An arbitrary-precision Decimal type for JavaScript.
The library is incorporated into this page, so it should be available in the console now.
See the README on GitHub for a quick-start introduction.
In all examples below, var
and semicolons are not shown, and if a commented-out value is in quotes it means toString
has been called on the preceding expression.
When the library is loaded, it defines a single function object, Decimal
, the constructor of Decimal numbers.
Multiple Decimal constructors can be created, each with their own independent configuration, e.g. precision and range, which applies to all Decimal numbers created from it.
A new Decimal constructor is created by calling the constructor
method of an already existing Decimal constructor - when the library is loaded this will be Decimal
.
Decimal(value [, base]) ⇒ Decimal
value
0
, ±Infinity
and NaN
.errors
is true) as calling toString
or valueOf
on such numbers may not result in the intended value.console.log( 823456789123456.3 ); // 823456789123456.2
'0xff'
, are invalid, and string values in octal literal form will be interpreted as decimals, e.g. '011'
is interpreted as 11, not 9.a-z
represents values from 10 to 35, A-Z
from 36 to 61, and $
and _
represent 62 and 63 respectively.base
2
to 64
inclusivevalue
.base
is omitted or is null
or undefined, base 10 is assumed.Returns a new instance of a Decimal object.
If a base is specified, value
is rounded according to the current precision
and rounding
settings.
See Errors for the treatment of an invalid value
or base
.
x = new Decimal(9) // '9' y = new Decimal(x) // '9' // 'new' is optional if errors is false Decimal(435.345) new Decimal('5032485723458348569331745.33434346346912144534543') new Decimal('4.321e+4') // '43210' new Decimal('-735.0918e-430') // '-7.350918e-428' new Decimal('5.6700000') // '5.67' new Decimal(Infinity) // 'Infinity' new Decimal(NaN) // 'NaN' new Decimal('.5') // '0.5' new Decimal('+2') // '2' new Decimal(-10110100.1, 2) // '-180.5' new Decimal('123412421.234324', 5) // '607236.557696' new Decimal('ff.8', 16) // '255.5'
The following throws 'not a base 2 number'
if errors
is true, otherwise it returns a Decimal with value NaN
.
new Decimal(9, 2)
The following throws 'number type has more than 15 significant digits'
if errors
is true, otherwise it returns a Decimal with value 96517860459076820
.
new Decimal(96517860459076817.4395)
The following throws 'not a number'
if errors
is true, otherwise it returns a Decimal with value NaN
.
new Decimal('blurgh')
A value is rounded only if a base is specified.
Decimal.config({ precision: 5 }) new Decimal(1.23456789) // '1.23456789' new Decimal(1.23456789, 10) // '1.2346'
The static methods of a Decimal constructor.
.config(object) ⇒ Decimal constructor
object
: object
Configures the 'global' settings for this particular Decimal constructor.
Returns this Decimal constructor.
The configuration object, object
, can contain some or all of the properties described in detail at Properties and shown in the example below.
The values of the configuration object properties are checked for validity and then stored as equivalently-named properties of this Decimal constructor.
If the value to be assigned to any of the properties is null
or undefined it is ignored.
See Errors for the treatment of invalid values.
// Defaults Decimal.config({ precision: 20, rounding: 4, toExpNeg: -7, toExpPos: 21, minE: -9e15, maxE: 9e15, errors: true, crypto: false, modulo: 1 })
The properties of a Decimal constructor can also be set by direct assignment, but that will obviously by-pass the validity checking that this method performs.
.constructor([object]) ⇒ Decimal constructor
object
: object
Returns a new independent Decimal constructor with configuration settings as described by object
(see config
).
Decimal.config({ precision: 5 }) D9 = Decimal.constructor({ precision: 9 }) x = new Decimal(1) y = new D9(1) x.div(3) // 0.33333 y.div(3) // 0.333333333 // D9 = Decimal.constructor({ precision: 9 }) is equivalent to: D9 = Decimal.constructor() D9.config({ precision: 9 })
It is not inefficient in terms of memory usage to use multiple Decimal constructors as functions are shared between them.
constructor
is a factory method so it is not necessary or desirable to use new
but it will do no harm.
D = new Decimal.constructor()
.exp() ⇒ Decimal
See exponential
.
x = Decimal.exp(3) y = new Decimal(3).exp() x.equals(y) // true
.ln() ⇒ Decimal
See naturalLogarithm
.
x = Decimal.ln(4.321) y = new Decimal(4.321).ln() x.equals(y) // true
.log(arg [, base]) ⇒ Decimal
arg
: number|string|Decimalbase
: number|string|Decimal
See Decimal
for further parameter details.
See logarithm
.
x = Decimal.log(100, 2.5) y = new Decimal(100).log(2.5) x.equals(y) // true
.max([arg1 [, arg2, ...]]) ⇒ Decimal
arg1
, arg2
, ... : number|string|Decimal
See Decimal
for further parameter details.
Returns a new Decimal whose value is the maximum of arg1
, arg2
,... .
Alternatively, the argument to this method can be an array of values.
x = new Decimal('3257869345.0378653') Decimal.max(4e9, x, '123456789.9') // '4000000000' arr = [12, '13', new Decimal(14)] Decimal.max(arr) // '14'
.min([arg1 [, arg2, ...]]) ⇒ Decimal
arg1
, arg2
, ... : number|string|Decimal
See Decimal
for further parameter details.
Returns a new Decimal whose value is the minimum of arg1
, arg2
,... .
Alternatively, the argument to this method can be an array of values.
x = new Decimal('3257869345.0378653') Decimal.min(4e9, x, '123456789.9') // '123456789.9' arr = [2, new Decimal(-14), '-15.9999', -12] Decimal.min(arr) // '-15.9999'
.noConflict() ⇒ Decimal constructor
Browsers only.
Reverts the Decimal
variable to the value it had before this library was loaded and returns a reference to the original Decimal constructor so it can be assigned to a variable with a different name.
<script> Decimal = 1 </script> <script src='/path/to/decimal.js'></script> <script> x = new Decimal(2) // '2' D = Decimal.noConflict() Decimal // 1 y = new D(3) // '3' </script>
.pow(base, exponent) ⇒ Decimal
base
: number|string|Decimalexponent
: number|string|Decimal
See Decimal
for further parameter details.
See toPower
.
x = Decimal.pow(3257.4, 17.01) y = new Decimal(3257.4).pow(17.01) x.equals(y) // true
.random([limit [, sd]]) ⇒ Decimal
limit
: number|string|Decimal
Default value: 1
sd
: number: integer, 1 to 1e+9 inclusive
See Decimal
for further parameter details.
Returns a new Decimal with a pseudo-random value equal to or greater in magnitude than 0
and lower in magnitude than limit
, and with the same sign as limit
.
If limit
is omitted then it will be 1
and the return value will have precision
significant digits (or less if there are trailing zeros produced).
If limit
is included and sd
is omitted then the return value will be an integer. If sd
is included, the return value will have sd
significant digits (or less if there are trailing zeros produced).
If limit
is a high value be sure to include a precision, otherwise this method may be slow to return because all integer digits will be generated.
Depending on the value of a Decimal constructor's crypto
property and the support for the crypto
object in the host environment, the random digits of the return value are generated by either Math.random
(fastest), crypto.getRandomValues
(Web Cryptography API in recent browsers) or crypto.randomBytes
(Node.js).
If crypto
is true
, i.e. one of the crypto
methods is to be used, the value of a returned Decimal should be cryptographically-secure and statistically indistinguishable from a random value.
// A value in the range [0, 1) with precision significant digits Decimal.config({ precision: 10 }) Decimal.random() // '0.4117936847' // A value in the range [0, 1) with 20 significant digits Decimal.random(1, 20) // '0.48193327636914089007' // An integer in the range [0, 1) Decimal.random(1) // '0' (always zero) // An integer in the range [0, 10) Decimal.random(10) // '6' // An integer in the range (-100, 0] Decimal.random(-100) // '-82' // An integer in the range [0, 9e9999999999) Decimal.random('9e99999999999') // A browser will hang // A value in the range [0, 9e9999999999) with 10 significant digits Decimal.random('9e99999999999', 25) // '1.508652055e+99999999999' // A value in the range (-0.0125, 0] with 16 significant digits Decimal.random(-0.0125, 16) // '-0.0001963482803540358' // A value in the range [0, 0.9) with 1 significant digit Decimal.random(0.9, 1) // '0.2'
.sqrt() ⇒ Decimal
See squareRoot.
x = Decimal.sqrt('987654321.123456789') y = new Decimal('987654321.123456789').sqrt() x.equals(y) // true
The static properties of a Decimal constructor.
A Decimal instance with value one.
new Decimal(3).times(Decimal.ONE) // '3'
The values of the configuration properties precision
, rounding
, minE
, maxE
, toExpNeg
, toExpPos
, errors
, modulo
and crypto
are set using the config
method.
As simple object properties they can be set directly without using config
, and it is fine to do so, but the values assigned will not then be checked for validity. For example:
Decimal.config({ precision: 0 }) // 'Decimal Error: config() precision out of range: 0' Decimal.precision = 0 // No error is thrown and the results of calculations are unpredictable
number: integer, 1
to 1e+9
inclusive
Default value: 20
The maximum number of significant digits of the result of a calculation or base conversion.
All methods which return a Decimal will round the return value to precision
significant digits except absoluteValue
, ceil
, floor
, negated
, round
, toDecimalPlaces
, toNearest
and truncated
.
A Decimal constructor will also not round to precision
unless a base is specified.
Decimal.config({ precision: 5 }) Decimal.precision // 5
number: integer, 0
to 8
inclusive
Default value: 4
(ROUND_HALF_UP
)
The default rounding mode used when rounding the result of a calculation or base conversion to precision
significant digits, and when rounding the return value of the round
, toDecimalPlaces
, toExponential
, toFixed
, toFormat
, toNearest
, toPrecision
and toSignificantDigits
methods.
The rounding modes are available as enumerated properties of the constructor.
Decimal.config({ rounding: Decimal.ROUND_UP }) Decimal.config({ rounding: 0 }) // equivalent Decimal.rounding // 0
number: integer, -9e15
to 0
inclusive
Default value: -9e15
The negative exponent limit, i.e. the exponent value below which underflow to zero occurs.
If the Decimal
to be returned by a calculation would have an exponent lower than minE
then its value becomes zero.
JavaScript numbers underflow to zero for exponents below -324
.
Decimal.config({ minE: -500 }) Decimal.minE // -500 new Decimal('1e-500') // '1e-500' new Decimal('9.9e-501') // '0' Decimal.config({ minE: -3 }) new Decimal(0.001) // '0.01' e is -3 new Decimal(0.0001) // '0' e is -4
The smallest possible magnitude of a non-zero Decimal is 1e-9000000000000000
number: integer, 0
to 9e15
inclusive
Default value: 9e15
The positive exponent limit, i.e. the exponent value above which overflow to Infinity
occurs.
If the Decimal
to be returned by a calculation would have an exponent higher than maxE
then its value becomes Infinity
.
JavaScript numbers overflow to Infinity
for exponents above 308
.
Decimal.config({ maxE: 500 }) Decimal.maxE // 500 new Decimal('9.999e500') // '9.999e+500' new Decimal('1e501') // 'Infinity' Decimal.config({ maxE: 4 }) new Decimal(99999) // '99999' e is 4 new Decimal(100000) // 'Infinity'
The largest possible magnitude of a finite Decimal is 9.999...e+9000000000000000
number: integer, -9e15
to 0
inclusive
Default value: -7
The negative exponent value at and below which toString
returns exponential notation.
Decimal.config({ toExpNeg: -7 }) Decimal.toExpNeg // -7 new Decimal(0.00000123) // '0.00000123' e is -6 new Decimal(0.000000123) // '1.23e-7' // Always return exponential notation: Decimal.config({ toExpNeg: 0 })
JavaScript numbers use exponential notation for negative exponents of -7
and below.
Regardless of the value of toExpNeg
, the toFixed
method will always return a value in normal notation and the toExponential
method will always return a value in exponential form.
Calling toString
with a base argument, e.g. toString(10)
, will also always return normal notation.
number: integer, 0
to 9e15
inclusive
Default value: 20
The positive exponent value at and above which toString
returns exponential notation.
Decimal.config({ toExpPos: 2 }) Decimal.toExpPos // 2 new Decimal(12.3) // '12.3' e is 1 new Decimal(123) // '1.23e+2' // Always return exponential notation: Decimal.config({ toExpPos: 0 })
JavaScript numbers use exponential notation for positive exponents of 20
and above.
Regardless of the value of toExpPos
, the toFixed
method will always return a value in normal notation and the toExponential
method will always return a value in exponential form.
Calling toString
with a base argument, e.g. toString(10)
, will also always return normal notation.
boolean/number: true, false, 1 or 0
Default value: true
The value that determines whether Decimal Errors are thrown.
If errors
is false, this library will not throw errors.
See Errors.
Decimal.config({ errors: false }) Decimal.errors // false
number: integer, 0
to 9
inclusive
Default value: 1
(ROUND_DOWN
)
The modulo mode used when calculating the modulus: a mod n
.
The quotient, q = a / n
, is calculated according to the rounding
mode that corresponds to the chosen modulo
mode.
The remainder, r
, is calculated as: r = a - n * q
.
The modes that are most commonly used for the modulus/remainder operation are shown in the following table. Although the other rounding
modes can be used, they may not give useful results.
Property | Value | Description |
---|---|---|
ROUND_UP | 0 | The remainder is positive if the dividend is negative, else is negative |
ROUND_DOWN | 1 | The remainder has the same sign as the dividend. This uses truncating division and matches the behaviour of JavaScript's remainder operator % . |
ROUND_FLOOR | 3 | The remainder has the same sign as the divisor. (This matches Python's % operator) |
ROUND_HALF_EVEN | 6 | The IEEE 754 remainder function |
EUCLID | 9 | The remainder is always positive. Euclidian division: q = sign(n) * floor(a / abs(n)) . |
The rounding/modulo modes are available as enumerated properties of the Decimal constructor.
Decimal.config({ modulo: Decimal.EUCLID }) Decimal.config({ modulo: 9 }) // equivalent Decimal.modulo // 9
boolean/number: true, false, 1 or 0
Default value: false
The value that determines whether cryptographically-secure pseudo-random number generation is used.
If crypto
is truthy then the random
method will generate random digits using crypto.getRandomValues
in browsers that support it, or crypto.randomBytes
if using a version of Node.js that supports it.
If neither function is supported by the host environment or if crypto
is falsey then the source of randomness will be Math.random
.
Decimal.crypto // false Decimal.config({ crypto: true })
If crypto.getRandomValues
and crypto.randomBytes
are undefined, the crypto property will remain false
.
Decimal.crypto // false
The library's enumerated rounding modes are stored as properties of a Decimal constructor.
They are not referenced internally by the library itself.
Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
Property | Value | Description |
---|---|---|
ROUND_UP | 0 | Rounds away from zero |
ROUND_DOWN | 1 | Rounds towards zero |
ROUND_CEIL | 2 | Rounds towards Infinity |
ROUND_FLOOR | 3 | Rounds towards -Infinity |
ROUND_HALF_UP | 4 | Rounds towards nearest neighbour. If equidistant, rounds away from zero |
ROUND_HALF_DOWN | 5 | Rounds towards nearest neighbour. If equidistant, rounds towards zero |
ROUND_HALF_EVEN | 6 | Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour |
ROUND_HALF_CEIL | 7 | Rounds towards nearest neighbour. If equidistant, rounds towards Infinity |
ROUND_HALF_FLOOR | 8 | Rounds towards nearest neighbour. If equidistant, rounds towards -Infinity |
EUCLID | 9 | Not a rounding mode, see modulo |
Decimal.config({ rounding: Decimal.ROUND_CEIL }) Decimal.config({ rounding: 2 }) // equivalent Decimal.rounding // 2
The methods inherited by a Decimal instance from its constructor's prototype object.
A Decimal is immutable in the sense that it is not changed by its methods.
Methods that return a Decimal can be chained:
x = new Decimal(2).times('999.999999999999999').dividedBy(4).ceil()
Methods do not round their arguments before execution.
The treatment of ±0
, ±Infinity
and NaN
is consistent with how JavaScript treats these values.
Some method names have a shorter alias. (Internally, the library always uses the shorter method names.)
.abs() ⇒ Decimal
Returns a new Decimal whose value is the absolute value, i.e. the magnitude, of the value of this Decimal.
The return value is not rounded.
x = new Decimal(-0.8) y = x.absoluteValue() // '0.8' z = y.abs() // '0.8'
.ceil() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in the direction of positive Infinity
.
The return value is not rounded to precision
.
x = new Decimal(1.3) x.ceil() // '2' y = new Decimal(-1.8) y.ceil() // '-1'
.cmp(n [, base]) ⇒ number
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns | |
---|---|
1 | If the value of this Decimal is greater than the value of n |
-1 | If the value of this Decimal is less than the value of n |
0 | If this Decimal and n have the same value |
null | If the value of either this Decimal or n is NaN |
x = new Decimal(Infinity) y = new Decimal(5) x.comparedTo(y) // 1 x.comparedTo(x.minus(1)) // 0 y.cmp(NaN) // null y.cmp('110', 2) // -1
.dp() ⇒ number
Returns the number of decimal places, i.e. the number of digits after the decimal point, of the value of this Decimal.
x = new Decimal(1.234) x.decimalPlaces() // '3' y = new Decimal(987.654321) y.dp() // '6'
.div(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal divided by n
, rounded to precision
significant digits using rounding mode rounding
.
x = new Decimal(355) y = new Decimal(113) x.dividedBy(y) // '3.14159292035398230088' x.div(5) // '71' x.div(47, 16) // '5'
.divToInt(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Return a new Decimal whose value is the integer part of dividing this Decimal by n
, rounded to precision
significant digits using rounding mode rounding
.
x = new Decimal(5) y = new Decimal(3) x.dividedToIntegerBy(y) // '1' x.divToInt(0.7) // '7' x.divToInt('0.f', 16) // '5'
.eq(n [, base]) ⇒ boolean
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns true
if the value of this Decimal equals the value of n
, otherwise returns false
.
As with JavaScript, NaN
does not equal NaN
.
Note: This method uses the cmp
method internally.
0 === 1e-324 // true x = new Decimal(0) x.equals('1e-324') // false new Decimal(-0).eq(x) // true ( -0 === 0 ) new Decimal(255).eq('ff', 16) // true y = new Decimal(NaN) y.equals(NaN) // false
.exp() ⇒ Decimal
Returns a new Decimal whose value is the base e
(Euler's number, the base of the natural logarithm) exponential of the value of this Decimal, rounded to precision
significant digits using rounding mode rounding
.
The naturalLogarithm
function is the inverse of this function.
x = new Decimal(1) x.exponential() // '2.7182818284590452354' y = new Decimal(2) y.exp() // '7.3890560989306502272'
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding. (The mathematical result of the exponential function is non-terminating, unless its argument is 0
).
The performance of this method degrades exponentially with increasing digits.
.floor() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number in the direction of negative Infinity
.
The return value is not rounded to precision
.
x = new Decimal(1.8) x.floor() // '1' y = new Decimal(-1.3) y.floor() // '-2'
.gt(n [, base]) ⇒ boolean
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns true
if the value of this Decimal is greater than the value of n
, otherwise returns false
.
Note: This method uses the cmp
method internally.
0.1 > (0.3 - 0.2) // true x = new Decimal(0.1) x.greaterThan(Decimal(0.3).minus(0.2)) // false new Decimal(0).gt(x) // false new Decimal(11, 3).gt(11.1, 2) // true
.gte(n [, base]) ⇒ boolean
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns true
if the value of this Decimal is greater than or equal to the value of n
, otherwise returns false
.
Note: This method uses the cmp
method internally.
(0.3 - 0.2) >= 0.1 // false x = new Decimal(0.3).minus(0.2) x.greaterThanOrEqualTo(0.1) // true new Decimal(1).gte(x) // true new Decimal(10, 18).gte('i', 36) // true
.isFinite() ⇒ boolean
Returns true
if the value of this Decimal is a finite number, otherwise returns false
.
The only possible non-finite values of a Decimal are NaN
, Infinity
and -Infinity
.
x = new Decimal(1) x.isFinite() // true y = new Decimal(Infinity) y.isFinite() // false
Note: The native method isFinite()
can be used if n <= Number.MAX_VALUE
.
.isInt() ⇒ boolean
Returns true
if the value of this Decimal is a whole number, otherwise returns false
.
x = new Decimal(1) x.isInteger() // true y = new Decimal(123.456) y.isInt() // false
.isNaN() ⇒ boolean
Returns true
if the value of this Decimal is NaN
, otherwise returns false
.
x = new Decimal(NaN) x.isNaN() // true y = new Decimal('Infinity') y.isNaN() // false
Note: The native method isNaN()
can also be used.
.isNeg() ⇒ boolean
Returns true
if the value of this Decimal is negative, otherwise returns false
.
x = new Decimal(-0) x.isNegative() // true y = new Decimal(2) y.isNeg // false
Note: n < 0
can be used if n <= -Number.MIN_VALUE
.
.isZero() ⇒ boolean
Returns true
if the value of this Decimal is zero or minus zero, otherwise returns false
.
x = new Decimal(-0) x.isZero() && x.isNeg() // true y = new Decimal(Infinity) y.isZero() // false
Note: n == 0
can be used if n >= Number.MIN_VALUE
.
.lt(n [, base]) ⇒ boolean
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns true
if the value of this Decimal is less than the value of n
, otherwise returns false
.
Note: This method uses the cmp
method internally.
(0.3 - 0.2) < 0.1 // true x = new Decimal(0.3).minus(0.2) x.lessThan(0.1) // false new Decimal(0).lt(x) // true new Decimal(11.1, 2).lt(11, 3) // true
.lte(n [, base]) ⇒ boolean
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns true
if the value of this Decimal is less than or equal to the value of n
, otherwise returns false
.
Note: This method uses the cmp
method internally.
0.1 <= (0.3 - 0.2) // false x = new Decimal(0.1) x.lessThanOrEqualTo(Decimal(0.3).minus(0.2)) // true new Decimal(-1).lte(x) // true new Decimal(10, 18).lte('i', 36) // true
.log([n [, base]]) ⇒ Decimal
n
: number|string|Decimalbase
: number (This is not the base of the logarithm but the base of n
)
See Decimal
for further parameter details.
Returns a new Decimal whose value is the base n
logarithm of the value of this Decimal, rounded to precision
significant digits using rounding mode rounding
.
If n
is null
or undefined, then the base 10 logarithm of the value of this Decimal will be returned.
x = new Decimal(1000) x.logarithm() // '3' y = new Decimal(256) y.log(2) // '8'
The return value will almost always be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding. If a result is incorrectly rounded the maximum error will be 1
ulp (unit in the last place).
Logarithms to base 2
or 10
will always be correctly rounded.
See toPower
for the circumstances in which this method may return an incorrectly rounded result.
The performance of this method degrades exponentially with increasing digits.
.minus(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal minus n
, rounded to precision
significant digits using rounding mode rounding
.
0.3 - 0.1 // 0.19999999999999998 x = new Decimal(0.3) x.minus(0.1) // '0.2' x.minus(0.6, 20) // '0'
.mod(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal modulo n
, rounded to precision
significant digits using rounding mode rounding
.
The value returned, and in particular its sign, is dependent on the value of the modulo
property of this Decimal's constructor. If it is 1
(default value), the result will have the same sign as this Decimal, and it will match that of Javascript's %
operator (within the limits of double precision) and BigDecimal's remainder
method.
See modulo
for a description of the other modulo modes.
1 % 0.9 // 0.09999999999999998 x = new Decimal(1) x.modulo(0.9) // '0.1' y = new Decimal(33) y.mod('a', 33) // '3' x = new Decimal(8) y = new Decimal(-3) Decimal.modulo = 1 x.mod(y) // '2' Decimal.modulo = 3 x.mod(y) // '-1'
.ln() ⇒ Decimal
Returns a new Decimal whose value is the natural logarithm of the value of this Decimal, rounded to precision
significant digits using rounding mode rounding
.
The natual logarithm is the inverse of the exponential
function.
x = new Decimal(10) x.naturalLogarithm() // '2.3026' y = new Decimal('1.23e+30') y.ln() // '69.28'
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding. (The mathematical result of the natural logarithm function is non-terminating, unless its argument is 1
).
Internally, this method is dependent on a constant whose value is the natural logarithm of 10
. This LN10
variable in the source code currently has a precision of 1025
digits, meaning that this method can accurately calculate up to 1000
digits.
If more than 1000
digits is required then the precision of LN10
will need to be increased to 25
digits more than is required - though, as the time-taken by this method increases exponentially with increasing digits, it is unlikely to be viable to calculate over 1000
digits anyway.
.neg() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal negated, i.e. multiplied by -1
.
The return value is not rounded.
x = new Decimal(1.8) x.negated() // '-1.8' y = new Decimal(-1.3) y.neg() // '1.3'
.plus(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal plus n
, rounded to precision
significant digits using rounding mode rounding
.
0.1 + 0.2 // 0.30000000000000004 x = new Decimal(0.1) y = x.plus(0.2) // '0.3' new Decimal(0.7).plus(x).plus(y) // '1.1' x.plus('0.1', 8) // '0.225'
.sd([include_zeros]) ⇒ number
Returns the number of significant digits of the value of this Decimal.
If include_zeros
is true
or 1
then any trailing zeros of the integer part of a number are counted as significant digits, otherwise they are not.
x = new Decimal(1.234) x.precision() // '4' y = new Decimal(987000) y.sd() // '3' y.sd(true) // '6'
.round() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal rounded to a whole number using rounding mode rounding
.
To emulate Math.round
, set rounding
to 7
, i.e. ROUND_HALF_CEIL
.
Decimal.config({ rounding: 4 }) x = 1234.5 x.round() // '1235' Decimal.rounding = Decimal.ROUND_DOWN x.round() // '1234' x // '1234.5'
.sqrt() ⇒ Decimal
Returns a new Decimal whose value is the square root of this Decimal, rounded to precision
significant digits using rounding mode rounding
.
The return value will be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding.
This method is much faster than using the toPower
method with an exponent of 0.5
.
x = new Decimal(16) x.squareRoot() // '4' y = new Decimal(3) y.sqrt() // '1.73205080756887729353' y.sqrt().eq( y.pow(0.5) ) // true
.times(n [, base]) ⇒ Decimal
n
: number|string|Decimalbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal times n
, rounded to precision
significant digits using rounding mode rounding
.
0.6 * 3 // 1.7999999999999998 x = new Decimal(0.6) y = x.times(3) // '1.8' new Decimal('7e+500').times(y) // '1.26e+501' x.times('-a', 16) // '-6'
.toDP([dp [, rm]]) ⇒ Decimal
dp
: number: integer, 0 to 1e+9 inclusiverm
: number: integer, 0 to 8 inclusive.
Returns a new Decimal whose value is the value of this Decimal rounded to dp
decimal places using rounding mode rm
.
If dp
is omitted or is null
or undefined, the return value will have the same value as this Decimal.
if rm
is omitted or is null
or undefined, rounding mode rounding
is used.
See Errors for the treatment of other non-integer or out of range dp
values.
x = new Decimal(12.24567) x.toDecimalPlaces(0) // '12' x.toDecimalPlaces(1, 0) // '12.3' y = new Decimal(9876.54321) y.toDP(3) // '9876.543' y.toDP(1, 0) // '9876.6' y.toDP(1, Decimal.ROUND_DOWN) // '9876.5'
.toExponential([dp [, rm]]) ⇒ string
dp
: number: integer, 0 to 1e+9 inclusiverm
: number: integer, 0 to 8 inclusive
Returns a string representing the value of this Decimal in exponential notation rounded using rounding mode rm
to dp
decimal places, i.e with one digit before the decimal point and dp
digits after it.
If the value of this Decimal in exponential notation has fewer than dp
fraction digits, the return value will be appended with zeros accordingly.
If dp
is omitted, or is null
or undefined, the number of digits after the decimal point defaults to the minimum number of digits necessary to represent the value exactly.
If rm
is omitted or is null
or undefined, rounding mode rounding
is used.
See Errors for the treatment of other non-integer or out of range decimal_places
values.
x = 45.6 y = new Decimal(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN) x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed([dp [, rm]]) ⇒ string
dp
: number: integer, 0 to 1e+9 inclusiverm
: number: integer, 0 to 8 inclusive
Returns a string representing the value of this Decimal in normal (fixed-point) notation rounded to dp
decimal places using rounding mode rm
.
If the value of this Decimal in normal notation has fewer than dp
fraction digits , the return value will be appended with zeros accordingly.
Unlike Number.prototype.toFixed
, which returns exponential notation if a number is greater or equal to 1021
, this method will always return normal notation.
If dp
is omitted or is null
or undefined, then the return value will be unrounded and in normal notation. This is unlike Number.prototype.toFixed
, which returns the value to zero decimal places, but is useful when because of the current toExpNeg
or toExpNeg
values, toString
returns exponential notation.
if rm
is omitted or is null
or undefined, rounding mode rounding
is used.
See Errors for the treatment of other non-integer or out of range dp
values.
x = 3.456 y = new Decimal(x) x.toFixed() // '3' y.toFixed() // '3.456' y.toFixed(0) // '3' x.toFixed(2) // '3.46' y.toFixed(2) // '3.46' y.toFixed(2, 1) // '3.45' (ROUND_DOWN) x.toFixed(5) // '3.45600' y.toFixed(5) // '3.45600'
.toFormat([sep1 [, dp [, sep2]]]) ⇒ string
sep1
: string: the grouping separator of the integer part of the numbersep2
: string: the grouping separator of the fraction part of the numberdp
: number: integer, 0 to 8 inclusive
This method is a placeholder and is likely to be subject to change / further development.
Returns a string representing the value of this Decimal to dp
decimal places, (see toFixed
), but with the integer part of the number separated by sep1
into groups of three digits, and the fraction part of the number separated into groups of five digits by sep2
.
If sep1
is null
or undefined, the integer part groupings will be separated by a comma.
If sep2
is null
or undefined, the fraction part groupings will not be separated.
If dp
is omitted or is null
or undefined, then the return value is not rounded to a fixed number of decimal places.
A useful separator character is the non-breaking thin-space: \u202f
.
x = new Decimal('1.23456000000000000000789e+9') x.toFormat() // '1,234,560,000.00000000000789' x.toFormat(' ') // '1 234 560 000.00000000000789' x.toFormat(',', 2) // '1,234,560,000.00' x.toFormat(' ', 2) // '1 234 560 000.00' x.toFormat(',', 12, ' ') // '1 ,234,560,000.00000 00000 08' x.toFormat('-', 14, '-') // '1-234-560-000.00000-00000-0789'
.toFraction([max_denominator]) ⇒ [string, string]
max_denominator
: number|string|Decimal: 1
>= integer < Infinity
Returns a string array representing the value of this Decimal as a simple fraction with an integer numerator and an integer denominator. The denominator will be a positive non-zero value less than or equal to max_denominator
.
If a maximum denominator is not specified, or is null
or undefined, the denominator will be the lowest value necessary to represent the number exactly.
See Errors for the treatment of other non-integer or out of range max_denominator
values.
x = new Decimal(1.75) x.toFraction() // '7, 4' pi = new Decimal('3.14159265358') pi.toFraction() // '157079632679,50000000000' pi.toFraction(100000) // '312689, 99532' pi.toFraction(10000) // '355, 113' pi.toFraction(100) // '311, 99' pi.toFraction(10) // '22, 7' pi.toFraction(1) // '3, 1'
.toJSON() ⇒ string
As valueOf
.
x = new Decimal('177.7e+457') y = new Decimal(235.4325) z = new Decimal('0.0098074') // Serialize an array of three Decimals str = JSON.stringify( [x, y, z] ) // "["1.777e+459","235.4325","0.0098074"]" // Return an array of three Decimals JSON.parse(str, function (key, val) { return key === '' ? val : new Decimal(val) })
If the toJSON
method was not present, the objects (Decimal instances) themselves would be serialized, rather then the string returned by valueOf
:
JSON.stringify( [x, y, z] ) /* "[{"s":1,"e":459,"c":[1,7,7,7]}, {"s":1,"e":2,"c":[2,3,5,4,3,2,5]}, {"s":1,"e":-3,"c":[9,8,0,7,4]}]" */
.toNearest(n [, rm]) ⇒ Decimal
n
: number|string|Decimalrm
: number: integer, 0 to 8 inclusive
See Decimal
for further parameter details.
Returns a new Decimal whose value is the nearest multiple of n
to the value of this Decimal.
If the value of this Decimal is equidistant from two multiples of n
, the rounding mode rm
, or rounding
if rm
is omitted or is null
or undefined, determines the direction of the nearest.
In this context, rounding mode ROUND_HALF_UP
is interpreted the same as rounding mode ROUND_UP
, and so on. I.e. the rounding is either up, down, to ceil, to floor or to even.
The return value will always have the same sign as this Decimal, unless either this Decimal or n
is NaN
, in which case the return value will be also be NaN
.
The return value is not rounded to precision
.
x = new Decimal(1.39) x.toNearest(0.25) // '1.5' y = new Decimal(0.75) // equidistant from 0.5 and 1 y.toNearest(0.5, 0) // '1' (ROUND_UP) y.toNearest(0.5, 1) // '0.5' (ROUND_DOWN)
.toNumber() ⇒ number
Returns the value of this Decimal converted to a number primitive.
Type coercion with, for example, JavaScript's unary plus operator will also work, except that a Decimal with the value minus zero will convert to positive zero.
x = new Decimal(456.789) x.toNumber() // 456.789 +x // 456.789 y = new Decimal('45987349857634085409857349856430985') y.toNumber() // 4.598734985763409e+34 z = new Decimal(-0) 1 / +z // Infinity 1 / z.toNumber() // -Infinity
.pow(n [, base]) ⇒ Decimal
n
: number|string|Decimal: integer or non-integerbase
: number
See Decimal
for further parameter details.
Returns a new Decimal whose value is the value of this Decimal raised to the power n
, rounded to precision
significant digits using rounding mode rounding
.
The performance of this method degrades exponentially with increasing digits. For non-integer exponents in particular, even when only quite a small number of significant digits is required, the performance of this method may not be adequate.
Math.pow(0.7, 2) // 0.48999999999999994 x = new Decimal(0.7) x.toPower(2) // '0.49' new Decimal(3).pow(-2) // '0.11111111111111111111' new Decimal(1217652.23).pow('98765.489305603941') // '4.8227010515242461181e+601039'
Is the pow function guaranteed to be correctly rounded?
The return value will almost always be correctly rounded, i.e. rounded as if the result was first calculated to an infinite number of correct digits before rounding. If a result is incorrectly rounded the maximum error will be 1
ulp (unit in the last place).
For non-integer and larger exponents this method uses the formula
xy = exp(y*ln(x))
As the mathematical return values of the exp
and ln
functions are both non-terminating (excluding arguments of 0
or 1
), the Decimal return values of the functions as implemented by this library will be rounded approximations, which means that there can be no guarantee of correct rounding when they are combined in the above formula.
The return value may, depending on the rounding mode, be incorrectly rounded only if the first 15
rounding digits are 15
zeros (and there are non-zero digits following at some point) or 15
nines (the first rounding digit may also be 5
or 4
respectively).
Therefore, assuming the first 15
rounding digits are each equally likely to be any digit, 0-9
, the probability of an incorrectly rounded result is less than 1
in 250,000,000,000,000
.
An example of incorrect rounding:
Decimal.config({ precision: 20, rounding: 1 }) new Decimal(28).pow('6.166675020000903537297764507632802193308677149') // 839756321.64088511
As the exact mathematical result begins
839756321.6408851099999999999999999999999999998969466049426031167...
and the rounding mode is set to ROUND_DOWN
, the correct return value should be
839756321.64088510999
.toPrecision([sd [, rm]]) ⇒ string
sd
: number: integer, 1 to 1e+9 inclusiverm
: number: integer, 0 to 8 inclusive
Returns a string representing the value of this Decimal rounded to sd
significant digits using rounding mode rm
.
If sd
is less than the number of digits necessary to represent the integer part of the value in normal (fixed-point) notation, then exponential notation is used.
If sd
is omitted or is null
or undefined, then the return value is the same as toString
.
if rm
is omitted or is null
or undefined, rounding mode rounding
is used.
See Errors for the treatment of other non-integer or out of range sd
values.
x = 45.6 y = new Decimal(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP) y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN) x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toSD([sd [, rm]]) ⇒ Decimal
sd
: number: integer, 1 to 1e+9 inclusive.rm
: number: integer, 0 to 8 inclusive.
Returns a new Decimal whose value is the value of this Decimal rounded to sd
significant digits using rounding mode rm
.
If sd
is omitted or is null
or undefined, the return value will be rounded to precision
significant digits.
if rm
is omitted or is null
or undefined, rounding mode rounding
will be used.
See Errors for the treatment of other non-integer or out of range sd
or rm
values.
Decimal.config({ precision: 5, rounding: 4 }) x = new Decimal(9876.54321) x.toSignificantDigits() // '9876.5' x.toSignificantDigits(6) // '9876.54' x.toSignificantDigits(6, Decimal.ROUND_UP) // '9876.55' x.toSD(2) // '9900' x.toSD(2, 1) // '9800' x // '9876.54321'
.toString([base]) ⇒ string
base
: number: integer, 2 to 64 inclusive
Returns a string representing the value of this Decimal in the specified base, or base 10 if base
is omitted or is null
or undefined.
For bases above 10, values from 10 to 35 are represented by a-z
(as with Number.prototype.toString
), 36 to 61 by A-Z
, and 62 and 63 by $
and _
respectively.
If a base is specified the value is rounded to precision
significant digits using rounding mode rounding
.
If a base is not specified and this Decimal has a positive exponent that is equal to or greater than toExpPos
, or a negative exponent equal to or less than toExpNeg
, then exponential notation is returned.
If base
is null
or undefined it is ignored.
See Errors for the treatment of other non-integer or out of range base
values.
x = new Decimal(750000) x.toString() // '750000' Decimal.config({ toExpPos: 5 }) x.toString() // '7.5e+5' y = new Decimal(362.875) y.toString(2) // '101101010.111' y.toString(9) // '442.77777777777777777778' y.toString(32) // 'ba.s' Decimal.config({ precision: 4 }); z = new Decimal('1.23456789') z.toString() // '1.23456789' z.toString(10) // '1.2346'
.trunc() ⇒ Decimal
Returns a new Decimal whose value is the value of this Decimal truncated to a whole number.
The return value is not rounded to precision
.
x = new Decimal(123.456) x.truncated() // '123' y = new Decimal(-12.3) y.trunc() // '-12'
.valueOf() ⇒ string
As toString
, but does not accept a base argument.
x = new Decimal('1.777e+457') x.valueOf() // '1.777e+457'
A Decimal is an object with three properties:
Property | Description | Type | Value |
---|---|---|---|
c | coefficient* | number[] | Array of single digits |
e | exponent | number | Integer, -9e15 to 9e15 inclusive |
s | sign | number | -1 or 1 |
*significand
The value of any of the three properties may also be null
.
The value of a Decimal is stored in a normalised decimal floating point format which corresponds to the value's toExponential
form, with the decimal point to be positioned after the most significant (left-most) digit of the coefficient.
Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are not preserved.
x = new Decimal(0.123) // '0.123' x.toExponential() // '1.23e-1' x.c // '1,2,3' x.e // -1 x.s // 1 y = new Number(-123.4567000e+2) // '-12345.67' y.toExponential() // '-1.234567e+4' z = new Decimal('-123.4567000e+2') // '-12345.67' z.toExponential() // '-1.234567e+4' z.c // '1,2,3,4,5,6,7' z.e // 4 z.s // -1
A Decimal is mutable in the sense that the value of its properties can be changed.
For example, to rapidly shift a value by a power of 10:
x = new Decimal('1234.000') // '1234' x.toExponential() // '1.234e+3' x.c // '1,2,3,4' x.e // 3 x.e = -5 x // '0.00001234'
If changing the coefficient array directly, which is not recommended, be careful to avoid leading or trailing zeros (unless zero itself is being represented).
The table below shows how ±0
, NaN
and ±Infinity
are stored.
c | e | s | |
---|---|---|---|
±0 | [0] | 0 | ±1 |
NaN | null | null | null |
±Infinity | null | null | ±1 |
x = new Number(-0) // 0 1 / x == -Infinity // true y = new Decimal(-0) // '0' y.c // '0' ( [0].toString() ) y.e // 0 y.s // -1
The errors that are thrown are generic Error
objects with name
Decimal Error.
The table below shows the errors that may be thrown if errors
is true
, and the action taken if errors
is false
.
Method(s) | errors: true Throw Decimal Error | errors: false Action on invalid argument |
---|---|---|
comparedTo | number type has more than 15 significant digits | Accept. |
not a base... number | Substitute NaN | |
base not an integer | Truncate to integer. Ignore if not a number | |
base out of range | Ignore | |
not a number* | Substitute NaN | |
config | precision not an integer | Truncate to integer. Ignore if not a number |
precision out of range | Ignore | |
rounding not an integer | Truncate to integer. Ignore if not a number | |
rounding out of range | Ignore | |
toExpNeg not an integer | Truncate to integer. Ignore if not a number | |
toExpNeg out of range | Ignore | |
toExpPos not an integer | Truncate to integer. Ignore if not a number | |
toExpPos out of range | Ignore | |
minE not an integer | Truncate to integer. Ignore if not a number | |
minE out of range | Ignore | |
maxE not an integer | Truncate to integer. Ignore if not a number | |
maxE out of range | Ignore | |
errors not a boolean or binary digit | Ignore | |
crypto not a boolean or binary digit | Ignore | |
modulo not an integer | Truncate to integer. Ignore if not a number | |
modulo out of range | Ignore | |
logarithm | LN10 out of digits | Ignore |
precision | argument not a boolean or binary digit | Ignore |
toDecimalPlaces | argument not an integer | Truncate to integer. Ignore if not a number |
argument out of range | Ignore | |
rounding mode not an integer | Truncate to integer. Ignore if not a number | |
rounding mode out of range | Ignore | |
toFraction | number type has more than 15 significant digits | Accept. |
max denominator not an integer | Truncate to integer. Ignore if not a number | |
max denominator out of range | Ignore | |
toNearest | number type has more than 15 significant digits | Accept. |
rounding mode out of range | Ignore | |
toString | base not an integer | Truncate to integer. Ignore if not a number |
base out of range | Ignore |
*No error is thrown if the value is NaN
or 'NaN'.
The message of a Decimal Error will also contain the name of the method from which the error originated.
To determine if an exception is a Decimal Error:
try { // ... } catch (e) { if ( e instanceof Error && e.name == 'Decimal Error' ) { // ... } }
Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0") y = new BigDecimal("1.1000") z = x.add(y) // 2.1000 x = new BigDecimal("1.20") y = new BigDecimal("3.45000") z = x.multiply(y) // 4.1400000
To specify the precision of a value is to specify that the value lies within a certain range.
In the first example, x
has a value of 1.0
. The trailing zero shows the precision of the value, implying that it is in the range 0.95
to 1.05
. Similarly, the precision indicated by the trailing zeros of y
indicates that the value is in the range 1.09995
to 1.10005
.
If we add the two lowest values in the ranges we have, 0.95 + 1.09995 = 2.04995
, and if we add the two highest values we have, 1.05 + 1.10005 = 2.15005
, so the range of the result of the addition implied by the precision of its operands is 2.04995
to 2.15005
.
The result given by BigDecimal of 2.1000
however, indicates that the value is in the range 2.09995
to 2.10005
and therefore the precision implied by its trailing zeros may be misleading.
In the second example, the true range is 4.122744
to 4.157256
yet the BigDecimal answer of 4.1400000
indicates a range of 4.13999995
to 4.14000005
. Again, the precision implied by the trailing zeros may be misleading.
This library, like binary floating point and most calculators, does not retain trailing fractional zeros. Instead, the toExponential
, toFixed
and toPrecision
methods enable trailing zeros to be added if and when required.