
.
As with JavaScript, NaN
does not
equal NaN
.
Note: This method uses the cmp
method internally.
0 === 1e-324 // true x = new Decimal(0) x.equals('1e-324') // false new Decimal(-0).eq(x) // true ( -0 === 0 ) y = new Decimal(NaN) y.equals(NaN) // false
.floor() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in
the direction of negative Infinity
.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(1.8) x.floor() // '1' y = new Decimal(-1.3) y.floor() // '-2'
.gt(x) ⇒ boolean
x
: number|string|Decimal
Returns true
if the value of this Decimal is greater than the value of
x
, otherwise returns false
.
Note: This method uses the cmp
method internally.
0.1 > (0.3 - 0.2) // true x = new Decimal(0.1) x.greaterThan(Decimal(0.3).minus(0.2)) // false new Decimal(0).gt(x) // false
.gte(x) ⇒ boolean
x
: number|string|Decimal
Returns true
if the value of this Decimal is greater than or equal to the value
of x
, otherwise returns false
.
Note: This method uses the cmp
method internally.
(0.3 - 0.2) >= 0.1 // false x = new Decimal(0.3).minus(0.2) x.greaterThanOrEqualTo(0.1) // true new Decimal(1).gte(x) // true
.cosh() ⇒ Decimal
Returns a new Decimal whose value is the hyperbolic cosine of the value in radians of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [1, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(1) x.hyperbolicCosine() // '1.5430806348152437785' y = new Decimal(0.5) y.cosh() // '1.1276259652063807852'
.sinh() ⇒ Decimal
Returns a new Decimal whose value is the hyperbolic sine of the value in radians of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-Infinity, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(1) x.hyperbolicSine() // '1.1752011936438014569' y = new Decimal(0.5) y.sinh() // '0.52109530549374736162'
.tanh() ⇒ Decimal
Returns a new Decimal whose value is the hyperbolic tangent of the value in radians of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-1, 1
]
See Pi
for the precision limit of this method.
x = new Decimal(1) x.hyperbolicTangent() // '0.76159415595576488812' y = new Decimal(0.5) y.tanh() // '0.4621171572600097585'
.acos() ⇒ Decimal
Returns a new Decimal whose value is the inverse cosine in radians of the value of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
Domain: [-1, 1
]
Range: [0, pi
]
See Pi
for the precision limit of this method.
x = new Decimal(0) x.inverseCosine() // '1.5707963267948966192' y = new Decimal(0.5) y.acos() // '1.0471975511965977462'
.acosh() ⇒ Decimal
Returns a new Decimal whose value is the inverse hyperbolic cosine in radians of the value of
this Decimal, rounded to precision
significant
digits using rounding mode rounding
.
Domain: [1, Infinity
]
Range: [0, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(5) x.inverseHyperbolicCosine() // '2.2924316695611776878' y = new Decimal(50) y.acosh() // '4.6050701709847571595'
.asinh() ⇒ Decimal
Returns a new Decimal whose value is the inverse hyperbolic sine in radians of the value of
this Decimal, rounded to precision
significant digits
using rounding mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-Infinity, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(5) x.inverseHyperbolicSine() // '2.3124383412727526203' y = new Decimal(50) y.asinh() // '4.6052701709914238266'
.atanh() ⇒ Decimal
Returns a new Decimal whose value is the inverse hyperbolic tangent in radians of the value of
this Decimal, rounded to precision
significant
digits using rounding mode rounding
.
Domain: [-1, 1
]
Range: [-Infinity, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(0.5) x.inverseHyperbolicTangent() // '0.5493061443340548457' y = new Decimal(0.75) y.atanh() // '0.97295507452765665255'
.asin() ⇒ Decimal
Returns a new Decimal whose value is the inverse sine in radians of the value of this Decimal,
rounded to precision
significant digits using rounding
mode rounding
.
Domain: [-1, 1
]
Range: [-pi/2, pi/2
]
See Pi
for the precision limit of this method.
x = new Decimal(0.5) x.inverseSine() // '0.52359877559829887308' y = new Decimal(0.75) y.asin() // '0.84806207898148100805'
.atan() ⇒ Decimal
Returns a new Decimal whose value is the inverse tangent in radians of the value of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-pi/2, pi/2
]
See Pi
for the precision limit of this method.
x = new Decimal(0.5) x.inverseTangent() // '0.46364760900080611621' y = new Decimal(0.75) y.atan() // '0.6435011087932843868'
.isFinite() ⇒ boolean
Returns true
if the value of this Decimal is a finite number, otherwise returns
false
.
The only possible non-finite values of a Decimal are NaN
, Infinity
and -Infinity
.
x = new Decimal(1) x.isFinite() // true y = new Decimal(Infinity) y.isFinite() // false
Note: The native method isFinite()
can be used if
n <= Number.MAX_VALUE
.
.isInt() ⇒ boolean
Returns true
if the value of this Decimal is a whole number, otherwise returns
false
.
x = new Decimal(1) x.isInteger() // true y = new Decimal(123.456) y.isInt() // false
.isNaN() ⇒ boolean
Returns true
if the value of this Decimal is NaN
, otherwise returns
false
.
x = new Decimal(NaN) x.isNaN() // true y = new Decimal('Infinity') y.isNaN() // false
Note: The native method isNaN()
can also be used.
.isNeg() ⇒ boolean
Returns true
if the value of this Decimal is negative, otherwise returns
false
.
x = new Decimal(-0) x.isNegative() // true y = new Decimal(2) y.isNeg // false
Note: n < 0
can be used if n <= -Number.MIN_VALUE
.
.isPos() ⇒ boolean
Returns true
if the value of this Decimal is positive, otherwise returns
false
.
x = new Decimal(0) x.isPositive() // true y = new Decimal(-2) y.isPos // false
Note: n < 0
can be used if n <= -Number.MIN_VALUE
.
.isZero() ⇒ boolean
Returns true
if the value of this Decimal is zero or minus zero, otherwise
returns false
.
x = new Decimal(-0) x.isZero() && x.isNeg() // true y = new Decimal(Infinity) y.isZero() // false
Note: n == 0
can be used if n >= Number.MIN_VALUE
.
.lt(x) ⇒ boolean
x
: number|string|Decimal
Returns true
if the value of this Decimal is less than the value of
x
, otherwise returns false
.
Note: This method uses the cmp
method internally.
(0.3 - 0.2) < 0.1 // true x = new Decimal(0.3).minus(0.2) x.lessThan(0.1) // false new Decimal(0).lt(x) // true
.lte(x) ⇒ boolean
x
: number|string|Decimal
Returns true
if the value of this Decimal is less than or equal to the value of
x
, otherwise returns false
.
Note: This method uses the cmp
method internally.
0.1 <= (0.3 - 0.2) // false x = new Decimal(0.1) x.lessThanOrEqualTo(Decimal(0.3).minus(0.2)) // true new Decimal(-1).lte(x) // true
.log(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the base x
logarithm of the value of this
Decimal, rounded to precision
significant digits using
rounding mode rounding
.
If x
is omitted, the base 10 logarithm of the value of this Decimal will be
returned.
x = new Decimal(1000) x.logarithm() // '3' y = new Decimal(256) y.log(2) // '8'
The return value will almost always be correctly rounded, i.e. rounded as if the result
was first calculated to an infinite number of correct digits before rounding. If a result is
incorrectly rounded the maximum error will be 1
ulp (unit in the last
place).
Logarithms to base 2
or 10
will always be correctly rounded.
See toPower
for the circumstances in which this method may
return an incorrectly rounded result, and see naturalLogarithm
for the precision limit.
The performance of this method degrades exponentially with increasing digits.
.minus(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the value of this Decimal minus x
, rounded
to precision
significant digits using rounding mode
rounding
.
0.3 - 0.1 // 0.19999999999999998 x = new Decimal(0.3) x.minus(0.1) // '0.2'
.mod(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the value of this Decimal modulo x
,
rounded to precision
significant digits using rounding
mode rounding
.
The value returned, and in particular its sign, is dependent on the value of the
modulo
property of this Decimal's constructor. If it is
1
(default value), the result will have the same sign as this Decimal, and it
will match that of Javascript's %
operator (within the limits of double
precision) and BigDecimal's remainder
method.
See modulo
for a description of the other modulo modes.
1 % 0.9 // 0.09999999999999998 x = new Decimal(1) x.modulo(0.9) // '0.1' y = new Decimal(8) z = new Decimal(-3) Decimal.modulo = 1 y.mod(z) // '2' Decimal.modulo = 3 y.mod(z) // '-1'
.exp() ⇒ Decimal
Returns a new Decimal whose value is the base e
(Euler's number, the base of the
natural logarithm) exponential of the value of this Decimal, rounded to
precision
significant digits using rounding mode
rounding
.
The naturalLogarithm
function is the inverse of this function.
x = new Decimal(1) x.naturalExponential() // '2.7182818284590452354' y = new Decimal(2) y.exp() // '7.3890560989306502272'
The return value will be correctly rounded, i.e. rounded as if the result was first calculated
to an infinite number of correct digits before rounding. (The mathematical result of the
exponential function is non-terminating, unless its argument is 0
).
The performance of this method degrades exponentially with increasing digits.
.ln() ⇒ Decimal
Returns a new Decimal whose value is the natural logarithm of the value of this Decimal,
rounded to precision
significant digits using rounding
mode rounding
.
The natural logarithm is the inverse of the naturalExponential
function.
x = new Decimal(10) x.naturalLogarithm() // '2.3026' y = new Decimal('1.23e+30') y.ln() // '69.28'
The return value will be correctly rounded, i.e. rounded as if the result was first calculated
to an infinite number of correct digits before rounding. (The mathematical result of the
natural logarithm function is non-terminating, unless its argument is 1
).
Internally, this method is dependent on a constant whose value is the natural logarithm of
10
. This LN10
variable in the source code currently has a precision
of 1025
digits, meaning that this method can accurately calculate up to
1000
digits.
If more than 1000
digits is required then the precision of LN10
will need to be increased to 25
digits more than is required - though, as the
time-taken by this method increases exponentially with increasing digits, it is unlikely to be
viable to calculate over 1000
digits anyway.
.neg() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal negated, i.e. multiplied by
-1
.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(1.8) x.negated() // '-1.8' y = new Decimal(-1.3) y.neg() // '1.3'
.plus(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the value of this Decimal plus x
, rounded to
precision
significant digits using rounding mode
rounding
.
0.1 + 0.2 // 0.30000000000000004 x = new Decimal(0.1) y = x.plus(0.2) // '0.3' new Decimal(0.7).plus(x).plus(y) // '1.1'
.sd([include_zeros]) ⇒ number
Returns the number of significant digits of the value of this Decimal.
If include_zeros
is true
or 1
then any trailing zeros
of the integer part of a number are counted as significant digits, otherwise they are not.
x = new Decimal(1.234) x.precision() // '4' y = new Decimal(987000) y.sd() // '3' y.sd(true) // '6'
.round() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number using
rounding mode rounding
.
To emulate Math.round
, set rounding
to
7
, i.e. ROUND_HALF_CEIL
.
Decimal.set({ rounding: 4 }) x = 1234.5 x.round() // '1235' Decimal.rounding = Decimal.ROUND_DOWN x.round() // '1234' x // '1234.5'
.sin() ⇒ Decimal
Returns a new Decimal whose value is the sine of the value in radians of this Decimal,
rounded to precision
significant digits using rounding
mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-1, 1
]
See Pi
for the precision limit of this method.
x = new Decimal(0.5) x.sine() // '0.47942553860420300027' y = new Decimal(0.75) y.sin() // '0.68163876002333416673'
.sqrt() ⇒ Decimal
Returns a new Decimal whose value is the square root of this Decimal, rounded to
precision
significant digits using rounding mode
rounding
.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
This method is much faster than using the toPower
method with
an exponent of 0.5
.
x = new Decimal(16) x.squareRoot() // '4' y = new Decimal(3) y.sqrt() // '1.73205080756887729353' y.sqrt().eq( y.pow(0.5) ) // true
.tan() ⇒ Decimal
Returns a new Decimal whose value is the tangent of the value in radians of this Decimal,
rounded to precision
significant digits using rounding
mode rounding
.
Domain: [-Infinity, Infinity
]
Range: [-Infinity, Infinity
]
See Pi
for the precision limit of this method.
x = new Decimal(0.5) x.tangent() // '0.54630248984379051326' y = new Decimal(0.75) y.tan() // '0.93159645994407246117'
.times(x) ⇒ Decimal
x
: number|string|Decimal
Returns a new Decimal whose value is the value of this Decimal times x
,
rounded to precision
significant digits using rounding
mode rounding
.
0.6 * 3 // 1.7999999999999998 x = new Decimal(0.6) y = x.times(3) // '1.8' new Decimal('7e+500').times(y) // '1.26e+501'
.toBinary([sd [, rm]]) ⇒ string
sd
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal in binary, rounded to sd
significant digits using rounding mode rm
.
If sd
is defined, the return value will use binary exponential notation.
If sd
is omitted, the return value will be rounded to
precision
significant digits.
If rm
is omitted, rounding mode rounding
will be used.
Throws on an invalid sd
or rm
value.
x = new Decimal(256) x.toBinary() // '0b100000000' x.toBinary(1) // '0b1p+8'
.toDP([dp [, rm]]) ⇒ Decimal
dp
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive.
Returns a new Decimal whose value is the value of this Decimal rounded to dp
decimal places using rounding mode rm
.
If dp
is omitted, the return value will have the same value as this Decimal.
If rm
is omitted, rounding mode rounding
is used.
Throws on an invalid dp
or rm
value.
x = new Decimal(12.34567) x.toDecimalPlaces(0) // '12' x.toDecimalPlaces(1, Decimal.ROUND_UP) // '12.3' y = new Decimal(9876.54321) y.toDP(3) // '9876.543' y.toDP(1, 0) // '9876.6' y.toDP(1, Decimal.ROUND_DOWN) // '9876.5'
.toExponential([dp [, rm]]) ⇒ string
dp
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal in exponential notation rounded
using rounding mode rm
to dp
decimal places, i.e with one digit
before the decimal point and dp
digits after it.
If the value of this Decimal in exponential notation has fewer than dp
fraction
digits, the return value will be appended with zeros accordingly.
If dp
is omitted, the number of digits after the decimal point defaults to the
minimum number of digits necessary to represent the value exactly.
If rm
is omitted, rounding mode rounding
is
used.
Throws on an invalid dp
or rm
value.
x = 45.6 y = new Decimal(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, Decimal.ROUND_DOWN) // '4.5e+1' x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
dp
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal in normal (fixed-point) notation
rounded to dp
decimal places using rounding mode rm
.
If the value of this Decimal in normal notation has fewer than dp
fraction
digits, the return value will be appended with zeros accordingly.
Unlike Number.prototype.toFixed
, which returns exponential notation if a number
is greater or equal to 1021
, this method will always return normal
notation.
If dp
is omitted, the return value will be unrounded and in normal notation. This
is unlike Number.prototype.toFixed
, which returns the value to zero decimal
places, but is useful when because of the current
toExpNeg
or
toExpNeg
values,
toString
returns exponential notation.
If rm
is omitted, rounding mode rounding
is
used.
Throws on an invalid dp
or rm
value.
x = 3.456 y = new Decimal(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, Decimal.ROUND_DOWN) // '3.45' x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toFraction([max_denominator]) ⇒ [Decimal, Decimal]
max_denominator
: number|string|Decimal: 1
>= integer <
Infinity
Returns an array of two Decimals representing the value of this Decimal as a simple fraction
with an integer numerator and an integer denominator. The denominator will be a positive
non-zero value less than or equal to max_denominator
.
If a maximum denominator is omitted, the denominator will be the lowest value necessary to represent the number exactly.
Throws on an invalid max_denominator
value.
x = new Decimal(1.75) x.toFraction() // '7, 4' pi = new Decimal('3.14159265358') pi.toFraction() // '157079632679,50000000000' pi.toFraction(100000) // '312689, 99532' pi.toFraction(10000) // '355, 113' pi.toFraction(100) // '311, 99' pi.toFraction(10) // '22, 7' pi.toFraction(1) // '3, 1'
.toHex([sd [, rm]]) ⇒ string
sd
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal in hexadecimal, rounded to
sd
significant digits using rounding mode rm
.
If sd
is defined, the return value will use binary exponential notation.
If sd
is omitted, the return value will be rounded to
precision
significant digits.
If rm
is omitted, rounding mode rounding
will be used.
Throws on an invalid sd
or rm
value.
x = new Decimal(256) x.toHexadecimal() // '0x100' x.toHex(1) // '0x1p+8'
.toJSON() ⇒ string
As valueOf
.
.toNearest(x [, rm]) ⇒ Decimal
x
: number|string|Decimal
rm
: number: integer, 0
to 8
inclusive
Returns a new Decimal whose value is the nearest multiple of x
in the direction
of rounding mode rm
, or rounding
if
rm
is omitted, to the value of this Decimal.
The return value will always have the same sign as this Decimal, unless either this Decimal
or x
is NaN
, in which case the return value will be also be
NaN
.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(1.39) x.toNearest(0.25) // '1.5' y = new Decimal(9.499) y.toNearest(0.5, Decimal.ROUND_UP) // '9.5' y.toNearest(0.5, Decimal.ROUND_DOWN) // '9'
.toNumber() ⇒ number
Returns the value of this Decimal converted to a primitive number.
Type coercion with, for example, JavaScript's unary plus operator will also work, except that a Decimal with the value minus zero will convert to positive zero.
x = new Decimal(456.789) x.toNumber() // 456.789 +x // 456.789 y = new Decimal('45987349857634085409857349856430985') y.toNumber() // 4.598734985763409e+34 z = new Decimal(-0) 1 / +z // Infinity 1 / z.toNumber() // -Infinity
.toOctal([sd [, rm]]) ⇒ string
sd
: number: integer, 0
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal in octal, rounded to sd
significant digits using rounding mode rm
.
If sd
is defined, the return value will use binary exponential notation.
If sd
is omitted, the return value will be rounded to
precision
significant digits.
If rm
is omitted, rounding mode rounding
will be used.
Throws on an invalid sd
or rm
value.
x = new Decimal(256) x.toOctal() // '0o400' x.toOctal(1) // '0o1p+8'
.pow(x) ⇒ Decimal
x
: number|string|Decimal: integer or non-integer
Returns a new Decimal whose value is the value of this Decimal raised to the power
x
, rounded to precision
significant digits
using rounding mode rounding
.
The performance of this method degrades exponentially with increasing digits. For non-integer exponents in particular, the performance of this method may not be adequate.
Math.pow(0.7, 2) // 0.48999999999999994 x = new Decimal(0.7) x.toPower(2) // '0.49' new Decimal(3).pow(-2) // '0.11111111111111111111' new Decimal(1217652.23).pow('98765.489305603941') // '4.8227010515242461181e+601039'
Is the pow function guaranteed to be correctly rounded?
The return value will almost always be correctly rounded, i.e. rounded as if the result
was first calculated to an infinite number of correct digits before rounding. If a result is
incorrectly rounded the maximum error will be 1
ulp (unit in the last
place).
For non-integer and larger exponents this method uses the formula
xy = exp(y*ln(x))
As the mathematical return values of the exp
and
ln
functions are both non-terminating (excluding arguments of
0
or 1
), the values of the Decimals returned by the functions as
implemented by this library will necessarily be rounded approximations, which means that there
can be no guarantee of correct rounding when they are combined in the above formula.
The return value may, depending on the rounding mode, be incorrectly rounded only if the first
15
rounding digits are 15
zeros (and there are non-zero digits
following at some point), or 15
nines, or a 5
or 4
followed by 14
nines.
Therefore, assuming the first 15
rounding digits are each equally likely to be
any digit, 0-9
, the probability of an incorrectly rounded result is less than
1
in 250,000,000,000,000
.
An example of incorrect rounding:
Decimal.set({ precision: 20, rounding: 1 }) new Decimal(28).pow('6.166675020000903537297764507632802193308677149') // 839756321.64088511
As the exact mathematical result begins
839756321.6408851099999999999999999999999999998969466049426031167...
and the rounding mode is set to ROUND_DOWN
, the correct
return value should be
839756321.64088510999
.toPrecision([sd [, rm]]) ⇒ string
sd
: number: integer, 1
to 1e+9
inclusive
rm
: number: integer, 0
to 8
inclusive
Returns a string representing the value of this Decimal rounded to sd
significant
digits using rounding mode rm
.
If sd
is less than the number of digits necessary to represent the integer part
of the value in normal (fixed-point) notation, then exponential notation is used.
If sd
is omitted, the return value is the same as
toString
.
If rm
is omitted, rounding mode rounding
is
used.
Throws on an invalid sd
or rm
value.
x = 45.6 y = new Decimal(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, Decimal.ROUND_UP) // '4.6e+1' y.toPrecision(2, Decimal.DOWN) // '4.5e+1' x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toSD([sd [, rm]]) ⇒ Decimal
sd
: number: integer, 1
to 1e+9
inclusive.
rm
: number: integer, 0
to 8
inclusive.
Returns a new Decimal whose value is the value of this Decimal rounded to sd
significant digits using rounding mode rm
.
If sd
is omitted, the return value will be rounded to
precision
significant digits.
If rm
is omitted, rounding mode rounding
will be used.
Throws on an invalid sd
or rm
value.
Decimal.set({ precision: 5, rounding: 4 }) x = new Decimal(9876.54321) x.toSignificantDigits() // '9876.5' x.toSignificantDigits(6) // '9876.54' x.toSignificantDigits(6, Decimal.ROUND_UP) // '9876.55' x.toSD(2) // '9900' x.toSD(2, 1) // '9800' x // '9876.54321'
.toString() ⇒ string
Returns a string representing the value of this Decimal.
If this Decimal has a positive exponent that is equal to or greater than
toExpPos
, or a negative exponent equal to or less than
toExpNeg
, then exponential notation will be returned.
x = new Decimal(750000) x.toString() // '750000' Decimal.set({ toExpPos: 5 }) x.toString() // '7.5e+5' Decimal.set({ precision: 4 }) y = new Decimal('1.23456789') y.toString() // '1.23456789'
.trunc() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal truncated to a whole number.
The return value is not affected by the value of the
precision
setting.
x = new Decimal(123.456) x.truncated() // '123' y = new Decimal(-12.3) y.trunc() // '-12'
.valueOf() ⇒ string
As toString
, but zero is signed.
x = new Decimal(-0) x.valueOf() // '-0'
The value of a Decimal is stored in a normalised base 10000000
floating point
format.
A Decimal instance is an object with three properties:
Property | Description | Type | Value |
---|---|---|---|
d | digits | number[] |
Array of integers, each 0 - 1e7 , or null |
e | exponent | number | Integer, -9e15 to 9e15 inclusive, or NaN |
s | sign | number | -1 , 1 , or NaN |
All the properties are best considered to be read-only.
As with JavaScript numbers, the original exponent and fractional trailing zeros of a value are not preserved.
x = new Decimal(0.123) // '0.123' x.toExponential() // '1.23e-1' x.d // [ 1230000 ] x.e // -1 x.s // 1 y = new Number(-123.4567000e+2) // '-12345.67' y.toExponential() // '-1.234567e+4' z = new Decimal('-123.4567000e+2') // '-12345.67' z.toExponential() // '-1.234567e+4' z.d // [ 12345, 6700000 ] z.e // 4 z.s // -1
The table below shows how ±0
, NaN
and
±Infinity
are stored.
±0 | NaN | ±Infinity | |
---|---|---|---|
d | [0] |
null |
null |
e | 0 |
NaN |
NaN |
s | ±1 |
NaN |
±1 |
x = new Number(-0) // 0 1 / x == -Infinity // true y = new Decimal(-0) y.d // '0' ( [0].toString() ) y.e // 0 y.s // -1 y.toString() // '0' y.valueOf() // '-0'
The errors that are thrown are generic Error
objects whose message
property begins with "[DecimalError]"
.
To determine if an exception is a Decimal Error:
try { // ... } catch (e) { if ( e instanceof Error && /DecimalError/.test(e.message) ) { // ... } }
The maximum precision of the trigonometric methods is dependent on the internal value of the
constant pi, which is defined as the string PI
near the top of the source file.
It has a precision of 1025
digits, meaning that the trigonometric methods
can calculate up to just over 1000
digits, but the actual figure depends on the
precision of the argument passed to them. To calculate the actual figure use:
maximum_result_precision = 1000 - argument_precision
For example, the following both work fine:Decimal.set({precision: 991}).tan(123456789) Decimal.set({precision: 9}).tan(991_digit_number)
as, for each, the result precision plus the argument precision, i.e. 991 + 9
and
9 + 991
, is less than or equal to 1000
.
If greater precision is required then the value of PI
will need to be extended to
about 25
digits more than the precision required. The time taken by the methods
will then be the limiting factor.
The value can also be shortened to reduce the size of the source file if such high precision is not required.
To get the value of pi:
pi = Decimal.acos(-1)
Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0") y = new BigDecimal("1.1000") z = x.add(y) // 2.1000 x = new BigDecimal("1.20") y = new BigDecimal("3.45000") z = x.multiply(y) // 4.1400000
To specify the precision of a value is to specify that the value lies within a certain range.
In the first example, x
has a value of 1.0
. The trailing zero shows
the precision of the value, implying that it is in the range 0.95
to
1.05
. Similarly, the precision indicated by the trailing zeros of y
indicates that the value is in the range 1.09995
to 1.10005
.
If we add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995
,
and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005
, so the
range of the result of the addition implied by the precision of its operands is
2.04995
to 2.15005
.
The result given by BigDecimal of 2.1000
however, indicates that the value is in
the range 2.09995
to 2.10005
and therefore the precision implied by
its trailing zeros may be misleading.
In the second example, the true range is 4.122744
to 4.157256
yet
the BigDecimal answer of 4.1400000
indicates a range of 4.13999995
to 4.14000005
. Again, the precision implied by the trailing zeros may be
misleading.
This library, like binary floating point and most calculators, does not retain trailing
fractional zeros. Instead, the toExponential
, toFixed
and
toPrecision
methods enable trailing zeros to be added if and when required.